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1 The Field C of Complex Numbers; Some Simple Concepts

Summary: The set of all complex numbers z = x+iy forms a commutative field, denoted by C, were
addition and multiplication are defined. The mapping of complex conjugation, z = x + iy → z̄ =
z− iy, commutes with addition and multiplication. With the distance function d(z1, z2) = |z1− z2|
the set C becomes a complete metric space.

Important analytical concepts are convergence of sequences zn and series
∑∞

j=0 aj ; continuity
and complex differentiability of functions f : U → C where U denotes an open subset of C.

1.1 The Field C of Complex Numbers and the Euclidean Plane

Let

R2 = {(x, y) : x, y ∈ R}
denote the Euclidean plane, consisting of all ordered pairs of real numbers x, y. One defines addition
in R2 by

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2) .

It is remarkable that one can define multiplication in R2 which, together with the above addition,
turns R2 into a commutative field.

To motivate the definition of multiplication, let us identify the pair (x, 0) with x ∈ R and set
(0, 1) =: i. Then

(x, y) = (x, 0) + (0, y) = x+ iy .

If one now postulates that i2 = −1 and also postulates distributive laws, one obtains

(x1, y1) · (x2, y2) = (x1 + iy1) · (x2 + iy2)

= x1x2 − y1y2 + i(y1x2 + x1y2)

= (x1x2 − y1y2, y1x2 + x1y2)

This motivates to define multiplication in R2 by

(x1, y1) · (x2, y2) = (x1x2 − y1y2, y1x2 + x1y2) .

It is tedious, but not difficult to prove:

Theorem 1.1 The set R2, together with addition and multiplication defined above, is a commuta-
tive field.

Partial Proof: The zero–element in R2 is (0, 0) = 0 and the one–element is (1, 0) = 1. We
want to check that every element (x, y) 6= (0, 0) has a multiplicative inverse. Motivation for the
formula for the inverse: Let

z = (x, y) = x+ iy .

Then we have
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1

z
=

1

x+ iy
=

x− iy
(x+ iy)(x− iy)

=
x− iy
x2 + y2

.

This motivates to set

(a, b) =
( x

x2 + y2
,
−y

x2 + y2

)
.

Then we calculate

(x, y) · (a, b) =
( x2

x2 + y2
− y(−y)

x2 + y2
,

yx

x2 + y2
+

x(−y)

x2 + y2

)
= (1, 0)

= 1

This shows that (a, b) is indeed a multiplicative inverse of (x, y).
It is, of course, also important to check that

i2 = i · i
= (0, 1) · (0, 1)

= (−1, 0)

= −1

As usual, we will identify (x, 0) with x ∈ R and write i = (0, 1),

(x, y) = x+ iy .

With these notations and the above definitions of addition and multiplication, one writes C for
R2. It is convenient to think of R as a subfield of C, i.e. R ⊂ C.

0 Re z

Im z

(x, y) ∼ x+ iy

Figure 1.1: Identification of R2 and C

Summary: The Euclidean plane R2 and the field of complex numbers C can be identified via the
mapping

R2 ←→ C, (x, y)←→ z = x+ iy .

Addition and multiplication in C are defined by
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(x1 + iy1) + (x2 + iy2) = x1 + x2 + i(y1 + y2)

(x1 + iy1)(x2 + iy2) = x1x2 − y1y2 + i(x1y2 + x2y1)

1.2 Some Simple Concepts

Complex Conjugation. If z = x + iy with real x, y, then z̄ = x − iy is called the complex
conjugate of z. One easily checks the rules:

z1 + z2 = z̄1 + z̄2

and
z1z2 = z̄1z̄2 .

Furthermore, z = z̄ if and only if z is real.

Re z

Im z

z = x+ iy

0

z̄ = x− iy

|z|

Figure 1.2: The complex conjugate

Exercise: Prove: If z 6= 0 then (1/z) = 1/z̄.

A simple consequence of the rules for taking complex conjugates is the following:

Lemma 1.1 Let p(z) = a0 + a1z + . . . + akz
k be a polynomial with real coefficients, aj ∈ R. If

p(z0) = 0 for some z0 ∈ C, then p(z̄0) = 0. In other words, the non–real roots of a polynomial with
real coefficients come in pairs of complex conjugate numbers. Further implication: The non–real
eigenvalues of a real matrix A ∈ Rn×n come in complex conjugate pairs.

