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1 The Field C of Complex Numbers; Some Simple Concepts

Summary: The set of all complex numbers z = z+iy forms a commutative field, denoted by C, were
addition and multiplication are defined. The mapping of complex conjugation, z = x 4+ iy — z =
z — iy, commutes with addition and multiplication. With the distance function d(z1, z2) = |21 — 22|
the set C becomes a complete metric space.

Important analytical concepts are convergence of sequences z, and series Z]O‘io aj; continuity
and complex differentiability of functions f : U — C where U denotes an open subset of C.

1.1 The Field C of Complex Numbers and the Euclidean Plane
Let

R* = {(z,y) : =,y €R}
denote the Euclidean plane, consisting of all ordered pairs of real numbers z, y. One defines addition
in R? by
(z1,91) + (22, 92) = (¥1 + 22,91 + y2) -

It is remarkable that one can define multiplication in R? which, together with the above addition,
turns R? into a commutative field.

To motivate the definition of multiplication, let us identify the pair (z,0) with z € R and set
(0,1) =: 4. Then

(#,y) = (#,0) + (0,y) =z +1y .

If one now postulates that 2 = —1 and also postulates distributive laws, one obtains

(w1,91) - (v2,92) = (21 +1iy1) - (w2 +iye)
= 122 — Y2 + i(yiz2 + T1Y2)

= (7172 — y1y2, Y172 + T1Y2)
This motivates to define multiplication in R? by
(w1,91) - (z2,92) = (T122 — Y1Y2, Y172 + T1Y2) -
It is tedious, but not difficult to prove:

Theorem 1.1 The set R2, together with addition and multiplication defined above, is a commuta-
tive field.

Partial Proof: The zero—element in R? is (0,0) = 0 and the one—element is (1,0) = 1. We
want to check that every element (x,y) # (0,0) has a multiplicative inverse. Motivation for the
formula for the inverse: Let

z=(z,y)=x+1iy .

Then we have



1 1 T —1y T — 1y

z x+iy:($+iy)($—iy)_x2+y2'

This motivates to set

Then we calculate

z? y(-y)  yz z(—y)
) : 7b = ( - ) )
(z,y) - (a,b) 22 +y2 2242 x2+y2+x2—|—y2
(1,0)
= 1

This shows that (a,b) is indeed a multiplicative inverse of (x,y).
It is, of course, also important to check that

= (0,1)-(0,1)
(ila 0)
= -1

As usual, we will identify (z,0) with z € R and write i = (0, 1),

(v,y) =2 +iy .

With these notations and the above definitions of addition and multiplication, one writes C for
R2. It is convenient to think of R as a subfield of C, i.e. R C C.

Im 2z

L (my) ~o+iy

0 Re z

Figure 1.1: Identification of R? and C

Summary: The Euclidean plane R? and the field of complex numbers C can be identified via the
mapping

R? +— C, (z,y)«—z=x+1y.

Addition and multiplication in C are defined by



(x1+iy1) + (z2 +iy2) = x1+z2+i(y1 +y2)
(w1 +iy1) (w2 +iy2) = @172 — Y12 +i(T1Y2 + T2Y1)

1.2 Some Simple Concepts

Complex Conjugation. If z = x + iy with real z,y, then Zz = = — iy is called the complex
conjugate of z. One easily checks the rules:

21t 22=21+2

and
2129 = 2122 .
Furthermore, z = z if and only if z is real.
Im 2
z2=x+1y
k4
0 Re z
Z=x—1y

Figure 1.2: The complex conjugate

Exercise: Prove: If z # 0 then (1/z) = 1/Z.

A simple consequence of the rules for taking complex conjugates is the following;:

Lemma 1.1 Let p(z) = ag + a1z + ... + aiz® be a polynomial with real coefficients, a; € R. If
p(z0) = 0 for some zy € C, then p(Z9) = 0. In other words, the non—real roots of a polynomial with
real coefficients come in pairs of complex conjugate numbers. Further implication: The non—real
eigenvalues of a real matriz A € R™™™ come in complex conjugate pairs.

Absolute Value. If z = x + iy with real x,y, then

4l = Va?+ i

is the Euclidean distance of z from 0. We have the triangle inequality,

|2+ w| < [z] + |w],

and the multiplication rule:



|zw| = |z]|w] .
Distance of Two Complex Numbers and Convergence of Sequences. If z;, z5 € C are
two complex numbers then their Euclidean distance is
|Zl — 22| .
This distance concept leads, as usual, to a concept of convergence for sequences: If z, is a sequence
in C and z € C, then z, converges to z (for short: z, — z) if and only if for all € > 0 there exists
N € N with
|zn — 2| <e for n>N.

A sequence z, of complex numbers is called a Cauchy sequence in C if for all € > 0 there exists
N € N so that |z, — z,| < € for m,n > N. It is easy to check that every convergent sequence is
a Cauchy sequence. An important result of analysis says that every Cauchy sequence in C has a
limit in C. In other words, the metric space C with distance d(z1, z2) = |21 — 22| is complete.

A Result from Real Analysis: Let a,, € R denote a sequence of real numbers. Assume that
there exists v € R so that
vy<ant1 <a, forall neN.

Then the sequence «,, converges to some o > 7.
To prove this result one uses that the sequence «, is a Cauchy sequence in R.

Lemma 1.2 Let z € C,|z| < 1. Then 2™ — 0 as n — oo.
Proof: If a,, := |2"| = |z|" then

0<ant1 <a, forall n.

Convergence |2"| = |z|™ — « > 0 follows. We have to show that o = 0 and may assume that
0 < |z| < 1. We have
2 = Jal ol

Convergence |z|" — « implies that

a=|z|la .
Therefore, a = 0. ©

Convergence of Series. Similar as in real analysis, we will consider series, which are expres-
sions of the form

oo
2 a
=0

where a; € C. The sequence



n
Sn — E Qaj
J=0

. . . . o0 . .
is the corresponding sequence of partial sums. The series ijo a; is called convergent if the
sequence s, of partial sums converges. If s,, — s then one writes

(o.)
E aj:S.
Jj=0

In other words, the symbol ) ; @j may denote just an expression, but it also may denote the complex
number

n
lim E aj .
n—oo

J=0

This double meaning of > CE though sometimes confusing, turns out to be very convenient.
The series ), a; is called absolutely convergent if the series ), |a;| converges.

Exercise: Prove: If the series ), |a;| converges, then the series ), a; also converges, i.e., absolute
convergence implies convergence. (The proof uses completeness of C.)

If the series > ; @j is convergent, but not absolutely convergent, then one calls it conditionally
convergent. The standard example of a conditionally convergent series is
o0
a1 1 1 1
S DL [
2 (1) i s t3 1t
7j=1
In the theory of complex variables one typically works with absolutely convergent series.
Example 1.1: The Geometric Series: Consider the series

[e.o]

sz for |z|<1.
§=0
We have
A+z4...+2M1—2)=1-2"T,
thus
1— zntl
1+z+...+z":17 for z#1.
—z

Since 2"t! — 0 for |z| < 1 one obtains that

o] . 1
S = for |of<1.
¢ 1—=z2

Jj=0

Since the series
o
NEL
j=0

10



converges, the convergence of the geometric series is absolute.

Two simple results on convergent series are the comparison and the quotient criteria.

Theorem 1.2 (Comparison Criterion) Assume that |a;| < |bj| for all j. If 3_; |bj| converges, then
>_jlaj| converges, too.

This result follows, essentially, from the convergence of Cauchy sequences in R.
Theorem 1.3 (Quotient Criterion) Assume that there exists J € N and 0 < ¢ < 1 so that
CLj.t,.l .
| <qg<1l for 7>J.
a;
Then the series Zj a; converges absolutely.

Proof: The proof uses convergence of the geometric series,

quzlia ‘q’<17
0 —q

J
and the Comparison Criterion: For k > 0 we have

|| < ¢"lag] -

Therefore,

n n 1

k
D lagrl <lagl Y 4" < lasl 0
k=0 k=0

This implies that the series

oo
Z @74k
k=0

converges. ¢

Example 1.2: The Quotient Criterion can be used to prove absolute convergence of the series
defining the exponential function,

o0

2]
exp(z) :Zf', zeC.
=07’

In this case, a; = 27 /4! and
1

5 for j+1>2|7|.

lajy1/a;] = |2]/(G+1) <
Pointwise and Uniform Convergence Let U C C and let s, : U — C denote a sequence of
functions, s, = s,(z). Let s: U — C denote a function. The sequence of functions s, (z) converges

pointwise on U to the function s(z) if for all z € U and all € > 0 there exists N(e, z) with

lsn(z) —s(z)| <e for n>N(egz).

11



The sequence of functions s,(z) converges uniformly on U to the function s(z) if for all ¢ > 0
there exists N (g) with
[sn(z) —s(z)|<e for n>N() forall zeU.

The concepts of pointwise and uniform convergence are often used for series. Let f; : U — C
denote a sequence of functions and let f : U — C denote a function. Then the series

> fiz)
=0

converges pointwise on U to f(z) if for all z € U and all £ > 0 there exists N(g, z) with

S5 - @) < for n> N2
=0

The series 22 f;(2) converges uniformly on U to f(2) if for all € > 0 there exists N(e) with

n

|ij(z)—f(2)|§€ for n>N(e) forall zeU.
=0

Example: Let 0 <r < 1. We claim that

0 1
jz:%zjzl—z

where the convergence is uniform for |z| < r. This follows from

|Z|n+1 Tn—i—l

= < f <r<l.
1—z —1-—r or Jzlsr

We claim that

[e.9]
j=0 o
does not hold with uniform convergence for |z| < 1.

Proof: Consider z =z for 0 < z < 1. We have

n
. 1 xn+1
’E ) — ’: for 0<z<1.
. l1—=x 1—=x
Jj=0
Here, for every n € N,
xn+1
—00 as Tz —1— .
1—=x

Therefore, if € = 1 for example, then n with

°L 1
)Z:)ﬂ— )Sszl for 0<zx<1
= 11—z

12



does not exist. ¢
Example: The series which defines the exponential function,

o0

S 2 —exp(s),

1l
=0 )

converges pointwise in C, but not uniformly on C. If 0 < r < o is fixed, then the convergence is
uniform for all z € C with |z] <.

Continuity of a Function: Let U C C and let f : U — C denote a function. Let zg € U.
The function f is called continuous at zg if for all € > 0 there is 6 > 0 so that

[f(20) = f(2)] <e

for all z € U with |zp — 2| < 0.

1.3 Complex Differentiability

Notation and Definitions: Let z5 € C and let » > 0. The set

D(zp,r)={2€C : |z0—z| <r}

is the open disk of radius r centered at zg.

A set U C C is called open if for every zy € U there exists € > 0 with D(zg,¢) C U. (Show that
the set D(zg,r) is open.)

A set V C C is called closed if the following holds: If z, is a sequence in V' which converges,

Zn —Z as n— oo,

then the limit z is an element of the set V, i.e, 2, € V and z, — 2z implies z € V.

It is not difficult to prove that a set V' C C is closed if and only if its complement, V¢ = C\ V,
is open.

An important concept of complex variables is complex differentiability of a function. Here the
field structure of C is used in an essential way since in the formula (1.1) below division by the
complex number h occurs.

Definition 1.1: Let U C C be an open set and let f : U — C be a function. Let zg € U. The
function f is called complex differentiable at zg if

lim =+ (/(z0 + 1) — £(z0)) (1.1

exists.! If the limit exists, it is denoted by

daf

/ — -

fiz0) = -~ (20) -

The number f'(zo) is called the complex derivative of f at zg. The function f : U — C is called

complex differentiable in U if it is complex differentiable at every point zg in U. We then write
f € HWU) and call f a holomorphic function in U.

'The limit exists and equals the complex number a if for every € > 0 there exists § > 0 so that |+ (f(z0 + h) —
f(20)) — a| < ¢ for all complex numbers h with 0 < |h| < 4.

13



Example 1.3: Let U = C and let f(z) = 2™ where n is a positive integer. We have

Feth) = f() = (z4h)y— 2"
= (z” +nhz"1 4 R(h)) —z"
= nhz" '+ R(h)

where |R(h)| < C|h|? for |h| < 1. Tt follows that

lim ©(F(= 4 ) — f() = n=" "

thus the function f(z) = 2" is complex differentiable with derivative

(2" =nz""1 .

Example 1.4 The function f(z) = x where z = z + iy with real x,y is nowhere complex
differentiable. To show this, take first h = hq, h1 € R, hy # 0 and obtain

1 hy

— h) — =—=1.

S+ ) = 1) = 3
Second, let h = iho, ho € R, ho # 0. In this case

1 0

E(f(2+h)—f(z))—%—0-

Therefore, the limit

1
im (/{2 4+ h) — (=)

1
h—0
does not exist.
The theory of complex variables is the study of functions f : U — C where U C C is an open

set and where f is complex differentiable in U.
Any complex function f: U — C can be written as

f(z) =u(z,y) +iv(z,y) with z=uz+1y

where u(z,y) and v(z,y) are real valued. It is important to understand the relation between
complex differentiability of f and real differentiability of the functions wu(z,y) and v(x,y). As
Example 1.3 shows, complex differentiability is more than just smoothness of the functions u(z,y)
and v(z,y).

Roughly speaking, differentiation corresponds to approximation by a linear map. We can con-
sider R? ~ C as a 2-dimensional real vector space or as a 1-dimensional complex vector space.
If we have a map

L:RP~C—>R>~C

we then must distinguish between real and complex linearity of L. This distinction is of an algebraic
nature.

Therefore, as we will explain in Chapter 3, the difference between real and complex differen-
tiability is of an algebraic nature. The main issue is addressed by the following question: Which
real-linear maps L : R? — R? correspond to complex-linear maps from C to C?
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1.4 Alternating Series

The following result is often useful to show convergence of real series whose terms have alternating
signs.

Theorem 1.4 Let a,,n = 0,1,... denote a monotonically decreasing sequence of positive real
numbers converging to zero,

The series
o
Z(_l)]%
=0
converges.
Proof: Consider the partial sums
n
An = (_1)]%
=0
We have
AO = qQq
Ay = ap— (a1 —ag)
< Ay
Ay = Az — (a3 — aq)
< A
Aogpyo = Aoy — (a2n4+1 — G2n42)
S A2n
and, similarly,
A1 = ap— a1
A3 = ap—a1+ (a2 —a3)
> A
Agpy1 = Aop_1 + (a2n — a2n41)
> Agp1

We also have that

Aopi1 = Aoy — a2p1 < Agy

Therefore,



It follows that the limits
lim Agpy1 =A and lim A, =B
n—oo n—oo
exist. Furthermore, the assumption a,, — 0 implies that A = B. Convergence

A, —-A=B

follows. ¢

1.5 History
Euclid (Mid 4th century BC — Mid 3rd century BC), Greek

Franciscus Vieta (Francois Viete) (1540-1603), French

Jacob Bernoulli (1655-1705), Swiss
Jacob Ricatti (1676-1754), from Venice

Leonhard Euler (1701-1783), Swiss
Augustine-Jean Fresnel (1788-1827), French
Augustin—Louis Cauchy (1789-1857), French

Niels Henrik Abel (1802-1829), Norwegian
Joseph Liouville (1809-1882), French

Karl Theodor Wilhelm Weierstrass (1815-1897), German
Arthur Cayley (1821-1895), British
Charles Hermite (1822-1901), French
Bernhard Riemann (1826-1866), German
Felice Casorati (1835-1890), Italian
Edouard Goursat (1858-1936), French
Giacinto Morera (1856-1909), Italian
Emile Picard (1856-1941), French

Jacques Hadamard (1865-1963), French

Laurent Schwarz (1915-2002), French
Roger Apéry (1916-1994), French

In 1978 Apéry proved that the number ((3) is irrational.
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2 The Cauchy Product of Two Series: Proof of the Addition The-
orem for the Exponential Function

Summary: The Cauchy product of two series will be introduced and will be used to prove the
Addition Theorem for the exponential function,

exp(a +b) = exp(a)exp(b), a,beC,
where

exp(z) :Z,—', z2e€C.
=07’
The exponential function maps the open strip
Sr={z=z+4+iy : veR,—7<y<m}
bijectively onto the slit plane
C™ =C\ (-00,0]

and, by definition, the inverse function from C~ onto S; is the main branch of the complex loga-
rithm, which we denote by logw. We have

log(exp(z)) =z forall ze S;

and

exp(log(w)) =w forall weC™ .

2.1 The Cauchy Product of Two Series
Let

iaj and ibj (2.1)
=0 j=0

denote two series of complex numbers. Proceeding formally, we obtain for their product

(ap+a1+ag+...)-(bo+br+ba+...) = apby+ apby + agba + ...
+aiby + a1by + arbs + . ..
“+agbg + azby + azbs + . ..
+...
= ¢+crt+cea+...

with

co = agbg, c¢1 = agb1 + a1bg, co = agby + a1b1 + asby, etc.

In general, set

17



n
¢ = aoby, + a1bp—1 + ...+ anby = Zajbn_j . (2.2)
j=0

Then the series

o

D cn

n=0
is called the Cauchy product of the two series (2.1).

Theorem 2.1 a) Assume that both series (2.1) converge, and at least one of them converges ab-
solutely. Then their Cauchy product also converges, and for the values of the series we have

(g "’j> ' (g} bj) = ni)cn : (2.3)

b) If both series (2.1) converge absolutely, then their Cauchy product also converges absolutely.
Proof: a) Let

A, = zn:aj—nél
=0

B, = zn:b]%B
7=0

n
Cn = Z Cj
J=0

We must show that C,, — AB if at least one of the series (2.1) converges absolutely.
Assume that ) a; converges absolutely and let

o0
o= Z laj] .
j=0

Set

Bpi=B,—B=— f: b .

k=n+1
Then we have B,, = B + 3,. Since 3, — 0 as n — oo there exists a constant 3,4, > 0 with

|B7I| S /Bmax fOI" all n .

We now rewrite Cp:

Cn = aobo+ (agby + a1bg) + ... + (agby, + . .. + anbo)
aoB, +a1Bp_1+ ...+ a, By

ao(B + Bn) + a1(B + Bn-1) + ... + an(B + Bo)
= A,B+ 7,

18



with

n
Yo = a0Bn +a1Bn1+ ...+ anfo =Y _ a;iBnj .
i=0

Since A,, — A we have to show that v, — 0.
Let € > 0 be given. Since (3, — 0 there exists N = Nj(e) with

|Bn] <e forall n>N+1. (2.4)

In the following, N is fixed with (2.4). Using the absolute convergence of the series Zj a; and
a =737 |a;j| we have for all n > N:

|Boan| + ... + [BNan—N| + |BNt10n—N—1| + ... + | Brao
|Boan| + ...+ |BNan—N| + e

ﬁmax<|an| + ...+ |an_N|) + ca

[Vn|

IN A

IN

Here the bracket contains N + 1 terms. Since a, — 0 there exists Na(e) = Na(e, N) so that

lan| < ———\ . an—n| < —
N+1 N+1

for n > N(e). It follows that

Y] < e(Bmaz + ) for n > Ny(e) .

Here the constants (,,,. and « are independent of €, and € > 0 is arbitrary. This proves that
Yn — 0.
b) Assume that both series (2.1) converge absolutely. We have

len] < aol|bn| + - - - + |an||bo| =: d, -

Here ) d, is the Cauchy product of the series > |a;| and ) |bj|. By part a), the series ) d,
converges and, therefore, > |c,| also converges. ©

Remark: Assume that both series (2.1) converge, but none of them converges absolutely. Can
one still conclude that the Cauchy product of the two series converges? The answer is No, in

general. To give an example, let a; = b; = E;jl% for  =0,1,... Then, by Theorem 1.4, the series

(2.1) converge, but the convergence is not absolute. Here the general term of the Cauchy product

1S

n
1
:_1"§
R Y £ NCES

and

. ! - > ! = ! , 0<ji<n.
Vitlyn+1—5  Vn+1lvn+1 n+1

It follows that |c,| > 1; the Cauchy product of )" a; and ) b; diverges.
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2.2 The Addition Theorem for the Exponential Function

For all z € C the series

exp(z) := Z 2

gl
=07’

converges absolutely by the quotient criterion (Theorem 1.3). We use the previous theorem to
prove the fundamental Addition Theorem for the exponential function.

Theorem 2.2
exp(a + b) = exp(a) exp(b) for all a,be C . (2.5)

Proof: Note that

o :

j
exp(a) = g a; with a; = af'
=0 I

and

N v
exp(b) = > b with b; = T
=0 '

If Y°>° ;¢ denotes the Cauchy product of the series exp(a) and exp(b) then

n

a b
=3
| — Nl
= 7 (n=J)!
Also,
ex (a—i—b)—il(a—&-b)”
P B 7On!
where

& n , . n n!
a+b)" = . ) &? b7 with ( ) > = —
(a+) _O(J> i) A=

It follows that

1 n al b
mAGRIR AR Dl ¥ ey il
7=0
Therefore,
exp(a+b):§:<zn:,1aj 1 . bn_j).
SNz st (=)t

This is precisely the Cauchy product of the series for exp(a) and exp(b). The claim follows from
Theorem 2.1. ¢
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Let us give a second proof of the Addition Theorem. It uses tools, however, which we will only
justify later. The function

=35

J=0

is entire and f’(2) = f(z), f(0) = 1. Fix a € C and consider the function g(z) = f(a + 2). Then
g (2) = g(z) and g(0) = f(a). The function h(z) = f(a)f(z) also satisfies h'(z) = h(z),h(0) = f(a).

Therefore, the functions ¢g(z) and h(z) are both solutions of the initial-value problem
W' (2) = u(z), u(0) = f(a) .
Uniqueness of the solution of this initial-value problem implies that g(z) = h(z), i.e., f(a+ 2) =
fla)f(2).
2.3 Powers of ¢
2.3.1 Integer Powers

One sets

o0

1
e=exp(l) =) e 2.71828 18284 59046 . . .
j=0""

a notation due to Euler.? Then, by (2.5),

exp(2) = exp(l) exp(l) —ec-e=c¢

exp(3) = exp(l)exp(2) =e-e*=¢?
etc.

Also, since
exp(1) exp(—1) = exp(0) = 1 |
we obtain
1
—)===¢"
exp(~1) = - =¢
In the same way as above,
11 9
exp(~2) = exp(~ 1) exp(~1) = -~ = 2.

etc. The arguments show that

n

exp(n) =¢e" forall neZ

where, by definition,

2In 1873, Charles Hermite proved that the number e is transcendental; i.e., e is not a zero of any non-trivial
polynomial with integer coefficients.
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and where the standard definition of €™ is used.

2.3.2 Rational Powers

By definition,

a::el/zz\/g

is the positive real number with o? = e. If we set

B8 = exp(1/2)

then we have g > 0 and

B? = exp(1/2) exp(1/2) = exp(1) = e .

Therefore, a = g, i.e.,
e'/? = exp(1/2) .
More generally:
Lemma 2.1 Let g = m/n denote a positive rational number where m,n € N. If
=" =l = {fem

denotes the positive n—th root of €™, then

exp(q) = o .

In other words,
exp(q) = e’
for all positive rational numbers ¢ = m/n.

Proof: Set 8 :=exp(q). Then 8 > 0 and, using the addition theorem,

g = exp(%)-...-exp(%) (n factors)

= exp(m)

= em

Also, o™ = €™ and, therefore, o™ = ". Since a > 0 and 8 > 0 we conclude that o = 3, i.e.,

Ve = ™™ = exp(m/n) .

With similar arguments, it follows that the equation
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exp(q) = e

also holds for negative rationals ¢q. This justifies the standard notation

e =exp(z), z€C,
where the exponential function is defined by the exponential series:

[e.9]

exp(z) = Z ﬁ .

J=0

2.4 Euler’s Identity and Implications
Define

sinz — i (=" 2k+1
= (2k +1)!

o k
-1
cosz = g (=1) 22

For z = x € R the above series are the Taylor series of the functions sinx and cosx, centered at
xg = 0. The series converge absolutely for every z € C. Using the definitions by the series, it is not
difficult to prove Euler’s identity,

Lemma 2.2
e* =cosz+isinz forall z€C.

Proof: We have

eiz — Z(ZZ)

B 2. (iz 2. (iz)%H!
= > i T @)

k=0

00
A Z2k: A Z2k+l

D G T 2 Y

k=0

I
gl

= cosz-+1isinz
o

Lemma 2.3 For all z € C:

2

cos?z+sin2z=1.
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Proof: We have

e =cosz+isinz and e ¥ =cosz—isinz forall zeC.

Therefore,

1 . .
cosz = 5(6“ +e %),
sinz = l(eiz —e 7).

24

Using (2.5) one obtains that (e**)? = ¢, thus

1 . A 1 .. .
cos® z 4 sin® z = Z(ezzz + 24 e %7 — 1(6212 —24e B =1,

o
Lemma 2.4 For all 6 € R:
le?) =1.
Proof: By Euler’s identity:
e = cos +isind .

For real number 6, the values of cos8 and sin # are real. Therefore,

€912 = cos? 0 +sin?0 =1 .

2.5 The Polar Representation of a Complex Number

Im z
(2,y) ~ 2 = re?
r
\6
0 Re z

Figure 2.1: Polar representation
Let z € C,z # 0. Then ¢ := z/|2| = = + iy satisfies |(| = |z|/|z| = 1, thus

P=a"+y*=1.

From trigonometry (or calculus) we know the following result:
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Lemma 2.5 Given any two real numbers x,y with 2% + y?> = 1 there is a unique real number 0
with —m < 0 <7 and

r=cosf, y=sinf .

Remark: It is not at all obvious how to prove this result using the series representations of cos 6
and sinf. In particular, one has to introduce the number 7. One can define 7/2 as the smallest
positive zero of the cosine-function. One can prove that the functions ¢(f) = cos € and s() = sin 6
satisfy ¢ = —s,8 = ¢, thus ¢’ + ¢ = s + s = 0. A proof of the lemma can be based on properties
of the solutions of the differential equation u” + u = 0.

Using the lemma we can write the number ( = z/|z| = x + iy in the form

(=x+iy=cosh+ising=e" .

The representation

z=re® with r=12/>0, 0=arg(z)< (—m, 7],

is called the polar representation of z. It is very useful if one wants to visualize complex multipli-
cation geometrically since

91 92

z1 = rie’ and 29 = ro€’
implies
2129 = rroet@1102)

Regarding the real exponential function x — e, we know from calculus:

Lemma 2.6 a) The function x — e* defined for x € R is strictly increasing and maps the real line
R onto the interval (0,00) of positive real numbers.
b) If one defines the real logarithm by

S

,
d
lnr:/s for r>0

1

then

e =1 forall r>0

and
ln<6x> =x forall zeR.
2.6 Further Properties of the Exponential Function
In the following, let z = x 4 iy with real z,y. We want to understand the map

z—= e

from C into itself. We make the following observations:
1) e* # 0 for all z € C. This follows from e*e=* = e = 1.
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2) |e?| = |e%e®| = e > 0 since |e¥| = 1.
3) For any fixed y € R, the horizontal line
Hy={z=xz+iy : z€R}
is mapped to the half-line

e(cosy +isiny), 0<e® <oo.
4) For any fixed = € R, the vertical line
Vo={s=x+iy : yeR}
is mapped (infinitely often) to the circle of radius e®,

e’(cosy +isiny), —oo <y < oo .

We note that the family of lines H,, is orthogonal to the family of lines V.. Orthogonality also holds
for the corresponding image lines: The radial line

x — e*(cosy +isiny) (y fixed)
is orthogonal to the circular line

y — €e“(cosy +isiny) (x fixed) .

We will see below that this is not accidental, but preservation of angles holds generally for
holomorphic maps f(z) with f'(z) # 0.
Roughly, the map

2z — e = e%e
is oscillatory in y and has real exponential behavior in z. For x << —1, the complex number e” is

very small in absolute value; for x >> 1, the complex number e? is very large in absolute value.
This follows simply from

le*] = e* .
2.7 The Main Branch of the Complex Logarithm

Consider the open horizontal strip

Sr={z=z+iy : —m<y<m zeR}
and the slit plane

C™ =C\ (—00,0] .
If z=x+1iy € S; then —7m <y < 7, thus

ef=e"eWeC .
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Im 2z

0 Re z

Figure 2.2: The slit plane C~ = C\ (—o0, 0]

Lemma 2.7 The map

S —
: 2.
xp { z — € (2.6)
is one—to—one and onto.

Proof: a) Let z1 = x1 + iy1,22 = z2 +iy2 € Sp and let e® = e*2. It follows that ™ = e*2
and e = €2, Therefore, £1 = x9 is clear. The uniqueness statement of Lemma 2.5 yields that
y1 = y2. (Here it is important that we assume —7 < y; < m for j =1,2.)

b) Let w = re?? € C~ be given. Then we have r > 0 and may assume that —7 < # < 7. Let
z =Inr and set z = z +i0. We have z € S, and

e = exeie _ 7“67'9 —w
o
By definition, the inverse function of (2.6) is the main branch of the complex logarithm:
C - S;
log : { w = logw (2.7)
with

exp(logw) =w forall weC .

This log—function extends the real function

In : { (0,00) = (—00,00) (2.8)
T — Inr
from the positive real axis into the slit plane C~.
Given any w € C™, write

0

w=re? with r>0 and —m7<6<m.

Here the numbers » > 0 and 0 with —7 < € < 7 are unique.
It holds that
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w = 7"619 — elnrew — elnr+19 ,

thus
logw =1Inr +1i6 .
If w =wi 4+ iwy € C~ with wy,ws € R, then

r=(w?+wd)?, 0= arctan(ws/w) ,

thus

1
log(wy + iwe) = 3 In(w? 4+ w3) + i arctan(ws /wy) .
Here one has to choose the correct branch of arctan.
/2

Example: Since e =4 and % € Sr we have

log ¢ i
7= — .
8=

General Powers; Main Branch. Let b € C and let a € C™. One defines the main branch of
a’ by

ab — ebloga ]
Example: We have
eﬂi/Q — Z ,
thus
logi =mi/2 .
Therefore,
i = imi/2)
— e—ﬂ'/2
= 0.2078...

Somewhat surprisingly, the number 4 is real. Euler discovered this result in 1746.

2.8 Remarks on the Multivalued Logarithm

If z € S; and w = e* then w € C~ and

logw =z .

Here logw is defined above.
If n € Z then

ez+27rzn — o2



A possible view is to say that

logw = z + 2min

where n can take on any integer value and then call log a multivalued function. However, this view
is not satisfying since it does not agree with the general notion of a function.

One can proceed as follows: Instead of defining w — logw as a multivalued function on C~
or on C\ {0} one introduces an appropriate Riemann surface S. On this surface the logarithm
function will become single valued.

To get an intuitive idea of the Riemann surface S, first consider the point w = —1 which lies
outside the slit plane C~ = C\ (—o0, 0].
Set
we = ™) and . =T for 0<e<<1.

Clearly,

we - —1 and w. — -1 as —0.

Let log denote the main branch of the complex logarithm as defined above. We have

logw. =i(r —¢) and logw. =i(—m+e¢).

Therefore,

logw: — tw and logw. — —im as € —0.

This shows that one cannot continue the function log from C~ to C\ {0} as a continuous function.
Therefore, cut the set C\ {0} along the line (—oo, 0) and then bend the part above the line upwards,
the part below the line downwards. Then extend the resulting surface appropriately. The function
w — logw can be extended continuously to the extended surface. The process can be repeated
an infinity of times. It leads to the Riemann surface for the function logw. On this surface the
function logw is single valued and smooth, except at w = 0. The point w = 0 is a so—called branch
point of the Riemann surface.
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3 Complex Differentiability and the Cauchy—Riemann Equations

3.1 Outline and Notations

We identify R? and C using the correspondence

(x,y) +— z=x+1iy.
Let U C C denote an open set and let f : U — C be a map. We then define two real-valued
functions, u,v : U = R, by
flz+iy) = u(z,y) +iv(z,y) for z=z+iyeU.

Then the complex—valued map f : U — C corresponds to the map

(5)~ (L) ) - rew o
from U C R? into R2.

Loosely speaking, a map is differentiable at a point P if it can be approximated at P by a linear
map. In the present context, we must distinguish clearly between R-linearity and C-linearity.
Therefore, in the next section, we consider R-linear maps F : R? — R? and ask under what
assumptions an R-linear map F : R? — R? corresponds to a C-linear map f : C — C. The
condition is of an algebraic nature.

In Section 3.3 we will use this to discuss the relationship between real and complex differentia-
bility. Complex differentiability leads to the Cauchy—Riemann equations for the functions u(z,y)
and v(z,y).

3.2 R-Linear and C—Linear Maps from R? ~ C into Itself

If V' is a vector space over a field K then a map f: V — V is called K-linear (or simply linear if
the field K is unambiguous) if

flavy + pug) = af(v1) + Bf(ve) for all wvy,vy €V and forall a,8eK.

The space R? is a two-dimensional vector space over the field R. The general R-linear map
from R? into itself has the form

T a b z\ [ ax+by
()= ()-8 2
where a,b,c,d € R.

The space C is a one-dimensional vector space over the field C and the general C-linear map
from C into itself has the form

z = wz =: f(2)

where w € C.
Let w = a4+ 18 and z = x + iy where «, 8, x and y are real. Then we have
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= (a+if)(x+1y)
= (az - By) +i(Bzr + ay) .

The map z — f(z) = wz is a C-linear map from C into itself. We obtain that z — f(z) = wz
corresponds to the R-linear map

()-(50)06)- 6

a=d=«a, —-b=c=p.

This is the map (3.2) with

In other words, an R-linear map (3.2) corresponds to a C-linear map iff

a=d and —-b=c. (3.4)
If we write the R-linear map (3.2) in the form (3.1), then

(2)- () ()-CEn) o

a=1ug, b=uy, c=v; d=uvy.

and one obtains that

The condition (3.4) becomes

Up = Vy, —Uy = Vg .

In a more general setting, these are the Cauchy—Riemann equations. They require precisely that
the (real) Jacobian of the map (3.1) corresponds to a C-linear map.
To summarize:

Theorem 3.1 The R-linear map (3.2) corresponds to the C—linear map

z— (a+1if)z
if and only if

a=d=a, —-b=c=p.

In other words, the R-linear map (3.2) corresponds to the C—linear map z — (a+ i)z if and only
if

a b\ [a —p

c d) \ B « '
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3.3 The Polar Representation of a Complex Number and the Corresponding
Matrix

This section can be skipped.
Let

0

w=a+if=re? =rcosf+irsind, w=#0.

The C-linear map z — wz corresponds to the R-linear map
x a —f x
— =: F(x, 3.6
( y > ( B« > < y > (:9) (30

a=rcosf and [ =rsinf .

where

Therefore, system matrix is
a =B\ ;57 cost) —sinf
( B « ) =vai+f ( sinf cosf (3.7)

In terms of real variables, the complex map z — wz is the map of rotation by the angle 6,
counterclockwise, followed by stretching by the factor

r=|w| =+va?+32%.

Remark: The determinant of the matrix in (3.7) is

det F'(z,y) = o+ 52 = \w|2 — 2

The map z — wz stretches lengths by |w|. The determinant of the Jacobian matrix F’(x,y)

describes the stretching of area, which is described by the factor |w|? = r2.

3.4 Real and Complex Differentiability

In the following, 1(h) denotes a function with ¥(h) — 0 as h — 0.
Let a < ¢ < b be real numbers and let f : (a,b) — R be a real function. The function f is
real—differentiable at c if the limit

}lli_r>r(1)%<f(c+h)—f(c)) = w (3.8)

exists. Equivalently, f is real differentiable at c if there exists w € R with

flet+h) = f(e) +wh+hy(h) and  lim(h) =0. (3.9)

If w € R with (3.9) exists then w is unique since (3.9) implies (3.8). One writes w = f/(c).

Let U C R™ be an open set and let f : U — R" be a function. Let ¢ € U. The function f is
real—differentiable at the vector c if there exists a matrix A € R™"*™ with

fle+h) = f(c) + Ah+ [[Bl|¢:(h) and  lim (k) =0 (3.10)
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If a matrix A € R™*™ with (3.10) exists, then it is unique and one write A = f’(¢). This matrix
is called the Jacobian of f at the point c.
The entries of A agree with the partial derivatives of the components of f,

Ajk = 37%(0) .

Let U C C be an open set and let f : U — C be a function. Let zg € U. Then f is complex
differentiable at zy if the limit

lim % (Fe0+ 1) flz0)) =2 (3.11)

exists. Equivalently, f is complex differentiable at zg if there exists w € C with

f(z0 +h) = f(20) + wh+ hyp(h) and }llii%w(h) =0. (3.12)
If w € C with (3.12) exists then w is unique since (3.12) implies (3.11). One writes w = f/(z0).

A function f: U — C which is complex differentiable at every point z € C is called a holomor-
phic function on U. We then write f € H(U). A function which is holomorphic on U = C is called
an entire function.

Example 1: Let n € N. We claim that f(z) = 2" is complex differentiable with f’(z) = nz""1.

Proof: Use the binomial formula

with

to obtain that
flz+h) = f(2) =(z+h)" = 2" =nz"" h + O(h?) .
Therefore,

lin%%(f(z+h) —f(z)) =n" L,

h—

Example 2: We claim that f(z) = z is not complex differentiable at any point z € C.
Proof: For any z,h € C we have

f(z4+h)—f(z)=2+h—2=h.
Therefore, for h # 0:

S

H(f+h) () =
Ith=hn ER,hl #Othen
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If h = ihg # 0, hy € R, then

Therefore, the limit

does not exist.

In the following, let U C C be an open set and let f: U — C be a function. We write

fla+iy) = u(z,y) +iv(z,y)
and identify f with the function

from U into R2.

Theorem 3.2 Let U C C be an open set and let f : U — C be a function. Let zg € U. Then the
following two conditions are equivalent:

1) f is complex differentiable at zy.

2) F is real differentiable at (xo,y0) and the real matriz

A= () o)

Vg y

determines a C-linear map, i.e.,
Uy =0y, —Uy =70y at (To,Y0) -
Proof: First let f be complex differentiable and let

f(z0+h) = f(20) + wh+ hp(h) and  lim ¢(h) = 0.

Let w = a4+ 16 and h = hy + ithe. We have

wh = (Oz + 26)(h1 + ihg)
= ahy — Phs + Z'(Bhl + Oéhg)

Therefore, the complex number wh corresponds to the vector

(57 ) ()=

It follows that F': U — R? is real differentiable at the point (zg, o) with Jacobian
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The converse follows similarly. ¢

3.5 The Complex Logarithm as an Example
We have for z = x +iy € C:

1
f(z) =logz = 3 In(2? + y?) + i arctan(y/z)

thus
1 2., .2
o= 5@ty
v = arctan(y/z) .
The partial derivatives are
B x
Yo = 51 Y2
_ Y
Yy = 2 y?
v, = ¥
’ x? 1+ (y/z)?
- __ Y
z? 4+ y?
1 1
v — e —
Y z 14 (y/z)?
B x
a2 4y?
We obtain that
Up = Vy, Uy = —Ug .

Since the Cauchy—Riemann equations are satisfied, the function f(z) = log z is complex—differentiable
in C~. We compute its complex derivative:

f/(Z) = fz
= Uy + U,
T —1y
x2 + y?
T —1y
(z + 1y)(z —iy)

T + 1y
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This, of course, is not unexpected since the derivative of Inx is % We will obtain later that the
functions

f(z) =logz
and
o) = X
fe) =1

are the only holomorphic extensions of the functions Inx and 1/z, defined for x > 0, into the slit
plane C~ = C\ (—o0,0].

3.6 Complex Conjugates
Let U C C be an open set and let f: U — C. We write

flz+iy) = u(z,y) +iv(z,y)

where u and v are real valued. We will assume that u,v € C?(U). The function f(z) is holomorphic
on U if and only if

Uy =vy and uy=-v, in U.

If the Cauchy—Riemann Equations hold then Au = Av = 0. The function v is called a harmonic
conjugate of w.

Computing a Harmonic Conjugate: Let u = xy. We have Au = 0 and want to compute a
harmonic conjugate v of u.

We have
Vp = —Uy = —T ,
thus
2

v(z,y) =~ + oY)

Also,
vy =¢'(y) =us =y,

thus
o(y) = yj + const .

The function

_1 2 2
v—2(y r°)

is a harmonic conjugate of u = xy. The function

flz +iy) =xy+%(y2—w2)
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is holomorphic on C. We have

f(z) = wug+ivg
Y — 1T
—i(x + iy)

and

f) = -2

1
= —3 (2% + 2izy — )

1
= $y+§(92—9ﬁ2)

Remark on Harmonic Conjugates: Let v and v be harmonic conjugates on U. For the
inner product of the gradients we have

(Uzs Uy) - (Vg Vy) = UgUp + UyVy = 0

since v; = —u, and vy = u,. The orthogonality of the gradients implies that the lines given by
u(x,y) = ¢1 = consty are orthogonal to the lines given by v(z,y) = co = consta.

3.7 The Operators J/0z and 0/0z

This section can be skipped.
Let A\, u € C. Then the map

z—= f(z) =Xz +puz

from C to C is R-linear since the maps z — Az and z — Zz are R-linear.

We can write A = A\ + iy and p = pg +ipo (with Aj, u; € R) and obtain that the map f(z)
depends on four real parameters, A1, Ag, p1, 2. We also can start with formula (3.2) and obtain
that the general R-linear map from C into C depends on four real parameters a, b, ¢, d.

Let us derive the relations between the parameters A1, Ao, p11, o and a, b, ¢, d. To do this, recall
that

z=x+11y, zZz=x—1y

and

1 1
a::i(z—i—i), iy:§(z—2).

Therefore, if we start from the general form (3.2), then we have

37



flx+iy) = (ax+by)+i(cx + dy)
= (a+ic)x+ (b+id)y

~ Lavioeta - %(bJrid)(Z - 2)

2
= Az+4puz
with
A = (atic)— 2(b+id)
= glatic)— i
1 .
po= §(a+7§c)+%(b+id)

This shows how to obtain the representation z — Az 4+ pz from (3.2).
Conversely, if we start from the general form
f(2)=Az+pz, A=A +i\y, p=p +ius,

then we have

f(z) = Az+pz
= (M1 +ido) (@ +ay) + (p +ip2)(x — iy)
O+ ) + (12 = Do)y +i (Ve + p)ar + (At = )y

We obtain that

a = MN-+m
b = p2— X
c = Ao+
d = M —m

We obtain that the Cauchy—Riemann equations,

a=d and —-b=c,

are equivalent to the condition

Lemma 3.1 The map

f)=Az+pz
is complex differentiable if and only if p = 0.
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Proof: This is clear since z — Az is complex differentiable and z — Z is not complex differentiable.
Another proof follows from the Cauchy—Riemann equations. ¢

Let

We have

It follows that

Since

it makes sense to write

Then (3.13) yields that

f(z) = f(z+iy)
= Az+puz
= Mz +iy) +p(x —iy)

fe=A+p and fy, =i\ —iu.

1 i 1 i
)‘*§f:v_§fy and M*ifz+§fy-
fz)=Xz+puz
f==XA and fzr=u.

1 1 1 1
fz - §fz - ify and fZ - §fz + ify .

This motivates to define the operators

o 10 i9d
9: ~ 20z 20y
o 10 id
9: ~ 20z 20y

Lemma 3.2 Let f: C — C be an R-linear function, i.e.,

with

flx+iy) = (ax+by)+i(cx+ dy)
= (a+ic)xr —i(b+id)iy

1
- §(a+ic)(z+2)—%(b+id)(z—2)
= Az+puz
A= 1( +‘)—3(b+‘d)
= 2CL c B (3
. :
po= §(a+ic)+%(b+id)

Then f is complex differentiable if and only if p = fz = 0.
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Let f: C — C be R-linear and complex differentiable. Then we have

flz+iy) = (a+ic)x —i(b+id)iy = Az
with

Therefore,

A

AL+ A9
a+ic
—i(b + id)
fa

= —ify

One can show that for a complex differentiable function f(z) the following holds:

& _of _of _ of

/ —
f_dz_az_(?ac_ Zay'
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4 Complex Line Integrals and Cauchy’s Theorems

Summary: We first introduce parameterized curves and line integrals of continuous functions along
such curves. Then we come to a central result of complex function theory, Goursat’s Lemma.
The lemma is a special case of Cauchy’s Integral Theorem. The proof of Goursat’s Lemma is
remarkably clean. Based on the lemma, we construct a primitive of a holomorphic function in a
disk and then prove Cauchy’s Integral Theorem and Integral Formulas for holomorphic functions
in a disk.

4.1 Curves

Let 7 : [a,b] — C denote a C'-map. This means the following: If we write

Y(t) = m(t) +ive(t), a<t<b,

then the two functions ~1,72 : [a,b] — R are differentiable and their derivatives are continuous.
Intuitively, we think of the image set

{(3(t) - a<t<b)

as a curve in C, parameterized by the parameter ¢ varying in a <t < b.

v

Figure 4.1: Parameterization of a curve
Every curve has many different parameterizations. For example, the mappings

y(t) =€, 0<t< 2o,

and

5(5)26%5, 0<s<m,

both parameterize the circle C; of radius one, centered at the origin. The map

ety=e" 0<t<2r,

has the same image set as v but parameterizes C; in opposite direction. We say that v and § both
parameterize C; whereas the map ¢ parameterizes —Cj.
It is not trivial to define the notion of a curve precisely. One can proceed as follows.

Definition: Let P denote the set of all pairs (v, I) where I C R is a finite closed interval and
v : 1 — CisaCl-map. Call (v,11),(5,I2) € P equivalent if there exists a Cl-map (a parameter
transformation)
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¢: 1 I, with ¢/(¢)>0 forall tel

which is one-to-one and onto and satisfies

0(o(t)) =~(t) for tel.

A C'-curve is an equivalence class in P. If T is a C'-curve and (v,I) € T, then (v,I) is called a
parameterization of the curve I'.

Assume the curve I" has the parameterization (v, I). It is often convenient to identify the curve
I" with the set

() = tel},

but one should at least assign a direction to the above set.

Furthermore, it is convenient to work with curves that are only piecewise C'' and with param-
eterizations 7(t) where ¢ varies in an unbounded interval. A curve which is piecewise C! has a
continuous parameterization which is piecewise C'.

Length of a C'—curve: Let I' denote a C''-curve with parameterization y(t),a < t < b. Using
real analysis, one obtains that

b
tength(T) = [ \Jlot @) + (02 d

b
- / (1) dt

The formula for the length of the curve T is plausible since v(t + At) — y(t) ~ /() At for small
At > 0, thus

[y(t + At) — ()] ~ [ ()| At .
Example 4.1: Let

V() =re’, 0<t<2m,

denote a parameterization of the circle C, of radius r centered at the origin. One obtains that
|7/ (t)] = r and length(C,) = 2mr.

4.2 Definition and Simple Properties of Line Integrals

Let v : [a,b] — C denote a C'-map parameterizing the curve

F'={~(t) : a<t<b}
and let

f:r—=C

denote a continuous function. We want to define the line integral of f along I', which we denote by
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/F f(z)dz or /7 £(2)dz .

This line integral can be defined as a limit of Riemann sums as follows: Let

a=to<t1 <...<t,=0b

denote a partition of the parameterization interval [a,b] and let ¢;_; < s; < t;. The points
zj = (t;) and w; = y(s;) line up along I'. We have:

/F £(2)dz

Q

D fwi)(z = zj-1)

j=1

= Zf(v(Sj))(v(tj)—W(tj—l))
Zf sj)(t; tj—1>

/f

As the partition is refined, the sums converge. One obtains:

b
/ f(2) dz = / ) () dt (4.1)

We will use equation (4.1) as the definition of the line integral [, f(2) dz. This is justified since the
right—hand side is independent of the parameterization v of the curve I'. To obtain this, use the
rule of substitution.

Q

Q

Note on Computation: To compute the integral on the right-hand side of (4.1), note the
following: If ¢ : [a,b] — C is a continuous complex—valued function,

Y(t) = 1(t) +ivha(t) ,

/w t)dt = /1/11 dt—i—z/ Pa(t) (4.2)

Using (4.1) and (4.2) with ¥(¢) = f(y(t))7'(t) we obtain that, in principle, the evaluation of line
integrals is standard calculus.

then

Example 4.2: Let I' denote a curve in C from P to @ and let f(z) = ¢ = const. Applying the
Riemann sum definition one obtains that

/chZ—c(Q—P).

Another view: If y(t),a <t < b, parameterizes I, then
b
/ cdz = c/ v (t) dt = c(’y(b) - fy(a)) =c(Q—-P).
r a
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Example 4.3: Using the parameterization

y(t)=e€", 0<t<2or,

of the unit circle Cy, obtain for any integer n:

d
/ 2"dz=0 for n# -1 and P omi.
C1 Cl z

If one integrates along C, with parameterization

() =re, 0<t<2m,

one obtains the same results.
Details: If f(2) = 2™, v(t) = re',4/(t) = ire' then

2m
f(z)dz = / re™iret dt
0
2m
_ ir”H/ S+t gy
0

and the claim follows.

Example 4.4:

/ zdz = 2mir? .
Cr

Note that 2z = |z|?, thus z = é for z € C,. The claim follows since

dz )
— =27 .
c. *

Another computation using the parameterization z(t) = re,0 <t < 27, of C,:

27 ) )
/zdz = / re % rie’ dt
, 0
27
= 7"22'/ dt
0

= 2mir?

A Simple Estimate: The estimate
!/f(Z) dz| < max |f(z)| length(I')
T zey

can be obtained using Riemann sums. It also follows from (4.1).

To practically evaluate line integrals, the following result, which is analogous to the fundamental
theorem of calculus, is very useful:
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Theorem 4.1 Let U C C denote an open set and let f : U — C be a continuous function. Suppose
that g : U — C is complex differentiable and g’ = f in U. If v : [a,b] — U parameterizes a C' -curve
T, then

/F f(2)dz = g(4(8) — 9(1(a)) = 9(Q) — g(P) -

Here T' goes from P = ~(a) to Q = ~(b). If T is continuous and piecewise C', the same result
holds.

Proof: We have

/F f(2)dz =

Definition: If g € H(U) and ¢’ = f in U, then g is called an anti-derivative or a primitive of
finU.

The previous theorem says that we can evaluate line integrals of f easily if we have an anti-
derivative g of f. We will also obtain below that, conversely, line integrals can be used to construct
an anti-derivative of f if f is complex differentiable.

Example 4.5: Let f(z) = 2" where n is an integer, n # —1. If n > 0 then we can take U = C

and g(z) = n%_l 2" If n < —2 we can take U = C\ {0} and again g(z) = %H z"*1. In both cases

we have ¢'(z) = f(z) = 2" in U. It follows that

/ 2"dz =0
r
for any closed curve I' in U.
Example 4.6: Consider f(z) =1/zin U = C\ {0}. Since
d
om0 (4.3)
¢~
one obtains the following: There is no complex differentiable function g : U — C with ¢/'(z) = 1/z

in U. We have obtained in Section 3.5 that we can extend the real function g(z) = Inz (defined
for 0 < z < o) into the open slit plane

C™ =C\ (—00,0] .

The extended function is the main branch of the complex logarithm, g(z) = log z. One can show
that g(z) = log z is holomorphic in C~ and ¢’(z) = 1 in C~. However, because of (4.3), one cannot
extend g(z) = log z holomorphically into U = C \ {0}.
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Example 4.7: Let I" be a curve from y(a) = 29 to y(b) = z;. Then

1 1
3 4 4
dz = —27 — —2; -
/72 z 21 420

4.3 Goursat’s Lemma

A curve I' from P to @ is called closed if P = Q. A closed curve is called simply closed if it does not
intersect itself. Thus, if v(¢),a <t < b, parameterizes the simply closed curve I', then v(t1) # y(t2)
for a <t; <ty <bunless t;y = a and t; = b.

Cauchy’s Integral Theorem can be stated, somewhat loosely, as follows:

Theorem 4.2 Let U C C be an open set and let f: U — C be complex differentiable in U. Let T’
denote a simply closed continuous curve in U which is piecewise C'. Assume that the interior of T
lies in U, i.e., I' does not surround any holes of U. Then

/Ff(z)dz:o.

It is not easy to make precise what the interior of a closed curve is. (A possibility is to use the
Jordan curve theorem, a result of topology that is notoriously difficult to prove.)

We prove Cauchy’s theorem first for the case that the curve I' is the boundary of a triangle A
in U. The corresponding result is known as Goursat’s Lemma.

Note that f € H(U) implies that f is continuous in U. Therefore, [ f(z)dz is defined for any
continuous curve I' in U which is piecewise C*.

Theorem 4.3 (Goursat’s Lemma) Let U C C denote an open set and let f : U — C be complex
differentiable. Let A be a closed triangle, A C U, with boundary curve OA. Then we have

f(2)dz=0.
0A

Proof: All the triangles below are assumed to be closed. Also, if P € C and § > 0, then

D(P,0)={z€C : |z—P| <}
denotes the open disk of radius § centered at P.

Some simple observations:
1) If A is any triangle then

w,z € A implies |w — z| < length(0A) . (4.4)

2) If A is a triangle we subdivide it into four similar triangles by connecting the midpoints of
the sides of A. Then, if A’ is any of the four sub-triangles, we have

1
length(OA") = 5 length(0A) . (4.5)

3) We use the abbreviation



If Ay, A, Ag, Ay are the four sub-triangles of A obtained by the subdivision, then

I

=
s
>

7=1
4) Choose A e {A1, Ag, Ag, Ay} with
(A7) = max a(A5)]

Then we have

AJ)| < 4la(A))] . (4.6)

||Mu>

By subdividing A’ etc. we obtain a sequence of triangles A™ with

A"l CcAMc...Cc A

and

1
length(OA™) = on length(OA)

and

la(A)] < 4la(AY)]
< 4a(A?)]
< 4"a(A")]

One can show that there is a unique point P € A C U with
o
(A" ={P}.
n=1

Details: Uniqueness of P: Suppose P and @ are elements of ()72 ; A™. Since P,Q € A" for
all n it follows that

|P — Q| <length(OA™) -0 as n — oo,

thus P = Q.
Existence of P: Let P, € A"™. For n > m > N we have

1
|P, — P < length(0AY) < o length(0A) .

Therefore, P, is a Cauchy sequence. Let P; — P. Since P; € A" for j > n and since A" is closed,
it follows that P € A™. Here n € N is arbitrary. Therefore, P € ()72, A

We now use complex differentiability of f at the point P and write
f(z)=fP)+ f(P)(z—P)+R(z), z€U,
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where

R(z) = (2 = P)¢(z), ¢€CU), ¢P)=0.
It is easy to show that

(2)dz = R(z)dz
OA™ OA™

since a function of the form [(z) = a + bz, with constants a,b € C, has an antiderivative, thus

/ (a+bz)dz=0.
OA™

One obtains

[a(A)] < 4%a(A")]
= 4" f(z)dz:‘
OA™
= 4" R(z)d
/em” (2) z’
< 4"length(OA™) - max{|R(z)| : z € 0A"}
< 4" length(OA™) - length(0A"™) - max{|p(z)| : z € 0A"}

= length(9A) - length(0A) - max{|p(z)| : z € 0A"}
Thus, we have shown that
|| 1@de] = ()] < (tength(08)? - max{|(2)] : = < OA")
O0A
Given € > 0 there exists § > 0 so that

lp(z)] <e if |z—P] <.

Also, if n is large enough, then

A" C D(P,9) .

Therefore, given € > 0, there exists n € N with

max{|p(z)| : z€ A"} <e.
Combining this bound with the above bound for | [, f(2)dz| we obtain that

|/ f(z)dz| < (length(&A))2 €.
0A

Since € > 0 is arbitrary the integral is zero. ¢
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4.4 Construction of a Primitive in a Disk

We now use Goursat’s Lemma to construct an anti-derivative of a given function f € H(U) where
U is an open disk.

Theorem 4.4 Let U = D(P,r) ={z € C : |z— P| <r} denote an open disk. If f € H(U) then
there exists g € H(U) with ¢’ = f.

20+h

Figure 4.2: Construction of a Primitive

Proof: For any zy € U let I',, denote the straight line from P to zp and define

g(z0) = f(z)dz .

Tz

We claim that g € H(U) and ¢'(z9) = f(z0) for every zy € U.
Fix zp € U and let ¢ = r — |P — 2|, thus € > 0. If |h| < € then

’P—(Zo—‘rh)‘ < ’P—Zo‘—i-é“:?“,
thus zo + h € U. Also,
g(z0 +h) = / f(z)dz .
on+h
Let Cp, denote the straight line from zg to zg + h. We have, by Goursat’s Lemma:
[ A OT R O
on+h on Ch
thus
g(z0+h) =g(z0) + [ f(z)dz.
Ch
Since Cj, has the parameterization

y(t) =z +th, 0<t<1,

one obtains
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1
g(zo + h) — g(z0) = /0 f(zo+th)hdt .

Therefore, for 0 < |h| < &:

1 1
7 (9(z0 + 1) = g(20)) = /0 f(z0 + th) dt =: Int(h) .

We write
F(z0 +th) = f(z0) + (F(z0 + th) = f(z0)) .
Therefore,
Int(h) = f(z0) + R(h)
with

|R(h)| < Juax |f(z0 +th) — f(20)] -

Continuity of f in zo implies that |R(h)| — 0 as h — 0. This shows that ¢'(z0) = f(z0). ©

Remark: A set U C C is called star—shaped if there exists a point P € U so that for every Q € U
the straight line from P to @ lies in U. One then says that U is star-shaped w.r.t. P. For example,
the set C~ = C\ (—o0, 0] is star—shaped w.r.t. P = 1. The set C\ {0} is not star—shaped.

If U C C is an open set that is star—shaped with respect to P € U and if f € H(U), then the
same method as above can be used to construct a primitive g of f in U.

4.5 Cauchy’s Theorem in a Disk
Theorem 4.5 Let U = D(P,r) and let f € H(U). IfT' is a closed curve in U, then

/Ff(z)dz:O.

Proof: Using the previous theorem, there exists g € H(U) with ¢’ = f. Then, if I is a curve in U
from P to () we have

[ #G)dz = 9@~ g(P)
If T is closed then @ = P, and the integral is zero. ¢

4.6 Extensions

If U C C is any open set and f € H(U), will it hold that

/ f(z)dz=0 (4.7)
r

whenever I' is a closed curve in U? The example

U=C\{0}, f(z)=1, T=0D(01),
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shows that the answer is no, in general, since fF dz/z = 2mi.

Definition: An open set U C C is called connected if for any two points P, ) € U there is a curve
in U from P to Q. An open connected set is called a region.

Definition: Let I'y and I'; be two C'-curves in U from P to  parameterized by 7o(t) and
7(t),a <t <b. The curve I'y is called homotopic to I'1 in U with fized endpoints if there exists a
continuous function

v:[0,1] X [a,b] = U
with:

= v(t) for a<t<b
y(t) for a<t<b

P for 0<s<1

= @Q for 0<s<1

€ Cla,b] for 0<s<1.

2
—
\_Cl.)
. S
S N N N N
Il

Definition: A region U in C is called simply connected if every closed curve I' in U, which goes
from a point P € U to itself, is homotopic in U with fixed endpoints to the constant curve P.

If U is simply connected, then (4.7) holds whenever f € H(U) and T is a closed curve in U. We
will explain this below.

Theorem 4.6 Let U be a region in C and let Ty and I'y be two C curves in U which are homotopic
in U with fixed endpoints. If f € H(U) then

f(z)dz = f(z)dz .
T'o '

Proof: Consider two curves I'y, and I's, parameterized by ¢t — v(s;,t) for j = 1,2. If s is
sufficiently close to s; then one can use Theorem 4.5 to show that

(2)dz = f(z)dz .
Ty, I,

The previous theorem is often used for closed curves as follows:

Theorem 4.7 Let U C C be an open set. Let I' denote a closed curve in U from P to P which is
homotopic in U to the curve P. If f € H(U) then

/Ff(z)dz—O.

Fresnel Integrals. The Fresnel integrals

C(r) = /07“ cos(z?)dr and S(r) = /07" sin(x?) dx
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are used in optics. There is no simple expression for these integrals. But one can use Cauchy’s
Theorem to prove that

First recall that
This is shown as follows: If

then

J? = / / e~ Y’ dxdy
727r 700 5
= / / e " rdrdg
0 0
e _ 2
7T/ e " 2rdr
0
= 7T/ e Ydg
0

=

Let r > 0 and consider the lines I'; with parameterizations

) =t for 0<t<r
Yot) = r+it for 0<t<r
() = (14idi)t for 0<t<r

Let f(z) = e*". We have

f(x)dz= | f(z)dz+ | f(2)dz.
I's Iy )

Here

'8 2 1

Inty(r) = f(Z)dZ:/erdx—)ﬁ as 1 — 00 .

Iy 0 2

Also,
Inty(r) = f(2)dz = / e—(r—i—it)Qidt 7
1) 0

thus
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)
Into(r)] < / e gy
0

-
< e_r2/ et dt
0
1
< —
- or

Therefore,

Inta(r) -0 as r— 0.
One obtains that

T
, 1
/e_z2dz:(1+i)/ 6_2’t2—>§ﬁ as r— 00 .
s

0

Therefore,

o0
dt = =m—— =Y"(1_4) .
/06 oV = 00

Since
e 2" — cos(2t?) — isin(2t?)

one obtains that

oo o0
/ cos(2t?) dt = / sin(2t?) dt = \{f .
0 0

With
22 =22, dt =dx/V2
this yields that

/ cos(z?) da::/ sin(z?) dz = = \/7/2 .
0 0 2

Theorem 4.8 Let U be a region in C and let f € H(U). Then f has an anti-derivative in U if
and only if

/ f(z)dz=0 (4.8)
r
for every closed curve I' in U.

Proof: a) If ¢’ = f in U then (4.8) holds by Theorem 4.1.
b) Assume that (4.8) holds for every closed curve in U. Fix a point P € U and, for every
z0 € U, let I',, denote a curve in U from P to zg. Define

g(z0) = f(z)dz .

I,
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Because of (4.8) the value of g(zp) does not depend on the choice of the curve I';,. As in the proof
of Theorem 4.4 it follows that ¢'(z0) = f(z0). ©

If U is a simply connected region and f € H(U) then

Lf@ﬂzzO

for every closed curve I' in U. This holds since I' can be deformed continuously to a point in U
where all deformed curves lie in U. The next result follows from the previous theorem.

Theorem 4.9 Let U be a simply connected region in C and let f € H(U). Then f has an an-
tiderivative in U, i.e., there exists g € H(U) with ¢'(z) = f(z) for all z € U.
Example 4.8: Let

f(z):,z(ll—,z):i+1:z’ zeV:=C\{0,1}.

We claim that f does not have an antiderivative in V. Let I' = 9D(0,1/2). Then

d
/f(z)dz: —222772'750,
r r =
and Theorem 4.8 implies that an antiderivative of f in V' does not exists.

We claim that f has an anti-derivative in

U=cC\[o,1] .

First let I' denote a simply closed curve in U which goes around [0, 1] once in the positive sense.
Let 0 <e < % Define the parameterizations

Y(t) =ee and yp(t) =1+cee for 0<t<2r

and let I'; and I'y denote the corresponding curves. We can deform I' continuously in C \ {0,1}
and obtain that

[s@ra= [ @i+ [ e
r 1—\1 FQ
We have

d
f(z)dz:/ P o
Fl Fl z

and, similarly,

The equation
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follows. One can then construct an anti-derivative of f in U using line-integrals as described in
the proof of Theorem 4.8.
A more practical approach: First proceeding formally, we try

g(z) =logz —log(1 — z) = log 1 :

pa— Z :
But we have to make precise how the log—function is defined.
We claim: If z € U := C\ [0,1] then

z
eW:=C\|[0 .
]._Z \[ 700)
Proof: Suppose that
z
= >(
1—=2 @=
Then z = a — az, thus
«
z = ,
1+«

thus 0 < z < 1. This shows that z € U = C\ [0, 1] impies

z
11—z
We have to define a log—function on W. If w € W then

eW =C\|[0,00) .

w = |wle® = M where 0< ¢ <27 .

We set
logy (w) = In|w| + i¢
and obtain
eosw (@) — oy wlogly (w) =1 .
Therefore,

1
logly (w) = " for weW.

The function

z
9(z) = logy (:) , zeU=C\0,1],
is holomorphic on U and

1-=2 1 1

/
J'(2) - =22 21-%) f(z) for zeU
A second approach: Try
9(2):10gz—10g(z—1):10gzi for 2eU=C\|0,1].
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We claim: If z € U then z/(z — 1) ¢ (—00,0]. Suppose that

z
z—1 A=<0

Then z = Bz — 3, thus
e B
-1

Sketching the function §/(8 — 1) for f < 0 we obtain that z € [0,1). Therefore, if z € U then
z/(z—1) € C\ (—00,0]. The formula

g(z) = log zeU,

z—1’

gives an antiderivative of f(z) where logw denotes the main branch of the logarithm.

4.7 Cauchy’s Integral Formula in a Disk
Notations: Let P € C and let » > 0. We set

(P,r) = {2z : |z—P|<r}
= Jo—Pl<r)
0D =0D(P,r) = {z : |z—P|=r}

—~

e
=

~—
I

With

Y(t) =~(t,P,r)=P+re, 0<t<2r,

we denote the standard parameterization of the boundary curve of D(P,r).

Theorem 4.10 (Cauchy’s integral formula) Let U C C be open and let f € H(U). Let D =

D(P,r) C U and let 0D denote the boundary curve of D(P,r). Then we have for all zy € D(P,r):

RS S ()

2mt Jop z — 20

dz . (4.9)

Proof: Deform 0D to a small curve I'; about zg with parameterization

Ye(t) = 20 + e, 0<t<2r.
Write

f(z) = f(2) = f(20) + f(20)

and

fC) _f@-f) ) o,

Z— 20 Z— 20 Z — 20

Integrate over I'. to obtain

f(z) gy — f(z) = f(20)

dz + 2mi f(20) .
8D % — 20 I, Z—20
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Use that

‘f(z)—f(zo)

‘gC for 0<|z—20|<ep.
Z— 20

Here C' is a constant depending on zg, but not on z. Then obtain for € — 0:

S = 2mi f(20) -
dD % — 20

The formula (4.9) follows. ¢

With a change of notation, the formula (4.9) is also written as

fo - L[ ©

" 2mi JopC—2

d¢, z€D. (4.10)

Remark: The assumption that z € D is very important for the above formula. If z lies on
the boundary of D, then the integral may not exist since the function ¢ — 1/(¢ — 2) is singular at
¢ = z. If z lies outside of D then the integral is zero.

One can use formula (4.10) to show that a holomorphic function f(z) has complex derivatives
of all orders. Differentiation of (4.10) with respect to z under the integral sign can be justified.
One obtains:

Theorem 4.11 (Cauchy’s integral formula for derivatives) Let U C C be open and let f € H(U).
Let D(P,r) C U and let T' denote the positively oriented boundary curve of D(P,r). Then we have
for all z € D(P,r):

. Al
f(])(z):}/p(cf(zc))ﬂ*ldc’ j=0,1,2,... (4.11)

21

Proof: We may assume that P = 0. We will prove the equation (4.11) for j = 1. Using induction,
one can prove (4.11) for j = 1,2,3,... with similar arguments.
Let z € D(0,7) and let

lz| =r1 <.

Let h € C with

1
0<|hl < §(T_r1) .
We have

1
\z+h[§7’1+]h!§§(r+r1)<r.

By (4.10) obtain:

1 11 1 1
h(f(z%—h)—f(z)):%Z.h/Ff(C)<C_(Z+h)—<_Z)dC.
For fixed ¢ € T set

1
9(2) ::C—z for |z| <r.
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We have

1l
gD (2) = G _]Z;)J'H for 7=0,1,2
Set
1
02 1= g [ 1z = o [ -2 ac

We must show that

Set
M= max | £(C)]
and obtain:
1 1 ,
5 (PG = 1() ~a(a)] < Mrmas |7 (g0 + ) = 9(2)) = o)
where

1
|z| = r1, 0<]h[§§(r—r1).

By Taylor expansion,

gz =S B g0z

=0 7"
thus

9(z +h) =g(2) + hy'(2) + R(h)

where

IN

Z |’
¢ — 2+

RS
< -
o D Y

Here

IKl=7r |zl=m<r, |(—z>2r—m

and |h| < % (r — 1), thus

o8

(4.12)

(4.13)

(4.14)



|h| 1
<.
IC—=2] — 2
It follows that
2|n[?
R(h)| < .
R < 7o
The constant
2
C=——
(r—mr)3

is independent of h and independent of ¢ € T'; the estimate |R(h)| < C|h|? holds. The convergence
(4.13) follows from (4.14). ©
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5 Holomorphic Functions Written As Power Series

Summary: If U C C is an open set then a function f : U — C is called complex differentiable (or
holomorphic) in U if the limit

lin = (/= +h) = (=) = ['(2)

h—0

exists for every z € U. (See Section 1.3.) In this chapter we will prove that a holomorphic function
can locally be written as a power series,

flz)= Zaj(z — ) for z€ D(z,p)CU.
=0

As we will prove in the next chapter, this implies that a complex differentiable function is
always infinitely often differentiable. (This result also follows from Cauchy’s integral formula for
derivatives, Theorem 4.11.)

Clearly, this shows that there is a major difference between complex and real differentiability
of functions.

The important concept of uniform convergence of a sequence of functions will be used.

5.1 Main Result

Definition: Let U C C and let f,, : U — C denote a sequence of functions. Also, let f: U — C
denote a function. Let K C U. The sequence f,, converges to f uniformly on K if for every € > 0
there exists N(g) € N so that

|f(z2) = fu(z)| <e for m>N(e) foral zeK.

It is important that the integer N(e) does not depend on the point z € K: As n gets large, the
difference |f(z) — fn(z)| goes to zero, uniformly on K.

Theorem 5.1 Let U denote an open subset of C and let f : U — C be a holomorphic function.
Let zo € U be arbitrary and assume

D(z0,p) CU, p>0.

Then there exist unique complexr numbers numbers ag, a1, ... so that
o0
f(z):Zaj(z—ZO)j for |z—2z| <p. (5.1)
j=0

The series converges absolutely for every z € D(zg, p) and the convergence is uniform for |z—zo| <r
if 0 <r < pis fived.

We will show that the power series representation (5.1) follows rather easily from Cauchy’s
Integral Formula and convergence of the geometric series. Also, we will prove in the next chapter
that the coefficients a; of the power series (5.1) are uniquely determined.

The theorem says that any holomorphic function f can locally be written as a power series.
Furthermore, the power series expansion is valid in any open disk D(zg, p) which lies completely in
the open set U where f is holomorphic. The convergence of the power series is uniform on every
closed disk D(zg,7) if 0 < r < p and D(zp,p) C U.
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5.2 The Geometric Series

The power series

[e.e]
2w
=0

is called the geometric series. Its partial sums

n
w):ij, weC,
§=0

satisfy

sp(w)(1—w)=1+w+...+w")(1—-w)=1—w"t",
thus

1— n+1
sn(w):% for w#1.

If |w| < 1 then w™*! — 0 as n — oo. Therefore, for |w| < 1:
1 w™ !

?—sn(w):l_w—m as m— o0,

thus

— 1
ijzi for |w|<1.
— 1—w

Fix 0 < r < 1 and consider the difference

1 w1
Tmw =1y
for |w| <r < 1. Obtain that
1 ‘w’nJrl prtl
ﬂ_sn(w)’: =) < 1—7“_>O as n— oo .

This shows that the convergence in formula (5.3) is uniform for |w| < r if 0 < r < 1 is fixed.

Remark on Exchange of Limits: For 0 < r < 1 we have

max | —— — fw]‘ =
Jw|<r 11 —
Here
n+1
lim ( lim ) =
r—l— \n—oo |l —17r
and
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n+1
lim ( lim ) =00
n—oo \r—=1—1—1r
Clearly, exchanging the order of the two limit processes leads to different results. The first limit

process expresses the uniform convergence of the geometric series in D(0,r) for each 0 < r < 1.
The second limit process yields that uniform convergence does not hold for w € D(0,1).

5.3 Power Series Expansion Using the Geometric Series

Let U C C be an open set and let f : U — C be holomorphic. Let D = D(zp,7) and assume that
D C U. Let 9D denote the positively oriented boundary curve of D.
By Cauchy’s Integral Formula (Theorem 4.10) we have, for all z € D,

_ 1 f(Q)
f(z)_QTri BDC_Zd<.

Let us first assume that zp = 0. Then we have for z € D and { € 0D

2| <I¢l =7

and can write

C—z:g(l—f) with ‘g‘_r <1,
thus
1 1 1
(-2 ¢ 1-¢
1 Sy}
R

For fixed z € D the convergence of the series is uniform for ( € 9D. Therefore, we may exchange
the order of integration and summation to obtain

1 f(Q)

2mi Jop ¢ — 2
IR S U I (9]
- 2m§zj/w Gt d¢

[e.e]
— § J
= a;z
J=0

flz) = dg

with

1 ©

T omi Jyp 9L

Clearly, the numbers a; do not depend on z € D. We have written f(z) as a convergent power
series in z for z € D.

dc .
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In the general case, where zg is not assumed to be zg = 0, we write

C_Z:(g—ZO)—(z—ZO):(C_ZO)<1_z:zg)

and obtain that

I | 2 (z— =)
C—Z_C—ZOJZZ:O(C—ZOV'

In the same way as for zgp = 0 one obtains that

f(2) =) aj(z— z)
=0
with

1 f(©)
= —=—d( .
7 2w Jop (€ — 207 ‘
The numbers a; do not depend on z € D.
We have shown:

Theorem 5.2 Let U C C be an open set and let f : U — C be holomorphic. Let D = D(zp,7) and
assume that D C U. With 0D we denote the boundary curve of D. We have, for all z € D,

F(z) =) _aj(z— =)
§=0

with

1 f(Q)
;= — ——d( .
Y= omi /a (€~ zpr1 %
This shows that any function f € H(U) can locally be written as a power series. If D(zg,7) C U
then the power series with expansion point zy converges to f(z) at least in D(zg,r).
We now make a further fine point. Let f € H(U) and consider an open disk D(zg, p). Assume
D(Z()ap)CUa p>0

Fix 0 <r < p. Set

_ L f(Q)
7 3mi Jop (€= 20) 1 -

Our previous considerations show that

f(z):Zaj(z—zo)j for |z — 2z <7 .
=0

It is clear, by Cauchy’s Integral Theorem, that the coefficients a; are independent of r. Therefore,
since the number r with 0 < r < p was arbitrary, one obtains that
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f(z):Zaj(z—zo)j for |z — 2zl <p
=0

if the open disk D(z, p) is a subset of U.
To complete the proof of Theorem 5.1 it remains to prove the following;:

a) The coefficients a; with (5.1) are unique.

b) The series 322 a;(z — zo)jA converges absolutely for z € D(zg, p) if D(zo,p) C U.

c) The series > 72 a;(z — 20)’ converges uniformly to f(2) for z € D(z20,7) if 0 <7 < p and
D(z0,p) C U.

We will prove this in the next chapter where we consider general power series.
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6 Functions Defined by Power Series

Summary: An expression of the form

Z a;j(z — 20) (6.1)
=0

is called a power series centered at zg with coeflicients ag, ai,... It is good to think of z in the
expression (6.1) as a complex variable. As we will show, for any power series (6.1) there is a unique
value r (with 0 <7 < 00) so that:

a) If 0 < r < oo then (6.1) converges for all z with |z — zg| < r and diverges for |z — zo| > r.
b) If r = 0 then (6.1) converges only for z = z.
c) If r = oo then (6.1) converges for all z € C.

The number r (possibly r = 00) is called the radius of convergence of the power series.

For many properties of power series it is convenient to assume 2y = 0. Extensions to general zg
are typically trivial.

The next theorem is an important result, which we prove in this chapter:

Theorem 6.1 Assume that the power series ajzj has radius of convergence r where 0 < r < oo.
Then the function

f(z) = iajzj, 2| <7, (6.2)
§=0

is holomorphic in D(0,r). Furthermore,

flz) =) ja a7, e <r, (6.3)
j=1

and the series Zjajzj_l also has radius of convergence equal to r.

The theorem says that the power series representation (6.2) of f(z) can be differentiated term
by term to give the power series representation (6.3) of f’(z). In other words, two limit processes,
differentiation and summation, can be exchanged for power series.

Hadamard’s Formula for the Radius of Convergence of a Power Series. If s, s1,...
denotes any sequence of real numbers then one defines

limsups; := lim (sups;] and liminfs;:= lim ( infs;) .
: J Up S I J L 5
j—00 n—00 \ j>n j—o0 n—oo \ j>n

After reviewing some properties of these real analysis concepts, we will prove in Section 6.4

Hadamard’s formula for the radius of convergence of the power series (6.1):

1
B limsup;_, |a;|'/7

Here, by convention, 1/0 = oo and 1/0c0 = 0.
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6.1 Remarks on the Exchange of Limits

Let us recall the basic concept of a uniformly convergent sequence of functions s, : 2 — C, where
Q C R™ is a nonempty set. Let s : @ — C be a function. The sequence s, = s,(z) converges
uniformly on Q to s = s(z) if for any € > 0 there is N € N with

lsn(z) —s(z)|<e for n>N and forall zeQ.

We know from real analysis that the uniform limit of a sequence of continuous functions is
continuous:

Theorem 6.2 If s, € C(Q) for all n and if s, converges to s uniformly on Q, then s € C(Q).