Absolute Value. If z = x+ iy with real x, y, then

|z| =
√
x2 + y2

is the Euclidean distance of z from 0. We have the triangle inequality,

|z + w| ≤ |z|+ |w| ,
and the multiplication rule:
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|zw| = |z||w| .
Distance of Two Complex Numbers and Convergence of Sequences. If z1, z2 ∈ C are

two complex numbers then their Euclidean distance is

|z1 − z2| .
This distance concept leads, as usual, to a concept of convergence for sequences: If zn is a sequence
in C and z ∈ C, then zn converges to z (for short: zn → z) if and only if for all ε > 0 there exists
N ∈ N with

|zn − z| < ε for n ≥ N .

A sequence zn of complex numbers is called a Cauchy sequence in C if for all ε > 0 there exists
N ∈ N so that |zm − zn| < ε for m,n ≥ N . It is easy to check that every convergent sequence is
a Cauchy sequence. An important result of analysis says that every Cauchy sequence in C has a
limit in C. In other words, the metric space C with distance d(z1, z2) = |z1 − z2| is complete.

A Result from Real Analysis: Let αn ∈ R denote a sequence of real numbers. Assume that
there exists γ ∈ R so that

γ ≤ αn+1 ≤ αn for all n ∈ N .

Then the sequence αn converges to some α ≥ γ.
To prove this result one uses that the sequence αn is a Cauchy sequence in R.

Lemma 1.2 Let z ∈ C, |z| < 1. Then zn → 0 as n→∞.

Proof: If αn := |zn| = |z|n then

0 ≤ αn+1 ≤ αn for all n .

Convergence |zn| = |z|n → α ≥ 0 follows. We have to show that α = 0 and may assume that
0 < |z| < 1. We have

|z|n+1 = |z||z|n .
Convergence |z|n → α implies that

α = |z|α .
Therefore, α = 0. �

Convergence of Series. Similar as in real analysis, we will consider series, which are expres-
sions of the form

∞∑
j=0

aj

where aj ∈ C. The sequence
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sn =
n∑
j=0

aj

is the corresponding sequence of partial sums. The series
∑∞

j=0 aj is called convergent if the
sequence sn of partial sums converges. If sn → s then one writes

∞∑
j=0

aj = s .

In other words, the symbol
∑

j aj may denote just an expression, but it also may denote the complex
number

lim
n→∞

n∑
j=0

aj .

This double meaning of
∑

j aj , though sometimes confusing, turns out to be very convenient.
The series

∑
j aj is called absolutely convergent if the series

∑
j |aj | converges.

Exercise: Prove: If the series
∑

j |aj | converges, then the series
∑

j aj also converges, i.e., absolute
convergence implies convergence. (The proof uses completeness of C.)

If the series
∑

j aj is convergent, but not absolutely convergent, then one calls it conditionally
convergent. The standard example of a conditionally convergent series is

∞∑
j=1

(−1)j+1 1

j
= 1− 1

2
+

1

3
− 1

4
+ . . .

In the theory of complex variables one typically works with absolutely convergent series.

Example 1.1: The Geometric Series: Consider the series

∞∑
j=0

zj for |z| < 1 .

We have

(1 + z + . . .+ zn)(1− z) = 1− zn+1 ,

thus

1 + z + . . .+ zn =
1− zn+1

1− z for z 6= 1 .

Since zn+1 → 0 for |z| < 1 one obtains that

∞∑
j=0

zj =
1

1− z for |z| < 1 .

Since the series

∞∑
j=0

|zj |

10



converges, the convergence of the geometric series is absolute.

Two simple results on convergent series are the comparison and the quotient criteria.

Theorem 1.2 (Comparison Criterion) Assume that |aj | ≤ |bj | for all j. If
∑

j |bj | converges, then∑
j |aj | converges, too.

This result follows, essentially, from the convergence of Cauchy sequences in R.