Proof: Fix any zg € €0, and let € > 0 be given. There exists N € N so that

sup [sy(z) — s(z)| <¢e/3 .
z€Q

Use the continuity of sy: There is § > 0 so that |sy(z) — sny(20)| < e/3if z € Q and |z — 20| < J.
Then, using the triangle inequality,

s(2) = s(z0)] < s(2) = sn(2)] + [sn(2) = sn(20)] + [sn(20) = 5(20)]

< £L.E8.°¢
3 3 3
= ¢

for z € Q with |z — 29| < 0. ©
Under the assumptions of the above theorem, let zp,zg € Q2 and let z, — x¢ as k& — oo.
Consider the values
sp(xp) € C for n=1,2,... and for k=1,2...

and consider the following diagram

sn(xg) —  s(zk) as n — oo
d i as k— o0
sn(xo) —  s(wo) as n — oo

The convergences

sn(zk) — s(zg) forall k and s,(xg) = s(zg) (as n — o)
express the pointwise convergence of the functions sy (z) to the function s(x). We can also first fix
n and let £ — oo. The convergences

sn(zr) = sp(zg) forall n and s(zg) — s(xzo) (as k — o0)

express the continuity of the functions s,(x) and s(z) at the point .
Since the limit processes n — oo and k — oo lead to the same result, namely s(zg), one says
that the above diagram commutes. Here the continuity of the limit function s(z) is essential.
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If continuous functions s, (z) only converge pointwise, but not uniformly, to a limit s(x), then
s(x) may be discontinuous, and the two limit processes n — oo and k — oo may not commute.

Example: Consider s, (z) = 2" for 0 < x < 1. We have for n — oo:

n_, 0 for 0<z<1
v 1 for z=1
If
—1—l for k=1,2
T = 2 or = 1,4,...
then
lim lim s,(zg) = lim li (1—1)"—0
Jlim Jim sno) = Jim tiy (1 - )" =
and

1\n
lim lim s,(zx) = lim lim (1 - 7) =1.

n—00 k—00 n—00 k—00 k

A reasonable question is: Assume that s, and s are smooth functions, for example infinitely
often differentiable real functions. Is it allowed to exchange differentiation and taking the limit
n — oo? In real analysis, the answer is No, in general. The sequence s, (z,y) = = cos(n*(z + y))
gives a simple example. Clearly, s, converges uniformly on R? to s(x,y) = 0, but the derivatives
of s, do not converge to the derivatives of s as n — oo.

It is, therefore, remarkable and important that for functions defined by power series, f(z) =

> ; a;j(z — 29)’, one can differentiate term by term within the open disk of convergence. We will

prove this in Section 6.6.

6.2 The Disk of Convergence of a Power Series

An expression

a .
Z aj(z — 20)’
§=0

is called a power series centered at zy. We often take zg = 0 for convenience.
The following simple result is important.

Lemma 6.1 (Abel) Assume that the power series

o

E oJ
a;jz

J=0

converges for some z # 0. If lw| < |z|, then the series

[e.9]

§ )
a;w

J=0

converges absolutely. If a number r with 0 < r < |z| is fized, then the convergence is uniform for
all w with |w| < r.
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Proof: Since |a;j||z]? — 0 as j — oo there exists M > 0 so that

la;|z/| < M forall j=0,1,...

Also,
w .
q:—|‘z|<1 if |w| < |z] .
Therefore,
. . j .
sl =1yl () < Ma? it ol <.

Since Y ¢’ converges, the claim follows from the Comparison Criterion, Theorem 1.2. ¢
Definition 6.1 For any given power series,

o)

Z aij (64)

J=0

define the radius r of convergence as follows:

oo
7 = sup {]z\ : E a;z’ converges} .
J=0

Clearly, we have

0<r<oo.

There are three cases:

a) r = oo: In this case, by the previous lemma, the series converges absolutely for every z. We
will prove that the series (6.4) defines an entire function.

b) r = 0: In this case the series converges only for z = 0.

¢) 0 < r < oo: In this case, the series converges absolutely for |z| < r and diverges for |z| > r.
We will prove that the series (6.4) defines a function which is holomorphic in the open disk D(0, 7).

In many cases, one can obtain the radius r of convergence as follows:

Theorem 6.3 Let Z;’io ajzj denote a power series and assume a; # 0 for all large j. If

aji1 .
‘L‘%q as j — o0
a;

with 0 < g < 0o, then the radius of convergence is
1
r=—.
q

Here one uses the conventions 1/oo =0 and 1/0 = co.
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Proof: Let a; = aj27,z # 0. We have

s
‘j—H’ —qlz| as j— o0.

Qj
By the Quotient Criterion (Theorem 1.3) the power series Y a;2/ converges absolutely if g|z| < 1
and diverges if g|z| > 1. This implies that the radius of convergence is r =1/q. ¢

Example 6.1: For Z;’;O 4127 the radius of convergence is r = 0 by Theorem 6.3.

Example 6.2: For Z;io % 2 the radius of convergence is r = oo by Theorem 6.3. We have
) 1 . .

Z = =€, zeC.

=07

Example 6.3: For Z]O‘io 2 the radius of convergence is 7 = 1 by Theorem 6.3. We have
o0
, 1
= —— 1.
Z d=1 2| <
7=0

Example 6.4: For E]O’;l j2) the radius of convergence is 7 = 1 by Theorem 6.3. We have for
|z| < 1:

jz;jzj = ZZszj

The fact that we can take d/dz out of the infinite sum will be justified below.

Example 6.5: Taylor expansion of the real function

flz) =In(1+2z), z>-1,

about x = 0 leads to the series

> (—1)+1
>
=7
This follows from f(0) = 0 and
fl(z) = LI : = i(—l)jx for |z| <1
1+z 1-—(-x) = ’

The radius of convergence of the corresponding complex series
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oo A
—1y+t
>
=
is 7 = 1 by Theorem 6.3. This suggest that
o ,
—1)+1
fog(1+2) = Y- S el <1,
j=1

where log denotes the main branch of the complex logarithm. In other words, if w =1+ z,

O (1)t
logw = 27( )

=1

(w—1), |w—-1<1.

We will show below that this expansion is valid, indeed.

Example 6.6: The Taylor expansion of the real function

_ 1
14 a2

f(z)

about x = 0 can be obtained using the geometric series: With e = —2% we have for |z| < 1:

1 1
1+ 2 1—¢

[e.9]
§=0

(e 9]

= (-1

J=0
= 1—z22+2*. ..

The corresponding complex series

> 1
VL2

has the radius of convergence equal to 1.

6.3 Remarks on lim sup and lim inf

Definition 6.2: Let s; denote a sequence of real numbers. One defines

limsup s; := lim (sup sj> =L (6.5)
o0 n—00 \ j>p
and
hjrggolf 55 1= nh_)rrolo <]1r21£ sj> . (6.6)

~ Let us first show that the limit (6.5) always exists as an element of the extended real line,
R =RU{+o0}. (The limit (6.6) can be treated similarly.) Set
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L, := sup s;
jzn

Case 1: The sequence s; is not bounded from above. In this case L, = oo for all n and,
therefore, L = oo.

Case 2: Assume s; — —oo. In this case L,, — —oo, thus L = —o0.

Case 3: In all other cases, the numbers L,, form a monotonically decreasing sequence of real
numbers which is bounded from below. It therefore converges to some real number L,

Eg...gLanLn for n=1,2,... and L, — L.

This shows that

L =limsupsj = lim L,
j*)OO n—o0

always exists as an element of R = R U {4o0}.

Lemma 6.2 Let s; € R and let

L :=limsups; = lim L, with L, =sups; .
j—roo N0 j=>n

Assume that L € R.
a) For any € > 0 there exist infinitely many j € N with s; > L —¢.
b) For any € > 0 there exists J(¢) € N with
sj<L+e for j>J(e).

Proof: a) Since L1 < L, for all n € N we have L,, > L—¢ for all n € N. Set ny = 1 and consider

L—e<Ly=sups; .

j=1
There exists j; > 1 with
ShVZAL——s.
Set
ng =j1+5.

(The number 5 can be replaced by any positive integer.) We have
L—e<Ly,=supsj.
Jj=n2

There exists jo > ng = j1 + 5 with

Sjo ZAL——s.

The process can be continued and one obtains a sequence of positive integers

1<j2<js<...
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with

sj, >L—¢ for k=1,2,3,...

b) Since L,, — L we have

L,<L+e for n>J(e).

Since
L, = sups;
jzn
we have
sj <L, for j>n
Therefore,
s; <L+e for j>J(e).
o

Lemma 6.3 Let a; > 0 for all j and set

. Aj41
limsup 4+ = Q; ,

j—oo  Qj

L]
liminf 2 = Q2 ,
Jj—00 aj

lim sup a;/j =1L,

j—o0

.. 1/j
hmlnfa'/] = Lo
j—r00 J

Then we have
Q2<Ly<L; <Q .

Proof: We will show that L; < Q1 =: Q. (The proof of the inequality Q2 < Lo is similar.) Set
Gn = nt1/an. Let € > 0. Since limsup,,_, . g, = @ there exists N = N, so that ¢, < @ + ¢ for all
n > N. Thus,

An+1 < (Q + E)Gna n>N.
It follows that

aN

an+; < (Q+¢efan = (Q + &)V @+ Jj=0.
Therefore,
A <@+ MUY, >0,
with
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M=__N .

(Q+e)N

Since MY (N+9) 5 1 as j — oo it follows that

a,lg/k <Q+2 for k>K(e).
This implies that L1 < @ + 2e. Since € > 0 was arbitrary, one obtains that L; < Q. ©

A simple implication of the previous lemma is:
Lemma 6.4 Let aj > 0 for all j. If

. a1
lim L= =Q
Jj—00 a;

then the sequence

1/j

a;

also converges to Q.

Proof: We have (1 = Q2 = @Q in the previous lemma. ¢
Example: Let a; = j for j = 1,2,... Since
+ 1
L —-1 as j—=
J

it follows that j/9 — 1 as j — oco.
Another proof of j1/7 — 1 as j — oo goes as follows: We know that

. 1
In(G'Y)==Inj—0 as j— 0.
J
Therefore,

Uiz eml) 5021 as j—oo.

6.4 The Radius of Convergence of a Power Series: Hadamard’s Formula

Hadamard gave a formula for the radius of convergence r of a power series > a;jz?. The formula
has more theoretical than practical value. In other words, one often uses it in proofs, but it is less
useful for computing r.

Theorem 6.4 (Hadamard) Let > a;jz? have radius of convergence equal to r where 0 < r < oo.
Then we have:

1 .
— = limsup |aj]1/3
r j—o0

with the conventions



Proof of Hadamard’s Formula: Let r denote the radius of convergence of the power series
S ajz’. Set

L = limsup |aj|1/j .
Jj—00

Assume 0 < L < co. (The cases L =0 and L = oo can be treated similarly.)
a) Let |z| > 1/L. We have L|z| > 1. There exists ¢ > 0 with
(L—¢)|z|>1.

By Lemma 6.2 a) there exist infinitely many j with |a;|'/7 > L — ¢, thus

a1z > 1, ag|lzf > 1
for infinitely many j. It follows that the series Z;’il a;jz’ diverges for |z| > 1/L. This implies that
r<1/L.
(Reason: If r > 1/L then there exists z with » > |z| > 1/L, and one obtains a contradiction.)
b) Let
<, Lzl <1
2| < = z .
L )

There exists € > 0 with

(L+e)lzl=2gq<1.
By Lemma 6.2 b) we have

|aj|1/j <L+4e for j>J(e).
It follows that

laj|"|z) < (L+e)z] =q<1 for j>J(e),
thus

laj||z) < ¢ for j>J(e) where 0<g<1.

The series >, a;jz’ converges. Therefore, |z| < r. This implies that r > 1/L.
(Reason: If r < 1/L then there exists z with < |z| < 1/L, and one obtains a contradiction.)
In a) we have shown that » < 1/L and in b) we have shown that » > 1/L. The equation r = 1/L
follows. ©

6.5 Matrix—Valued Analytic Functions and Hadamard’s Formula for the Spec-
tral Radius of a Matrix

This section can be skipped.

An expression like limsup;_, \aj\l/ J also comes up in matrix theory.

In this section we assume that || - || denotes a vector norm on C™. The corresponding matrix
norm for matrices A € C™*™ is defined by
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1A]l max{|[Aul| = we C" [ju] =1}

= min{C >0 : ||Au|]| < C|lu| forall weC™}

Let A; € C™*™ denote a sequence a square matrices. We consider the series

o0

> A4 (6.7)

j=0
with variable z € C. The partial sums are the matrices

n

Sn(z) = Z A (6.8)

j=0

As n — oo, we may consider convergence of S, (z) in the space of matrices C"*™ or, alternatively,
we may consider convergence of the m? scalar series

S (A, 1<pv<m, (6.9)
j=0

where (A;),, denotes the matrix entries of A;.
With arguments as in the proof of Theorem 6.4, the following result can be shown:

Theorem 6.5 Set

q = limsup || 4;(]'/7 .

J—00

a) If |z| < % then the series (6.7) converges in C™*™. If |z| > é then the series (6.7) diverges
in CmXm,

b) If |2] < é then the m? scalar series (6.9) converge in C. If |z| > % then at least one of the
m? scalar series (6.9) diverges.

Of particular interest is the case where A € C™*™ is a fixed matrix and A; = Al je., Ay =

I,Al = A,AQ = AQ, etc.
We denote the set of eigenvalues of A by

J(A) = {Al,...,Ak}
and denote the spectral radius of A by

p(A) = max|A;]
Theorem 6.6 (Hadamard) For any matriz A € C™*™ we have

p(A) = lim |47V = in || A7)/ (6.10)
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Proof: First note that p(A) < ||A]| and

(p(A)) = p(A7) < || A7]|
thus

p(A) < ATV, j=1,2,... .
Let € > 0 be arbitrary and set

1
— — A
p(A) +¢

Then p(B) < 1 and, by a theorem of linear algebra, B/ — 0 as j — oco. In particular, there exists
J = J. € N with

B =B =

IBI| <1 for j=>J.
This yields that

1

— A7 <1 f > J .
EOEET e

Therefore,

p(A) < ||A|' < p(A) +& for j> ..
Since € > 0 was arbitrary, the formula (6.10) is shown. ¢
Linear Algebra Argument: Let B € C™*™, p(B) < 1. We claim that B/ — 0 as j — oc.
There exists T € C™*"™ so that
T'BT=A+R

where A is diagonal and R is strictly upper triangular. Then let

D. = diag(1,e,...,™ 1) .
Obtain

DY A+R)D. =A+0(e) .

One obtains that

IDZH(A+ R)De|| < 1
if € > 0 is small enough. The claim B? — 0 follows.
Power Series: Consider the powers series
0o
> Al ecmm
§=0
where A € C™*™., We claim that the series converges if |z|p(A) < 1 and diverges if |z|p(A) > 1.
Proof: Set B = zA, thus p(B) = |z|p(A4). If |z|p(A) < 1 then p(B) < 1 and
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If |z|p(A) > 1 then p(B) > 1 and

diverges.

6.6 Differentiation of Power Series

Let Z;’;O a;jz’ have radius of convergence equal to r > 0. Then the function

[e.e]
f(z) = Zajzj =ag+ a1z +az? + ...
j=0
is defined for z € D = D(0,r). Also, the convergence is uniform on any compact subset of D.
Therefore, by Theorem 6.3 the limit function f(z) is continuous in D. More is true as we will show
below: The formally differentiated power series has the same radius of convergence as the power

series for f(z), and the formally differentiated series converges to the complex derivative of f(z).
Let

oo
g(z) = > ja;z’!
j=1
= a1+2agz+3a322+...

1 & :
= ;Zjajzj, z#0,
j=1

be obtained by differentiating the series for f(z) term by term. We claim that the radius of
convergence for g(z) equals r and that f(z) has the complex derivative g(z):

Lemma 6.5 The series 3 77 ajz’ and the series > e ja;z? =1 have the same radius of conver-
gence.

Proof: This follows from Hadamard’s formula and the following lemma. ©

Lemma 6.6
lim j'7 =1
j—oo
Proof: We have shown this above, but give another simple proof here. For ¢ > 0 we have

t2
&21+5,e%¥§2,

thus

lime %t =0.
t—o00
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With

obtain that

; 1
In(j'7) == Inj=et,
J
thus '
In(j'7) -0 as j— oo.

This implies that

j = emG) 51 as Jj— 00 .
o
Remark: The result /7 — 1 also follows from Lemma 6.4.

The lemma together with Hadamard’s formula imply that the series for f(z) and g(z) have the
same radius of convergence.

Theorem 6.7 Let f(z) = Y.72qa;27 be holomorphic in D(0,r) and let g(z) = Y32, ja;z? "
Then

fi(z) =g(z) for |zl <r.

Proof: Let z with |z| < r be fixed. Fix r; with |2| < r; < r. In the following, we let h € C, h # 0,
be so small that

lz4+h| <|z|+|h|<r <rT.
Set

sn(z):Zajzj and 7,(z) = Z ;2

j=0 j=n+1

and let € > 0 be given. Then, using that f(w) = s,(w) 4+ n,(w), we have for all n =0,1,...

1

SFEHR) = fE) 9| <[5 nle 1) = 5a(2)) — sh(2)] +1(2) — g(2)

4[5 0m(z+ 1)~ m(2))]
= A+B+C

To estimate the term C' we use the following lemma:

Lemma 6.7 Let a,b € C and let M = max{|al, |b|}. Then we have

la? — | < |a—bljMI™Y for j=1,2...
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Proof of lemma: This follows from

@ —V=>@-b)(dd '+ P+ .. .+,

o
Applying the lemma, we obtain
(2 + 1) = 27| < [Blj(l2] + R < |nliri "
Therefore,
0 .
C< N glaglr] "t <e
j=n+1

for n > Ny = Ni(e). Here we use that r; < r and absolute convergence of the series Z?’;l jajzj -1
for z € D(0,r).
Also,

B =|s,(z) — g(2)| <e

for n > Ny = Ny(e). This follows from the fact that the power series defining g(z) converges in
D(0,7) and |2| < 7.
Fix n = max{Ny, N2}. Then, since s,(z) is a polynomial, there exists 6 > 0 with

A= |2 (sn(z 4 ) = sa(2)) — sp(2)| <

for 0 < |h| < 4. To summarize, given € > 0 there exists ¢ > 0 so that

1
‘E(f(w ) — f(2)) —g(z)| <3¢ for 0<|h[<4d.
This proves the theorem. ¢

One can apply the previous theorem repeatedly and obtain the following result: If ) ajzj has
radius of convergence r > 0 then the function

oo
F)=) a2, |zl <r,
§=0

is infinitely often complex differentiable and all derivatives can be obtained by differentiating the
series term by term:

fllz) = > jagd™
j=1

() = Y 4l — a2
j=2

etc. The power series for each derivative also has radius of convergence equal to r. In particular,
we have that
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f0) = ao
f0) = a
f'0) = 2a
f7(0) = 2-3a3
FB0) = Klay,

This implies that the coefficients of a power series are uniquely determined by the function repre-
sented by the series. Precisely:

Lemma 6.8 Assume that

(o]
flz) = Zajzj, |z| < ryg
§=0

[e.e]
g(z) = ijzj, 2] < rg
5=0

where vy > 0 and ry > 0 denote the radii of convergence. If, for some r > 0,

f(z)=g9(z) forall z with |z|<r

then a; = b; for all j. erefore, ry =1y an z) = g(z) for all z with |z| < ry.
hen a; = b; for all j. Therefore, 1 =1y and f(2) = g(2) for all = with |2| < ry

Summary: Let U C C be open and let f € H(U). Let D(zp,p) C U and let 0 < r < p. Let I’
denote the boundary curve of D(zp,7). Set

R 7 VR S B (YN
= ) = g [
We then have

f(z) = Zaj(z —29)? for z€ D(z,p) . (6.11)
=0

The convergence of the series is absolute for z € D(zg, p) and uniform for |z — zo| <17 < p.
In particular, if R denotes the radius of convergence of the series (6.11), then R > p as long as
D(zp,p) C U. One obtains that R = oo if U = C. If U # C then the complement

Ue=C\U

is a non—empty, closed set. One obtains that
R > dist(z0,U°) .

Example 6.7: Consider the function



with

U=C\ {3i,-3i} .

FExpansion of the function about zy = 4 yields a series

f(z) = iaj(z—él)j, |z —4| <R.
=0

By the previous considerations, the radius of convergence is at least R = 5. (Here R = 5 is the
distance between the expansion point zg = 4 and the pole-set {37, —3i}.) If the power series would
converge in D(4, R") with R > 5 then the function f(z) would be bounded near +3i, which is not
true. It follows that the radius of convergence of the series is exactly R = 5.

Example 6.8: The geometric sum

oo
> 7
=0

has radius of convergence equal to r = 1. The value of the series is

oo 1
= = <1.
f(z) j:OZ T

The function f(z) = 2 is holomorphic in U = C\ {1}. If we expand the function f(z) about
20 = 1/2, we obtain a series of the form

o0

f(z) = Zaj <z - %)] . (6.12)

j=0
Since we know that z; = 1 is the only singularity of f(z), the radius r of convergence of the series
(6.12) is the distance between zp = i/2 and z; = 1. Thus,

1
fe) =
_ 1
I-5-G-D
1 z— i\-1
= 1 i(l_l 3)
2 2
o0 . .
iNJ
= 2u(>3)
§=0

with



Using the quotient criterion, it is easy to confirm that the radius of convergence is r = % V5. To

see this, note that

?
ap/a? =[1-3

Example 6.9: Consider the series

g(z) = b2
j=0

where
b — 2 + sin(j)
7 3+ cos(j2)
Since
1 3
4 =7 =2

- (1+

-1

it follows from Hadamard’s formula that the radius of convergence is r = 1. In this case, we do not
know a simple analytic expression for g(z). If we expand g(z) about zgp = i/2 we can say that the

radius of convergence is at least % and not larger than 2

5
radius precisely.
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7 The Cauchy Estimates and Implications

Summary: For a complex differentiable function f(z) one can bound derivatives

f'(2), f"(2), ete.

in terms of values of the function. Here the constants in the bounds do not depend on the function

f, but on some distance.

The Cauchy estimates express bounds of derivatives of f in terms of values of f. The estimates
have many implications. We will use them to prove Liouville’s theorem: Every bounded holomor-
phic function is constant. Liouville’s theorem will then be used to prove the fundamental theorem

of algebra.

7.1 The Cauchy Estimates

Let U C C be an open set and let f : U — C be a holomorphic function. Let D(zp,r) C U. We

have
f(z) = Zaj(z — ) for |z—z| <7
§=0
with
1 f(©) _
a; = I7i . (C — Zo)jJrl dCa I'= 8D(207T) 5
and

F9(z0) = jlay .
See Theorem 4.11.
Clearly, the curve I' has length 27r. Therefore, noting that

| — 20| =71 for (e,

we obtain the following bound:

1
) (2 <‘7—'. max , 7=0,1,...
O < 5 max IFQ)

The above estimates are called Cauchy estimates:

Theorem 7.1 (Cauchy Estimates) Let f € H(U) where U is an open subset of C
then the estimates (7.1) hold.

7.2 Liouville’s Theorem

Theorem 7.2 (Liowville) Let f : C — C be holomorphic and bounded. Then f is constant.

Proof: We have, for all z € C,
200: i . 1 )
f(Z) = CLjZ'] Wlth aj = F f(J)(O) .

J=0 '

By the Cauchy estimates:
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790 < Zm)

with
M(r) = max | F(Q)]

By assumption, M(r) is bounded as r — oo. Therefore, if j > 1, then the term M (r)/r’ goes to
zero as r — oo and consequently a; = 0 for j > 1. It follows that f(z) = ap. ©

The following generalization says that if an entire function f(z) grows at most like |z|* for
z — oo, then f(z) is a polynomial of degree less than or equal to k. For short: Entire functions
with polynomial growth are polynomials.

Theorem 7.3 Let f: C — C be holomorphic. Assume that there are positive constants C, R and
q with

[f( < Cl|T for |z = R.
If k denotes the integer with k < q < k+ 1 then f is a polynomial of degree less than or equal to k.

Proof: By an estimate as in the previous proof obtain that a; = 0 for j > k. ¢

7.3 The Fundamental Theorem of Algebra
Theorem 7.4 Let p(z) = ag+ a1z + ...+ apz® with ay # 0, i.c., p(2) is a polynomial of degree k.
If k > 1 then there exists z; € C with p(z1) = 0.

Proof: It is easy to check (see below) that |p(z)| — oo as |z| — oo because p(z) has a positive
degree. If a zero z; of p(z) would not exist, then

fo) =
p(2)
would be a bounded entire function. By Liouville’s theorem, f(z) = const, thus p(z) = const, a
contradiction. ¢
For completeness, we show here that |p(z)| — oo as |z| — oco: Write

p(2) = ar2® +q(z) where aj #0
and

q(z)=ap+arz+...+ap_12" L.
Let

M = |ag| + |a1] + ... + |ag—1] -
Then, for all z with |z| > 1,

la(2)] < Mzt

Therefore, for |z| > 1,
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Jax|[21° — la(2)]
Jag]2]® — Mz
= |2 (laxl|z| — M)

1 1
5 lanl =1 + (5 laxll=l" = 1)

=
o
ALY,

It follows that

1
p(:)] > © laillel*
if |z| > 1 and |z| > 2M/|ag].

Extension: We want to show that every polynomial p(z) = Z?:o ajz’ of degree k can be
factorized:

p(z) =ar(z—21) - (2 — 2x) -

This follows from Theorem 7.4 and the following lemma.

Lemma 7.1 Let p(z) = Z?:o ajz’ denote a polynomial of degree k where k > 2. Further, let
z1 € C be a zero of the polynomial p(z), i.e, p(z1) = 0. Then there is a polynomial q(z) of degree
k — 1 with

p(z) = (2 — z1)q(2) .

Proof: Using the binomial formula for (a + b)?, we write

k
p(z) = Y a2’
=0

k

= aj<(z—z1)+zl>

0

J

<.
= |l

= bj(z —z1)?

<.
Il
o

where by = a. Since 0 = p(z1) = by we obtain

p(z) = (2 — 21) (bl +ba(z—21)+ ...+ bi(z — zl)kfl) .
This proves the lemma. ©

Clearly, if K — 1 > 1, we can apply Theorem 7.4 to the polynomial ¢(z) which occurs in the
factorization p(z) = (z — 21)q(z). This process can then be repeated. This proves:

Theorem 7.5 (Fundamental Theorem of Algebra) Let p(z) = ag + a1z + ... + apz® with a;, # 0,
i.e., p(z) is a polynomial of degree k. Let k > 1. Then there are k (not necessarily distinct) numbers
21,22, ...,2, € C with

p(z) =ar(z—21) (2 — 2) -
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7.4 The Zeros of p(z) and p/'(z)
This section can be skipped.

21

Z6 22

Figure 7.1: Convex hull of zeros of p(z)

Let

pe) =alz =) (= z) =a (== 2)

denote a polynomial of degree n > 2. We claim: If ¢ is a zero of the derivative p/(z), then c lies in
the convex hull of z1,..., z,, i.e., ¢ can be written in the form

c:Zajzj with «o; >0 and Zozjzl.
Y J

To show this, we may assume that ¢ # z; for all j, i.e., p(c) # 0. (If ¢ = z; then the claim is trivial.)
We have

P(Z):Zz_lzj’ 2€C\ {21, .. 20}, (7.2)

J

and the assumption p/(c) = 0 yields (using that |w|? = ww):

1 C—Z;
O:ZC_Zj :Z‘c_zjjp'

Therefore,
c—z
0= .
2P

Set

v = lc — zj] 250
and obtain

X W=D %% -

k J

Therefore,
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Zj V%5
C = = 525
Z/ﬂk Zj: it

with

o i

]_Zk’Yk'

We have shown:

Theorem 7.6 Let p(z) be a polynomial of degree n with zeros z1, . .., zn. (The z; are not necessarily
distinct.) Any zero ¢ of p'(2) lies in the convex hull of z1, ..., zp.

Another simple implication of (7.2) is the following: Assume that z is a complex number with
p(z) # 0 and p'(z) # 0. Then (7.2) yields

/
1
P'(2) < nmax ’
p(2) i 2=l
thus
n p,(z) ‘ > min |z — zj] .
Pl

This says that for every z with p/(z) # 0 the closed disk
p(2)
P'(2)

contains at least one zero z; of p(z). Here n is the degree of p.
The reason is simple: If

D(z,R) with R=n

R > min |z — z;]
j
then there exists z; with R > |z — z;].

Theorem 7.7 Let p(z) be a polynomial of degree n. Let z € C and p/(z) # 0. Set

The closed disk

contains at least one zero of p.
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8 Morera’s Theorem and Locally Uniform Limits of Holomorphic
Functions; Stirling’s Formula for the I'-Function

Summary: Let U C C be open and simply connected. If f : U — C is holomorphic then, by
Cauchy’s Theorem,

/ f(z)dz=0 (8.1)
r

for every closed curve I' in U. Morera’s Theorem is a converse: If f : U — C is continuous and
(8.1) holds for every closed curve I' in U then f is holomorphic on U.

Morera’s Theorem is very useful if one wants to prove the holomorphy of a limit function f(z)
of a sequence of holomorphic functions f,(z). One needs the concept of local uniform convergence
of a sequence of functions. We will use it to show that the Gamma-function I'(z) is holomorphic
for Rez > 0. We will also show Stirling’s formula

F(w—f—l):(g)x\/%(l—k(’)(x*l)) as x — 00,

which is used in statistics.

8.1 On Connected Sets

If (X, d) is a metric space, one calls X disconnected if one can write X = X; U Xy where X; and
X5 are nonempty, disjoint, open subsets of X:

X = X1 U Xy, leXQZ(Z), Xl#(b#XQ, onpen.

Otherwise, X is called connected. The study of a function f defined on a metric space X can
typically be reduced to the study of f on the connected components of X. Therefore, without
much loss of generality, one may often assume that X is connected.

For a complicated subset X of R? it may not be easy to determine if it connected or disconnected.
For example, consider the set X = X; U Xy where

X ={(0,y) : —1<y<1}

and

X9 = {(z,sin(1/x)) : >0} .

One could believe that X is disconnected, but it is not. Note that the subset X5 of X is not closed
in X.

Since we will only deal with open subsets U of C, the issue of connectedness is simple. One can
show that an open subset U of C is connected if and only if for any two points P, @ in U there is
a smooth curve I in U from P to Q.

Suppose U C C is disconnected and U = U; U Uy where the U; are nonempty, disjoint, and
open. Then, if g € H(U1),h € H(Us), the function f: U — C defined by

f(z)=g(z) for zeUy, f(z)=h(z) for zeUs;,

is holomorphic on U. This says that the behavior of any f € H(U) on the set U; may be completely
unrelated to the behavior of f on Us. In other words, it suffices to study holomorphic maps on
open, connected sets.
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8.2 Morera’s Theorem

Morera’s theorem is a converse of Cauchy’s integral theorem. It is very useful when studying
convergence of sequences and series of holomorphic functions.

Theorem 8.1 (Morera) Let U C C be open and connected. Let f : U — C be continuous. Assume
that

/Ff(z)dz:0

for all closed, piecewise smooth curves I' in U. Then there is a holomorphic function F : U — C
with F' = f. In particular, f is holomorphic.

Proof: Fix Py € U and, for any P € U, let ¢p denote a curve in U from Py to P. Define

F(P)= f(z)dz .
¥p

Note: Because of the assumption [ f(z)dz = 0 for any closed curve I' in U, the value F(P) is
well-defined: The value F'(P) does not depend on the choice of 1p as long as ¥ p lies in U and goes
from Py to P.

Fix any P € U. We will prove that F'(P) = f(P). There is r > 0 with D(P,r) C U. Let
0 < |h| < r. Define the curve ~;, by

() =P+th, 0<t<1.

Then the curve

Ypin — (VP + 1)

is closed. Therefore,

F(P+h) - F(P) — /f(z)dz
Yh
1
_ /f(P+th)hdt,
0
thus
(PP 4 1)~ F(P)) =/1f(P+th)dt-
0

The function ¢t — f(P + th) converges to f(P) as h — 0, uniformly for 0 < ¢ < 1. (This follows
from the continuity of f in P.) Therefore,

%(F(PJrh)—F(P)) S f(P) as h—0.
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8.3 Modes of Convergence of a Sequence of Functions

Let X denote any non—empty set and let fy, f1, f2,... and f denote functions from X to C. What
does it mean that the sequence f,, converges to f as n — co? Different definitions are used, leading
to different notions of convergence. The most commonly used notions are pointwise convergence
and uniform convergence. Recall:

Definition 1: The sequence f, converges to f pointwise on X if for every z € X and every € > 0
there exists N = N(e,2) € N so that |f,(z) — f(2)] <& for all n > N.

Definition 2: The sequence f, converges to f uniformly on X if for every € > 0 there exists
N = N(e) so that |f,(z) — f(2)| <efor alln > N and all z € X.

It turns out that both theses concepts are not completely perfect in complex analysis. The
concept of pointwise convergence is too weak: One cannot integrate the limit relation f,(z) — f(z)
if the convergence is only pointwise. On the other hand, the concept of uniform convergence is too
restrictive, because it typically does not hold on the whole domain where the functions f, and f
are defined. For example, let

n
< 1
_ J -
fu(z) = jz;z and f(z) = T for z¢€ D(0,1) .

Then f, converges pointwise to f on D(0,1), but not uniformly. The convergence is uniform,
however, on any subdomain D(0,7) with 0 < r < 1.

The following two notions of convergence, which turn out to be equivalent, are very useful in
complex analysis. Let U C C be an open set and let f,, f : U — C be functions.

Definition 3: The sequence f, converges to f uniformly on compact sets in U if the following
holds: For every compact set K C U and for every € > 0 there exists N = N (e, K) so that

[fn(2) = f(2)| <e
foralln> N and all z € K.
Definition 4: The sequence f, converges to f locally uniformly in U if the following holds: For

every zp € U there is a neighborhood D(zp,7) C U so that for every ¢ > 0 there is N = N(g, zp)
with

[fn(2) = f(2)] <e
for all n > N and all z € D(zg,r).

Remark: If one replaces U by a general metric space, the two notions of uniform convergence on
compact sets and local uniform convergence, may differ from one another.

Theorem 8.2 Let U denote an open subset of C and let f,, f : U — C be functions. The sequence

fn converges to f uniformly on compact sets in U if and only if it converges to f locally uniformly
mn U.

Proof: 1) Assume that f, converges to f uniformly on compact sets in U. Let zg € U. There
exists r > 0 with D(zq,7) C U; etc.

2) Assume that f,, converges to f locally uniformly in U. Let K C U be compact. For every
z € K there exists r, > 0 so that f,, converges to f uniformly on D(z,r;). The sets D(z,r;) for
z € K form an open cover of K. Since K is compact there are finitely many sets
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Dj:D(Zj,TZj), jzl,...,J,

whose union covers K. For every ¢ > 0 and for every j there exists N; = N (e, j) with

[fn(2) = f(2)| <& for n=>N;
if z € D;. Set N(¢) := max;N; then

|fn(z) = f(z)| <e for n>N(e)
and z € K. ¢

We have proved that local uniform convergence in U of a sequence f,, : U — C is equivalent to
uniform convergence on compact sets in U. Next, let us consider series of functions f;(z).

Normal convergence of a series of functions. Let U C C denote an open set and let
fj : U — C denote a sequence of functions. The series

Y filz), zeU, (8.2)
j=1

has the partial sums

sn(z) = ij(z), n=12...
j=1

One says that the series (8.2) converges uniformly on the compact set K C U if the sequence of
partial sums s, (z) converges uniformly on K.

Example: We claim that the series

Z(_l)j’ 2eU:=C\{-1,-2,..},

z+7

7=1
converges uniformly on every compact set K C U, but the convergence is not absolute. Proof: If
K C U is compact then K C D(0, R) for some R > 0. If j > 2R and z € K then |z| < R and

2+l > j—l21>34/2
lz+j+1 > j+1—|z]>j/2
thus
1 1 4
Z2+) z+5+1 7

This can be used to show that the sequence of partial sums s,(z) is a Cauchy sequence with respect
to the maximum norm on K, defined by

|f\K=sup{|f(z)\ : zEK}.

It is clear that the series ). % does not converge absolutely. A very useful convergence
concept for a series of functions is normal convergence.
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Definition 5: The series (8.2) converges normally on U if for every compact set K C U the series

o0
> Il
7=1
converges.

Example: Assume that the power series

o

E J
a;z

=0

has radius of convergence r > 0. We claim that the series converges normally in D(0,7). If
K C D(0,r) is compact then

KCD(O,Tl)
for some 0 < 1 < r. For all z € K we have
\ajzj\ < ]aj]r{, j=0,1,2,...

and the series

m .
> laglr]
§=0
converges by Abel’s Lemma, Lemma 6.1. Therefore, if f;(z) = a; 27, then

|f]‘K < |CL]|’I"{ )

and

> 1l
=0

converges.

A simple and important convergence theorem for holomorphic functions is stated next. Its proof
is based on Morera’s theorem and the Cauchy estimates.

Theorem 8.3 Let U C C be open; let fo,f : U — C be functions. Assume that all f, are
holomorphic. If f,, converges to f locally uniformly in U, then f is also holomorphic. Furthermore,
1l converges to f' locally uniformly in U.

Proof: 1) First note that the continuity of all f,, and the local uniform convergence of f, to f
implies that f is continuous.

2) Let D = D(zp,7) be any disk in U. Let I" be any closed curve in D. Then, by Cauchy’s
theorem,

/an(z) dz=0

for all n. Since I' is compact, the f, converge to f uniformly on I'. It follows that
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/F f(z)dz =

By Morera’s theorem, f is holomorphic in D. Since D was an arbitrary open disk in U, the function
f is holomorphic in U.

3) Let 29 € U. There exists r > 0 so that D(zp,2r) C U. Then, by Cauchy’s estimate (7.1) we
have for z € D(zg,r),

P2 = PG < & max [£a(0) - £(O)

T |(—z|=r

< b max A0 - FOI= M, .

T ¢eD(zp,2r)

As n — oo, the maximum M,, converges to zero since f, converges to f uniformly on D(zg,2r).
Also, M, is uniform for all z € D(zp, 7). This proves the theorem. ¢
8.4 Integration with Respect to a Parameter

Theorem 8.4 Let U be an open subset of C and let F : U x [a,b] — C denote a function. Here
[a, b] is a compact interval in R. Assume that F' is continuous on U X [a,b] and that z — F(z,t) is
holomorphic on U for every fized t. Then

b
f(2) :/ F(z,t)dt, zeU,
18 holomorphic on U.

Proof: 1) Let D = D(zp,7) C U. Since F(x,t) is uniformly continuous on D x [a, b] it follows that
the function f(z) is continuous.

2) Let D = D(P, ) be any open disk in U and let I' be a smooth closed curve in D. By Cauchy’s
theorem,

/F(z,t)dzzO forall a<t<b.
r

We have

/Ff( // F(z,t)dtdz
// (z,t)dzdt

Therefore, by Morera’s theorem, the function f(z) is holomorphic in D. Since D is an arbitrary
disk in U, the function f(z) is holomorphic in U.

Note that, in the second equation, we have exchanged the order of integration. Let us justify
this. If I" has the parameterization 7(s),c < s < d, then

D
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b
F(vy '(s)dtds

F(~ '(s)dsdt

- / /FF(z,t)dzdt

Here, in the second step, the continuous function (s,t) — F(v(s),t)v/(s) is integrable over [c,d] X
[a, b], and Fubini’s theorem justifies to exchange the order of integration. ¢

[ rease = ['[[rets
I

8.5 Application to the '-Function: Analyticity in the Right Half-Plane

Let H, = {z = x+1y : x > 0} denote the open right half-plane. For z € H, define Euler’s
I'—function by

D) = /0 T letay (8.3)

We will prove that I'(z) is holomorphic on H,.
For € > 0 and z € C define

Note: If ¢ > 0 then

+— lnt
and
7 = oIt
For every fixed ¢ > 0, the function
oy 7 le—t — pz=1)Int —t

is entire. Also,
(2: t) e e e(zfl)lnteft

is continuous on C x [g, 1]. Therefore, by Theorem 8.4, each function I'c(z) is entire.
Fix 0 < a < b < oo and consider the vertical strip

Sep={z=x+iy : a<z<b, yeR}.
For z = x +iy € S, and 0 < e < 1 we have

IT(z) —T:(2)] < /t"” ! tdt+/ t" et at

0 1/e

< /t“ 1dt+/ trlet dt
0 1/e

= R(e)
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(Note: If 0 < ¢t <1 then Int < 0. Therefore, 0 < a < z yields that alnt > x1nt, thus t* < ¢%.)
It is clear that R(¢) — 0 as € — 0. Therefore,

sup [I'(z) —=T:(2)] =0 as €—0.

ZGSGJJ
If K C H, is an arbitrary compact set, then there exist 0 < a < b < oo with K C S, 3. It follows
that I'.(z) converges to I'(z) as € — 0, uniformly on compact subsets K of H,. This implies that
I'(z) is holomorphic on H,.

Remarks: 1) We will show later that I'(z) can be continued as a holomorphic function defined
for z € U where

U=C\{0,-1,-2,...} .

The extended function, also denoted by I'(z), has a simple pole at each n € {0,—1,-2,...}.

The integral representation (8.3) for I'(z) only holds for Rez > 0, however, since the integral
does not exist if Rez < 0. The singularity of the function ¢+ — t*~! at t = 0 is not integrable if
Rez <0.

2) Consider

o
[(x) = / t*le7tdt for 0<z<oo.
0

For 0 < z << 1 we have

t=1 1

! 1
I(z) ~/ " dt = —t°
0

X

t=0 T

This suggests that, for z ~ 0,

1 o0
T(z) ==+ a2
(2) Z+j:0a]z

where the series converges for z ~ 0. This can in fact be shown. The above representation holds
for |z| < 1. The function I'(2) has a simple pole at z = 0 with

Res(I'(z),z=0)=1.
3) Consider
o
Iz +1) :/ tYe~tdt for x>>1.
0
The term t* is very large for large t. In fact, one can show that I'(x 4+ 1) grows faster than e** as

x — oo, for any a > 0.
Stirling’s formula says that

For any a > 0,

ln(ﬁ)zx(lnx—a)%oo as T — 00 .
e
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Therefore, using (8.4),

I(x+1)

eO(II)

— 00 as T — o0 .

Thus, I'(x) grows faster than any exponential e**. On the other hand, if € > 0, then

ln(%) =z(lnz —2°) > —c0 as x — o0 .
e

Therefore, using (8.4),

T 1
e((letf))_)o as T — 00 .
(z17)

Thus, for any € > 0 the function e grows faster than I'(x) as x — oc.
4) Let z = x 4+ iy, > 0,y € R. We have

S .
I'(z) = / tT et dt
0

where

tW = Wt — cog(yInt) +isin(ylnt) .
Let us try to understand the formula

o0

ReTl'(z) = / t* Leos(ylnt)e tdt for z=xz+iy, =>0.
0

For y # 0 the function cos(yInt)) varies rapidly in the interval 0 < ¢t < co as t — 0 and as t — oo.
Fix y # 0 and let = 0. The integral

/ t~Lcos(ylnt)e t dt
0

does not exist since the singularity at ¢ = 0 is not integrable. However, the integrand varies rapidly
as t — 0, leading to cancellations. This is an intuitive reason why the limit

Jim Dz +dy) =: T(iy)

exists for y # 0 and I'(z) can be continued analytically into parts of the left half-plane.

8.6 Stirling’s Formula

Consider the Gamma—function for real positive x,
o
INz+1)= / tYe tdt .
0
Stirling’s formula,

MNx+1)~ (g)x 2w,

gives an approximation for I'(z + 1) which is valid for large x. Precisely:

96



Theorem 8.5 As x — oo we have
T(z+1)= (f) \/271'3:(1 + O(afl)) . (8.5)

Proof: By definition, the term O(z~!) is a function for which the following holds: There are
constants C' > 0 and xg > 0 so that

Oz~ <C/z for > .

To prove (8.5) we first make simple linear substitutions:

o0
MNzx+1) = / t"e~tdt (substitute t = xs,dt = xds)
0
[e.e]
= acxH/ s%e 5% ds (use that s = e™%)

0

o0
ot / e®M5=5) ds (substitute s = 1 4 u, ds = du)
0

i /OO e:c(ln(l—l—u)—l—u) du
-1

_ (%)xm /Olo r(n(ltu)—u) g,

We have to analyze the integral

J(m):/ W dy for x>>1
-1

where

d(u) =In(1+u)—u for u>-1.

J(z) = \/f + O ?) = ﬁ (1 + O(arl) . (8.6)

Note: If z is large, then the main contribution to the integral defining J(z) comes from the u—
interval where ¢(u) is maximal.

Clearly, ¢(0) =0 and

We must show that

1 1

'(u) = -1 "(u)y=-—"—=<0
S = =1 ) =~
Therefore, the function ¢(u) attains its maximum at v = 0. Since
2 3 4
ln(l—i—u):u—%—i—%—%—i—... for |u| <1
we have
2
p(u) = —— +Ou?®) for u~0.



Here, and in the following, the term O(u’) denotes a smooth function of u which satisfies an
estimate |O(u’)| < Clul’ for |u| < 1/2.
If one neglects the O(u?)—term then one obtains

o0
J(z) ~ / e~ ™/2 dy  (substitute v = \/z/2)
~1
2 [e.e]
~ \/> / e dv
x —00
27
B x
To prove (8.6) we have to be precise about the error terms.

Details 1: Fix a small constant ¢ > 0. It is not difficult to show that

J(x) = / =) gy
-1
= / ™ du + error(z)

—C

where

RT

lerror(z)| < e~ for = >xg .

Here k > 0 and xg is sufficiently large. This holds since there are positive constants c1, co with

d(u) < —cr —ca(u—c) for u>c,

[o@) 0
/ =) gy < e_clx/ e 2T du .
c 0

/ W) 10,
1

thus

The integral

can be estimated similarly. Therefore,

Details 2: We have

blu) = —“22 (1—%“+(9(u2))
2 u
- (o)

for Ju| < c. In the integral
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Ji(z) = /em(") du

—C

_ / © @/ 1-u/3+00)? g

—C

use the substitution

From

1 —u/3+ O(u?)
= y(1+u/3+0?)
= y(l+y/3+0(y?)

obtain that

du = (1 + §y+0(y2))dy .

Therefore,

Y2 2
By = [T (14 Sy 007 dy

Y1
where

y1 = —c+ 0(62), Yo =c+ (9(02) .

Details 3: As in Details 1, the interval y; < y < yo can be changed to —oo < y < oco. The
error is O(e~""). One obtains:

Ji(z) = /OO ey’ /2 (1 + %y + (9(y2)> dy + O(e"T)

—0o0
2 o0
oV =t / eV PO(?) dy + O(e™)
x —0o0
In the next integral use the substitution y/zy = ¢ and obtain
> —zy?/2, 2 —-3/2 > -q?/2 2 —-3/2
e yidy == e q“dqg=Cx .
) —o0

This proves the formula (8.6) and Stirling’s formula. ©

Remark: According to [Whittaker, Watson, p. 253]:

2@ 1 1 139 571
Dz +1 :(f) V2 (1 — - - @ —5) .
(1) ={2) V2 (14 950+ 5552 ~ 5184025  2assgooet T OW ) 88 o

99



9 Zeros of Holomorphic Functions and the Identity Theorem; An-
alytic Continuation

Summary: Let U C C be open and connected; let f, g : U — C denote two holomorphic functions.
The Identity Theorem gives a rather simple condition which implies that f and g are identical,
i.e., f(z) = g(z) for all z € U. The condition is that the set Z = {2z € U : f(z) = g(z)} has an
accumulation point P € Z, i.e., there exists a sequence z, € Z \ {P} with z, — P.

We first prove connectedness of the interval [0, 1]. The result will be used to prove the Identity
Theorem.

Lemma 9.1 Let A C [0,1]. Assume:
a)0 € A.
b) A is open in [0,1], i.e., for every t € A there is € > 0 such that

{s€[0,1] : |[s—t|<e}CA.

c) A is closed in [0,1], i.e., if t, € A converges to t € [0,1], then t € A.
Under these assumptions we have A = [0, 1].

Proof: Suppose B = A =[0,1] \ A is not empty. Then let

B8 =inf B .

Since 0 € A and A is open in [0, 1] we have that 5 > 0. Also, [0, 5) C A. Since A is closed, it follows
that 8 € A. Therefore, [0,5] C A. If 5 =1, then A° is empty, which contradicts our assumption.
Thus, 8 < 1. But then, since 5 € A and A is open in [0, 1], there is € > 0 such that [0, +¢) C A.
This contradicts the definition, 5 = inf A¢. ¢

Definition: Let S C C be non—empty. Let P € C. The point P is called an accumulation point
of S if there exists a sequence of points z, € S\ {P} with z, — P. Here P may or may not be a
point of S. If P € S and P is not an accumulation point of S, then P is called an isolated point of
S.

The following theorem is called the Identity Theorem. It implies that two holomorphic
functions, f,g € H(U), are identical on U if U is connected and if the set of all z € U with
f(2) = g(2) has an accumulation point in U. In particular, if f(z) = g(z) for all z in an open disk
in U or if f(z) = g(z) for all z on a line segment of positive length, then f and g are identical on
U.

Theorem 9.1 (Identity Theorem) Let U be an open and connected subset of C. Let f: U — C be
holomorphic. Let

Z={ze€U : f(2)=0}

be the set of points in U where [ is zero. If Z has an accumulation point belonging to U, then

f=0.

Proof: a) Let P € U be an accumulation point of Z and let z, € Z with 2z, — P, z, # P. Let
m .
f(z) =) aj(z=P)y, |z=P|<r.
§=0
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We claim that a; = 0 for all j. Otherwise, let

a():al:...:ajzo, aJ_H;éO.

Then we have

flz) = (Z—P)J+1(a]+1+aJ+2(Z—P)+...)
= (= PYg(2)

with g(z) holomorphic in D(P,r) and g(P) # 0. There exists € > 0 so that g(z) # 0 for |z —P| < e.
Therefore,
f(2) #0 for 0<|z—P|<e.

This contradicts
zn — P, Zn#Pa f(Zn):O'

b) Let

V={zeU: fO()=0 forall j}.

We have shown that P € V and claim that V = U. To show this, let ) € U be arbitrary. Let
v :[0,1] = U be a continuous function with

70)=P, ~(1)=Q.
Such a function ~ exists since U is a connected set. Let
A={te|0,1] : v(t) e V}.

We have that 0 € A since y(0) = P € V. If t € A then (¢
neighborhood of the point «(¢). This implies that A is open in [

) € V, and therefore f = 0 in a
0,1]. If t, € A and t,, — ¢, then

f(])(w(tn)) =0
for all n and all j. This yields that

fP () =0
for all j. Therefore, t € A, thus A is closed. By the previous lemma, we have A = [0, 1]. Therefore,
ReV.o

Remark: We can use a different argument for part b) of the proof if we use the definition of
connectedness of U from topology. The set V is closed in U since all fU) are continuous. Also, if
z € V then f is zero in a neighborhood of z. Therefore, V' is open in U. Since P € V we have that
V # (). The connectedness of U then implies that V = U showing that f is zero on U.

Analytic Continuation: Let U C V C C where U and V are open sets and where V' is connected.
Let f € H(U),g € H(V). The function g is called an analytic continuation of U in V if g(z) = f(z)
for all z € U. The above arguments imply that f has at most one analytic continuation in V. If
an analytic continuation (in an open connected set) exists, then it is unique.
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10 Isolated Singularities and Laurent Expansion

Summary: If f(z) is a holomorphic function in the punctured disk D(P,r) \ {P} then f has an
isolated singularity at P. There are three types: An isolated singularity can be removable, it can
be a pole, or it can be essential. The Casorati—Weierstrass Theorem says that for 0 < ¢ < r the
image set f(D(P,¢e) \ {P}) is dense in C if the singularity at P is essential.

If f is holomorphic on D(P,r) \ {P} then f can be written as a Laurent series,

f(z) = i aj(z—P)y for 0<|z—P|<r.

j=—o0

The singularity at P is essential if and only if there are infinitely many negative j € Z with a; # 0.
More generally, a Laurent series

[e.9]

Z a;(z — P)I

j=—o0
converges in an annulus
A(P,r1,19) = {z eC:r<|z—P|< 7’2}

where 0 < r; < ry < 0.

10.1 Classification of Isolated Singularities

Let P € C and let » > 0. Then the set

D(P,r)\{P}

is a so—called punctured disk, a disk where the center is removed. If f = f(z) is holomorphic in
the set D(P,r)\ {P} for some r > 0, then one says that f has an isolated singularity at P.

For simplicity of notation, let P = 0. There are three cases:

Case 1: There exists € > 0 and M > 0 with
lf(z)] <M for 0<|z|<e.

Case 2: |f(z)| > oo as z — 0, i.e., for all R > 0 there exists € > 0 with
lf(z)] > R for 0<|z|<e.

Case 3: Neither Case 1 nor Case 2 holds.

Terminology: Assume that f has an isolated singularity at P, i.e., f is a holomorphic function
in D(P,r) \ {P} for some r > 0. In Case 1, one says that f has a removable singularity at P.
This terminology is justified by Riemann’s theorem on removable singularities, which we will prove
below. In Case 2, one says that f has a pole at P. In Case 3 one says that f has an essential
singularity at P.

Example 1: The function
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f(z) = z—_39 for z#3

has an isolated singularity at z = 3. For z # 3 we have
fz)=2+3.

Case 1 holds. By setting f(3) = 6 we can remove the singularity of f at z = 3. The point z = 3 is
a removable singularity of the function f(z) = (22 —9)/(z — 3).

Example 2: The function

f(z):% for z#0

has an isolated singularity at z = 0. Case 2 holds. The point z = 0 is a pole of order 2 of the
function f(z) = 1/2%

Example 3: The function

f(z) =e* for z#0
has an isolated singularity at z = 0. We claim that Case 3 holds. To show this, let

an = —, bn:l for n=1,2,3,...

in n
Then we have

f(an) = ein7 ’f(an)‘ =1,
and

f(by) =e™.
Since a,, — 0 and |f(a,)| = 1 for all n, Case 2 does not hold. Since b, — 0 and f(b,) — oo.

Case 1 does not hold. The point z = 0 is an essential singularity of the function f(z) = e!/%.

10.2 Removable Singularities

Theorem 10.1 (Riemann’s Theorem on Removable Singularities) Let f € H(D(O,r) \ {0}) for

some r > 0. Assume that Case 1 holds, i.e., f is bounded near the isolated singularity at P = 0:
lf(2)] <M for0<|z| <e. Then

lim f(z) =: fo

z—0

exists and the extended function, f.(z), defined by

fe(z):f(z) for 0< |Z‘ <7, fe(O)Zfo )
is holomorphic in D(0,r).
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Proof: Set

g(z) =22f(2) for 0<|z|<r, ¢(0)=0.

Clearly, g is holomorphic at every z with 0 < |z| < r and g is continuous at z = 0. We will show
that g is also complex differentiable at z = 0.
For 0 < |h| < € we have

()~ g(0)| = |59
= Rl
< Min|.

Therefore, ¢’(0) exists and is zero. Since g is holomorphic in D(0,r) we can write

g(2) =ag+ a1z +ax2® +... for |zl <r.
Also, since g(0) = ¢’(0) = 0, we have ap = a; = 0. Therefore,
g(2) = 2%(ag +azz+...) for |z|<r.

Here the power series converges for |z| < r. Since g(z) = 22f(z) for 0 < |z| < r it follows that

f(z)=a2+azz+... for 0<|z|<r.

This implies that lim,_,o f(2) exists, is equal to fy := a2, and that the extended function f.(z) is
holomorphic in D(0,r). This proves the theorem. ¢

10.3 Theorem of Casorati—Weierstrass on Essential Singularities
The following result is known as the Casorati—Weierstrass Theorem:

Theorem 10.2 Let f be a holomorphic function defined on D(P,r)\ {P} and assume that f has
an essential singularity at P. Then, for any 0 < § < r, the set

7(D(P.8)\ {P})
is dense in C.
Proof: Suppose this does not hold. Then fix 0 < § < r so that the set

f(Dp.o)\{P})

is not dense in C. This means that there exists Q € C and ¢ > 0 with

|f(z) —Q|>¢ for 0<|z—P|<§.
Set

g(z)=————— for 0<|z—P|<§.
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1 . y e
We have [g(z)| < Z. By Riemann’s removability theorem,
li =:
lim g(2) =: go

exists.
Case 1: gg # 0. In this case,

lim (/(2) - Q) = -

This implies that f(z) is bounded near P, which contradicts the assumption that f has an essential
singularity at P.
Case 2: gy = 0. In this case,

lim |f(2) — Q| = o0 .
z—P
It follows that f has a pole at P, which contradicts the assumption that f has an essential singularity

at P. ¢

Remark: A deeper result is Picard’s Big Theorem:
Theorem 10.3 Under the same assumptions as in the Casorati—Weierstrass theorem, we have

f(D(P, )\ {P}) = C for every 6 with 0 < <r

or, for some Q € C,

f(D(P, 9)\ {P}) =C\{Q} for every § with0 <é <r .

In other words, only the following two possibilities exist:

Possibility 1:
For any w € C and any 0 < 0 < r the equation f(z) = w has infinitely many solutions z = z, with
0< |z, — P| <.

Possibility 2:
There is a point Q € C so that for any w € C\ {Q} and any 0 < § < r the equation f(z) = w has
infinitely many solutions z = z, with 0 < |z, — P| <.

Example 1: Let f(z) = e/ 2 # 0. Clearly, f has an essential singularity at P = 0. Here we
can directly verify that possibility 2 holds with @Q = 0. If w € C,w # 0, is given, then we can write

w= Tei@ _ elnr+i9+27rin

for any n € Z. If

1
" Inr 440 + 2min
then f(z,) = w and |2,| < § if |n| is large. This shows that the function

Zn

fz)=¢ zeC\{0},

has the following property: Given any w € C\ {0} and given any ¢ > 0, there are infinitely many
points z, with 0 < |z,| < § and f(z,) = w. In other words: In any neighborhood of its essential
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singularity at P = 0, the function f(z) = e!/# attains every value w € C, except for w = 0, infinitely
many times.

Example 2: f(z) =sin(1/z),z # 0. Again, f has an essential singularity at P = 0. In this
case, for any w € C and any ¢ > 0 the equation f(z) = w has infinitely many solutions z = z,, with
0 < |zn| < 4. Proof: We solve

by setting

The equation becomes
1 . 2 .
q——=2w or q —2wqg—1=0.
q
Clearly, given any w € C there exists a solution ¢ € C, ¢ # 0. The equation

e =q

has the solutions

Qp = Qpgr + 210, n€EZL,
where oy, is a particular solution. For n € Z with a,, # 0 set

1 1
Zp=—=—".
", Qpar + 270

We have
6z/zn — elan — q

and obtain that

sin(1/z,) = sinay,

= w
Also, |z,| < § for large |n|.
10.4 Laurent Series
10.4.1 Terminology
An expression
0 .
> aj(z— Py (10.1)
Jj=—00
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is called a Laurent series centered at P. The series (10.1) is called convergent at z if the limits

n—00 4

lim Z aj(z — P)Y =: I,
7=0

and
-1

i (2 — P} —=:
71113010 Z a;j(z — P) =: Ly
j=—n

exist. If these limits exist then the value of (10.1) is L; + Lo.
Assume that 0 < ro < oo is the radius of convergence of the power series

Z aj(z — P)
5=0

and 0 < 1/r; < oo is the radius of convergence of the power series

o)

E )
a_jw’ .

j=1
Then the series

-1

Z a;j(z — Py’

j=—o0

converges for r1 < |z — P| < oo and defines a holomorphic function for r; < |z — P| < oo. If

0<ri<ra <0

then the Laurent series (10.1) converges for 1 < |z — P| < r2 and defines a holomorphic function
in the annulus

A=A(P,r1,m2) ={z : 11 <|z—P| <ra}.
The set A(P,r1,r2) is called the annulus centered at P with inner radius r; and outer radius
9.
We will prove below that, conversely, every function f(z), which is holomorphic in an annulus,

can be written as a Laurent series:

[e.e]

f(z) = Z aj(z — P)? for z¢€ A(P,ry,ra) .

j=—o0

The coefficients a; are uniquely determined.

10.4.2 Characterization of Isolated Singularities in Terms of Laurent Expansions

If the holomorphic function f has an isolated singularity at P then P is removable or a pole or an
essential singularity. We will prove that these three possibilities have a simple characterization in
terms of the Laurent expansion of f in D(P,r)\ {P}.

Let A= A(P,0,7) = D(P,r)\ {P}. We will show: If f: A — C is holomorphic, then f has a

Laurent expansion in A,
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R

Figure 10.1: The annulus A(P,ry,72)

[e.e]

f)= > aj(z—P)Y, z€A,

j=—o00
where the a; are uniquely determined. Clearly, there are three cases:
Case A: a; =0 for all j <0.

Case B: There exists J < 0 with ay # 0 and a; = 0 for all j < J. We will show below that this
case holds if and only if f has a pole at P; one says that f has a pole of order |J| at P.

Case C: There are infinitely many j < 0 with a; # 0.
We will prove:

Theorem 10.4 Let f = f(z) be holomorphic in D(P,r)\ {P},

o0

f(z) = Z aj(z—P) for 0<|z—P|<r.

j=—o00

Then f has a removable singularity at P if and only if Case A holds; f has a pole at P if and only
if Case B holds; f has an essential singularity at P if and only if Case C holds.

10.4.3 Convergence of Laurent Series

Theorem 10.5 Assume the Laurent series Zj aj(z — P)J converges for z =z and z = zo with

le‘zl—P|<T2:|22—P’.

Then the series converges for all z with

r<|z—P|<ry.

Furthermore, the series

> aj(z— Py =:g(2)
§=0

converges absolutely for |z — P| < ro and the series
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-1

> aj(z— P)Y = h(z)

j=—o0

converges absolutely for |z — P| > r1. Also,

Zaj(z —P)Y = g(z) as n— oo
=0

normally in D(P,ry) and

—1
Z aj(z—P) = h(z) as n— oo

j=-n

normally for |z — P| > 11, i.e., in A(P,r1,00).

Proof: This follows, essentially, from Abel’s Lemma for power series. ¢

10.4.4 Examples

1) The Laurent series

&) =3 =

j=—10

converges for 0 < |z| < 1. The annulus of convergence is A(0,0,1). The function f(z) has a pole
of order 10 at z = 0.

2) The Laurent series

50 o
6= 3 ¥

j=—o00
converges if
2727 <1
and diverges if
277 > 1.

Thus, convergence holds for |z| > J. The annulus of convergence is A(0, 5,00). The function f(z)
does not have an isolated singularity at z = 0.

3) In the following example we show that the Laurent expansion of a function f(z) in an annulus
A(P,r1,72) not only depends on P, but also on r1 and r9. Consider the function

1 B 1
1-2)2-2) 1—-z 2-2’

It can be written as a Laurent series, centered at z = 0, in

f(z) = zeC\{1,2}.
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A = A(0,0,1)
A(0,1,2)
A3 = A(O,Q,OO)

&
I

a) The expansion in A; is the Taylor expansion about 0: We have

e .
= sz, |z <1,
=0
and
1 1
2—2z  2(1-2z/2)
1 o
= §Zz—ﬂzﬂ, 2] < 2.
j=0
Therefore,

o0
=Y (1-277, |2l<1.
7=0

b) To obtain the Laurent expansion in Az we write

11

-2  z1-1/z
[e.e]

_ I

for |z| > 1. Together with the expansion of 1/(2 — z) of the previous case:

100 o0 )
72 Z 2 for 1<z <2.
z

=0 j=0

c¢) To obtain the Laurent expansion in As we write for |z| > 2:

1 1 1

2—z  z21-2/z

o
EZ 0f 5
z“

7=0

Therefore,

—_

l\z
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10.4.5 Laurent Expansion: Uniqueness

Let P =0, for simplicity. Let 0 < r; < ro < 0o and let

A = A(O, r1, 7‘2)
denote an annulus. Assume that
w .
= Z a;z’, ze€A. (10.2)
j=—00

Since the convergence is normal in A, the function f(z) is holomorphic in A. Let r; < r < ry and
let

We claim that

£) 4

2771'1'72”'1'1 TLEZ

Ay =

The proof is easy: Since the convergence of the series (10.2) is uniform on ~, we can exchange
summation and integration. Therefore,

Zanz—Z / dz—27rzan.

This result shows that the coefficients a; of the expansion (10.2) are uniquely determined by the
function f(z).

10.4.6 Laurent Expansion: Existence

Let A = A(0,r;,72) denote the annulus as above and let f: A — C be holomorphic. Let z € A be
arbitrary. Choose real numbers s; and sy with

T‘1<51<|Z|<82<T‘2.

Let

y1(t) = s1€e,  (t) = s0e, 0<t<2m.
We claim that

2m’f(z):/ &dc / SO d(-
g Y

, 0 — % 6 —
In order to show this, we deform the curves —vy; and 72 so that the right—-hand side becomes
r.h.s. = 1) d¢
Ye C -z
with

7€:z+6eit, 0<t<2m.
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Writing

F(Q) = F(2) + (F(¢) = f(2))

and taking the limit € — 0 one obtains that

r.h.s. = 2mi f(z) .

The Laurent expansion of f(z) can now be obtained by using the geometric sum formula. The
details are as follows. We have

2mif(z) = Inty — Inty

with
Inty, :/ SO g k=12
Vi (—2
Consider Ints first. We have || > |z|, thus
1 1

C—z ¢(1—=2/¢)

7=0
Therefore,
© .
Inty = Z a;z’
j=0
with

aj:/mé;(ﬂdg.

When considering Int;, we note that |¢| < |z|. Therefore,

1 1 1
C—z _gl—C/z

S

This yields

00
Int1 = Z bjz_j_l
7=0

with

We summarize:
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Theorem 10.6 Let A = A(P,r1,712) denote an open annulus and let f € H(A). There are uniquely
determined coefficients a;,j € Z, so that

o0

f(z) = Z aj(z—P) for z€A. (10.3)

j=—o00

This series representation of f is called the Laurent expansion of f in A.

10.4.7 Local Behavior and Laurent Expansion

Assume that f has an isolated singularity at P. There are three cases: P is a removable singularity;
P is a pole; or P is an essential singularity. These notions have been defined in Section 10.1 in
terms of the local behavior of f near P. We now characterize the three cases in terms of the Laurent
expansion of f near P.

Theorem 10.7 Let f be a holomorphic function defined in D(P,r)\ {P},

[e.9]

f(z) = Z aj(z—P), 0<|z—P|<r.

j=—00
a) The point P is a removable singularity of f if and only if a;j =0 for all j < 0.
b) The point P is a pole of f if and only if there exists J < 0 with
ay#0 and a; =0 forall j<J.
¢) The point P is an essential singularity of f if and only if there are infinitely many j < 0 with
G 7é 0.

Proof: For simplicity, assume P = 0.

a) If P is removable, then a; = 0 for all j < 0 by Riemann’s removability theorem. The converse
is trivial.

b) First assume that J exists, i.e., with J = —k,

k

fz)=2Mak+arnz+...)=2"g(2) .

The function g(z) has a removable singularity at z = P and |g(2)| > &|a_| for |z — P| < e. It
follows that f(z) has a pole at z = P. Conversely, let |f(z)| — oo as z — P. Set g(z) = 1/f(z) for
0 < |z — P| < € and apply Riemann’s theorem to g(z). Obtain that, for some m > 0,

9(z) = 2" (b + bny12+...), by #0.
This yields that

f(z) =27"Q(2)
where Q(z) has a holomorphic extension at z = P. The statement c¢) now follows trivially. ¢

Terminology: If

oo

fz)= > aj(z—=P)Y, 0<|z—P|<r,

j=—o0
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is a holomorphic function in D(P,r) \ {P} then

-1

Z a;(z — P)!

j=—o00

is called the singular part of f (about P). Note that the singular part defines a holomorphic
function in C\ {P}. The coefficient

a_1 = Res(f, P)
is called the residue of f at P.
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11 The Calculus of Residues; Evaluation of Integrals; Partial Frac-
tion Decompositions

Summary: Let v,(0) = re??,0 < § < 2, parameterize the circle of radius r centered at the origin.
We know that

; 0 for jeZ, j# -1
J — )
/TZ dz_{2m' for j=-1

Therefore, if f € H(D(O, R)\ {0}) has the Laurent expansion

f(z) = Z a;zl for 0<|z|<R

j=—o0

then

/ f(z)dz=2mia_; for 0<r<R.
Yr
For this reason, the residue

a_1 = Res(f,0)

is very important.
In Section 11.1 we discuss methods to calculate residues. In Section 11.2 we use residues to
evaluate integrals.

For a € C\ Z the function

_ cot(mz) cos(mz)
(2) = (z—a)? (z—a)?sin(rz)’

has a simple pole at each integer j and a double pole at z = a unless cos(mwa) = 0. If cos(ra) = 0
then the pole of ¢(z) at z = a is simple.
In Section 11.3 we will apply residue calculus to ¢(z) to obtain the partial fraction decomposition

z€C\(ZuU{a}),

2 > 1

sing(ﬂa): Z (j—a)? acCAZ.

j=—o0

This partial fraction decomposition can be used to obtain that
1 2z
TrCOt(ﬂ-Z):Z—i_Z;szQ7 ZE(C\Z.
j=

This is the partial fraction decomposition of the function 7cot(wz). It will be used in the next
Chapter to evaluate the Zeta—function at even integers.
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11.1 Computation of Residues
Let f be holomorphic in
D(P,r)\{P}={z : 0<|z—P|<r},
i.e., f has an isolated singularity at P. We have shown that f has a Laurent expansion in
D(P,r)\ {P}:

[e.9]

f(z)= Z aj(z—P)!, 0<|z—P|<r,

j=—00
where the coefficients a; are uniquely determined. The coefficient
a_1 = Res(f, P)
is called the residue of f at P.

11.1.1 The Case of a Simple Pole

If a_q # 0, but a; = 0 for all j < —2, then the point P is a simple pole of the function f(z). If f
has a simple pole at P then one can write

f(z) = — 0<|z—P|<r,
where, after extension, g is holomorphic in D(P, ). In this case,
a1 = Res(f, P) = g(P)

Example A: Let

e
M=y
To determine Res(f,1) we write
Fo =29 i gz = <

1) =22 i () =

z—1"
Therefore,
Res(f,2) = g(2) =€ .

A general result about the residue at a simple pole is the following;:
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Lemma 11.1 Let f,g € H(D(P,r)) with

Then the quotient function

q(z) = , 0<|z—Pl<e,
()=23. 0<lz-P
has a simple pole at z = P and
f(P)
Res(q, P) = .
@ F) g'(P)

Proof: We have

9(z) = ¢ (P)(z=P)+0((z - P)*)
= (=P} (P)(1+0(z~P)) .

Therefore,

o

Example B: Let a € C\ Z. We apply the lemma to

_ cot(mz) cos(mz) s "
alz) = (z—a)?  (z—a)?sin(rz)’ €C\(ZUAa})

and determine Res(q,j) for j € Z. The denominator

g(2) = (z — a)*sin(nz)

has a simple zero at each integer z = j € Z and we have

g'(j) =7(j — a)*cos(nj) # 0,
thus
cos(7j) 1

el =gy ~ G —ap IEF

11.1.2 Poles of Order 2
If f(2) has a pole of order 2 has z = P then

f(z)= (Z_ap)2+z_ﬁp+h(z) for 0<|z—P|<r

where a # 0 and h € H(D(P,r)). Obtain

(z—=P)? f(z) =a+B(z—P)+ (2 — P)*h(z)
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and

d

T

This formula for the residue can be generalized to poles of any order k.

11.1.3 Poles of Order < k&
Let £ > 1 and assume that f has a pole of order less than or equal to k at P,

(e 9]

f(z) = Z aj(z—P) for 0<|z—P|<r.
j=—k
Then we have
(2= P)*f(z) =ak+ap1(z = P) +a_pya(z— P’ +... =i g(2)

and g(z) has a removable singularity at P.

Since

g(z)=ar+apy1(z—P)+...+a_1(z— P)* ' tag(z — P)* +...
we have
(d/dz)*"tg(2) o (k—Dla_; .

Here a_1 = Res(f, P).
One obtains:

Lemma 11.2 If f(2) has a pole of order less than or equal to k at P then

Res(f, P) = (k—ll)' (%)k_l ((Z - P)kf(z))

=P
Example C: Consider the same function as in the previous example,

_cot(mz) cos(mz)
(2) = (z—a)? (z—a)?sin(rz)’

where a € C\ Z. We want to determine

ze€C\(zZU{a})

Res(q,a) .
First assume that cos(ma) # 0. Then ¢(z) has a double pole at z = a and we apply Lemma 11.2
with k = 2.
We have

d

Res(g,a) = —((= —a)%(2))

= (diz cot(wz))

™

zZ=a

zZ=a
~sin?(wa)
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Second, assume that cos(ma) = 0. In this case the function ¢(z) has a simple pole at z = a. We
use the Taylor expansion of cot(7z) about z = a:

cot(mz) = cot(mwa) + (diz cot(wz))

(z—a) —|—(’)<(z —a)2) .

zZ=a

Since

(di; COt(WZ))

one obtains that (assuming cos(ma) = 0):

z=a sin?(7a)

cot(rz) = cot(mwa)— sin () (z—a)+ O((z - a)Q)
- g (z—a)+ O((z - a)2)
Therefore,
N = cot(mz)
q(z) —a)
T 1
- ~ sin?(ma) z—a +0@)
It follows that
Res(q,a) = _sin;rm

if cot(mwa) = 0.
For later reference we summarize the results of Examples B and C:
Lemma 11.3 Let a € C\ Z and let

_ cot(mz) cos(mz)
a(z) = (z—a)? (z—a)?sin(rz)’

e C\(ZU{a)) .

We have
Res(q,7) = . for je€Z
and
Res(ga) = _sin;;m)
Example D: Let
16) = =4 -

The function has a pole of order 3 at P = 1. By Lemma 11.2 we have
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Res(f,1) =

z=1

O =

It may be difficult to remember Lemma 11.2. One often can proceed more directly using Taylor
expansion. Application to Example D: Let

9(2) = (2 = 1)’ f(2) = € .

We make a Taylor expansion of g(z) = e* about z = 1. We have

0(2) = 9(1) + ¢ ()= 1) + 50" (D~ 12+ ..

If g(z) = e* then gU)(1) = e for all j. Therefore,

f(z) = (z—1)’3<e+e(z—1)+§(z—1)2+...>
- e(z—1)*3+e(z—1)*2+g(z—1)*1+...

It follows that

Res(f,1) = g .

11.2 Calculus of Residues

Let U C C be an open set and let P € U. Let f € H(U \ {P}), thus f has an isolated singularity
at P. Let

Ye(t) =P +ee, 0<t<2r.

Assume that € > 0 is so small that 7. C U and the curve -, encircles only the singularity P of f,
but no other singularities of f. In this case,

/ f(2)dz = 2mia_,

with
a_1 = Res(f,P) .

Together with Cauchy’s theorem, which allows the deformation of curves in regions where f is
holomorphic, this yields a very powerful tool for the evaluation of integrals. We formalize this in
the residue theorem.

Theorem 11.1 (Residue Theorem) Let U C C be an open set and let T' C U be a simply closed
curve which is positively oriented. Let V denote the region encircled by I' and assume that V C U.

Let Py,...,P, €V and let f € HU\{P1,...,P}). Then we have
k
/f(z) dz = 2mi ZRes(f, P;) .
r -
j=1
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11.2.1 Direct Applications of the Residue Theorem
In Examples 1 to 3 we evaluate integrals directly using residue calculus.

Example 1: Let v(t) = ¥, 0 < t < 27, denote the parameterized unit circle. We want to evaluate

I:/f?sma/z) dz .

We have
. 1 4
smw =w — zw" +...,
6
thus
. 11 3
sin(1/z) =z ~ 57 +.o..,
thus
2 L
z sm(l/z):z—éz +....
Therefore,
2 1
Res(z sm(l/z),z:O) =5
and
po
6 3

Example 2: Let v(t) = 2¢, 0 <t < 27. We want to evaluate

I—/5Z_2dz.
5 2(z—1)

We have
1 52—-2 1 52 — 2
f(z)_;.z—l_z—1. z
thus
Res(f,0) =2
and
Res(f,1)=3.

It follows that
I =(2+3)2mi=10mi .

Example 3: Let v(t) = 2¢, 0 <t < 27. We want to evaluate

121



We have
3
z oz
=1 —+ —+...
e —|—z—|—2+6+
3
z oz
= _ q_ zz
e z+2 6+
thus
1 3 5
Sinhz:i(ez—e_z):z+%+%+...
Therefore,
sinhz _3+z_1+3+
P 6 = 5

This yields that

and

11.2.2 Use of the Substitution z = ¢

Integrals involving trigonometric functions can sometimes be rewritten as complex line integrals
and then be evaluated using the calculus of residues.
In the following example we use the substitution

2(t)=¢e", 0<t<2m,

to turn an integral involving a trigonometric function into an integral along the unit circle, C;.