Theorem 1.3 (Quotient Criterion) Assume that there exists J ∈ N and 0 ≤ q < 1 so that∣∣∣aj+1

aj

∣∣∣ ≤ q < 1 for j ≥ J .

Then the series
∑

j aj converges absolutely.

Proof: The proof uses convergence of the geometric series,

∞∑
j=0

qj =
1

1− q , |q| < 1 ,

and the Comparison Criterion: For k ≥ 0 we have

|aJ+k| ≤ qk|aJ | .
Therefore,

n∑
k=0

|aJ+k| ≤ |aJ |
n∑
k=0

qk ≤ |aJ |
1

1− q .

This implies that the series

∞∑
k=0

|aJ+k|

converges. �
Example 1.2: The Quotient Criterion can be used to prove absolute convergence of the series

defining the exponential function,

exp(z) =
∞∑
j=0

zj

j!
, z ∈ C .

In this case, aj = zj/j! and

|aj+1/aj | = |z|/(j + 1) ≤ 1

2
for j + 1 ≥ 2|z| .

Pointwise and Uniform Convergence Let U ⊂ C and let sn : U → C denote a sequence of
functions, sn = sn(z). Let s : U → C denote a function. The sequence of functions sn(z) converges
pointwise on U to the function s(z) if for all z ∈ U and all ε > 0 there exists N(ε, z) with

|sn(z)− s(z)| ≤ ε for n ≥ N(ε, z) .

11



The sequence of functions sn(z) converges uniformly on U to the function s(z) if for all ε > 0
there exists N(ε) with

|sn(z)− s(z)| ≤ ε for n ≥ N(ε) for all z ∈ U .

The concepts of pointwise and uniform convergence are often used for series. Let fj : U → C
denote a sequence of functions and let f : U → C denote a function. Then the series

∞∑
j=0

fj(z)

converges pointwise on U to f(z) if for all z ∈ U and all ε > 0 there exists N(ε, z) with

|
n∑
j=0

fj(z)− f(z)| ≤ ε for n ≥ N(ε, z) .

The series
∑∞

j=0 fj(z) converges uniformly on U to f(z) if for all ε > 0 there exists N(ε) with

|
n∑
j=0

fj(z)− f(z)| ≤ ε for n ≥ N(ε) for all z ∈ U .

Example: Let 0 ≤ r < 1. We claim that

∞∑
j=0

zj =
1

1− z

where the convergence is uniform for |z| ≤ r. This follows from∣∣∣ n∑
j=0

zj − 1

1− z
∣∣∣ =
|z|n+1

|1− z| ≤
rn+1

1− r for |z| ≤ r < 1 .

We claim that

∞∑
j=0

zj =
1

1− z

does not hold with uniform convergence for |z| < 1.

Proof: Consider z = x for 0 ≤ x < 1. We have∣∣∣ n∑
j=0

xj − 1

1− x
∣∣∣ =

xn+1

1− x for 0 ≤ x < 1 .

Here, for every n ∈ N,

xn+1

1− x →∞ as x→ 1− .

Therefore, if ε = 1 for example, then n with∣∣∣ n∑
j=0

xj − 1

1− x
∣∣∣ ≤ ε = 1 for 0 ≤ x < 1

12



does not exist. �
Example: The series which defines the exponential function,

∞∑
j=0

zj

j!
= exp(z) ,

converges pointwise in C, but not uniformly on C. If 0 < r < ∞ is fixed, then the convergence is
uniform for all z ∈ C with |z| ≤ r.

Continuity of a Function: Let U ⊂ C and let f : U → C denote a function. Let z0 ∈ U .
The function f is called continuous at z0 if for all ε > 0 there is δ > 0 so that

|f(z0)− f(z)| < ε

for all z ∈ U with |z0 − z| < δ.

1.3 Complex Differentiability

Notation and Definitions: Let z0 ∈ C and let r > 0. The set

D(z0, r) = {z ∈ C : |z0 − z| < r}
is the open disk of radius r centered at z0.

A set U ⊂ C is called open if for every z0 ∈ U there exists ε > 0 with D(z0, ε) ⊂ U . (Show that
the set D(z0, r) is open.)