T t
==
o a-+cost

Using the symmetry cost = cos(2m — t) and cost = (e + e~ %) /2 we obtain

2m
dt
21_/ BN
0 a+ (et +e)/2
The function z(t) = €%, 0 < t < 27, parameterizes the unit circle C; and dz = iet dt = izdt. If
f(2) is a continuous function on Cy, then

Example 4: For a > 1 evaluate
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2

f(z)dz = fetyie dt .
C1 0
Therefore, to evaluate 21, we define f(z) by
. 1
1@z = a7
and obtain
2 1
1) i 22+42az+1"
Therefore,
2
dt
21 = - - = d
/0 a+ (et 4+ eit)/2 C1 f(z)d=

This yields that

1/ dz
v Jeo, 2%+ 2az+1

Thus we have written the integral I as a complex line integral. We now evaluate I using residue
calculus. The solutions of

224+ 2z2+1=0

are

z21=—-a+Vat—-1, z2=-a—+Va2-1

with z129 = 1, thus

29 < —1<21<0.

Set
(2) 1 1
Z) = g
g 2242az4+1 (z—21)(z—22)
thus
1 1
Res(g,21) = = .
(9:21) Z1—22  2v/a? -1
Therefore,
I = 2772'R68<g,,21) S .
1 a?—1

Note: We have I = I(a) — oo as a — 1+. This is expected since a+cost =0 for t = 7 if a = 1.
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Im 2

[or

—R T'ir |0 R Re z

Figure 11.1: Integrals: Examples 5 and 6

11.2.3 Integrals over —oco < x < o0
Example 5: We know from calculus that
o
d
I ::/ & 5 =T . (11.1)
oo L+ 2

In calculus, one uses that (d/dz)arctanz = (1 + 22)~!. Let us obtain (11.1) using the calculus of
residues. Let

and

Iop(t) = Re™, 0<t<m.

Then I'p = I'1g + I'ar is a closed curve, consisting of the part —R < z < R of the z—axis and a
semi—circle in the upper half—plane.
We assume R > 1. Then, by residue calculus,

/rd+1 N /FR<z—z'C>lfz+z'>

27

21
= 7

©  dz . dz
T2 = A 21
— 0 1+.ZE R—o0 FlR z —|—1

and the corresponding integral along I'sp tends to zero as R — oo. Therefore, I = m.

We have

Example 6: We claim that for a > 0:

o0
COS T T
I:/ ﬁdx:fea.
o Ot X a

A crude simple bound for the integral follows from

oo
<[ s
e @?+2?
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Let I'1g,I'2r, and I'g be defined as in Example 5. One should note that
1 12 —1iz
cosz = 5(6 +e %)
becomes exponentially large in the upper half-plane: If z = x + iy, then |e*| = e < 1 for y > 0,
but
e =Y, y>0.

Thus we cannot directly proceed as in the previous example, because the integral of cos z/(a? + 22)
along I'sp does not converge to zero as R — oo. Instead, we recall that e’* = cosx + isinz for
r € R, thus

cosz =Ree” for z=x2€R.

Therefore,
0 eiz
I = Re / ﬁdz .
o0 O° 2
We have
eiz eiz
9(=) = a2+ 22 (2 —ia)(z +ia)

with

—a

R g, — .
Th(fr(ff()r(?, f()I‘ R > CL7

/ g(z)dz = 2miRes(g,ia)
I'r

= z eia
a

It remains to show that
/ g(z)dz—0 as R —o0. (11.2)
Far
Note that |e**| < 1 in the upper half-plane. Also, if |z| = R > 2a then

2, .2 2 _ 2 2
= - - )
la® 4+ 2| > |2|° —a®* > =R

= w

thus 4
o) < SR

This implies (11.2).

125



11.2.4 Extensions Using Jordan’s Lemma

Example 7: We claim that, for a > 0,
00 .
I= / % der=me *.
s Ot T

R

Here, by definition,

. rsinx
I = lim -5 dx.
R—oco J_pa“+x

Let I'1gr, o, and I'p be defined as in Example 5. Since e = cosz + isinz for z € R, we have

sinz =Ime* for z=zxzcR.

Setting
Zeiz Zeiz
= = 11.3
9(2) a’?+ 22  (z—1ia)(z+1ia) (11.3)
we have
I =Im lim g(z)dz
— 00 FlR
Since
1 ze#
9(2) = 2 —ia zZ+1a
we have

a

1
Res(g,ia) = 5 e,
Therefore, for R > a:
/ 9(2)dz = 27i Res(g,ia) = mie” @ .
I'r

It remains to prove (11.2) for the function g(z) defined in (11.3). Note that the estimate of the
previous example, |g(z)| < CR™2 for z € I'yg, does not hold here. We must estimate the integral
along I'sg more carefully.

Theorem 11.2 (Jordan’s Lemma) Recall that I'ap denotes the semi—circle with parameterization

2(t) = Re™, 0<t<m.

Let H denote the closed upper half-plane and let f : H — C be a continuous function. Let

Mp = max{|f(z)| : z € Tap}

and assume that Mr — 0 as R — oo. Then we have

Ip = (2)e*dz =0 as R— o0.
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Im 2z

[or

—R 0 R Re z

Figure 11.2: Contour for Jordan’s Lemma

Proof: Noting that

2(t) = R(cost +isint) and |2'(t)] =R

we have
71— .
|IR| < MR/ |€zz(t)| Rdt
0
7r .
— RMR/ e—RSlnt dt
0
/2 )
= 2RMpg / e~ fsint gy
0
Since
2t
sint> 2 for 0<t<L
T 2
we have, with ¢ = 2R /7:
w/2 ) w/2
/ efRsmt dt S / efct dt
0 0
1
S _
c
o
2R
Therefore,
|IR| ST(MR—)O as R—o0.
o

Applying Jordan’s Lemma with

one obtains that (11.2) holds for

127



ZeZZ

a? + 22

9(2)

This completes the proof of the formula

* xsinx —a
- dr=me "
s 0t X

11.2.5 A Pole on the Real Axis

Example 8: We want to show

o s
sinz
/ de =7 .
o T

The integral exists as an improper Riemann integral. Note that the function f(z) = % does not
have a pole, but we will integrate the function €'*/z, which does have a pole at z = 0.

We first discuss the existence of the integral. The integral f:o % dx does not exist as a proper
Riemann or Lebesgue integral since the integrand decays too slowly. To see this, note that, for
i=12,...

[sing] > - for w(j+7)<w <n(i+)
in — T - -
sinx| > /5 or m(J 1= =7 4
Therefore,
| sin z| 1 1 c 1 3
—_— =: — for 7(j+-)<z<7w(j+ -
z T Var(i+l)  j+1 U+7) G+7)
where ¢ = 1/(v/2n). It follows that
m(+1) | g
/ |sm:1:|dx2.c T
. T j+1 2
Since » 22, ]ﬁ = 0o one obtains that
0o |
/ 7|s1n:c\ dr =00 .
x x
A theorem of integration theory implies that the integral
0o s
/ sinx d
r X
does not exist as a Lebesgue or Riemann integral.
However, for 1 < R < oc:
R R
1 R 1
/ MY e = —fcosa:‘ —/ — coszdx
1 T T 1 1 X

! R+ 1 /R ! d
= ——=COS COs 1 — — COS T dx
R 1 xQ

Therefore, the limit
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R sing

dx

lim
R—o0 1 X

>* 1
— cosz dx
1 T

exists since the integral

is finite.
By definition,

00 o3 R _;
I:PV/ e = lim [ g (11.4)

o T R—o0 _R X

where P.V. stands for principle value. It is common to drop the P.V. notation and to say that the
integral
* sinx
1= / dx
oo T

exists as an improper integral, defined by (11.4).

Computation of I: We have

I= lim I(Re)

R—o00,e—0

with

—& : R .
u&@:/ mxm+/8?%$
£

—-R x
Also, for z = z € R:

thus

The term in brackets is

K(R,¢) :—/ C dx.
F—R,—E+FE,R z

Let I denote the closed curve shown in Figure 11.3:

P=T"_pg 4+l c+T:r+12r.
By Cauchy’s theorem,

Therefore,
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Im 2z

_R 7\ —€
[

Figure 11.3: Contour for [~ sinz 7;. Example 8

T

e’LZ

K(R,e)::—/ —dz .
F7£,5+F2R z

By Jordan’s lemma, 3 the integral along I'sg tends to zero as R — oco. Also,

|
= T9(2)
where ¢(z) is holomorphic near z = 0. Therefore,
iz
lim C dr=—mi.

e—0 | R z
One obtains that

lim K(R,e)=mi,

R—00,e—0

thus I = 7.

Remarks on Fourier transforms: Let y j(x) denote the characteristic function of the interval
J = [-1,1]. Its Fourier transform is

3Jordan’s Lemma is applied with f(z) = 1. The function 1/z is not continuous in the closed upper half-plane,
but the proof of Jordan’s Lemma shows that the singularity at z = 0 is not important.
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o 1 > —ikx
xs(k) = \/ﬁ/ xJ(z)e ke dy
ot
= — e " dx
V2T /_1
I
2 —ik -1
_ 1 1 —ik ik
= Gowe )

_ 211 ik —ik
- ¢wk%@ e
B fsink
N T k

for k € R,k # 0. The function x;(k) is not integrable over R since 1/k decays too slowly. The
inverse Fourier transform of x;(k) exists only in the principle value sense. We have for the inverse

Fourier transform of x(k):
sink g
g(z) := \/7 / e dk .
W

In Example 8 we have shown that f (sink)/k dk = 7 and obtain

9(0):\/12?\/2%:1.

This is to be expected since x;(0) = 1. One can also say that the formula [* (sink)/kdk = 7 is
a special case of the Fourier inversion theorem applied to the function xj(z).

11.2.6 Use of a Second Path

Example 9: For 0 < a < 1:

/' C dr=-—" . (11.5)

R sin(7a)
This integral Will be used in Chapter 13 to show the reflection property of the I'-function.
Let f(2) = 1% Consider the rectangle R with corners at

—R, R, R+2m, —R+2m where R>0.
Denote the positively oriented boundary curve of R by

I'r=T1r+Tor+T'3r +Tur .

The pieces have parameterizations

I'ig i z(z)=2z, —-R<z<R
-I'sr o z(x)=z+2m, —-R<z<R
or 2y =R+1iy, 0<y<2nm
—Tur ¢ 2(y)=-R+iy, 0<y<2r



The function f(z) = e**/(1+ €*) has one singularity in the rectangle R. The singularity is a simple
pole at P = mi and, using Lemma 11.1,

amt

Res(f,mi) = € _eomi

e7ri

By the residue theorem:

/ f(2)dz = —2mie®™ . (11.6)
T'r

It is not difficult to show that

QR:—/ f(z)dz—0 as R— oo .
Pap+T4r

(See Details below.) Set

Ip = FlRf(z)alz: /_];f(:n)dx .

The main trick of the whole approach is that the integral I occurs again when one integrates along
FgRZ

R
/ f(z)dz = 62””/ f(z)de = 2™ [y .
—Tsn R
Therefore, using (11.6):

2mi Res(f, i) = —2mi "™ = Ip(1 — 2™) + Qp .
This implies that

211

IR = emzi _ e—ﬂ'ai + QR = + QR

sin(ma)
where Qp — 0 as R — 0o. As R — oo one obtains (11.5).
Details: For z € I'yg we have z = R+ iy, 0 <y < 27, and
e o piay

fz) = 1ter 1+eRew’

Therefore, since 0 < a < 1:

aR
]f(z)|§eR_1—>() as R —o0.

It follows that

(2)dz—0 as R —o0.
o

For z € T'yp we have z = —R +1y,0 <y < 27, and

0% e—aR etay

f(Z):l—l—eZ:l—Fe*Reiy :
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The convergence

(2)dz—0 as R— o0
T4r

follows since a > 0.

11.3 Derivation of a Partial Fraction Decomposition via Integration

Example 10: Let a € C\ Z and consider the function

cot(mz)

q(z) = m,

The function ¢(z) has a simple pole at each integer j and a double pole at z = a unless cos(wa) = 0.
Also, by Lemma 11.3:

2€C\(ZU{a)).

Res(q,j) = JEZL,

m(j —a)*’
and

T
Res(q,a) = ———— .
(¢, a) sin?(ma)

For positive integers n, let -, denote the boundary curve of the rectangle in Figure 11.4. Assume
that n > |a|. By the residue theorem,

n

1 1 T
2mi [Yn a2 dz = Z m(j —a)? sin?(ma) (11.7)

j=-n

By estimating the integrand ¢(z) on ~, we will prove that

/q(z)dz—>0 as n— 0o .

n

Therefore,

e}

ZW( ! S for ac€C\Z.

j—a)? sin®(ra)

j=—o0

The following lemma will be used to bound cot(7z) on 7,. If one sets

Q — 627riz
then

%(eiwz+e—iﬂz) - Q+1
21 (eiwz _ e—iﬂz) =1 Q -1

1

cot(mz) =

Therefore, in order to bound |cot(wz)| for z € ~,, we have to bound |Q — 1| away from zero for
z € v,. We show:
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Y ni

-n—1 -n —1 0 1 n n—+1

—ng

Figure 11.4: Contour 7y, for 5 L C(zt_(z)zg) dz

2mi

Lemma 11.4 Forn =1,2,... let z € 7, and set Q = e*™*. Then we have
1
1> =.
@-1=3

Proof: a) Let z = (n + %) +1y,y € R. We have
Q _ e27ri(n—&-%)e—27ry _ _6—27ry <0,

thus |Q — 1] > 1.
The same argument works for z = —(n + %) +iy,y € R.
b) Let z = z + ni,z € R. We have

N |

Q = e2iTe=2m O < 727 <
c) Let z =« — ni,z € R. We have
Q =™ Q| > ¥ > 2.
This proves the lemma. ©
Lemma 11.5 Forn=1,2,... we have
|cot(mz)| <6 forall z€y, .

Proof: With Q = e*™* we have

(eiﬂz_i_efiﬂ’z) . Q+1
(eiﬂz _ e*iﬂ'z) =t Q -1

1
cot(mz) = 2
2i

By the previous lemma, |Q — 1| > %
Case 1: |Q| > 2, thus 1 < |Q|. We have

Q+1l < lQl+1 < 2|0l

Q-1 > Q-1 >
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thus

Q+1

<3.
-1l

Case 2: |Q| < 2. Recall that |Q — 1| > 1. We have
ﬂi%<§:6.
Q111

This proves the lemma. ¢

Let © be a compact subset of the open set U = C \ Z. Let a € Q. There exists a constant C,
depending on {2 but not on a, so that

C
‘Q(Z)‘ < ﬁ for z€ Yn, @€ Q )

for n > N = N(Q). The detailed argument is as follows: If z € 7,, then |2| > n. Since 2 is
bounded, there exists N(Q2) € N with

2la| < N(Q) foral aecQ.
If n > N(Q) then n > 2|a|, thus

n n
_ > — > _— —_ = -,
[z —al 2|z —la| 2n -5 =3
This implies that

1 < 4
[(z—a)?| ~ n?

Using the previous lemma one obtains that

for n>N(Q2) and a€Q.

] q(z)dz|§ﬁ for n>N(Q).
Tn n
This proves that

‘Z - - ;T SFCI for n>N(Q).
=, (j —a)? sin®(mwa) n

We now write a = —z and obtain:

Theorem 11.3 We have

n
1 72

nll_}ngoz( =— for ze€C\Z.

— )2 ;
= 7) sin®(mz)

The convergence is uniform on every compact subset of C\ Z.
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The above formula is also written as

o0 2

Z( 1. = .W ze€C\Z. (11.8)

z—j)?  sin®(nz)’

j=—00
The left—hand side is called the partial fraction decomposition of the meromorphic function

2

f(z)= 2€C\Z.

sin?(7z)’
The Special Value z = % By substituting special values for z into (11.8) one can obtain
interesting (and uninteresting) results. For z = 2 obtain:

) > 1 — 1
R By S AR Sy
- 8(1+3%+5i2+...),
thus
> 11 1 w2
Z2J+1 Ttmtmto=g

Jj=0

With a trick we can also evaluate the following series:

1
S = 1+ —= +32+42+
= 7T2+1<1+1+1+1+ )
8 4 320420
2
s 1
- T i-g
g1

Therefore, %S = %2 and S = %f. We have shown that

o0 2
@=35=%
j=1
Here the Riemann zeta—function is defined by
=1
¢(2) —jz::ljz for Rez>1.

Another proof of the partial fraction decomposition (11.8).
Let

2 o0
and g(z) = > b e zeU:=C\Z.

Je) = (z=J)?

sin?(mz) =
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Both functions f and g are holomorphic and 1-periodic on U. Also, both functions have a pole of
order 2 at each j € Z with singular part

1
(z = j)?
Therefore, after removing the singularities, the function
h(z) = f(2) — g(2)

is entire. We will use Liouville’s Theorem to show that h(z) is constant. Growth estimates of f(z)
and ¢g(z) imply that the constant is zero.

Bounds for |f(z)| and |g(z)|. Since the functions are 1-periodic and satisfy

f(2) = [(z), g(2)=3()

it suffices to derive bounds in the strip

1
S:{z:x—i—iy D] < 2 yZl}.
A bound for |f(z)] in S.
We have
% Sin(ﬂ'z) — eiwz o e—iwz _ eimz:e—wy o e—iwxery ’

thus

. _ -

2|sin(mz)| > €™ —e ™Y > ¢ Y for y>1.

Therefore,

1f(2)| < 167%72™ for 2€ S .

A bound for [g(z)| in S.
We have |z — j|> = (j — x)? + %2 and

=l > |lil ~lal| 2 513l for o] <
Therefore,

|z —jI? > = (5> + 4%

N

and

IN

- 1
4 JE—
l9(2) ,_Z AP

1
= F
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Since

(e e

S5 <o

=17

it follows that |g(z)| is bounded in S. Also, given € > 0, there exists N = N(¢) € N so that

1
2735

j=N+
Therefore,

=)
—
N
=
IN
m\

1 N
zjl +4y

1
Yy
< 2e

for y > y.. This shows that |g(z)| is bounded in S and |g(z)] — 0 as y — oc.
Boundedness of the entire function h(z) = f(z) — g(z) follows. By Liouville’s Theorem we have
h(z) = const. Since f(z) — 0 and g(z) — 0 as y — oo the constant is zero. This proves that

f(z) =9(2).

11.4 The Partial Fraction Decomposition of 7 cot(nz)

We want to show that the partial fraction decomposition of the meromorphic function

meot(nz), ze€C\Z,
can be obtained by integrating (11.8). First note that for z € C\ Z:

We define

J=n
By Theorem 11.3 we have
li it()—i t(mz) ceC\Z (11.9)
Jim = o meot(nz), =z , .
where the convergence is uniform on compact subsets of C \ Z.

We have
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1 2z
- 2 _ 52
z j:lz i
and
J I,
tn(2) = t(2) =z+jzlzz_j2

normally on U := C\ Z. Therefore,

t(2) = t'(2)

normally on U. (This follows, essentially, from Cauchy’s inequalities.)
Using (11.9) it follows that

d
o cot(mz) = t'(2)

on U. Therefore, the function

h(z) :== meot(mwz) — t(z)
is constant on U. Take z = 3. We have cot(r/2) = 0. Also,

2(1/2) f:

1 L
k=02 12tJ
1 1
k=02 j=12 tiJ
ﬁé L +’1 1
- 1 1 T, .
j:li_‘]_l Q_n ]:1§+
B 1
[
The last equation holds since
1 1

. + .=
3—Ji—1 g+
This shows that ¢,(1/2) — 0 as n — oo, thus #(1/2) = 0.
We have shown that
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n

. 1
nh—>nolo Z - =mcot(nz), z€C\Z.

=mcot(nz), z€C\Z,

since the series

does not converge for any z. However,

() = 3 —

J*—nz_j
1 < 2z
Tz j:1z2—j2'
One obtains:
1 = 2z
Z—l-;M:Wcot(Trz), 2€C\Z. (11.10)

This is the partial fraction decomposition of 7 cot(7z).

11.5 Summary of Examples
Example 1: Let v(t) = €', 0 < ¢t < 27, denote the parameterized unit circle. Then we have

T

/VZQ sin(1/z) dz = -3

Example 2: Let y(t) = 2¢, 0 <t < 27. We have

52— 2
/zdz:10m'.
5 2(z—1)

Example 3: Let y(t) = 2¢*. We have

inh )
/sm42d2_m.
v 3

/Tr dt B i
o a+cost aZ_—1

Example 5: We know from calculus that

Example 4: For a > 1:
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©  dz
1+$2:7r,
—00

which can also be obtained using residues.

Example 6: For a > 0:

* cosx T _,
——sdr=—e".
o0 @° t X a

* xsinx —a
——dr=me .
s @t

Example 7: For a > 0:

(This requires Jordan’s lemma.)

Example 8: We have:

o
sinx
/ der = .
oo T

The integral exists as an improper Riemann integral.

Example 9: For 0 < a < 1:

oo eaar T
/ dr = — .
oo 1+ €7 sin(ma)

Example 10: Let z € C\ Z. Then we have the partial fraction decomposition:

o0

Z 1 _ 72
(z—3)2  sin’(nz)

j=—o00

This follows by integrating the function

cot(m()
1O iy
along a closed rectangle -, for n — oo.
Example 11: For z € C\ Z we have:
1 = 22
2 + ; Z_7 = mcot(mz) .

This partial fraction decomposition can be obtained by integrating the partial fraction decomposi-
tion of the previous example.
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11.6 Practice Problems

Problem 1: Prove or disprove:

/OO COS T T
—5dr=—.
oo L+ e

Problem 2: Prove or disprove:

0o s
/ s1nx2dm:0.
oo Lt

Problem 3: Prove or disprove:

/OO 1 J T
T = — .
oo L+t V2

Problem 4:
Let —1 < a < 1. Prove or disprove:

0 x2+1 x_QCOS(ﬂ'Oé/Q) '
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12 The Bernoulli Numbers, the Values ((2m), and the Sums of
Powers

Summary: Bernoulli number B,,v = 0,1,2,... occur in some interesting formulas. The numbers
B, can be defined by the Taylor expansion

oo
B
& E —:/z”, |z| <27 .
V!
v=0

e —1
Using the function z/(e* — 1) and its relation to cot z we will derive the Taylor expansion

271)27 ‘
(2m) Bo; 2%, |2 <1, (12.1)

wzeot(mz) =1+ Z(—l)j @)1

J=1

where the Bernoulli numbers come up.
Using the partial fraction decomposition of 7 cot(mz) derived in Section 11.1 we also have

22

7rzcot(7rz):1—2§ ——— for 2€C\Z. (12.2)
n? —z
n=1

Using equality of the right—hands sides of (12.1) and (12.2) one can derive explicit formulas for the
values of the (—function at even integers, i.e., for

=1
g(2m):2‘1nzm, m=1,2,3,...
n—

The Bernoulli numbers show up in the value of {(2m).
The Bernoulli numbers also occur in formulas for sums of powers,

n—1
Sptn—1)=> " jF=1+2"43+ 4+ (n-D" k=123, ...
j=1
12.1 The Bernoulli Numbers
The function g(z) defined by

g(z) =z/(e*=1) for 0<|z|<2m, g¢g(0)=1,
is holomorphic in D(0, 27). We write its Taylor series as
~ B,
g(z) = VZ::OV!Z . el <27, (12.3)

where the numbers B, are, by definition, the Bernoulli numbers. Since

3 1
9(z) = 1+32+35224...
1
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it follows that

1
BO == 17 Bl = —5
Lemma 12.1 The function
z
M) = g(2) + 2
is even. Consequently,
B,=0 for v>3, v odd.
Proof: We must show that
z z
9(—2z) — 5= 9(z) + 50
ie.,
9(=2) —g(z) = =
We have
—z z
g(—Z)—g(Z) - 6—2_1_62’_1
B < 1 1 )
- c l—e® e*—1
B ( e? 1 )
N e#—1 e*—1
= z.
o

We claim:

Lemma 12.2 Forn > 1 we have

Proof: We have, for 0 < |z| < 27:
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1 =
er —1
- (Z (anv) ' (Ziyzy)

v+ 1)
-3 (o)
=\ viln+1—v)!
Therefore,
n
Z V!(n—l—Blll—V)! =0 for n>1.
Since

Using Pascal’s triangle, we can compute the binomial coefficients. Then, using the previous
lemma and By = 1 we obtain:

the lemma is proved. ©

For n =1: 1

By+2B; =0, thus By = —5 .
For n = 2: ,

By+3B1 +3By =0, thus By = 8 .
For n = 3:
By+4B1 + 6By +4B3 =0, thus B3=0.
For n = 4: 1
Byg+5B1 +10By +10B3 +5B4 =0, thus By = —% .

Continuing this process, one obtains the following non—zero Bernoulli numbers:

1
Bs = El
Bs = —5%
e %691
By = ;%
By = 6
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etc.

Remark: The sequence |Bsy,| is unbounded since otherwise the series (12.3) would have an
infinite radius of convergence. More precisely, by Hadamard’s formula,

/@) 1
lim sup (\BQV|/(21/)!> =

V—00 2m

Also, we will see below that (—1)*T!By, > 0. Thus, the sign pattern observed for By to B4
continuous.

12.2 The Taylor Series of zcot z in Terms of Bernoulli Numbers

Recall that

o0

w B,
g(w) = Z?w .

w_lz
€ v=0

We now express the Taylor series for z cot z about z = 0 in terms of Bernoulli numbers. Note that

1., .
cosz = 5(6” +e %)
1

sinz = Z(e” —e ")

elF 4 e~z

621'2 41

eiz _ 1

' 621'2 -1 + 2
e2iz _ |

2
= i(l—i— 1) for 0<|z| <.

62iz _

cotz = 1

Therefore,

¢ .+1 2iz
cotz =1+ - —
z e?z—1

for 0<|2z| <7,

thus, for |z| < 7

zeotz = iz + g(2iz)
1 — B
= izt 1-o(202) + Z;V, (2i2)"  (set v = 2j)

i . 92j iy
=1 E —1)) —— By, 2% .
+j:1( ) (2j)! 7

We substitute 7z for z and summarize:
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Lemma 12.3 If B, denotes the sequence of the Bernoulli numbers, then we have the Taylor series
expansion

mzcot(mz) =1+ i(—l)j ((227Tj))2]j32j 221 for |z| < 1. (12.4)

j=1

12.3 The Values ((2m),m =1,2,...

For Re s > 1 the Riemann Zeta—function is defined by

()=~

ns
n=1

In Section 11.4 we have shown the following partial fraction decomposition (also called Mittag—
Leffler expansion):

1 = 1
n=1

(See equation (11.10).)
Therefore,

22

oo
t =1-2 — eC\zZ.
7z cot(mz) 712_:1”2 — 2 \

Here, for |z| < 1:

Therefore,

wzcot(mz) = 1—2 Z Z (%) (12.5)
()

(12.6)

1
- 12} (Zﬁ) 22m (12.7)
= 1-2 i ¢(2m) z*™ (12.8)
m=1

Comparing the expressions (12.8) and (12.4), we obtain the following result about the values
of the Riemann (—function at positive even integers. (This result was already known to Euler in
1734. Nothing similar has ever been derived for the zeta—values at odd integers.)
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Theorem 12.1 For m =1,2,... the value of ((2m) is

o0

com) =Y = = 2yt O

2m
n
n=1

(2m)!

Remark: Since, clearly, ¢(2m) > 0 we obtain that (—1)™"!By,, > 0.
Examples:
For m =1 we have By = %, thus

2m)? 1 =«
2) = o=
<2 2-2 6 6
For m = 2 we have By = — 30,thus
2m)t 1 4
cay=20 =T
2-41 30 90
For m = 3 we have Bg = 42,thus
2m)6 1 70
o)=L L=

For m = 4 one obtains

C(S):m-

12.4 Sums of Powers and Bernoulli Numbers

It is not difficult to show the following formulae by induction in n:

1(n—1) Zj = %nQ—%n
2(n—1) Z] = %n?’—%nQ—i-én
3(n—1) Z] = in4—%n —i—in +0n
Recalling that
Blz—%, BQZé, B3 =0,

1 1
gL e Lok
Z] —k+1n 2n +...+Bgn,
7=1
but it is not obvious how the general formula should read.
Define the sum
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n—1

Si(n—1) = j*

j=1
where £ = 1,2,3,... and n = 1,2,3,.... We claim that, for every fixed integer k£ > 1, the sum
Sk(n — 1) is a polynomial

i (n)

of degree k + 1 in the variable n and that the coefficients of ®;(n) can be obtained in terms of
Bernoulli numbers. Precisely:

Theorem 12.2 For every integer k > 1, let ®x(n) denote the polynomial of degree k + 1 given by

1 : k+1 k+1—p
pn=0

Then we have

Sp(n—1) = ®p(n) forall n=1,2,--- .

Remark: Writing out a few terms of ®;(n), the theorem says that

1 1 1 E+1 _
Sk(n—l):k+1nk+l—§nk+m ( 9 >B2nk Y4+ 4+ Byn.

Proof of Theorem: The trick is to write the finite geometric sum
E,(w)=1+¢€"+ 2w .y e(n=1w

in two ways and then to compare coefficients. We have

E,(w) = el

Here we have used the convention 0° = 1.
On the other hand, we have
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Comparison yields that

Sk(n - 1) =

This proves the claim since

e —1
o ew—1
B w e —1
o oew—1 w
o o
B A+1
= (X)) (X aem )
pu=0 © ,\:0( +1)
_ i Z B, n’\“) wF
B [(A+1)!
k=0 u+i=k K

k!
> o By (with A=k — p)

1 Z (k+ 1)! B pktlon
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13 Properties of the I'-Function

13.1 Extension of the Domain of Definition of I'(z) Using the Functional Equa-
tion

The I'-function is defined by
o0
I'(2) :/ t*“le7tdt for Rez>0.
0
It is a holomorphic function in the half-plan Re z > 0 satisfying the functional equation

I'(z+1)=2I'(2) for Rez>0.

The functional equation follows through integration by parts,

e}
N'z+1) = / tre b dt
0
oo
= —tze*t‘oo + z/ t e tat
0 0
= zI'(2)
Therefore,
1
I'(z)=-T(24+1) for Rez>0.
z
The right-hand side is defined for

Rez> -1, 2#0.

If one sets

1
'ro(z)::;I‘(z—i—l) for Rez> -1, z#0,

then one obtains a holomorphic function ry(z) defined in the region

{z : Rez>—1, z#0} .

The function 7¢(z) agrees with the I'-function for Re z > 0. The identity theorem yields that ro(z)
satisfies the functional equation

ro(z +1) =2r9(z) for Rez > -1, z#0.
One extends the domain of definition of I' by setting

I'(z) =r9(2) for Rez>—-1, z#0.

The process can be repeated: Set

1
I(z)=-T(2+1) for —2<Rez<-1, z¢{0,—1}.
z

etc.
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Repeating the process, one obtains a holomorphic function I'(z) in the region

C\{0,~1,-2,...}.

The extended I'-function satisfies the functional equation

I'z+1)=2I'(2) for zeC\{0,—-1,-2,...}.

Since I'(z) is real for z > 0, the extended I'-function is real for

reR\{0,-1,-2,...}.
Also, since I'(z) > 0 for every x > 0, it follows that

IN'z) <0 for —1<z<0,
Mz) >0 for —2<z<-1,
etc. The function I'(x),z € R\ {0, —1,—2,...} is sketched in Figure 13.1.

13.2 Extension of the Domain of Definition of I'(z) Using Series Expansion

One can extend the definition of I" also as follows. First, assume again that Re z > 0 and write

1 o)
I'z) = /tz_le_tdt—i—/ et dt
0 1
= g(2) + h(2)

It is easy to show that the formula

[e.e]
h(z) = / t*~le7tdt, zeC,
1
defines an entire function. (Use that t*~1 = emt(==1) and apply Cauchy’s theorem and Morera’s
theorem. See Section 8.4.)
In the formula defining g(z) we write out the exponential series and interchange summation
and integration. Thus, for Re z > 0:

00 ; 1
_ (=17 [y
gz) = > ) e
=0
-y e
- .‘ .
= 7t z+

The infinite series converges for every

2eU:=C\{0,-1,-2,...}.

The convergence of




Figure 13.1: Gamma function on the real axis

to g(z) is normal in U. Thus, g € H(U).
To summarize, the formula

[(z) = i (17 1 + /100 et dt

3 -
= 70 z+7

defines I'(z) as a holomorphic function in U = C\ {0, —1,-2,...}.

Poles of I': For every k =0,1,2,... we have

_(=DF 1 — (-1 1
9(2) = k! z+k+,z I
Jj=0, j#k

Here the infinite sum is holomorphic in a neighborhood of z = k. It follows that I'(z) has a simple
pole at every number zp = —k for Kk =0,1,2,... Also,

(1)
Res(T', —k) = i for k=0,1,2,...

13.3 The Reflection Formula

Let 0 < @ < 1. We have shown in Chapter 11, Example 9 that

oo ea:p T
/ dr = — .
oo L€ sin(ma)

We will use this to prove the so—called reflection formula for the I'function:

Theorem 13.1 We have

L)'l —2) =

Sn () forall z€C\Z.

Proof: Using the identity theorem for holomorphic functions, it sufficies to prove that

for 0<s<1.

P —s) = sin7(T7rs)
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We have

and

I'(l-s)

Obtain that

t

J
J

J

3

t=Se tdt

o)

u e " du

e}

(tv)"%e

tS—l

(o.9]
/ ts_le_t
0

/ v 5t 4y gt
0

s/ e*(1+v)t dt dw
0

<

Wy for

(rename t = u)
(substitute u = tv for fixed ¢t > 0)

t>0.

e (1 — s)dt

(t /Ooo(tv)_se_t” dv) dt

dv

(substitute v = €, — = dx)
v

This proves the reflection formula for 0 < s < 1. ¢

13.4 Special Values of I'(2)

We have

Using the functional equation:



etc. In general,

I'n+1)=n!, neZy.

From the reflection formula one obtains that

Then one can use the functional equation to compute I'(n + 3) for every n € N:

1 1 1 1
Nz+1) = --I'(zx)==-
(G+D) = 5 T(3)=5Va
3 3 3 1-3
N=z+1) = --I'(z)=-—"
(5+1) 5 TG =55 V7
5 5 5 1-3-5
(2+) 2 (2) 2:2-2 VT
In general, for all n € Z:
1 1-3-...-2n—-1
O 1(2:1)-3-(2-2)5-...-(2n—1) - (2-n)
N 22np)
_ (2n)!
N 4”n!\/7?

13.5 Applications

The I'function is used in many formulas.

Example 1: Using the substitution z? = t, dt = 2xdx, one obtains:

% on_—a? L[ on1 a2
/:U"exda::/a:”e$2mdx
0 2 Jo
o0
:1 tn-‘r%—le—tdt
2 Jo
1 1
— -7 =
5 (n+2)

Recall that the integral

& 2 2 ]. 1
/ e U de=-T(1+2)=
0 2

2
appears in the error term of Stirling’s formula.
Example 2: Using the substitution

t=—Ilnz for 0<z<1, e'=x,

one obtains for Rez > —1:
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I(z+1) = / t*e "t dt
0

= —/Oootz(—e—t)dt
= /01(—lnx)zdx

In particular, for n =0,1,2,...
1
/ (—Inz)"de =T(n+1)=n!.
0

13.6 The Function A(z) = 1/T'(2)

We know that I'(n) > 0 for all n € N. Also, the reflection formula implies that I'(z) # 0 for all
z € C\ Z. Therefore,

['(z) #0 forall zeC\{0,-1,-2,...}.

Since I" has a (simple) pole at every k = 0, —1,—2,... one can use Riemann’s theorem on removable
singularities (Theorem 10.1) to show that the function A(z) defined by

A(z) = 1/T(2) for zeC\{0,—-1,-2,...}
A(z) = 0 for ze€{0,-1,-2,...}

is entire. Weierstrass based his theory of the I'-function on the investigation of A(z).

13.7 Log—Convexity of I'(x)
We know that

I':(0,00) = (0,00)

is a C*°—function.

Theorem 13.2 For all z > 0:

d2
Proof: If ¢(x) := InT'(x) then

gL ot
r’ 12 '
We must show that
I (x)T(z) > T"(x) for z>0. (13.1)

We have
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with
7 =Tt for +>0.
Since
d
7t:v — Int emlnt
o (Int)
d2
B Int 2€ajlnt
we obtain:

IMz) = / (Int)t* et dt
0

M(x) = / (Int)*t* et dt
0

For fixed 0 < £ < oo define the quadratic

g(u) = v?T'(z) + 2ul’(z) + T"(z), uweR.

The above expressions for I'(x) and its derivatives yield:

g(u) = / {u2 +2ulnt + (In t)z}t’”ile*t dt
0

Here

w?+2ulnt + (Int)?> = (u+mt)> >0 for w#lInt.
This implies that

g(u) >0 forall weR.

Since
g (u) = 2ul(x) + 21" ()
the function g(u) attains its minimum at

up = —I"(z)/T(z) .

Evaluating g(u) at u = ug one obtains:

ming(u) = g(uo)
B F/2 (x)
I'(x)

_"_ FH((L‘)
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Since
min g(u) > 0

we have shown (13.1), and the theorem is proved. ¢

13.8 Summary

The formula

F(z):/ e tat
0

defines I'(z) for Rez > 0 as an analytic function. We have 2I'(z) =I'(# + 1) and I'(n 4+ 1) = n! for
n=20,1,2... Using the formula

I'(z) = i (_,1)j ! -+ /100 t*~le~tat

Jjloz+

one obtains the analytic continuation of I'(z) in

U:=C\{0,-1,-2,...}.

The function I' € H(U) has a simple pole at —k for £ =0,1,2,... and Res(T',—k) = (_kl!)k.

The reflection formula

[(2)[(1 - 2) =

2€C\Z,

sin(rz)’

holds. It implies that I'(1/2) = /7 and that I'(z) # 0 for all z € U. The function A(z) = 1/I'(z)
is entire.
For real z, z € R\ {0,—1,—2,...}, the value I'(z) is real. We have

(d/dz)*InT(z) >0 for x>0

and

I'(x) = (g)x Vonz <1 + (9(30_1)> as T — 00,

which is Stirling’s formula proved in Section 8.6.
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14 Log Functions

Summary: The main branch of the log—function is defined on U := C\ (—o0, 0] by

logz =In|z|+i0 where z=|z]e¥, —m<O<m.

For many other simply connected regions one can also use polar coordinates. Another possibility
is to invert the exponential function or to integrate the function 1/w.

14.1 The Main Branch of log(z): Use of Polar Coordinates

Let U = C\ (—00,0]. The main branch of the complex logarithm can be introduced as a function
defined on U as follows: Take any z € U and write

0 — elnr+10

z=re where 7=z >0 and —-7<60<m7.

The real numbers r > 0 and 6 € (—m, ) are uniquely determined. Then we have

logz =Inr+16 .
If z = 2 + iy then r = (2 + y*)'/? and

0 = arctan(y/z) .

Here one must choose the correct branch of the arctan—function and must be careful when z = 0.
One obtains

log(z + iy) = In ((x2 + y2)1/2) + darctan(y/x) .

With some effort (in particular for x = 0) one can use the Cauchy-Riemann equations to prove
that the function log(z + iy) is holomorphic on U.

From the point of view of complex variables, there is a better way to introduce logz,z € U,
namely as the inverse of €. We will do this below. To construct log z we will use the formula

d
log z = —w, zeU,
r, w

where I', is a curve in U from zg = 1 to z.
14.2 Auxiliary Results
Recall the following (see Theorems 4.8 and 4.9):

Theorem 14.1 Let U C C be open and simply connected and let g € H(U). Fix z9 € U and, for
every z € U choose a curve I', in U from zy to z. Then:
1. The function

f(2) :/ g(w)dw, zeU,
1s well-defined, i.e., it does not depend on the particular choice of T',.

2. We have f € H(U) and f'(2) = g(2),2z € U.
3. f(Zo) =0.
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Lemma 14.1 Let U C C be open and connected and let g € H(U). Assume that g'(z) = 0 for all
z € U. Then g(z) is constant in U.

Proof: Fix zy € U and let z € U be arbitrary. Choose a curve I', in U from zy to z. We have

o(2) = gz0) = [ gwydw =0,
thus g(z) = g(z0). ©

14.3 The Main Branch of the Complex Logarithm: Inversion of w — e”

Theorem 14.2 Let U = C\ (—00,0]. There is a unique function L € H(U) with the following two
properties:

1. L(1) =0;

2. el =2 forall z € U.

This function L(z) is denoted by
L(z)=logz, =z€U,

and is called the main branch of the complex logarithm. The function L(z) = log z satisfies L'(z) =
1/z,z € U, and we have

T ds

L(x)=Inzx:= — for 0<z<o00.
1 S

Proof: Let I', denote a curve in U from zyg =1 to z € U.

Uniqueness of L: Suppose L € H(U) has the properties 1. and 2. We have

"A(z) =1 for z€eU,
thus

L/(Z) _ —L(z)

in U. Therefore,

L(z) = L(z)—L(1)
dw
r. w

The value of the integral does not depend on the curve I', in U from 2y = 1 to z since the region
U is simply connected.

Existence of L: Define

d
L(z) = —w, zeU.
r, w

We then have L(1) =0 and L'(z) = 1,z € U. Therefore,
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a (ze—uz)) =) e LA () =
This shows that

—L(2)

ze = const

At 29 = 1 we obtain

const =1’ =1,

thus eL(*) = 2.
For 0 < z < oo we have

Lemma 14.2 We have

= (-t
log(1+42) = Z — 2 for |z|<1.
=1
Proof: The derivative of the left—hand side is
1
U'(z) = —— 1.
()=l <

The derivative of the right—hand side is

) = Y1yt

It follows that I(z) — r(z) is constant. Also,

[(0) —r(0) =log(l) —0=0,
thus r(z) = 1(2) for |2| < 1. ¢

Discontinuity along the negative real axis: Fix —oco < x < 0. We have

x = |z|e™ = |zle”™ .

Consider the circle v of radius r = |z| with parameterization

2(0)=re?, —m<O<nm.
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On the circle v consider the points

i(r—e)

20 = refl i(-m+2)

and w,=re for O0<e<<1.

As ¢ — 0+ we have

Ze > e = —r=2x

and

we —>re T =—r=ux.

As £ — 0+ the points z. and w,. both converge to x. However,

logz. = Inr+i(mr—¢) = Inr+in
logw, = Inr+i(—m—¢) = Inr —in
Since z. — x and w. — x, but log z. and log w. have different limits, one cannot extend the function

log z defined on U = C\ (—00, 0] continuously to the axis —oo < z < 0. Also, since Inr — —o0 as
r — 04 the function log z is singular at z = 0.

14.4 Complex Logarithms in Other Simply Connected Regions

Theorem 14.3 Let V C C be open and simply connected. Assume that 0 ¢ V. Fix zg € V and
write

0o

20 = ro€’ where 19 >0 and O €R.

Then there is a unique function L € H (V') with
1. L(ZO> = ln(?"o) + 409 ;
2. el?) =2 forallze V.

This function L(z) satisfies L'(z) =1/z,z € V.

Proof: Let I', denote a curve in V from zy to z € V.
Uniqueness of L. Suppose L € H(U) satisfies the conditions 1. and 2. We have

thus

in V. Therefore,

This shows that L(z) is uniquely determined.
Existence of L. Define
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d
L(z) = 1In(rg) + 6y + 711}7 zeV.
r, w

We then have L(zp) = In(rg) + iy and L'(z) = 1,z € V. Therefore,

di<ze_L(Z)) =) 21/ (2)e B =0 .
z

This shows that

—L(2)

ze = const

At z = zp we have

0

Lz0) = poet? = 2y

(&

thus

const = zoe_L(ZO) =1.

This proves that

el =, Lev.
o
We call the function L(z) the logarithm in V' with normalization L(zp) = In(rg) + i6p. If we
drop the dependency on the normalization in our notation, we write
L(z) =logy(z), z€V.
In particular, we have shown the existence statement of the following theorem:
Theorem 14.4 Let V C C be open and simply connected. Assume that 0 ¢ V. Then there exists

a function L € H(V) with e“®) = 2 for all z € V. Any such function satisfies L'(z) =1/z in V.
If L1, Ly € H(V) satisfy e"1) = eL2(2) for all z € V, then there exists n € 7 with

Li(z) = La(2) + 2min, ze€V . (14.1)

Proof: We only have to show (14.1). We know that e = 1 holds if and only if w = 2min for some
n € Z. Therefore,

eLl(z)—Lg(z) -1

implies that L1(z) — La(z) = 2min(z),n(z) € Z. However, since n(z) € H(V), the function n(z) is
constant. ©

Definition: If V' C C is an open set and if L € H(V) then we call L a logarithm on V if
el =z forall z€ V.

Using the above terminology, Theorem 14.4 says that a logarithm exists on V if V is simply
connected and 0 ¢ V. Furthermore, any two logarithms on V' differ by an integer multiple of 27i.
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14.5 Argument Functions

Let V' C C be open and simply connected and assume that 0 ¢ V. Let L € H(V) denote a
logarithm on V and write

L(z) = Lg(z) +iL;(z)
with real functions Lr and L;. We have
5 = eLR(z)eiLI(Z)7
thus
2| = eP23) | Lp(z) =1nlz| .
Definition: Let V' C C denote an open set. A C'*°—function
arg : V- R

is called an argument function on V' if

In |z|+3arg (z)

z=e forall zeV.

Our results say that an argument function exists on V if V' is simply connected and 0 ¢ V. In

fact, arg(z) = Im L(z) is an argument function on V' if L is a logarithm on V. Furthermore, any
two argument functions on V differ by an integer multiple of 2.
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15 Extensions of Cauchy’s Theorem in a Disk

Summary: Let C C be a region and let f € H(U). If 7 is a curve in U which can be smoothly
deformed into the curve 7;, without leaving U and without changing endpoints, then

(2)dz= [ f(2)dz.

Yo "
We give a formal proof.

15.1 Homotopic Curves

In the following, let U C C be a region, i.e., U is open and connected.
Let vo(t),71(t),a < t < b, denote parameterizations of two curves in U with

Y(a) =m(a) =P, ~(0)=n0)=Q.
Thus, 79 and v have the same starting point, P, and the same endpoint, Q).

Definition: The curve 7y is homotopic to the curve 41 in U (with fixed end points), if there exists
a continuous function

v:[0,1] x [a,b] — U

with the following properties:
1) Fora <t <b:

7(07t) = ’YO(t)7 7(17t) = ’Yl(t) .
2) For 0 <s <1t

v(s,a) =P, ~(s,b) =Q .
3) For every parameter s € [0, 1] the function
t—(s,t), a<t<b,
is continuous and piecewise C'.

Terminology: The function (s, t) is called a homotopy (with fixed end points). The parameter
s is called the homotopy parameter and ¢ is called the curve parameter. Intuitively, v describes a
continuous deformation of the curve g into ;.

We will only consider homotopies with fixzed end points. Therefore we will drop the term.

15.2 Cauchy’s Theorem
Theorem 15.1 Let U be a region in C and let f € H(U). If vo and v1 are two curves in U which

are homotopic in U then
/ f(z)dz :/ f(z)dz .
Yo 71
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Proof: a) The set

K =~([0,1] x [a,t])
is a compact subset of U. Assume that U¢ = C\ U is not empty. (Otherwise, the following will be
trivial.) Let
e:=dist(K,U°) =inf{lk—z| : ke K,ze€ U}

denote the distance between K and U°. Since K is compact and U€ is closed and K N U¢ = (), it
follows that € > 0. (Proof of this statement: If ¢ = 0 then, for every n € N there is k, € K and
zn € U with

1
|kn — 2n| < — .
n

For a subsequence, k, — k and z, — z. Since k € K and z € U and |k — z| = 0, one obtains a
contradiction to K N U = {).)
It follows that

D(y(s,t),e) U
for all (s,t) € [0,1] x [a, b].
b) Since 7 is uniformly continuous, there exists § > 0 with
s—s'|+t—=t|<d = |y(s,t) =yt <e.
c¢) Choose N € N so large that

l+ <0
N N
Define a grid in
Q= [07 1] X [a7 b]
by
_J th=a+ (b— )E 0<j5,k<N
SJ_N’ E=a an S)hRS .

The rectangle Q is partitioned into the sub-rectangles

Qiik = [85,8j41) X [ty thg] -

If (s,t) and (s, ¢') are two points in Qjj, then

|s—s'|+t—t]<d.

Therefore,

Y(Qjr) C D(v(sj,tx),e) CU .
d) Set

’}/sj(t):’)/(Sj,t), a<t<b.
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We claim that

/%'fdz:/v fdz .

Sj+1

To show this, we apply Cauchy’s integral theorem in the disks

D(v(s5,tk), €)

successively for £k =0,1,..., N —1 to deform the curve s, into vs,,,. Since the deformation takes
place in disks that lie in U, the integral does not change. ¢

Definition: Let U be a region in C and let vy(t),a < ¢t < b, be a closed curve in U. Then 7y is
called null-homotopic in U if vy is homotopic in U (with fixed endpoints) to the constant curve
~1(t) defined by

71(t) =0(a) =70(b), a<t<b.
The following three theorems are different versions of Cauchy’s Theorem.

Theorem 15.2 Let U be a region in C and let v be null-homotopic in U. If f € H(U) then

Af@yu:o.

Definition: A region U in C is called simply connected if every closed curve in U is null-homotopic
in U.

Theorem 15.3 Let U be a simply connected region in C. If vy is a closed curve in U and f € H(U)
then

Lf@ﬁhzo.

Theorem 15.4 Let U be a region in C. (It is not assumed that U is simply connected.) Let
f € H(U). There exists a function F € H(U) with F' = f in U if and only if

/Yf(z)dz—O

for every closed curve v in U.
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16 The General Residue Theorem and the Argument Principle

Summary: If an equation gets perturbed, what happens to the solutions of the equation? The
implicit function theorem gives an important result. It’s proof is based on contraction.

Complex variables has a different tool, the winding number or index, which is an integer. If
an integer gets slightly perturbed, it remains unchanged. This can be used to obtain information
about solutions of an equation under perturbations. One has to be precise about the multiplicities
of zeros of holomorphic functions and relate their multiplicities to an integral. The result is called
the argument principle.

16.1 Remarks on Solutions of Equations under Perturbations

A general questions of mathematics, vaguely formulated, is the following: Suppose ug is the solution
of an equation and the equation gets perturbed by €. Will the perturbed equation have a solution
u(e) near ug? A precise result of this nature is formalized in the implicit function theorem, which
is itself based on completeness of the underlying solution space (all Cauchy sequences converge)
and contraction. To formalize ideas, assume that

F:R"xR™ — R"
is a smooth map and consider the equation

F(u,\) =0 . (16.1)

Here we consider A\ as a vector of parameters in the parameter space R”. The solutions u lie in
the state space R™. The space R" is also the space of right-hand sides so that, for fixed A € R™,
the system F'(u, A\) = 0 has n scalar unknowns and n scalar equations. Suppose that

F(ug,A0) =0,

where ug € R™ and \g € R™, i.e., for A = )¢ the equation (16.1) has the solution ug. Let A = Ao +¢
where € € R™ is small in norm. We ask if the equation

F(u,ho+¢) =0 (16.2)

has a solution u = u(e) ~ ug. To ensure that this is true, we assume that the Jacobian

A = Fy(up, \o) € R™*"

is nonsingular. Then, proceeding formally, we try to find a solution u of (16.2) of the form

u=uyg+96, &R,

where the vector § is small in norm. We have, formally,

0 = F(UO+(5,)\0—|—€)
= F(ug,Xo) + Ad + Fx(ug, Ao)e + Q(d,€)

where

Q(8.) < C(I8]* + [e?) -
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Since F'(ugp, Ao) = 0 we obtain

= —AilF)\(uO, Ao)e — A’lQ(é, £) .

This is a fixed point equation for §, suggesting the iteration

FH = — AT Fy(ug, do)e — ATIQ(8¢), 6% = — AT Fx(uo, Mo)e -

If £ is small enough, one can use a contraction argument to show that the equation

F(up+0,A0+¢)=0

has a unique small solution § € R™. This is made precise by the implicit function theorem.

Complex variables offers another tool, different from contraction, to study the solutions of an
equation under perturbation. The tool is, ultimately, Cauchy’s integral theorem, which allows us
to count the number of zeros of a function in terms of an integral. The idea is as follows: If the
function is perturbed slightly, the integral only changes slightly. Since the integral is an integer, it
does not change at all and, consequently, the number of zeros of the perturbed function equals the
number of zeros of the unperturbed function. See Rouché’s Theorem in the next chapter.

In a more general form, this tool is developed further in degree theory, an advanced topic of
analysis and topology. 4

16.2 The Winding Number or Index

Let ~(t),a <t < b, be a parameterization of a closed curve in C, thus v(a) = v(b). We denote the
curve parameterized by v also by . Let P € C\ ~, i.e., P is a point in the complex plane that
does not lie on the curve 7.

The number

1 dz
I’I’Ld»y(P) = 27‘(@/ PR
.
RO
2mi J, v(s)—P

is called the index of v w.r.t. P or the winding number of v w.r.t. P. Intuitively, Ind,(P) counts
how many times v winds around P in the positive sense. If Ind,(P) is negative, then v winds
around P clockwise.

It is not completely trivial to prove that the index defined above is always an integer.

Lemma 16.1 Under the above assumptions, the number Ind.(P) is an integer.

Proof: Set

We have g(a) = 0 and

4An interesting result of index theory is Brower’s fixed point theorem: If K C R" is compact and convex and if
f: K — K is a continuous function, then there exists P € K with f(P) = P, i.e., f has a fixed point.
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Define

P(t) :=e ID(y(t) = P), a<t<b.
We will prove that ¢(t) is constant. We have

¢la) = e 9 (y(a) - P)
and

6b) = 1O (b) - P)
= e (y(a) - P) .

In the last equation we have used that «(a) = v(b), which holds since the curve v is assumed to be
closed.
Note that the definition of g(¢) yields that

gt =7 -P)".

We use this to prove that ¢(t) is constant:

dt) = e -g)

= 0.
We obtain that
¢(a) = o(b)
Therefore,
V() —P = ¢(a)
= ¢(b)

and ¢(a) — P # 0 yields that
eIt =1,

Therefore,

g(b) =2min for some ne€Z.
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Finally,

g(b)
I P = — = Z .
nd(P) 9 — €
o

Remark: It is not easy to formalize our intuition about the winding number. It is difficult to prove
Jordan’s Lemma, which seems to be quite obvious. Jordan’s Lemma: Let I' C R? denote a Jordan
curve, i.e., there exists a bijective continuous map ¢ : S' — I'. Here S' = {(x,y) : 2% +3% =1}
is the unit circle. Then there exists two open connected subsets A, B of R? with

R2\I'=AUB, ANB=0,

where A is bounded and B is unbounded.

16.3 The General Residue Theorem

Recall that an open connected set U C C is called a region. Also, recall that a closed curve
in U is called null-homotopic in U if one can deform = continuously to a point in U where the
deformations of v all lie in U.

Theorem 16.1 Let U be a region in C. Let Py, ... Py € U be J distinct points in U and let

fGH(U\{Pl,...,PJ}).

Let v be a closed curve in U which is null-homotopic in U and avoids the points Pj, i.e.,

Pj¢7, ]Zl,,J

Under these assumptions:

J
/f(z) dz = 2mi ZRes(f,Pj) Ind,(Pj) .
gl

J=1

Proof: For 0 < |z — Pj| <e:

where g; € H(D(Pj,¢)) and

¥} = Res(f, P;) .

The singular part of the Laurent expansion of f near P is:

-1

si(2)= > ol (== Pp)";

k=—oc0

this function is holomorphic in C\ {P;}. (See the results on Laurent expansions.) Therefore,

9(z) = f(2) =Y _s5(2)

Jj=1
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can be extended to a holomorphic function in U, i.e., the singularity of g at every point P; is
removable.
One obtains:

Lf(z)dz = /Wg(z)dz%—Z/Wsj(z)dz

16.4 Zero—Counting of Holomorphic Maps

We show here that the zeros of a holomorphic function f(z) can be counted (according to their
multiplicity) by an integral. This is very useful if one perturbs the function f(z) or if one counts
the solutions z; of the perturbed equation

fz)—w=0

for small w € C instead of the zeros of f.

16.4.1 The Multiplicity of a Zero

Let U be a region in C and let f € H(U). We assume that f is not identically zero. If zp € U and
f(20) = 0 then 2z is called a zero of f. For |z — 29| < € we can write:

o0

fz) = > aj(z—z)
j=M
= (2= 20)"h(2)
where M > 1 and ap # 0. The function h(z) is holomorphic in

D(z,¢)

and we have, for sufficiently small e:

h(z) 20 for |z—z|<e.
The number M is called the multiplicity of the zero zg of f. We write

M = mult¢(2)
and note that

f(j)(zo):() for j=0,...,M—1, f(M)(ZO)ZaMM!#O-
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Note: If the holomorphic function f(z) has a zero of multiplicity M at zo then there exists € > 0
so that

fOGR)£0 for 0<|z—z2|l<e, 0<j<M-—1,

and
FM(2)#£0 for 0<|z—2z|<e.

16.4.2 The Zeros of a Holomorphic Function in a Disk
Let U be a region in C and let f € H(U). We assume that f is not identically zero. )

Let D = D(P,r) C U be a closed disk in U. We assume that f(z) # 0 for all z € 9D, i.e., f
has no zero on the boundary of the disk D. Let

y(t)=P+ret, 0<t<2orm,

denote the positively oriented boundary curve of D.

Let z1,..., 25 denote the distinct zeros of f in the open disk D = D(P,r) with multiplicities

M; = mult(z;)

The following result is called the argument principle for holomorphic functions.

Theorem 16.2 Under the above assumptions:
J

RN DA ,
oo [/ ) d _ZMJ (16.3)

J=1

i.e., the integral can be used to count the zeros of f encircled by ~ according to their multiplicities.

Proof: If € > 0 is sufficiently small, then the curve

Yje(t) = zj +ee, 0<t<2r,

encircles the zero z;, but no other zero of f. We have

i) R
/mz) =2 | H®

j=1"Y"ie

Fix j and set M = M;. From

f(2)=(z—2z)Mh(z) for z€ D;:=D(z,e)

with
he€ H(D;), h(z)#0 for z¢€ Dy,
we obtain:
F(2) = M(z = 5)M7h(:2) + (2 — 2)MH(2)
and
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f'lz) _ M |
f(Z)_Z—Z]+g( )7 gEH(D])

Therefore,

/
/ PG g omind = 2mi M |
v z)

This proves the claim. ¢
Remark: In Section 17.6 we will consider the argument principle for meromorphic functions.

Interpretation of Equation (16.3) in Terms of the Image Curve f(7): Let

p(t) = f(y(t) = f(P+ret), 0<t<2m,
denote the image of the curve v under the map f. Then u(t) # 0 for 0
assumption, f has no zero on dD. The winding number of the curve pu(t),0
point 0 is

27 since, by

<t<
<t < 2w, w.r.t. the

o
B 1 2m /(t)
T omi w(t) dt
L TIOON0 e
N 2m f(y(1) dt (z=n(t),dz=~'(t)dt)
e,
- ek

In other words, the left—hand side of (16.3) is the number of times by which the point f(vy(¢)) moves
counterclockwise around 0 when ¢ changes from 0 to 2. (If f has no zero in the disk D(P,r) then
Ind,(0) = 0 and the curve u(t) = f(y(t)),0 <t < 27, does not go around the point 0.)

We obtain the following reformulation of Theorem 16.2:

Theorem 16.3 Let D(P,r) C U and let f € H(U). Assume that f has no zero on 0D (P,r). Then
the number of zeros of f in D(P,r) (counting multiplicities) equals the number of times by which
the curve

p(t) = f(P+re), 0<t<2m,

winds counterclockwise around w = 0.

Example: Let f(z) = 2% and let D(0,1) denote the unit circle. The boundary curve of D(0, 1)
is
The f—image of this curve is

p(t) =e¥t, 0<t<or.

Then () winds three times counterclockwise around w = 0. The function f(z) = 2% has three
zeros (counting multiplicities) in D(0, 1).
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16.4.3 The Argument Principle and Log—Functions

The result of Theorem 16.2 is often called the argument principle. To explain this, we first make
some remarks on log—functions.
If r > 0 we denote by Inr = for d?“” the usual real natural logarithm of r. We know that

d%lnr: % for r > 0.
The function

r—lnr, r>0,
cannot be extended as a holomorphic function logw defined for all w € C\ {0}. Otherwise, by the

identity theorem,

1
i10g;w:—, w#0.
dw w

However, we know that
d
/ W _ori#0,
N W

Log—functions in a simply connected region. If W C C is a simply connected region with
0 ¢ W, then we can make a continuous choice for arg(w),w € W, and write

where (t) = €,0 < t < 27.

w=ret W p—|w >0, weW.

We define

logy (w) =Inr +iarg(w), weW,
and obtain

eosw (@) — o wew.

Now let us make the same assumptions as in the previous su?secti_on: Let U be a region in C
and let f € H(U). We assume that f is not identically zero. Let D = D(P,r) C U be a closed disk
in U. We assume that f(z) # 0 for all z € 9D. Let

fy(t):P—i-reit, 0<t<2m,

denote the positively oriented boundary curve of D.
Let us assume that f has at least one zero in D. Then the curve

w(t) = f(y(t), 0<t<2m,

winds around zero, and we cannot define log w(t) consistently for 0 <t < 2.
Make a subdivision of the interval 0 < ¢ < 27 by choosing points

to=0<ti1 <...<tg=2m
and let

W) =A(H), ey <t<tp for k=1, K.
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We have

Y=m+...+7x .

We make the subdivision fine enough so that each curve 7 (t) lies in a simply connected region Wy,
with 0 ¢ Wj. On Wy we have a log—function, which we call log;(w). We have

d 1
71 = — .
o og(w) - we W,

If z is chosen so that f(z) € Wy then

_f'(?)
72 lom(1(2) = 75
Therefore,
/ ) 4~ tog, £3(0)) — Tog. £(2(t-1)) = log(w /1)
v f(2)
with

wi = f(y(t)), 0<k<K.

(Note that wy = wg since y(tg) = v(0) = v(27) = vy(tx).)
Write

wp = e IR

We then have

i ff/((j)) dz = log wi/wr—1) = In(r/rr—1) + i(argk(wk) — argk(wkq)) _

Summation over k£ from 1 to K yields that

=

IHOPNIRS
[y 72) dz = an(m/mﬁ —l—iz (argk(wk) — argk(wk71)> ]

k=1

The first part involves logs of real numbers:

K
Zln(rk/rk_l) = ln(E-T—Q-..m 'K )
e To T1 TK-1
= Inl
= 0

Here we have used that wg = wg, thus rg = rg.
The real number

K
Z (ng(wk) — argk(wk_l))

k=1
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is the total change of argument of the function w(t) = f(y(¢)) as ¢t goes from 0 to 2. In other
words,

L [f() 1<
27”/7 ) dz = el ; (argk(wk) - argk(wk_l))

is the number of times by which w(t) moves around zero when ¢ goes from 0 to 27. This confirms
our earlier interpretation of the left—hand side of the above equation.

Example: Let

fz)=22(z—-1)%, zeC.
Let D = D(0,2) and let y(t) = 2¢%,0 < t < 27, denote the boundary curve of D. By Theorem

16.2 we have
1),
2mL o) #=0

since f has five zeros in D. This is easily confirmed by the residue theorem: Since

fl(z) = 322(2 — 1)2 + 223(2 -1)

we have

fliz) 3 2

flz) = T
The curve with parameterization
p(t) = 832" —1)2, 0<t<2nm,
is the image of v(¢) under f. By Theorem 16.3 the curve u(¢) winds five times counterclockwise
around zero. See the figure below. Note that p(0) = 8 and u(w) = —72.
16.5 The Change of Argument and Zeros of Polynomials

Let U C C denote an open set and let f € H(U). Let I' denote a curve in U and assume that
f(z) #0 for all z € T'. The real number

f'(z)
Im / dz =: Ararg f
r f(z)
is called the change of argument of f along I'.

Interpretation: Let z(t),a < t < b, denote a parameterization of I'. The curve I' goes from
A = z(a) to B = z(b). First assume that f(I') C W, where W C C is an open set, and that logw
is a logarithm on W. We have, for z near I,

d
glogf(z) =

thus

177



ge3(2%e'1)2 from 0< t < 2«

80

60

40

20

Im
o
T

N
o
T

-60

_80 Il Il Il Il Il Il Il I
-80 -60 -40 -20 0 20 40 60 80

Re

Figure 16.1: Graph of Image Curve

[EE ds — 0w sm) - 0858

in| R | + i () — ane ()

thus

/
z
Arargf = fz

= argf B) — arg f(A) .

Note that the difference in argument does not depend on the specific argument function on W. A
main assumption is that f(I') C W and that a log—function exists on W.

In the general case, let ' denote a curve in U with parameterization z(¢),a < t < b. Let
f € H(U) and assume f(z) # 0 for z € I'. Choose a subdivision

th=a<ti<...<tg=b

and obtain
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7(2)
o)

Ararg f = Im/
r

f'(2)
Im ; . ) dz

= Z (argkf(zk) - argkf(zk—1)> .

k

Here 2z = z(tx), zk—1 = z(tx—1) and T’y is the curve with parameterization z(t),tx_1 <t < tg. Also,
f(Tx) C Wy, and argi(w) is an argument function on Wj.

Example 1: Let I'p denote the curve, along the imaginary axis, parameterized by z(t) =
it,—R <t < R, and let I" denote the whole imaginary axis with parameterization z(t) = it, —oo <
t < oo.

Consider the polynomial f(z) = z 4+ 1 with the simple zero z; = —1 to the left of I'. We note
that f(I") lies in the right half-plane and we can work with the main branch, logw.

We have

dz
AR2+1 og(iR+1) —log(—iR+1)
= In(R*+ 1) +ifg — (In(R* + 1)/ — i0g)
with
0p = g —ag, ag=arctan(1/R)=0O(1/R) .
Therefore,
Arparg(z+1) =7+ O(1/R)

and, as R — o0,

Ararg(z+1)=m.
Similarly, if z; is any point to the left of I, one finds that

Ararg(z —z1) =7 .

Example 2: Let I'g and I" denote the same curves as in Example 1 and consider the polynomial
f(z) = z — 1 with zero zo = 1 to the right of I". In this case, f(I") lies to the left of the imaginary
axis, and the main branch, logw, is not defined along f(I'). One obtains

3T

Arparg(z—1) = (g +aR) - (7 —aR>

= —71+0O(1/R)

and, as R — oo,
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Ararg(z—1) = —7.
Similarly, if zo is any point to the right of I'; one finds that

Ararg (z — z2) = —m .

Example 3: As in Examples 1 and 2, let I' denote the imaginary axis, z(t) = it, —oo < t < c0.
Let

f(z) = Wi (2 = 2)

denote a polynomial and assume that none of the zeros z; of f lies on I'. Since

fl(z) 1
flz) 2 z = zj

one obtains that

Ararg f =m(p —q)

if p of the zeros of f lie to the left and ¢ = n — p of the zeros of f lie to the right of I'.
With a change of variables, one obtains the following result.

Theorem 16.4 Let I' denote the straight line with parameterization
z(t)=A+ Bt, —-oco<t<oo,

where A, B are complex numbers and B # 0. If f(z) is any polynomial without a zero on I' then
we have

Ararg f =7(p—q)
if f has p zeros to the left and q zeros to the right of T'.
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17 Applications and Extensions of the Argument Principle

Summary: The argument principle can be used to study how zeros of a holomorphic function are
perturbed if the function is perturbed. We will use this to prove the Open Mapping Theorem.
In Section 17.4 we give a generalization of the argument principle and will use it to show that
the local inverse of a holomorphic function is holomorphic if the inverse exists.
If f(z) and p(z) are holomorphic functions, where p(z) is a perturbation term, how are the
solutions of the perturbed equation f(z) 4+ p(z) = 0 related to the solutions of the unperturbed
equation f(z) = 07 Rouché’s Theorem gives an important result.

17.1 Perturbation of an Equation: An Example

We first consider a simple example. Let

fz)=2% zeC.

Let D = D(0,1) denote the unit disk with boundary curve . In this case, the function f(z) = 23
has the zero

zo=10
of multiplicity M = 3. We have

f(2)

1 322
2T v 2

Consider the perturbed equation for the unknown z:

f'z) 3

and Theorem 16.2 yields that

23:’11}

where w € C is small in absolute value, w = re®,r > 0, —7 < 6 < 0.
The solutions are

zl(w) _ 7,,1/3 ei6'/3
2 (w) P1/3 4i0/3 2mi/3
2(w) P1/3 4i0/3 i3

These are simple zeros of the function

g(z) =2 —w .

Theorem 16.2 applied to g(z) yields that

1 322

— dz=3 if |w|<1.
211

3 _
,yZ w

In this example, the triple zero zg = 0 of f(z) = 22 splits into three simple zeros for the perturbed

function g(z) = 2% — w if w # 0. We want to generalize this result.

181



17.2 Perturbation of a Multiple Zero
We make the same assumptions as in 16.4.2: U is a region in C; f € H(U) is not identically zero.
Let zg € U be a zero of f of multiplicity M. We choose r > 0 with

a) D = D(z,r) C U,;

b) f(z) #0 for 0 < |z — 20| < r;

c) f'(z) 0 for 0 < |z — z| <.
Let y(t) = zo + 7,0 <t < 27. Set 1 := min{|f(2)| : |z — 20| = r}, thus > 0. We consider the
equation

f(z) =w, z¢€ D(z0,71),

where w € C with |w| < 7 is given.
Let us make a plausibility consideration first: We have w ~ 0. Also, for z close to z:

f(2) ~ap(z—200M, an #0.

We must solve

ap(z—20)M ~w
ie.,
w .
(z—20)M ~ — =: pe'? where —m<0<m.
an

If p > 0 then the equation for ¢ € C

M w i
il
has M distinct solutions g;:
o = pVM oM
@ = qmM
g = qe™M
ay = qeM-D2mi/M
We expect that the equation
fz)=w

has M distinct solutions

if |w| is small, but w # 0.
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Theorem 17.1 Let U denote a region in C and let f € H(U). Assume that f is not identically
zero. Let zg € U denote a zero of f of multiplicity M. Choose r > 0 so that the disk D = D(zp,r)
satisfies the conditions D(zg,7) C U; f(2) #0 for 0 < |z — zo| < 7; f'(2) #0 for 0 < |z — 2| < 7.
Define n := min{|f(z)| : |z — 20| =r} and let 0 < |w| < n. Then the equation f(z) = w has M
distinct solutions z1,...,zy in D. Every z; is a simple zero of the function g(z) = f(z) —w, i.e.,

9'(z) = f'(z) #0.
Proof: Let g(z) = f(z) —w. If |jw| < n and |z — 29| = r then

l9(2)] > |f(2)] = |w| >n—|w]| >0.

Therefore, the function

IR CR
Py =5 [ 7ot W<,

is integer valued. Here v denotes the positively oriented circle of radius r centered at zp.
We know that F(w) is the number of zeros of g(z) in D(zp,r), where the zeros are counted

according to their multiplicity.
We claim that F'(w) is holomorphic for |w| < 7. In fact, for |z — 29| = r we have

fz) —w flz) 1 —w/f(z)

For every fixed w with |w| < 7 the convergence is uniform for z € . This yields:

I o,
7=0

with

e,
= [ G

A holomorphic function that is integer—valued is constant. One obtains that

Flw)y=M .

It follows that the number of zeros of g(z) in D is M if zeros are counted according to their
multiplicity.

Now let 0 < |w| < n and let z; € D be a zero of g. Then f(z1) = w, thus z; # z. It follows
that f’(z1) # 0; thus all zeros of g(z) are simple. The equation f(z) = w has M distinct zeros
21y 2M € D(z0,7) i 0 < w| <. ©
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Figure 17.1: Open Mapping Theorem

17.3 The Open Mapping Theorem

If U and V are metric spaces (or, more generally, topological spaces) and f : U — V is a map,
then f is called open if the set f(€2) is an open subset of V whenever 2 is an open subset of
U. (This notion is different from continuity. A map f : U — V can be shown to be continuous
on U if and only if f~1(W) is an open subset of U whenever W is an open subset of V. Here
fAW)={ueU : f(u) e W}.)

The following result is know as the Open Mapping Theorem of complex analysis. (There is
another Open Mapping Theorem of functional analysis, which is different.) °

Theorem 17.2 Let U be a region in C and let f € H(U) be a non—constant function. Then the
mapping f : U — C is open.

Remark: Such a result is not true in R. For example, if f(z) = 22, then f(R) = [0,00). The
set [0, 00) is not open in R.

Proof: Let Q C U be an open non—empty set. We must show that f(2) is open. To this end, let
Q € f() be an arbitrary point. We must show that there exists ¢ > 0 with D(Q,e) C f(£2).
Since @ € f(Q) there exists P € Q with f(P) = Q. We will apply Theorem 17.1 to the function

) = f()-Q 2€9.
(The function h(z) is not identically zero since f(z) is not constant.) Note that h(P) = f(P)—Q =

0.
Let M denote the multiplicity of the zero P of the function h(z). There exists r > 0 with:

a) D(P,r) C Q;
b) f(z) #Q for 0 < |z — P| <r;
c) fl(z) #0for 0 < |z — P| <.
Let n:=min{|f(z) — Q| : |z — P| =r}, thus n > 0. If |v| < n then the equation

fz)=Q+w
has M solutions z; € D(P,r) C €. In particular, if Q +v € D(Q,n) then @ + v lies in f(2). This
says that D(Q,n) C f(Q), proving the theorem. ¢

5Open mapping theorem of functional analysis: Let X and Y be Banach spaces and let T : X — Y be linear,
continuous and onto. Then T is an open mapping.
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17.4 Extension of Theorem 16.2

The following is a useful generalization of Theorem 16.2. The assumptions are similar to those in
Theorem 16.2, but a general function ¢ € H(U) appears in Theorem 17.3. (In Theorem 16.2 the
corresponding function is ¢(z) = 1.)

Theorem 17.3 Let U be a region and let f,¢p € H(U). Let D = D(P,r) C U. Assume that

FZ)#0 for |z=P|=r

and let y(t) = P+ re, 0 <t < 2w Letz,...,2z; denote the distinct zeros of f in D with
multiplicities M; = mults(z;). Then we have

G
ami |, 5z

J
dz = M;é(z) .
j=1

Proof: Let € > 0 be small enough and let

Vie(t) = 25 + e, 0<t<2r.

Fix j and let M = M;. In the following, the functions hj(z) are holomorphic for |z — z;| < e. We
have

f(z) (z—z)Mhi(2), hi(z) #0,
F(2)/f(z) = M(z—z) " + ha(2)
#(z) = ¢(zj)+hs(z), hs(zj) =0
(2)f'(2)/f(z) = Me(z)(z — z) " + ha(2)

This implies that

I'(2) =2mi M, p(z;
/7€¢(Z)f( dz = 2mi M; ¢(z;) .

; ?)
The theorem follows by summing over j. ¢

Special Case: Assume J =1, M; = 1,¢(z) = z. Then we have

1 f'(2)

b z

2mi Jr o f(2)

where z; is the unique simple zero of f in D(P,r). This case is used in the proof of Theorem 17.4

dz = =1

below.

17.5 Local Inverses of Holomorphic Functions

Let U be a region in C and let f € H(U). We ask for conditions under which the mapping
f:U —= Cis1—1. First assume that f’(z9) = 0 for some 29 € U. If @ := f(29) then 2 is a zero
of multiplicity M > 2 of the function



f(z1)

Figure 17.2: Local Inversion

Choose any v € C,v # 0, with |v| small. By Theorem 17.1 there are M distinct points z1, ...,z €
D(zp,r) which have the same image under f, thus

flzj))=Q+v, j=1,...,M.
One obtains that f cannot be 1 — 1 if f/(z9) = 0 for some 2.

Now assume that f/(z) # 0 for all z € U. The example f(z) = e* shows that f may still fail to
be globally 1 — 1 since

e =e2m=1.

However, as we will prove below, if f'(zy) # 0, then f is locally 1 — 1 near zy. This means that
there exists € > 0 so that f is 1 — 1 on D(zp,¢). In addition, if @ = f(zp), then the local inverse of
f is defined and holomorphic in a disk D(Q,n) for some n > 0.

Theorem 17.4 (local inversion of holomorphic functions) Let f € H(U). Let P € U with f'(P) #
0. Set Q = f(P). Then there exists an open neighborhood Uy of P with Uy C U and there exists
an open disk D(Q,n) so that the following holds:

a) f: Uy — D(Q,n) is 1 — 1 and onto;

b) there is a unique function g : D(Q,n) — Uy which is 1 — 1 and onto satisfying

flg(w)) =w  for all we D(Q,n)

and

9(f(2)) =2z forall z€Uy.
This uniquely determined function g is holomorphic on D(Q,n).

Proof: 1) Choose r > 0 with
a) D(P,r) CU;
b) f(z2) #Q for 0 < |z — P| < r;
c) fl(z) #0for 0 < |z — P| <.
If y(t) = P+ ret,0 < t < 2, then



This holds since the equation f(z) — @ = 0 has precisely one solution z in D(P,r), namely z = P,
and the solution z = P is simple since f'(P) # 0.
Set
n:=min{|f(z) = Q| : |z—P|=r}>0.
If |w — Q| < n then the equation

f(z)=w
has a unique solution z; € D(P,r). We call this solution z; = g(w). In this way we have defined a
function

D(Q.n) — D(P,r)
with

flg(w)) =w forall we D(Q,n) .

This equation implies that g is 1 — 1. We note that g(Q) = P since P is the unique solution of the
equation f(z) = Q,z € D(P,r).
2) Apply Theorem 17.3 with ¢(z) = z to obtain

2m/ f —dz=g(w) for weD@mn). (17.1)

(Note that z; = g(w) is the unique zero of the function z — f(z) — w in D(P,r) and z; = g(w) is
a simple zero. Also, if ¢(z) = z, then ¢(g(w)) = g(w).)