A set V ⊂ C is called closed if the following holds: If zn is a sequence in V which converges,

zn → z as n→∞ ,

then the limit z is an element of the set V , i.e, zn ∈ V and zn → z implies z ∈ V .
It is not difficult to prove that a set V ⊂ C is closed if and only if its complement, V c = C \ V ,

is open.
An important concept of complex variables is complex differentiability of a function. Here the

field structure of C is used in an essential way since in the formula (1.1) below division by the
complex number h occurs.

Definition 1.1: Let U ⊂ C be an open set and let f : U → C be a function. Let z0 ∈ U . The
function f is called complex differentiable at z0 if

lim
h→0

1

h
(f(z0 + h)− f(z0)) (1.1)

exists.1 If the limit exists, it is denoted by

f ′(z0) =
df

dz
(z0) .

The number f ′(z0) is called the complex derivative of f at z0. The function f : U → C is called
complex differentiable in U if it is complex differentiable at every point z0 in U . We then write
f ∈ H(U) and call f a holomorphic function in U .

1The limit exists and equals the complex number a if for every ε > 0 there exists δ > 0 so that | 1
h

(f(z0 + h) −
f(z0))− a| < ε for all complex numbers h with 0 < |h| < δ.
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Example 1.3: Let U = C and let f(z) = zn where n is a positive integer. We have

f(z + h)− f(z) = (z + h)n − zn

=
(
zn + nhzn−1 +R(h)

)
−zn

= nhzn−1 +R(h)

where |R(h)| ≤ C|h|2 for |h| ≤ 1. It follows that

lim
h→0

1

h
(f(z + h)− f(z)) = nzn−1 ,

thus the function f(z) = zn is complex differentiable with derivative

(zn)′ = nzn−1 .

Example 1.4 The function f(z) = x where z = x + iy with real x, y is nowhere complex
differentiable. To show this, take first h = h1, h1 ∈ R, h1 6= 0 and obtain

1

h
(f(z + h)− f(z)) =

h1

h1
= 1 .

Second, let h = ih2, h2 ∈ R, h2 6= 0. In this case

1

h
(f(z + h)− f(z)) =

0

ih2
= 0 .

Therefore, the limit

lim
h→0

1

h
(f(z + h)− f(z))

does not exist.

The theory of complex variables is the study of functions f : U → C where U ⊂ C is an open
set and where f is complex differentiable in U .

Any complex function f : U → C can be written as

f(z) = u(x, y) + iv(x, y) with z = x+ iy

where u(x, y) and v(x, y) are real valued. It is important to understand the relation between
complex differentiability of f and real differentiability of the functions u(x, y) and v(x, y). As
Example 1.3 shows, complex differentiability is more than just smoothness of the functions u(x, y)
and v(x, y).

Roughly speaking, differentiation corresponds to approximation by a linear map. We can con-
sider R2 ' C as a 2–dimensional real vector space or as a 1–dimensional complex vector space.
If we have a map

L : R2 ' C→ R2 ' C

we then must distinguish between real and complex linearity of L. This distinction is of an algebraic
nature.

Therefore, as we will explain in Chapter 3, the difference between real and complex differen-
tiability is of an algebraic nature. The main issue is addressed by the following question: Which
real–linear maps L : R2 → R2 correspond to complex–linear maps from C to C?
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1.4 Alternating Series

The following result is often useful to show convergence of real series whose terms have alternating
signs.

Theorem 1.4 Let an, n = 0, 1, . . . denote a monotonically decreasing sequence of positive real
numbers converging to zero,

a0 ≥ a1 . . . ≥ an ≥ an+1 ≥ . . . > 0, an → 0 .

The series

∞∑
j=0

(−1)jaj

converges.

Proof: Consider the partial sums

An =
n∑
j=0

(−1)jaj .

We have

A0 = a0

A2 = a0 − (a1 − a2)

≤ A0

A4 = A2 − (a3 − a4)

≤ A2

A2n+2 = A2n − (a2n+1 − a2n+2)

≤ A2n

and, similarly,

A1 = a0 − a1

A3 = a0 − a1 + (a2 − a3)

≥ A1

A2n+1 = A2n−1 + (a2n − a2n+1)

≥ A2n−1

We also have that

A2n+1 = A2n − a2n+1 ≤ A2n .