We use the representation (17.1) of the function g to prove that g is holomorphic on D(Q,n).
To this end, note that for z € v and w € D(Q,n):

fz)—w=(f(2) - Q) — (w - Q)
with

f(z) =Qlzn>|w-Q.

Therefore,

The convergence is uniform for z € v. Using the above series in (17.1) and exchanging summation
and integration, we obtain the expansion

1 o0
=5 > bjw
7=0
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with

O
h= | G-
This proves that g € H(D(Q,n)).

c) Define Uy := g(D(Q,n)). Then, by the Open Mapping Theorem, Uy is an open neighborhood
of P and Uy C D(P,r) C U. The remaining claims of the theorem are now easily verified: The

mapping

g:D(Q,n) — Ug

is 1 — 1 and onto. If z € U is given, then there exists a unique w € D(Q,n) with g(w) = z. We
have f(g(w)) = w, thus

Recalling that z = g(w) this becomes:

g(f(z)) =2z forall zeU.

This equation implies that f is 1 — 1 on Uy.

Let w € D(Q,n) be given. Then z := g(w) € Uy satisfies f(z) = f(g(w)) = w. Thus we have
shown that f : Uy — D(Q,n) is 1 — 1 and onto, with inverse function g. The uniqueness of g is
trivial. ¢

Remark: One can also prove the previous theorem by power series expansion. Assume P =
@ = 0, for simplicity, and let

oo
f(z) = Zajzj, lz| <r, a1 #0.
j=1

We try to determine a function

(o]
g(w) = b, |w| <,
k=1
with

lg(w)| <r and f(g(w)) =w forall |w|<n.

First proceeding formally, we write

Flgw)) = ar(byw +bow® +...) + ag(byw + bow? 4+ ...)2 + ...
= aibyw + w?(arbs + asb}) + w?(a1bs + 2a2b1bs + asbi) + . ..

The condition f(g(w)) = w yields that

a161 = 1, thus bl = 1/0,1 .
Further,
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aibs + azb% =0, thus b = —agb%/al ,
and

1
a1bs + 2a9b1bg + agb?l’ =0, thus b3= —;1(2@21)11)2 + agb?) .

This process can be continued. The by are determined recursively. One then has to prove that the
series

o
g(w) = Z bpw”
k=1
has a positive radius of convergence.

17.6 The Argument Principle for Meromorphic Functions

Roughly speaking, a function which is holomorphic except for poles is called meromorphic. Let us
be more precise.

Definition: A set S C C is called discrete if for all z € S there exists » > 0 with SN D(z,r) = {z}.
Example: Let S = {1 : n € N}. Then S is a discrete set. The set SU {0} is not discrete.

Definition: Let U C C be open. Assume that S C U is a discrete subset of C which is closed
in U, ie, if z, € Sand 2z, = 2z € U, then z € S. Let f € H(U \ S). The function f is called
meromorphic in U with singular set S if every z; € S is a pole of f. Often one simply says that f
is meromorphic in U and writes f € M (U).

Example: Let S = {% : n € N}. This set is not closed as a subset of C. However, if U = {z =
x 41y : x>0} denotes the right half-plane, then S is closed in U.

Example: Let p(z) and ¢(z) be polynomials which have no common zero. The rational function

is meromorphic in C with singular set

S={z : q(z)=0}.

Example: The function

1

1(z) = sin(mz)
is meromorphic in C with singular set S = Z.
Example: Let

S={zp=— : neZ n#0}
nm

and let

So=SU {0} .
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Note that 0 is an accumulation point of S and of Sy. Consider the function

1
f(z) = W7
Clearly, f is holomorphic on C\ Sp. The function f is not meromorphic on C\ Sy since the

singularity at z = 0 is not isolated. The singularity at z = 0 is neither a pole nor an essential
singularity. If U = C \ {0}, then f is meromorphic on U with singular set S.

ZE(C\SQ.

Theorem 17.5 Let U C C be open and let f € M(U). Let D = D(P,r) C U be a closed disk in U
and assume that f has no zero and no pole on the boundary OD of D. Let~(t) = P+ret, 0 <t < 2m,
denote the boundary curve of D. Let z1, ..., zy denote the distinct zeros of f in D with multiplicities
M; = mults(z;) and let p1,...,px denote the distinct poles of f in D with orders Ny = ordy(py).
Then we have

L [1®) S
M/vf(z)dz_;Mj—];Nk.

In other words,

L f/(Z) Zz = Zeros) — OLES
'/7f<z>d #(zeros) — #(poles) |

Here the zeros and poles of f in D are counted with their multiplicities.

Proof: The proof is similar to the proof of Theorem 16.2. We only note that if py is a pole of order
N = Nj of f, then we have for 0 < |z — pg| < &:

) =anGE-p) N1+ (), an#0,

and
F(2) = (=N)a_n(z —pr) "V 1+ ha(2))
thus
f'(z) _~ —-N s
F) o )

Here hi 23 are holomorphic near py. The claim then follows as in the proof of Theorem 16.2. ¢

17.7 Rouché’s Theorem and Hurwitz’s Theorem
Rouché’s Theorem © is very useful if one studies the solutions of an equation f(z) = 0 under

perturbations of f. In the following theorem the perturbed equation is g(z) = 0.

Theorem 17.6 (Rouché) Let U C C be open and let f,g € H(U). Let D(P,r) C U. Assume that
f and g are close to each other in the sense that

1f(2) —g(2)| < |f(2) +1g9(2)| for [z2—P|=r. (17.2)

SEugene Rouché (1832-1910) was a French mathematician.
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Then f and g have the same number of zeros in D(P,r) where zeros are counted with their multi-
plicities. In other words, if y(t) = P + re', then

1 ! 1 !
N PG ,/9 (2) 45 . (17.3)
2mi ) f(2) 2mi J g(2)
Proof: Let |z — P| = r. Then (17.2) implies that
f(z2) #0#9(2) .
Therefore the integrals in (17.3) are defined. We claim that, for |z — P| = r, the complex number
5
9(2)
does not belong to (—oo, 0]. Otherwise,
‘f(z) —1‘ = A1
9(2)
= “A+1
f (2)‘
241
’9(2)

Multiplying by |g(z)| one obtains that

£ (z) —9(2)| = [f(2)] + [9(2)]

in contradiction to the assumption (17.2).
Consider the function

filz) =tf(2) + (1 =t)g(2), =z€U,

for 0 <t < 1. If |z — P| = r then f(z) # 0 since, otherwise, one obtains that f(z)/g(z) is negative.
It follows that

1 [ fi(2)
I(t)m/wft(z)dz, 0<t<1,

is integer valued and continuous. Therefore, I(0) = I(1), proving the theorem. ¢

Example: Let f(z) = 2" +52% — 2 — 2 and g(z) = 523. For |z| = 1 we have

1f(z) = g(2)| = 2" — 2 = 2| < 4
and
l9(2)[ =5
Therefore, the assumption (17.3) holds for P = 0 and r = 1. Clearly, g(z) = 523 has a zero of
multiplicity 3 in D(0,1), and has no other zero. Therefore, by Rouché’s theorem, the polynomial

f(2) has exactly three zeros z; with |z;| < 1, counting multiplicities. These three zeros are not
necessarily distinct.

Rouché’s Theorem is often formulated somewhat differently by assuming that the function g(z)
has the form
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9(2) = f(2) + p(2)
where p(z) perturbs f(z).

Theorem 17.7 (Rouché, 2nd version) Let U C C be open and let f,p € H(U). Let D(P,r) C U.
Assume that p(z) is small so that

()| <If () +[f(2) +p(2)] for [z—Pl=r. (17.4)

Then f and f + p have the same number of zeros in D(P,r) where zeros are counted with their
multiplicities. In other words, if ¥(t) = P + re®, then

RN O ORI0
2mi J, f(2) 2mi J, f(2) +p(2)

dz . (17.5)

The following theorem of Hurwitz 7 is often used in limit arguments.

Theorem 17.8 (Hurwitz) Let U be a region and let f, € H(U) forn = 1,2,... Assume that
fn(z) converges locally uniformly to f(z). (Thus, f € H(U).) If fo(2) # 0 for all z € U and all
n=1,2,..., then either f =0 or f(z) #0 for all z € U.

Proof: Suppose that f is not identically zero, but f(P) = 0 for some P € U. Let M denote the
multiplicity of the zero P of f,
M =multy(P) > 1.

There exists r > 0 with D(P,7) C U and f(z) # 0 for 0 < |z — P| <r. Let y(t) = P+re®, 0 <t <
2m. One obtains that

1 f'(z) , 1 falz)
MLf(Z) dz= M, but %i/vfn(z)dz_o

for all n. As n — oo, the quotient f](2)/fn(z) converges uniformly on v to f'(z)/f(z), and we
obtain a contradiction. ¢

Details: Details regarding uniform convergence on the curve «: For every z € 7 there exists
e(z) > 0 so that f},(¢)/fn(¢) converges uniformly on D(z,e(z)) to f'(¢)/f({). Since the curve 7 is
a compact set, there exist finitely many points z1,..., 27 so that

J
v C Uj:lD(zj7€(Zj)) )

and uniform convergence on y follows.

" Adolf Hurwitz (1859-1919) was a German mathematician.
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17.8 An Application of Rouché’s Theorem
Lemma 17.1 Let

p(2) =2"+a, 12" '+ .. taiz+ag

denote a normalized polynomial. Then there exists z € C with
p(z)| >1 and |z]=1.
Proof: Set f(z) = z" and

g9(z) = —(an,lzn_l +...+az+ ao) ,

thus

p(z) = f(2) = g(2) .

Note that | f(2)| = |2"| = 1 for |z] = 1. We may assume that ¢g(z) is not identically zero. (Otherwise
the claim is trivial.) Suppose that

p(z)] = |f(z) —g(2)| <1 forall z with |z|=1.
Then, by Rouché’s Theorem, the functions f(z) = 2™ and g(z) have the same number of zeros in
D(0,1). However, f(z) = z™ has a zero of multiplicity n at z = 0, and ¢(z) has only n — 1 zeros.
This contradiction proves that there exists z € C with |z| = 1 and [p(z)| > 1. ¢
17.9 Another Proof of the Fundamental Theorem of Algebra

Let

p(z) =2"+a, 12" '+ .. +aiz+ag

denote a normalized polynomial of degree n > 1. We claim that p(z) has n zeros. The function
g(z) = 2" has n zeros and

lg(z)| = R"™ for |z|=R.
If R is large then

p(z) — 9(2)| < CR™ < R" = |g(2)| for |2|=R>C.

By Rouché’s Theorem the functions p(z) and g(z) = 2" have the same number of zeros in D(0, R)
if R is large.
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18 Matrix—Valued and Operator Valued Analytic Functions

Summary: Let A € C"*" denote a square matrix and let o(A) = {\1,..., A5} denote the set of
eigenvalues of A. The matrix valued holomorphic function

(21 -A)7', zeC\o(A),

is called the resolvent of A. It is an important generalization of the scalar function ﬁ where
a € C. We will show: If I' € C\ 0(A) is a positively oriented simply closed curve then the matrix

1
Py:=— [ (21 —A)tdz
2mi Jr
is the projector onto U along V where U is the sum of the generalized eigenspaces to the eigenvalues
Aj inside I and V' is the sum of the generalized eigenspaces to the eigenvalues A; outside I'.
If a € C lies inside I" then, under suitable assumptions on the holomorphic function ¢(z), we
have

1 (2)

2t Jrz—a

dz = ¢(a) .
If the eigenvalues of A € C™*™ lie inside I" then one can use the corresponding formula

1

2mi

/F 6(=) (=1 — A) ™ dz = 6(A)

to obtain the matrix ¢(A). Under suitable assumptions, generalizations to unbounded linear oper-
ators A on Banach spaces are possible and one can study e using the resolvent of A.

18.1 Outline and Examples

Let v(t),a <t < b, denote a parameterization of a simply closed positively oriented curve in C.
We denote the curve again by . If A\ is a complex number, A\ ¢ 7, then we have by the residue
theorem:

1 1, | 1, X inside vy
2772'//(2_)\) dz_{ 0, A outside =~ (18.1)

It is interesting that one can generalize the formula to the case where A is replaced by a matrix
A € C™™ or a more general operator defined on a dense subspace of a Banach space. We will
consider here only the case of a matrix A, but generalizations are possible and important.

Let A € C™*". With o(A) = {\1,...,As} we denote the set of distinct eigenvalues of A. (More
generally, 0(A) denotes the spectrum of the operator A.) The matrix valued function

(21 —A)7', z2eC\o(A),

is called the resolvent of A. By Cramer’s rule, each matrix entry

((ZI — A)_l)jk

is a rational function of z defined for z € C\ o(A). See Section 18.6.
Assume that v is a curve, as above, and \; ¢ v for j =1,...,s. We set
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™

Py = i /(zI — Az, (18.2)
2 Y

where the integral is defined elementwise, i.e.,
(Pa) 1/((1 A)*) dz, 1<jk<
ik = — zI — z n.
A)jk Ii . ik ) SR>

Example 1: Let A denote the 4 x 4 diagonal matrix,

A1
A2
A3
A4

We have

(z—X3)7"
(Z — /\4)71

Assume that A lie inside and Az 4 lie outside . Using (18.1) it is then clear that
1

Py =
0

We now give an interpretation of P4: Let el,... e denote the standard bases of C*. For the
diagonal matrix A, the space U = span{e!,e?} is the sum of the eigenspaces of A2 and V =
span{e?,e*} is the sum of the eigenspaces of A3.4. The matrix P4 is the projector onto U along V.

The result generalizes. Even if A € C™*™ is not diagonalizable, the matrix P4 defined in (18.2)
is the projector onto a space U along a space V. Here U is the sum of the generalized eigenspaces of
the eigenvalues inside v and V' is the sum of the generalized eigenspaces of the eigenvalues outside

7.
Definition 1: Let A € C"*". If ); is an eigenvalue of A, then

E()\j):{ueCn : (A—)le)u:()}

is the geometric eigenspace of A to the eigenvalue \; and

G(\) = {u eC" : (A=X\I"™u=0 for some me {1,2,...,n}}
is the generalized eigenspace to A;.

Example 2: Let A denote the 2 x 2 matrix:

(A 1
A—(O )\1)—)\1I+J

with
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~(11)

The only eigenvalue of A is Aj, which is geometrically simple, but algebraically double. The
geometric eigenspace is

E(\) = spcm{< . )}

and the generalized eigenspace is G(\;) = C2.
For z # A1 we have

zI—A:(z—Al)I—J:(z—)\l)<I—Z_l)\l J).

Since J? = 0 one obtains:

1 1 1 1
I—A) = I J) = I J .
(2 ) z—)q( +z—)\1 ) z—M\ +(z—)\1)2
For
1 -1
Py=— [(zI—A) " dz
27 5

one obtains P4 = I if A1 lies inside and P4 = 0 if \; lies outside 7.

This result indicates that the generalized eigenspace is important, not the geometric eigenspace.
We will prove:

Theorem 18.1 Let A € C™*™ denote a matriz with distinct eigenvalues A1,..., s. Let v be a
simply closed positively oriented curve in C. Set

U=GA)&...®G\)

and
V=GAt1) ®...®G(\g)
where A1, ..., A, lie inside and Ag41, ..., As lie outside v. Then
1
= — [ (zI-A)1d 18.
Pa= g [ (a1 A7 (18.3)

is the projector onto U along V.

We will prove the theorem in Section 18.4

The formula for P4 is useful if one studies perturbations of A. Assume, for example, that
A = A(w) depends analytically in a parameter w € C. The eigenvalues \j(w) are continuous
functions of w (if this is properly defined), but they are generally not smooth functions of w unless
they are algebraically simple.®

8 An eigenvalue X of a matrix A is called algebraically simple, if X is a simple zero of the characteristic polynomial
p(z) = det(zI — A).
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The formula (18.3) shows, however, that P4, depends analytically on w as long as the eigen-
values \j(w) do not cross . Thus, the projector P4 behaves better under perturbations of A than
the eigenvalues of A.

Example 3: Let A(w) denote a 2 x 2 matrix

A(w):<0 1), weC.

w 0

The eigenvalues are

M=VE, =,

These functions are not differentiable at w = 0 and are not analytic in C\ {0}.

18.2 Analyticity of the Resolvent
Lemma 18.1 Let A € C"*" and let 0(A) denote the set of eigenvalues of A. Then each matriz
entry of the resolvent (zI — A)™1,

(=1 =A™ Hn (18.4)

is a rational function on C\ o(A).

This result follows from Cramer’s rule for the inverse of a matrix. See Section 18.6.

Another way to prove analyticity of the functions (18.4) uses the Neumann series. See Section
18.7. This proof generalizes to operators in Banach spaces.
18.3 Complementary Subspaces and Projectors
We want to make the concept of a projector onto a space U along a space V precise.

Definition 2: Let W be a vector space. T'wo subspaces U and V of W are called complementary
subspaces of W if for every w € W there exists a unique u € U and a unique v € V with

w=u+v, wvuelU, velV.

If U,V are complementary subspaces of W one writes

W=UaV
and calls W the direct sum of U and V.

Definition 3: Let W be a vector space. A linear map P : W — W is called a projector if
P?=P.

There is a close relation between pairs of complementary subspaces of W and projectors P from
W into itself. The following is not difficult to prove:

Theorem 18.2 1. Let U,V be complementary subspaces of W. The map P: W — W defined by

Pw=u where w=u+v, uwelU, veV,

18 a projector. We have
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U = R(P)= range of P
V. = N(P)= nullspace of O

The linear map P is called the projector onto U along V.
2. Let P: W — W be a projector. Then the subspaces

U:=R(P), V:=N(P),

are complementary and the projector onto U along V' s P.
3. If P: W — W is a projector, then Q = I — P is also a projector. We have

18.3.1 The Matrix Representation of a Projector

In the following, let U and V' denote subspaces of C" and assume that

Ct=UsV.
Let
ot
be a basis of U and let
o

be a basis of V. Then

T=(t,... t") eC™

is a nonsingular matrix.

Lemma 18.2 Under the above assumptions, the projector P onto U along V' has the matriz rep-
resentation

I. 0
P=T( " Tt 18.
( 0 0 ) (18.5)
Proof: Let P denote the projector onto U along V. If w € C" is any given vector, we write

w=mxtt+ ...tz t" =Tz, zeC",

and obtain

w:i=Pw=ax1t" 4+ ...+ z,t" .

This holds since Pt/ = tJ for 1 < 7 <rand Pti=0forr+1< 7 < n. If we write = in the form

I
x _
x:(xH), lecr, Mech,
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then we have

u = Pw ,
- (%)
(4 1)
= T(% 8>T1w.

The equation z = T~ 'w holds since w = Tx by the definition of . This proves the formula (18.5)
for the projector P onto U along V. ¢

18.4 Proof of Theorem 18.1

First assume, for simplicity, that A is diagonalizable. This holds if and only if all generalized
eigenspaces agree with the geometric eigenspaces, G()\j) = E(A;) for j =1,...,s. In this case,

U=EMN)®...® E(\)

and

V=EM1)®...®E(\) .

Let t!,...,t" denote a basis of U, consisting of eigenvectors of A, and let "*1,... " denote a basis
of V', consisting of eigenvectors of A. Set

T= (..., t")eC™,
We have

AT =TA

where

A= diag()\l, e o A - )\) .
For z € C\ o(A):

A = TAT™!
2l —A = T(z2I—ANT™!
(21 — A7 = T(I-ANT!

It follows that

199



=
S| =

Py = /(z[ A)”
iy

1
,T/(zI—A) Ydz17t
211 ~

I, 0\,
(50)7

By Lemma 18.2 the matrix P4 is the projector onto U along V.

I
~

Next consider the general case where A is not necessarily diagonalizable. By Schur’s Theorem
and Blocking (or by transformation to Jordan normal form) there exists a nonsingular matrix
T € C™" so that T~'AT has block diagonal form:

TLAT = diag(Bl, o By Brs1, - .,BS> _B.

Here

Bj=Mlo, +Rj, j=1,....s,

where «; is the dimension of the generalized eigenspace G()\;) and

R; € Cx%

is strictly upper triangular. Therefore,

R"=0 for m2>aq;.
From T-'AT = B obtain that

(21 —A) ' =T(zI-B) ‘7!
Consider a term
1
Qj = — / (21, — 1z .
2mi ),
We have for z # A;:
ZIaj — Bj = (Z — )\j)Ia]- — Rj
1
- (z—)\])(laj — R)

Therefore, for z € C\ o(A):

en —Bj)_1 — (Iaj + Z 2= NTMR)

It follows that



and

Q=0 for E+1<j<s.

Therefore,

1
PA = — /(ZI — A)_l dz
e ~
1 -1 -1
= T [(:I-B) " d:T
27 ~y

I, 0
=7/ T
(0 0)
We have shown that the matrix P4 is the projector onto U along V. ¢

18.5 The Dunford—Taylor Integral

We first recall some familiar facts.
Let I" denote a positively oriented, simply closed curve in C. Then C \ I' has two connected
components, the interior of I' and the exterior of I'. These are denoted by

int I' and extI',
respectively. Let a € C\ I'. We have

1 dz

— =1 if a€e intD
2mi Jrz—a

and

1 dz

—_— =0 if a€extI.
2w Jrz—a

Lemma 18.3 Let U C C be an open set containing I' and int I'. Let ¢ € H(U). Assuming
a € int I', we have

L (93 0 ). (18.6)

2mi Jrz—a

In particular, for ¢(z) = 27, one obtains that

1 2

- dz=da" for j=0,1,2,...
2w Jrz—a

We want to generalize the formula (18.6) to the case where the number a is replaced by a matrix
A e C"". Then 1/(z — a) will be replaced by

(21 — A)7L.

From our previous results, we have:
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Lemma 18.4 Let T' be a curve as above and let A € C™*". Assuming that

o(A) C int T
we have

1
— I—A)ldz=1T.
27'['i F(Z ) &

We now introduce a scalar function ¢(z) multiplying (21 — A)~! in the integral, i.e., we consider
the so-called Dunford—Taylor integral

1
211

/F¢(z)(zl —A)ldz. (18.7)

Here it is assumed that ¢ : U — C is holomorphic in U where U C C is an open set containing I'
and intI"

Under suitable assumptions, the formula (18.7) can be used to define the matrix ¢(A) in a
reasonable way.

18.5.1 The Case of a Polynomial
We first prove:

Lemma 18.5 Let ' be a curve as above and let A € C"*™ with o(A) C intT'. For j =0,1,... we
have

Proof: Write

(1Y = (21 — A+ A)
= (2I—-AY +.. .+ A

_ zj: < 2 ) (2] — A)F AT

k=0

J .
_ j J k p5—k
= A]+;< k)(zI—A) Al

Consider a term

(21 — A)FATF(2] — A)7L = AT 7R (2l — A)FL

If £ > 1 then the above function is holomorphic as a function of z and the corresponding integral
is zero. Thus, a nontrivial contribution is obtained for k£ = 0 only. One obtains
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/zj(zI—A)_ldz = /Aj(zI—A)_ldz
r r

= A /(zI —A)tdz
1N

= 2mi A7
This proves the lemma. ©
If
N .
p(z) = a2
j=0

is a polynomial, then one defines

N
p(A) = ajAl .
j=0

Using the previous lemma, it is clear that

1

el BUOICT A A)"Vdz = p(A) . (18.8)
m Jr

18.5.2 The Case of a Power Series
Next let

d(z) =) a2, |z[<p, (18.9)
§=0

denote a convergent power series with radius of convergence p, 0 < p < co. We let

N
on(2) =Y a2, |z <p
§=0
denote the partial sums of ¢(z).

Lemma 18.6 Let ¢(z) denote the power series (18.9). If o(A) C D(0,p) then the sequence of
matrices

N

SN i=¢n(A) =D a;A, N=12,. ..
j=0

converges in C"*™. The limit is denoted by

. _ _ AT
Jim Sy = ¢(A) ;%A.
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Proof: Since the spectral radius of A is strictly less than p, there exists a vector norm || - || on C"
so that the corresponding matrix norm of A satisfies

ri= Al <p.
For N > M > N(e) we have (note that || A7| < ||A|JY = r7):

N
ISx = Sull = | Y. a; A
j=M+1
N
<) agh?
j=M+1
< €.

Thus, Sy is a Cauchy sequence in C™*", ©

Let us connect this result with the Dunford-Taylor integral.

Theorem 18.3 We make the same assumptions on A and ¢(z) as in the previous lemma. Let T’
be a positively oriented, simply closed curve in D(0,p) with o(A) C intT'. Then we have

2m/¢> )zl — A)" dz = ¢(A) . (18.10)

Here ¢(A) is defined as the limit of the matriz sequence ¢pn(A) considered in Lemma 18.5.

Proof: By (18.8) we have

27TZ/¢N )(zI — A)” dz—gi)N( )

for every finite N = 1,2,.... Taking the limit as N — oo, we obtain (18.10). ¢

Example: Let ¢t € R be fixed and let ¢(z) = e*. If A € C™ " is any matrix and if T is a
positively oriented, simply closed curve surrounding o(A), then

1
e =_— [ ezl — A)Ldz
211 r

Here, by definition, et4 = >0 l, (tA).
18.5.3 A General Holomorphic Function

The formula

2m/¢> )(zI — A) ' dz =: ¢(A) (18.11)

can be used to define ¢(A) under more general assumptions than those of Theorem 18.3, where
¢(z) was assumed to be a power series. All one needs is ¢ € H(U) and a positively oriented, simply
closed curve I' in U with

o(A) cintl' CU .
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Example: Let A be any nonsingular matrix. Choose a simply connected region U with

0¢U, o(A)cCU.
We know that there exists a logarithm function log;; € H(U) with

exp(logy(z)) =z forall zeU.
If T is a positively oriented, simply closed curve in U with o(A) C int T, then

1 _
logy(A) == 3 /FlogU(z)(zI —A)tdz

is a well-defined matrix. We will prove that

exp(logyr(4) = A .

Theorem 18.4 Let U C C be open and simply connected and assume that 0 ¢ U. Let log(z)
denote a holomorphic function on U with

exp(log(z)) =2z forall z€U.

Let A € C™" denote a nonsingular matriz with o(A) C U and let T denote a positively oriented
simply closed curve in U surrounding o(A). Then the matriz

L -l
B := 5 Flog( 2)(zl — A)" dz

satisfies eB = A.
To prove the theorem we will use the following result.

Theorem 18.5 Let U C C be open and simply connected; let f,g € H(U). Let A € C"*" denote a
matriz with o(A) C U and let T' denote a positively oriented simply closed curve in U surrounding

o(A). If

B1 = /f ZI A d
27r7,

By = I—A)tdz

2 i ) 9(2)(2 )~

then

B1By = /f )(zI — A) " tdz

Proof: Using transformation to Jordan normal form it suffices to prove the theorem for matrices
A = Al + J where

0 1 0

J = 0 e R™"™ |
S
0 0
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In the following we assume that A = Al + J and let

f(z)= Zaj(z N, g(z) = Zbk(z —NF for |z—N<r.
=0 k=0

Then let
h(z) = f(2)g(z)
= (Za](z - )\)j) : (Zbk<2 - )\)k>
j=0 k=0
= i az—A)
1=0
with
!
= Z a;b_;
j=0
We have

Here, for z # A,

zI—A:(z—A)I—Jz(z—A)(I—%J) ,

thus
n—1
1 1
(21 - A7 = - J"
z—A — (z—=N)
n—1
= Y (z=N"F1SE
k=0
Therefore,
— N (2l — A rdz =7
) (CEP VIO SR
and
n—1 '
Bl = Z (IjJ]
§=0

In the same way it follows that
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n—1
=> bJ*
k=0

and
n—1
_ 1
o /f )=zl — A)” dz—chJ
=0
with
l
C| = Z ajbl_j .
=0
Also,

B = (Do) (Sus)
j=0 k=0
n—1n-1

= ZZanl]JJ
=0 j=0

n—1

= ZCIJZ

=0

This proves that

/ f ZI A) dZ = BlBQ
27i

for A = Al + J. The case of a general matrix A then follows by transformation to Jordan normal
form. ¢

Proof of Theorem 18.4: Recall that

1
B:=— [ log(z)(zI — A)~ldz
21 T

We claim that
1
21 T
We have B? = I and (18.12) follows from Lemma 18.5 for j = 0. For j > 2 the formula (18.12)
follows from Theorem 18.5 by induction in j. Obtain that

1 N o : Ny o
oh (Zﬁ(logz)J)(zI—A)_ldz:Z,—BQ.

=0 =0

We let N — oo and note that

(log2)(2I — Ay 'dz =B’ for j=0,1,2... (18.12)
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o0

1
Z— log 2) = exp(logz) = z .

=
Therefore,
! IoAa=Y Lo op
2wt Jp 45 : = J! “
Using Lemma 18.5 with j = 1 yields that A = eB. o
18.5.4 Remarks on Unbounded Operators
An important point of the formula
o /d) Y(zI — A)7Hdz =: ¢(A) (18.13)

is that one can use it for linear operators A more general than matrices, even for unbounded
operators A that are densely defined in some Banach space. Such operators A appear when one
formulates initial value problems for PDEs abstractly as

The formal solution is

u(t) = A >0,
but if A is unbounded, one cannot use the exponential series to define e?. Instead, one considers
the resolvent
(21 —A)7', zeC\o(A),
and (under suitable assumptions) defines

et = L /etz(zl— A)ldz . (18.14)
r

21

Typically, the spectrum o(A) is unbounded and I' cannot surround o(A). Instead, I' is chosen as
an infinite line,

I': 2()=b+i, —oc0o<&<o0,
which must lie to the right of o(A). Since dz = i d§ one obtains

oo ) -1
A _ % (HbHiE) ((b Fie) — A) de . (18.15)

(The Laplace transform of the scalar function e!® is

1

s—a

£()(s) = / (o=t g =
0

The formulas (18.14) and (18.15) are versions of the inverse Laplace transform of an exponential.)
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Details of these ideas lead to so—called semi—group theory, a part of functional analysis. The
name semi—group arises since the family of operators

satisfies

At = DA forall st >0, 4 =1.

In other words, one can multiply the operators e*, obtaining the rules of associativity and commu-
tativity. However, in general, the operator e’ does not have an inverse since e *4 does not exist
for ¢ > 0. Thus, the family of operators e*,t > 0, does not have the structure of a group.

18.6 Auxiliary Results: Determinants and Cramer’s Rule
Determinants: For A € C"*" the determinant is defined by

det A = Z sgn (0)aig, - - - Ane,, -
UGSn

Here S,, denotes the group of all permutations of the set {1,2,...,n}.
A matrix A € C™*" is non-singular if and only if det A # 0.
The function

pa(z) = det(zI — A), zeC,

is a polynomial of degree n, the characteristic polynomial of A. By the fundamental theorem of
algebra,

pa(z) = i (2 = Xj)™

where Ai,...,\s are the distinct zeros of ps(z) and a1,...,as € N are the multiplicities of the
ZETOS.

Eigenvalues: The numbers Ay, ..., s, introduced as the distinct zeros of the polynomial p4(z),
are the distinct eigenvalues of the matrix A. The number a; € N is the algebraic multiplicity of
the eigenvalue \; for j = 1,...,s. Le., o is the dimension of the generalized eigenspace

G()\j):{UEC” : (A=NI)Mu=0 for some mG{l,Q,...,n}}.

Cramer’s Rule: For j k € {1,2,...,n} let M, € C denote the determinant of the (n — 1) x
(n—1) matrix which is obtained by deleting the j—th row and the k—th column of A. Define the
matrix A € C"*" by

(A)jp = (=17 * My, for j ke {1,2,...}.

If det A # 0 then, by Cramer’s Rule:

1 1
det A

(AT

Application to the Resolvent: Let 0(A) = {A1,..., s} denote the set of eigenvalues of A.
The function
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1 1
pa(z)  det (2l — A)’

is a rational function. It has a pole of order a; at z = ;.
For every j,k € {1,2,...,n} and z € C\ 0(A) we have

z€C\o(A),

—1)itk

((zI _ A)fl)kj _ (pA(Z) M (2)

where Mjj(z) is the determinant of the (n — 1) x (n — 1) matrix which is obtained by deleting the
j—th row and the k—th column of 2/ — A. It follows that M;(z) is a polynomial of degree < n — 1.
Therefore, every entry of the resolvent

(21 -A)7', zeC\o(A),

is a rational function of z. Poles only occur at the eigenvalues of A.
Since the degree of every polynomial Mj;(z) is < n — 1 and the degree of pa(z) equals n, it
follows that there exist constants C' > 0 and R > 0 so that

|(zI—A)_1\§’S| for ze€C with |2|>R.

18.7 Auxiliary Results: Analyticity of the Resolvent

We will use the geometric sum formula for matrices: If P € C"*™ and || P|| < 1 then

(o)
(I-P)y'=>) Pl
§=0
Let A € C™*"™ have the spectrum

o(A) = (A, A}

We will give another proof of the analyticity of the resolvent

z— (2l = A7, zeC\o(A).
(This proof generalizes to certain densely defined operators A in Banach spaces.)
Fix any A € C\ 0(A) and set
B=X—-A.
The matrix B is nonsingular. Let z € C and assume that

1
|2 = Al < 0 -
1B~

We have

2-A = (z—\NI+B
- B(I—(A—z)B‘l)
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Since

(A —=2)B7H <1
we can use the geometric sum formula and obtain
e . . 1
(zZI=A)7' =Y " (A=2)) (BT for [z— A < o -

1B

The formula shows that the resolvent (2 — A)~! is analytic in a neighborhood of any point A €

C\o(4).
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19 The Maximum Modulus Principle for Holomorphic Functions

Summary: Let f € H(U) where U C C is bounded region, i.e., U is open, connected, and bounded.

In many cases the function f(z) is also a continuous function on the closure of U, i.e., f € C(U),
where U = U U9U. Here OU is the boundary of U. If f(z) is not a constant function then the
maximum modulus principle says that

|f(2)] < My forall zeU

where

My = max{|f(z)] : z€0U} .

This estimate is useful to obtain bounds for the absolute value of holomorphic functions.
If the region U is unbounded and |f(z)| satisfies some growth restriction, then the maximum
modulus principle may still be valid. We will give an example.

19.1 Local Maxima and the Maximum Principle in Bounded Regions

Definition: Let U C C be an open set and let ¢ : U — R be a real-valued function. Then zg € U
is called a local maximum of ¢ if there exists r > 0 with D(zp,r) C U and

d(2) < P(z9) forall ze€ D(z,7) .
We will apply this concept to functions ¢(z) = |f(z)| where f € H(U).

Theorem 19.1 (local mazimum modulus principle for holomorphic functions) Let U be a region
and let f € H(U). Assume that f is not constant. Then the function |f(z)| does not attain any
local mazimum in U.

Proof: 1) Suppose that |f(z)| attains a local maximum at the point zy € U, i.e.,

() < f(z0)] for [z —z| <e,

for some £ > 0. The set W := f(D(zp,¢)) is open by Theorem 17.2, the Open Mapping Theorem.
Set wo := f(29) € W. Since W is open there exists 7 > 0 so that D(wp,2n) C W. Let wo = pe'
and set

wr = (p+ n)e

Then we have

jwi] > |w] =f(z0)]

and w; € W, a contradiction.
2) We give a second proof, not using the Open Mapping Theorem. Suppose that |f(z)| attains
a local maximum at zg. We can write

f(z) = f(z0) + aj(z —z)? for |z— 2| < 2e,
j=M
with M > 1 and aps # 0.

Obtain that
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f(2) = f(20) + (2 — 20)™ (ans + R(2))
with h(zp) = 0, thus
Ih(2)| < é]aM] for |z — 2| <e

if € > 0 is sufficiently small.
Set ag := f(z0). We may assume ag # 0 since |f(z)| attains a local maximum at zg. Let

anr/ag = pe® where p>0 and OeR.
Set

Z 1= 2z0+ ce'®

where ¢ will be chosen below. We have

f(z)= a0<1 +(z— ZO)M(% + h(z))>

ao ao
with
a . .
(Z - Z())M _ EMpequH—zG )
ao
Choosing
0
b=
one obtains that
a
(z—20)M =L =Mp>0
ao

Also,

This yields that

1
1f(2)] = ao|(1+eMp) — \00|§€MP
1
= |aol(1+ §€MP)
> Jao
= |f(20)]

Thus |f(z)| is not maximal at zy. This contradiction proves the theorem. ¢

Another form of the maximum modulus theorem is the following. As above, OU denotes the
boundary of the set U.
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Theorem 19.2 Let U be a bounded region. Let f € H({U)NC(U) and set

My = = .
0= |flov gelgglf(Z)l

Then

\f(2)| < |flov forall zeU

unless f is constant.

Proof: Let

My = max|f(2)] = [f(z1)] -

FAS

First assume that M; > My. In this case, |f(z)| attains a local maximum at a point z; € U. By
the previous theorem, f is constant, a contradiction.

Therefore, we may assume that M; = M. Again, if there exists z; € U with |f(z1)| = M,
then f is constant, a contradiction. It follows that |f(z)| < My for all z € U. ¢

19.2 Some Results in Unbounded Regions

For some applications (in particular to the Paley—Wiener Theorem of Fourier analysis) it is
important to extend the maximum modulus theorem to certain unbounded domains. A straight-
forward generalization is wrong, however.

Example: Let

U={z=ré" : r>0, |(9|<%}

and consider

f(z) = e, zecC.
Clearly, f € HU)NC(U). If z € OU then

z=xz(1414) or z=z(1—1), =>0.

Therefore,

2% = +2i2? |

thus

|f(z)]=1 forall zedU.

However, f(z) = e*" is unbounded for z > 0. Thus, the values of |f(2)] for z € U are not bounded
by the boundary values of |f(z)|.

The following is an example of a Phragmén-Lindel6f Theorem. °

9Lars Phragmén (1863-1937) was a Swedish mathematician; Ernst Lindelof (1870-1946) was a Finnish mathe-
matician.
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Figure 19.1: Region U in Theorem 19.3

Theorem 19.3 Let U denote the unbounded region of the above example and let f € H{U)NC(U).
Assume that |f(2)] <1 for all z € OU and assume that

1f(z)| < Cel forall 2eU (19.1)

where C' and ¢ are positive constants. Then the bound

[f(z)l <1
holds for all z € U.

Proof: For z € U we can write

z=re? with >0 and 0] <

NS

we define
2312 = 312 13012 — 7“3/2<cos(30/2) + isin(30/2)> .
(Note: For z € U we have z = ¢82, 23/2 = ¢(3/D)logz thyg the function z3/2 is holomorphic on U.)
Let € > 0. With the above definition of 23/2 we set
_s3/2
fe(2) = f(z)e™ ¢
and note that f. € H({U)NC(U). If z = |z]e? € U then |§] < T and
3|0|/2 < 3n/8 .

Therefore, for z € U:

Re (23/%) = 132 c0s(30/2) > e1r®/?  where ¢; := cos(3m/8) > 0 .
This implies that

3/2

|fe(2)] < CeTe =" for €U where r=|z].

The bound tends to zero as r — oo.
We may assume that f is not identically zero and set
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M, :=sup |f-(2)] >0 .
zelU

There exists 29 = 20(¢) € U with

M = |f=(20)] -

The existence of zy = zo(e) follows since |f-(z)| is smaller than M, if |z]| is large.
Note that for z € U we have

g = 7,,e:lzwr/4 7

thus
232 = 1312 (cos(37r/8) + isin(37r/8))
where

cos(3m/8) =¢1 >0 .
It follows that

3/2
e*EZ/|§1 for ze€0U,

thus

Ife(2)] <1 for ze€dU.

Suppose that M. = |f:(20)| > 1. Then the function f.(z) attains its maximum at an interior point,
at zg € U, and we obtain a contradiction to the Open Mapping Theorem applied to the function

fe€e HU)NC(U).
We conclude that M. < 1, which yields that

1f(2)| < 52| for z€U .

Here ¢ > 0 is arbitrary. It follows that |f(z)| <1 forall z € U. o

Remark: The assumption |f(z)| < Ce?l for z € U can be replaced by the weaker assumption

1F(2)] < Ced" for zeU

where o < %
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20 Harmonic Functions

Summary: In two space dimensions, harmonic functions v : U — R are solutions of the partial
differential equation

Au(,y) = tea (T, y) + uyy(2,y) =0, (2,u) €U .

Here U C R?ZC is a region, an open and connected set. If f(z + iy) = u(x,y) + iv(z,y) is
holomorphic in U, then the functions u(z,y) and v(x,y) are harmonic conjugates on U.

If u(x,y) is harmonic on U and U is a simply connected region, then a harmonic conjugate
v(z,y) of u(z,y) exists on U, i.e., the function u(z,y) is the real part of a function f(x + iy) which
is holomorphic on U. If the region U is not simply connected, then a function u(z,y), harmonic on
U, may not have a harmonic conjugate on U. The function

u(e,y) = (Va+32),  (2,9) € B2\ {(0,0)} ,
is an example.
Let U C R? be a bounded region with boundary curve U and let ug : 0U — R be a continuous
function. The Dirichlet problem of PDEs is to determine a function u € C?(U) N C(U) with
Au=0 in U and u=wuy on 0U.

If U = D(0,1) is the open unit disk, then complex variables (essentially, Cauchy’s integral formula)
can be used to solve the Dirichlet problem. If V C R? is a bounded region different from D(0,1)
and a biholomorphic map

f:D(0,1) >V

is known which extends continuously to a map from D(0,1) to V, then one can transform the
Dirichlet problem on V' to a Dirichlet problem on D(0,1).

20.1 Basic Concepts: Harmonic Functions and Harmonic Conjugates

Let U C R™ be an open set and let u : U — R be a C?>function. The function u € C2?(U) is called
harmonic in U if Au =0 in U. Here

0? 0?
A_aix%—i_'”—'_aix%

denotes the Laplace operator.

Applications: Stationary states of the heat equation u; = Awu are given by harmonic functions.
If p = p(z) is the charge density and u = wu(x) is the potential of the electric field generated by
p, then (in suitable units) —Au = p. This is Poisson’s equation. In regions free of charge, the
potential u is a harmonic function.

Theorem 20.1 Let U C C be open and let f € H(U). Write f(z) = u(z,y)+iv(x,y) for z = x+iy.
Then Au = Av = 0.

Proof: This follows directly from the Cauchy—Riemann equations

Up = Vy, Uy = —Vp and Uy = Uy .
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In the following, let U be a region in C. If f = u + v is holomorphic in U then one calls v a
harmonic conjugate of u in U. Harmonic conjugates, if they exist, are unique up to a constant. To
show this, assume that f; = u+iv; and fo = u+ivg are holomorphic in U. Then f1— fo = i(v1 —v2)
is also holomorphic. By the open mapping theorem, f; — fo is constant in the region U.

If U is simply connected and Au = 0 in U, then u has a harmonic conjugate v in U; this is
Theorem 20.2 below.

In Section 20.3 we consider the harmonic function u(x,y) = In((z%+3?)%/?) in U = R?\ {(0,0)}
to show that a harmonic conjugate does not always exist unless the domain U is simply connected.

An elementary observation is the following: Let v be a harmonic conjugate of » in U, i.e.,
f=u+1iv e H{U). The Cauchy-Riemann equations
Up = Vy, Uy = —Vy

imply that

(ua??uy) ) (Uﬁf:vy) = UgUp + Uyly
= —UglUy + Uyly
= 0

In other words, at every point (z,y) € U the gradient vector Vu(z,y) = (uz,uy)(z,y) is orthogonal
to the gradient vector Vu(x,y) = (vs,vy)(x,y). Therefore, the family of lines defined by

u(z,y) = a1

is orthogonal to the family of lines

v(z,y) =co .

In other words, every function f = u +iv € H(U) yields two families of mutually orthogonal
coordinate lines in U.

Details: Let (z(t),y(t)),a <t < b, denote a parameterized line I' where

u(z(t),y(t)) =c1 for a<t<b.
We have

0 = um( (1), y(£))" (t) + uy (2(1), y(£))y' (1)
= Vu(z(t),y(t)) - («'(t),y(t))

)
Thus, Vu(P) is orthogonal to the tangent vector (a/(t),y'(t)) of I at the point P = (x(t),y(t)).
The orthogonality

Vu(P)-Vu(P) =0

implies that the two lines given by
u(z,y) =c; and v(x,y) =co
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are orthogonal at their intersection point P.

Example: Let f(z) = 22, thus

flz+iy) = (x+iy)* = 2° —y® + 2izy .

The equations

and

2xy = co

determine two families of hyperbolas. Each hyperbola of the family

y==xvVz2 -0y
is orthogonal to each hyperbola

C2

y:%

of the other family at the intersection points.
Take ¢y = —3 and ¢y = 4, for example. The hyperbola I'y given by

u(z,y) =2 —y*=-3 or y=+a2+3
and the hyperbola I's given by

v(z,y) =2zy=4 or y=

SEELY

intersect at the point P = (1,2). The tangent vector to I'y at P is

Vu(P) = (u(P), uy(P)) = (2,~4)

and the tangent vector to I' at P is

Vu(P) = (v:(P), vy (P)) = (4,2)

Since

Vu(P)-Vu(P) =0
the hyperbolas I'; and I'y intersect orthogonally at P.

20.2 The Harmonic Conjugate in a Simply Connected Region

We begin with a simple lemma, showing uniqueness of harmonic conjugates up to a constant. The
argument is elementary and does not use the open mapping theorem.

Lemma 20.1 Let U C C be a region and let u € C*(U,R) be harmonic. If v and w are harmonic
conjugates of u in U, then v(z,y) = w(x,y) + ¢ in U for some constant c.
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Proof: Let b(x,y) = v(z,y) — w(z,y). We have

Vp = —Uy and wz; = —uy ,

thus b, = 0. Similarly, b, = 0 in U. Let P and () denote two arbitrary points in U and let I"
be a curve in U from P to Q. Let (¢),0 < ¢ < 1, parameterize I'. Define the auxiliary function
h(t) = b(y(t)). We have

1
mQy—upy:mn—hmy:A;awﬁ.

Here, by the chain rule,

R (8) = ba (v(E))71(E) + by (v(1))72(t) =0 .
Therefore, h(Q) = h(P). Fixing P and letting @) € U vary, we find that b is constant. ¢
Existence of a harmonic conjugate is assured if the region U is simply connected.

Theorem 20.2 Let U C C be a simply connected region and let u € C?(U,R) be harmonic. Then
there exists a function v € C?(U,R) so that f = u + v is holomorphic in U.

Proof: 1. (real analysis proof of the existence of v) We must show existence of a function v € C?
satisfying the Cauchy—Riemann equations:
Vp = —Uy, Uy = Uy .
In terms of real analysis, we try to find a potential v of the vector field F = (—uy, u,), because the
Cauchy—Riemann equations require that
Vo = (—uy, ug) -

The Jacobian of F is

b_<”m WW>.
Uy Uy
The assumption g, + uyy = 0 yields that the Jacobian Jg is symmetric. Then, by a theorem of

real analysis (see Theorem 20.3), the vector field F = (—uy, u;) has a potential in U. Any potential
v of the vector field F = (—u,, u,) is a harmonic conjugate of .

2. (complex variables proof of the existence of v) Suppose first that v is a harmonic conjugate
of u and set f = u + iv. Then we have

= ug + iv, = Up — WUy .
In other words, f’ can be determined in terms of u. This motivates to define

g = Uy — Uy .

Let us prove that g € H(U): The Jacobian of g is
J = ( Uz Ugy > ‘
TUyz Uy
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We note that the Cauchy—Riemann equations are fulfilled for the real and imaginary parts of g
since

(Re g)ﬂ? = Ugy, (Im g)y - _uyy = Ugpgy = (Re g)m

and

(Re g)y = Uzy, (Im g)y = —Uys = —Uzy = —(Re g)y .
Consequently, g € H(U). By Theorem 4.9, there exists f € H(U) with f' = g. Let f =
a(x,y) + ib(z,y). Then we have
' =ay, + ib, = az — iGy

and the equation f’ = g = u, — iu, yields that

Ay = Uy, Ay = Uy .

As shown in the proof of the previous lemma, this implies a(z,y) = u(x,y) + ¢ where ¢ is a real
constant. Since b is a harmonic conjugate of a = u + ¢, the function b is also a harmonic conjugate
of w. Just note that v+ ib = a — ¢+ ib = f — ¢ is holomorphic. Thus we have shown that u has a
harmonic conjugate in U. ¢

In real analysis, one shows the following:

Theorem 20.3 Let U C R™ be open and simply connected. Let F : U — R™ be a C'—vector field
and assume that the Jacobian

o0x; )1§i,j§n

is a symmetric matriz for all x € U. Then F has a potential in U, i.e., there exists a scalar
C'—function v : U — R with

20.3 A Harmonic Function in C\ {0} Without Harmonic Conjugate

In this section, let

U=C\{0} and U; =C)\ (—o0,0].

Both sets are open and connected. The set U; is simply connected, but U is not simply connected.
We will show:

Lemma 20.2 The function

u(,y) =In((@* +3)"2),  (2.y) £ (0,0),

18 harmonic in U, but does not have a harmonic conjugate in U.
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Proof: 1. We first show that Au = 0 an U = C\ {0}. Recall the main branch of the complex
logarithm defined in Uy: If z € Uy then

z=ré? r>0, —-w<f<m,

and
f(z):=logz=Inr+1i0 .
If one writes
flx+iy) = u(x,y) + iv(z,y) for x+iye U,

then

u(,y) = nr = In( (2 +%)"2)
and

v(z,y) = 0 = arctan(y/x) .

Here one must choose the correct branch of the arctan—function and the correct limiting values for
z = 0.
Since f € H(U;) we have

Au=Av=0 in U;.
The function u is C*° in U, and one obtains that

Au=0 in U.

Of course, this can also be verified directly by calculus.
2. Next, we prove that u does not have a complex conjugate in U = C \ {0}. Suppose that
w(x,y) is a complex conjugate of u(z,y) in U. Thus

Wy = Uy, Wy = —Uuy, and Aw=0.

Then the function

9(x +iy) == u(z,y) +iw(z,y), r+iyel,
is holomorphic in U. Recall that f(z) =logz for z € U; = C\ (—o0,0]. We have, for z € Uy,

f(2) —9(z) = i(v(z,y) —w(z,y)) .
By the open mapping theorem, one obtains that f(z) — g(z) = const in U;. Therefore,

f(z)=g'(z)=0 in U .

Therefore,
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By assumption, g € H(U), thus ¢’ € H(U). Also, the function 1 lies in H(U). By the identity
theorem, applied to functions in H(U), we obtain that
(=2 seU
g = .

This would mean that the function % has an antiderivative in U, namely ¢(z). Then, if T' is any
closed curve in U, we would obtain that

dz

T <

=0.

Since this is not true, we conclude that u(z,y) does not have a harmonic conjugate in U. ¢

Real Analysis Arguments. We want to show the above lemma using arguments of real
analysis. In the following, let

arctan : R — (—7/2,7/2)
denote the main branch of the inverse tangent. Set
V=C\{iy : yeR}={2z=z+iy : z,y e R,x #0}.
Lemma 20.3 Define the functions
u(,y) =In((@? +3)"?),  (2.y) # (0,0),

and

v(x,y) = arctan(y/z), x#0.
We have Au=01in U, Av=01inV and

Uy = Vy, Uy = —Vp n V.

Thus, v is a harmonic conjugate of u in V.

Proof: Apply calculus to u = In ((302 + y2)1/2):

Uy = $($2 +y2)—1
Upy = (xQ + y2)—1 _ 2%’2(.%2 + y2)—2
Uy = y(xZ +92)_1

uy = (@ 4y = 2% %)

It follows that Au = 0.
Also, if v(x,y) = arctan(y/z),z # 0, then
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1

_ -2
Vg = m (—yx™7)
= —y@@®+y*) "
Vg = 2:1,‘3/(.%2 + y2)72
1 1
Uy = 1+ y2/2? L
= z(@?+4H7!
Uy = —2:6,1;(1:2 + y2)_2

It follows that Av =0 in V. We also obtain that

Uy = Vy, Uy = —Vg

inV.o

Let us prove that u(z,y) = In((z% +y*)'/?) does not have a harmonic conjugate in U = C\ {0}.
Suppose that w(z,y) is a harmonic conjugate of u in U. By Lemma 20.1 there are constants, ¢;
and co, with

w(z,y) = arctan(y/xz) + ¢ for x>0

and

w(z,y) = arctan(y/z) +co for =<0 .

Fix y = 1, for example, and consider the limit as x — 0. We obtain, for z > 0 and x — 0:

w(O,l):g—i—cl.

For x <0 and x — 0:
w(0,1) = —g Yo
Now fix y = —1, for example, and again consider the limit as x — 0. For x > 0 and « — 0:
w(0,-1) = —g +cr .
For z <0 and z — 0:
w(0,—1) = g Y.

Therefore,

4 4
—4+c=—=+c
g "TThT g T

and

4 4
——+c=<+c.
9 1 2 2
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The first equation requires that

Cl —Cy=—T

and the second equation requires that

Cl —Cy=T.

This contradiction implies that v does not have a harmonic conjugate in U though u has a harmonic
conjugate in the open left half-plane (namely v(z,y) = arctan(y/z),z < 0) and another harmonic
conjugate in the open right half-plane (namely v(z,y) = arctan(y/z), x > 0).

20.4 Dirichlet’s Problem and the Poisson Kernel for the Unit Disk

Let U C C be a bounded region with boundary 0U. Let ug € C(9U), i.e, up is a continuous
function on 0U. We assume tlgat ug is real valued. The Dirichlet problem for Laplace’s equation
is: Determine u € C%(U) N C(U) with

Au=0 in U wu=wu on J0U. (20.1)
If U is unbounded, one must specify additional conditions about the behavior of u(x,y) for large
(x,y). In this section we consider the Dirichlet problem (20.1) for

U=D=D(0,1),
i.e., U is the unit disk D. We let v(t) = €,0 <t < 2, and denote the boundary curve of D by I'.
Let f € H(D(0,1+ ¢)) where £ > 0. By Cauchy’s integral formula:

1
_ L[Sy foral zeD. (20.2)

C2mi Jpw—2

f(z)
For 0 < |z] < 1 let

z1=1 / z.
The mapping

1

z=re 5 1/7=2 = —€"
r

is a reflection w.r.t. 9D, the boundary of the unit disk.
Since |z1| > 1 we have

oo L [ flw)
2mi Jr w — 21

Recall that z; = 1/Zz. Therefore,

dw for 0<|z|<1. (20.3)

1 _
== for wel and 0<|z|<1
w— 21 wz — 1

and

0= [ 4 Lep. (20.4)

Comi JpEw—1
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From (20.2) and (20.4) obtain that

f(z):/FH(z,w)f(w)dw for zeD

where (for |z] < 1, |w| = 1):

1 1 z
H(zw) = 277ri<w—z+1—w2>
1 1— |22
T 2w w— 2 — w2% + wlz[?
1 1—|z)?
2w 1 — w2 — wZ + |2|?
11—z

2miw |w — z|?
With

w=e" dw=iwdt

one obtains the formula

1271z it
z —_— (& d
£(2) /0 F(e'y dt

~or et — 2|2

or, with z = re®:

N o 1—? it
f(re®) /0 (e")dt .

T or 1—2rcos(9—t)+r2f
One defines the Poisson kernel P,(«) for the unit disk by

1 1—r?

Pra) = —
(@) 27 1 —2rcosa + r?’

Our derivation shows:

Lemma 20.4 Let f € H(D(0,1+¢)) for some e > 0. Then we have

2
et — (0 — 1) F (e
f(re®®) /0 B0 — ) f(c) dt

for re?® € D(0,1).

Properties of the Poisson Kernel: 1. For 0 < r < 1 and all real a we have

1—2rcosa+ r?

(1—r)?
0

AR

thus
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1 1+4+7r
O<Pr(o¢)§PT(O):%1_T.

In particular, P,.(0) — oo as r — 1—.
2) Applying the previous lemma with f = 1 yields that

/ P.(a)da=1 for 0<r<1. (20.9)

3) Despite the fact that P.(0) — oo as r — 1—, we will show that P.(a) = 0 asr — 1— if a is
bounded away from zero. A precise statement is:

Lemma 20.5 For any 61 > 0,1 > 0 there exists n > 0 with

Pr(a) <&

0<d<l|la|<7m and 1—-n<r<1.

Proof: For % <r<1landd <|al <7 we have:

1—2rcosa+7r? = 1—2r+7r%42r(1 —cosa)
> 1—cos«
> 09>0

where 5 = 1 — cos dy, i.e., 05 depends only on ;. Therefore,

1—r2

2709

P.(a) < <e for 1—-n<r<1

if n > 0 is small enough. ¢

We now use these properties of P,.(«) to prove the following result about the Poisson kernel.

Theorem 20.4 Let D = D(0,1) denote the open unit disk and let ug € C(0D) be real valued. The
function u(z) defined for = € D by

2m
u(re?) = / Po(0 — tyug(e®)dt for 0<r<1 (20.10)
0
u(e®) = wug(e?) for r=1 (20.11)
solves the Dirichlet problem with boundary data ug on OD. In particular:
a) ue C®D)NCD);
b) Au=0 inD.

To show that u is harmonic in D, we use the following simple result:
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Lemma 20.6 Suppose that g(z) is a holomorphic function in some open set V and let

G(z)=g(z) for zeVi={z: zeV}.

Then the real and imaginary parts of G are harmonic in Vj.

Proof: If g(x + iy) = u(x,y) + iv(z,y) then

G +iy) = u(z, —y) +iv(z, —y) .

o
To prove that the function u defined by (20.10) is harmonic in D, recall that our derivation
shows:

u(z) = /FH(z,w)uo(w)dw, zeD, (20.12)

where H(z,w) is defined in (20.5). By the previous lemma, the real and imaginary parts of z —
H(z,w) are harmonic in D, for each fixed w € 7. Since one can differentiate (20.12) under the
integral sign, it follows that Au = 0 in D. (For another argument, using series, see the next section.)
We now show that the function u(z) defined by (20.10) and (20.11) is continuous at every point
29 = €'to,
Because of (20.9) we have
u(re?) — u(efo) = / P.(6—1t) (uo(e”) - uo(em’)> dt . (20.13)
0
For given € > 0 there exists § > 0 with
lug(e®) — up(e™)| < e for [t—to| <6 . (20.14)
We split the integral in (20.13):

21
Y
0 [t—to|<d [t—to|>d

Using (20.9) and (20.14) we have

Ilgﬁ.

To estimate I we assume that |6 — tg| < §/2. Then the assumption |t — tg| > 0 yields that

o

It follows that

I < 2lupleo - 27 max  Pr(a) .
01 <]a|<

Using Lemma 20.5 we obtain that

Ih<e for 1—-np<r<l1

if n > 0 is sufficiently small. To summarize, if € > 0 is given, then there exists § > 0 and n > 0
with
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lu(re®) — u(e')| < 2¢

if |6 —to| < 0/2 and 1 —n < r < 1. Since u is continuous on QU this shows that u is continuous at
29 = €', This completes the proof of Theorem 20.4. ¢

Remark: We have derived the Poisson kernel for the unit disk,
1 1—r?
21 1—2rcosa + 12’

For a disk of radius R > 0 the Poisson kernel is

P (a) 0<r<l1, a€eR.

1 R* —1?
P;R) (Oé) = — ! )
21 R2 — 2Rr cos o + 12
The solution of the Dirichlet problem,

0<r<R, a€eR.

Au=0 in D(0,R), u(Re?)=ug(Re?) for 0<60<2nm,
is
. 271- .
u(re?) = / PO — t)ug(Re®)dd for 0<r <R,
0
and
u(Re) = ug(Re®®) for 0<6<2n.

20.5 The Poisson Kernel and Fourier Expansion

We have derived the Poisson kernel for the unit disk using Cauchy’s integral formula. An alternative
derivation proceeds via Fourier expansion.
Let ug : 9D — C denote a continuous function. We want to determine a function

u € C*(D) N C(D)
with

>
IS
I
S
o
IS
£
&
I

uop(z) for |z|=1.

Set

g(t) = ug(e), teR.
Then g is a continuous, 2m—periodic function and
> . 1 2
o) = 3 g™ gk = o [ e Mgt ar,
0

T or
k=—o00

is the Fourier expansion of g(t). We ignore questions of convergence. We obtain, formally,
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1

Note that, for |z| = 1 we have 27" = z, thus

K =zZF for |z2]=1, k<O0.

Therefore, formally,

00 —1
=Y am)F+ > gk)EM, 2 =1,
k=0 k=—00

This second representation of the given function ug(z), z € 9D, has the advantage that every term

& for k >0, 2k for K <-1,

is a harmonic function in I. In contrast, the function z* has a pole at z = 0 if k < 0.
We claim that the solution of the Dirichlet problem is given by

(o]
= " g(k)=* + Z )ZH for |z <1 (20.15)
k=0

k=—00
and
u(z) =wug(z) for |z]=1.

First note that the sequence of Fourier coefficients g(k) is bounded. This follows from the bound-
edness of the function g(t) = ug(e),t € R.
Therefore,

ui(z) = Zf](k:)zk for |z| <1
k=0

and

-1

up(z) = Y gk)zM for |2 <1

k=—o00

are harmonic functions in D. (Note that @g(x) is holomorphic in D.) Thus, u € C*°(D) and Au =0
in D.

It remains to prove that v € C(D). To show this, we derive an integral representation of u(z),
the Poisson integral formula.

Setting z = re'? for 0 < r < 1 we have

) 1
0 _ ‘k‘
= E t)dt t)dt
u(re®) o / + 27 /

27r
= Pr(0 —t)g(t) dt
0
with

-1

I & 1 A
PT(OZ) — % Zrkezk‘a_i_ % Z r|k|ezko¢ )

k=0 k=—o00
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We have used the integral formula for g(k) in (20.15) and have changed the order of summation and
integration. This is allowed since the series converge uniformly in ¢ for every fixed r with 0 < r < 1.
Set

Then we have

2nP.(a) = iwk—l—iwk

k=0 k=1
1 @
T 1l-w 1-w
_ 1— Jwf?
o l—w—w+ |w?
1—r?

1 —2rcosa + 12
We have obtained the Poisson kernel for the unit disk D using Fourier expansion.
Remarks on Fourier Expansion: Let X denote the space of all 2r—periodic continuous
functions
g:R—>C.

(More generally, one could take X = L2(0,27).) On X one defines the Lo—inner product and norm
by

21
(1, 0)1, = / a(yo(dt, |ull2, = (uw)r, -

The functions in the sequence

M kel

are Lo—orthogonal to each other and

(eijt, eik“‘t)L2 = 27r5jk .
If g € X then its Fourier series is

i g(k)e™
k=—00

where

R I
3k = 5 (™ u®)rs, KETZ,

is the k—th Fourier coefficient of g. Let



denote the n—th partial sum of the Fourier series of g. Then it is known that

lg — Snllz, =0 as n— oo,

i.e., the Fourier series of g represents g in the Lo—sense. Pointwise convergence and convergence in
maximum norm hold if g € C*', for example.

20.6 The Mean Value Property of Harmonic Functions

Let U be an open set and let f € H(U). If D(P,r) C U and ~(t) = P + re® then, by Cauchy’s
integral formula:

- e
:

211 z—P
1 2 "

= — P " dt .
5 | fPre

This says that f(P) is the mean value of the values of f along the circle dD(P,r).

Let u : U — R be harmonic in U and let D(P,r) C U, as above. Let ¢ > 0 and let D(P,r+¢) C
U. In D(P,r + ¢) there exists a harmonic conjugate v of u. Applying the above equation to
f = u—+iv and taking real parts, one obtains that

1 2w

u(P) u(P + re')dt .

:50

In other words, harmonic functions have the following mean value property: If D(P,r) lies in the
region U where u is harmonic, then u(P) equals the mean value of u on the circle 9D ((P,r).

Example: Let f(z) = e* and take P = 0,7 = 1. Cauchy’s integral formula says that

lzeozl/ezdz.
271 N 2

This also follows from the residue theorem, of course.
Using

) dz
2(t) = e =cost +isint, dz=izdt, — =idt,
z
one obtains the mean value formula
27
oo = / ecos t+isint dt
0
2
= / ecost ( cos(sint) + ¢ sin(sin t)) dt
0
This yields that

2m
I ::/ et cos(sint) dt = 27
0
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and )
Iy = / et sin(sint) dt =0 .
0

Let h(t) = etsin(sint). Then h(—t) = —h(t) and h(t) has period 2w. Therefore, Iy =
J7_h(t)dt = 0 is obvious. The formula for I = 27 does not look obvious.
20.7 The Maximum Principle for Harmonic Functions

Let U be a bounded region and let u € C?(U) N C(U) be a real valued function. Assume that
Ay =0 in U and that u is not constant. Let

My = max{u(z) : z€ U} .
We claim that

U(P) < M,

for all P € U. Suppose the strict inequality u(P) < M; does not hold for some P € U. Then we
have u(P) = Mj, and P is a local maximum of U. Using the mean value property, one finds that
for some r > 0:

u(z) =M, for |z—P|<r.
Set

Z={z€U : u(z)=M}.

The above argument shows that Z is open. Also, by continuity, Z is closed in U. Since U is
assumed to be connected, one obtains that Z = U. Thus, u is constant.

We can apply the same reasoning to —u and obtain:

Theorem 20.5 Let U be a bounded region and let u € C?(U) N C(U) be harmonic in U. Assume
that u is not constant. Then, for every P € U:

i < u(P) < .
min u(2) < u(P) < maxu(z)

A simple implication is the following: If U is a bounded region, then the solution of the Dirichlet
problem

Au=f in U, u=wuy on 90U,

is unique (if the solution exists). (If u; and wug are two solutions, then u = u; — ug is harmonic in
U and has zero boundary values. By Theorem 20.5 it follows that u = 0.)

20.8 The Dirichlet Problem in More General Regions

Let us first summarize our results for the Dirichlet problem in the unit disk,

D = D(0,1) .
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Theorem 20.6 Let ug : D — R be a continuous function. Then there is a unique function
u € C*(D)NC(D)
with
Au=0 mn D, u=wuy on JID.

For z = re'? € D the solution u is given by

27 )
u(rei®) = / Po(6 — tuo(e™) di
0
where Py(a) is the Poisson kernel for D.

Let V' C C be any bounded region and assume that there are holomorphic mappings

f D=V, ¢g:V—->D
which are 1 — 1, onto, and inverse to each other. We also assume that f and g can be continuously
extended as bijective mappings to the closures of D and V, respectively. We denote the extensions
again by f and g. Thus we assume that

fD=V, g:V-oD,

are continuous, 1 — 1, onto and

flg(z)) =2 forall z€V,
g(f(w))=w forall wel.

This implies that boundaries are mapped to boundaries:

F(OD) =8V, g(dV) =D .

We will discuss the existence and construction of such mappings f and g later in connection with
the Riemann Mapping Theorem.
Now let vg : AV — R be a given continuous function and consider the Dirichlet problem: Find

ve CHV)NCO(V)
with
Av=0 in V, v=v9 on 0V.

We can transform this problem to the Dirichlet problem on D in the following way: Set

uo(w) = vo(f(w)), weID.

This transforms the given boundary function vy, defined on 0V, to a boundary function uy defined
on OD.

Then let u € C?(D) N C(D) solve the Dirichlet problem in D with boundary data ug. We claim
that
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v(z) = ulg(z), z€V,
solves the Dirichlet problem in V. Clearly, if z € 9V, then g(z) € 9D and

v(z) = uo(g(2))

showing that v satisfies the boundary conditions. It remains to prove that v is harmonic in V. This
follows from the following result.

Theorem 20.7 Let U,V be regions and let g : V. — U be holomorphic. Let w1 : U — R be
harmonic in U. Then vi(z) = ui(g(z)) is harmonic in V.

Proof: Fix zp € V. We must show that Av;(z9) = 0. We have g(z9) € U and there is > 0 with

D = D(g(20),r) CU .

Since uq is harmonic in D it has a harmonic conjugate uo in D. Then the function v = uq + ius is
holomorphic in D. It follows that the function v(z) = u(g(z)) is holomorphic in a neighborhood of
zp. Since vy is the real part of v, we conclude that v is harmonic in a neighborhood of zy. ¢
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21 Abel’s Continuity Theorem

Outline: The function

f(z) =log(1+2), |2/ <1,

has the derivative

1 ° o
fl(z) = e d (1) for [z <1
§=0
and the power series representation

oo .
=1 in
z)=log(l+2z2) = : 2t

f(2) =loglL+2) =3 7

§=0
holds for |z| < 1. What happens for z = 1?7 Does the equation

(

—1)J
Jj+1

log(1+1) =In2=">)_ (21.1)
§=0

hold? The answer is yes. Convergence of the above series holds since the series is alternating and
the terms p; = ]ﬁ converge to zero monotonically. The equation (21.1) then follows from Abel’s
Continuity Theorem and the continuity of the function f(z) = log(1+ 2) at z = 1.

21.1 Alternating Series and Examples

Theorem 21.1 (Convergence of Alternating Series) Let p; € R with p; > pjy1 > 0 for all j =
0,1,2,... and p; — 0 as j — oo. Then the alternating series

> (—1)p
=0

J

converges.
Proof: Set
n
Sn:=) (=1Vpj=po—p1+p2—...+(=1)"pn .
=0
We have
Son = po—p1+...+Dwm
Sont1 = Son — Panti
thus
S2n+1 < Sgn for n= 0, 1, 2, R

Also,
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Sont+2 = Sop — Pant1 + Dant2 < Sop
Sonyz = Sont1 + P2nt2 — P2nt3 = Sontl

Therefore,

Sont1 < Sonyg < Sopge < S forall n.

Convergence

Son — ST, Sopgy1 = S”
follows. Since
—pon+1 = Sont1 — Son, = 0

one obtains that ST =5~ =: S and

n

Sp=Y (~1)Yp; =+ S as n— 0.
j=0
o
Example 1: Let f(z) =In(1 + z) for x > —1. We have for -1 < z < 1:
1 o
fl@) = = D1
7=0
00 4
=D in
f@) = Y 5
= Jj+1
Therefore,
00 .
—1)
log(1+2) = Z (=1) AT for |zl <1

By Theorem 21.1 the series

j=0
converges for x = 1. By Abel’s Continuity Theorem (Theorem 21.2) and continuity of the function
In(1+z) at x = 1 it follows that

. 4
—1)J 1 1

Z. )121—2+3—...:ln2.

=0T

—~

Example 2: Let f(z) = arctanz for x € R. We have for —1 <z < 1:
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f(x) = arctanz

@) = = Y1
j=0
_ — (_1)] 27+1
CIED

Therefore,

o (=1
arctan z = AR <1.
Z 2511 z or |z|
7=0
(Note that the radius of convergence of the above series cannot be larger than 1 since the function
fl(z) = H% is singular at z = i.)
By Theorem 21.1 the series

o (CD o
2j+ 1

=]

j:
converges for x = 1. By Abel’s Continuity Theorem and continuity of the function f(z) = arctan z
at x = 1 it follows that

(=1)

M8

57 1:arctanl.
0T
Since tan(7/4) = 1 we have arctan 1 = /4, thus
s .
—1)/ 1 1
Z;, )1:1_3+5_...=Z.
izt

21.2 Abel’s Theorem
Theorem 21.2 (Abel’s Continuity Theorem) Assume that the power series

f(z) =) a;
=0

has the radius of convergence R > 0, defining the function f € H(D(0,R)). Also assume that the
series

oo

I
E :ayzo
j=0

converges for some zy with |zo| = R. Set
0 .
flz0) =Y a7 .
5=0
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Let A, B € D(0, R) denote two distinct points and let A denote the closed triangle with vertices
A, B, 20-
Abel’s continuity theorem states that

fec() .

Proof: Using simple transformations, it is not difficult to show that it suffices to prove the theorem
under the following special assumptions:

R=1, z=1, f(1)=0.
Also, for the points A, B defining A we may assume that
A=a+ib, B=a—ib, 0<ab<l, a®>+b<1.
For § > 0 set
AgZ{ZEA : 0<]1—z]<5}.
We will prove that for every € > 0 there exists 6 > 0 with

|f(2)] <e forall zeAs.

It then follows that f € C(A).
Set

Sy=ag+ar+...+a,,

thus

ag = S0, aj; = 85 — 85—-1 for j:1,2,...

Recall that, by assumption, s, — 0 = f(1) as v — oo. First let z € D(0,1) be arbitrary. We have

n
Z a;zl = so+(s1—50)z+ (s2—51)2% + ...+ (5p — Sn—1)2"
j=0

= sog(l—2)+s1(z—2) +... 45, 1(z" ¢

= (1-2) (50 + 8124+ ...+ sn,lzn_1> + 52"

—2") + sp2"

Therefore,

oo
f)=(1=2)) 82, |z <1.
§=0
Let n > 0 be arbitrary. (Below we will make a proper choice for 7.) Choose N = N(n) so that

|sj\<g for 7> N.

The existence of N = N(n) follows from the assumption that
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0 = f(1)

[eS)
n=0
J
= lim Zan
j—o00

n=0
= lim s;
j—0o0

Using that |sj| < n/2 for j > N one obtains the following estimates for |z| < 1:

N [e%s)
f(2)] < |1—Z|Z!szj|+5|1—2| pOEL
=0 j=N+1
n|l—z|
< |1—=-zIM =
where
N(n)
M) =Y sl
=0

So far we have only used the estimate |z| < 1 for z.
If z € As then |1 — 2| < 6 and we obtain the estimate

n|1—z|
[f() < 6Mn) + 5 . (21.2)
It remains to bound the quotient
1—=2
Q(z) = |1—\z: for ze Aj.

Auxiliary Estimate: Let 0 < ag < § denote the angle at the point 29 = 1 between the
straight line from 1 to 0 and the straight line from 1 to A = a + bi.

Let z € A,z # 1, and denote the angle at 1 between the straight line from 1 to 0 and the
straight line from 1 to z by a. We have

la] < ap, cosa >cosag=:cy>0.

Consider the triangle with vertices 0,1 and z. Setting

r=I1-z, d=d(r)=|z|

we have by the cosine theorem of trigonometry

d®=1+4+7r>—2rcosa .

We will show the bound
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|1 — z| B r
1— 7| - 1—d(r)
for some constant C' > 0. We have

d(r)=+1+12—2rc where c=cosa>c¢y>0.

The bound (21.3) is equivalent to (with d = d(r)):

<C for zeA (21.3)

r < C-0Cd
cd < C-—r
C?*(1+r*—2cr) < C?—2Cr+1r*
C*2 +20r < 1%+ 2erC?

Clearly, since r > 0, the last estimate is equivalent to

C?r +2C < r+42cC? . (21.4)

We may restrict r to the interval

0<r<cy=cosaqa .

Since ¢ = cos a > cos g = ¢ the estimate (21.4) holds if

C?co+ 20 < 2¢9C? .

Equivalently,
20 < ¢oC?
ie.,
c>2.
o

Thus we have proved the bound

1— 2

Qz) = -2 < — with ¢p=cosag>0
11—z = «o

for all

z€A with [1-z2|=r<c.

Using the estimate (21.2) we have shown: If n > 0 and 0 < § < ¢ are chosen, then the following
bound holds:

2
|f(2)|§5M(77)+g-— for z€ Ag.
Co

If ¢ > 0 is given, then choose n > 0 so that n/cy < £/2. Then choose 0 < & < ¢y so that
dM(n) < €/2. Obtain that

|f(z)] <e for zeAj.
This complete the proof of Abel’s theorem. ¢
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22  Quals

Jan. 2022, problem 4
Let f € H(C\ {0}. Assume that

f(n)=(=1)" for n=1,2,...

Prove that inf,.q|f(2)| = 0.
Proof: Let

f(z) = Z a0 for z#0

j==o0

denote the Laurent series of f(z).
a) Assume that f(z) has an essential singularity at z = 0. By Casorati-Weierstrass we have

infz;éo ‘f(z)‘ =0.
b) Assume that

9(2) = f(1/z), z#0,

has an essential singularity at z = 0. Again, by Casorati-Weierstrass we have inf,q |f(2)| = 0.
c¢) If neither a) nor b) apply then

K
f(z):Zasz, GK#O,
i=J

where J and K are finite.
If K > 0 then |f(2)] = oo as |z] = co. If K =0 then f(z) = ax as |z|] = oco. If K < 0 then
f(z) = 0 as |z| = oco. In all three cases the assumption

fn)=(-1)" for n=1,2,...

is violated.
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23 Supplements

23.1 Euler’s Solution of the Basel Problem (1734)

)

Consider the function

The zeros of f are the numbers

Therefore,

o = (1-90+2)0-3)0+5)
- (-3)(-5m)
= 1—'22(1+212+312 )+(’)(z4)

One obtains that

thus

Infinite products were considered about 100 years later by Weierstrass.

23.2 Application of 1/((2)

Let m,n € N be random numbers. We claim that

1
probability (g.c.d.(m7 n) = 1) = @ — % )
The product formula for the zeta—functions yields that
1 1
— =10 <1——) for Res>1,
C(s) P\ pe

thus

1 1
=T (1- )
¢2) PV p?
If n € N is a random numer and p is prime then the probability that p divides n equals %. If

m,n € N are random then the probability that p divides both, m and n, equals #.
The probability that p does not divide both numbers, m and n, equals
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1
1-—.

If p and ¢ are distinct prime numbers then the probability that neither p nor ¢ divides both number,
m and n, equals

It follows that
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