Therefore,

A1 ≤ A3 ≤ A5 ≤ . . . ≤ A4 ≤ A2 ≤ A0 .
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It follows that the limits

lim
n→∞

A2n+1 = A and lim
n→∞

A2n = B

exist. Furthermore, the assumption an → 0 implies that A = B. Convergence

An → A = B

follows. �

1.5 History

Euclid (Mid 4th century BC – Mid 3rd century BC), Greek

Franciscus Vieta (Francois Viète) (1540–1603), French

Jacob Bernoulli (1655–1705), Swiss
Jacob Ricatti (1676–1754), from Venice

Leonhard Euler (1701–1783), Swiss
Augustine–Jean Fresnel (1788–1827), French
Augustin–Louis Cauchy (1789–1857), French

Niels Henrik Abel (1802–1829), Norwegian
Joseph Liouville (1809–1882), French
Karl Theodor Wilhelm Weierstrass (1815–1897), German
Arthur Cayley (1821–1895), British
Charles Hermite (1822–1901), French
Bernhard Riemann (1826–1866), German
Felice Casorati (1835–1890), Italian
Edouard Goursat (1858–1936), French
Giacinto Morera (1856–1909), Italian
Émile Picard (1856–1941), French
Jacques Hadamard (1865–1963), French

Laurent Schwarz (1915–2002), French
Roger Apéry (1916–1994), French

In 1978 Apéry proved that the number ζ(3) is irrational.
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2 The Cauchy Product of Two Series: Proof of the Addition The-
orem for the Exponential Function

Summary: The Cauchy product of two series will be introduced and will be used to prove the
Addition Theorem for the exponential function,

exp(a+ b) = exp(a) exp(b), a, b ∈ C ,

where

exp(z) =

∞∑
j=0

zj

j!
, z ∈ C .

The exponential function maps the open strip

Sπ = {z = x+ iy : x ∈ R,−π < y < π}
bijectively onto the slit plane

C− = C \ (−∞, 0]

and, by definition, the inverse function from C− onto Sπ is the main branch of the complex loga-
rithm, which we denote by logw. We have

log(exp(z)) = z for all z ∈ Sπ
and

exp(log(w)) = w for all w ∈ C− .

2.1 The Cauchy Product of Two Series

Let

∞∑
j=0

aj and
∞∑
j=0

bj (2.1)

denote two series of complex numbers. Proceeding formally, we obtain for their product

(a0 + a1 + a2 + . . .) · (b0 + b1 + b2 + . . .) = a0b0 + a0b1 + a0b2 + . . .

+a1b0 + a1b1 + a1b2 + . . .

+a2b0 + a2b1 + a2b2 + . . .

+ . . .

= c0 + c1 + c2 + . . .

with

c0 = a0b0, c1 = a0b1 + a1b0, c2 = a0b2 + a1b1 + a2b0, etc.

In general, set
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cn = a0bn + a1bn−1 + . . .+ anb0 =
n∑
j=0

ajbn−j . (2.2)

Then the series

∞∑
n=0

cn

is called the Cauchy product of the two series (2.1).

Theorem 2.1 a) Assume that both series (2.1) converge, and at least one of them converges ab-
solutely. Then their Cauchy product also converges, and for the values of the series we have

( ∞∑
j=0

aj

)
·
( ∞∑
j=0

bj

)
=

∞∑
n=0

cn . (2.3)

b) If both series (2.1) converge absolutely, then their Cauchy product also converges absolutely.

Proof: a) Let

An :=
n∑
j=0

aj → A

Bn :=

n∑
j=0

bj → B

Cn :=

n∑
j=0

cj

We must show that Cn → AB if at least one of the series (2.1) converges absolutely.
Assume that

∑
aj converges absolutely and let

α :=
∞∑
j=0

|aj | .

Set

βn := Bn −B = −
∞∑

k=n+1

bk .

Then we have Bn = B + βn. Since βn → 0 as n→∞ there exists a constant βmax > 0 with

|βn| ≤ βmax for all n .

We now rewrite Cn:

Cn = a0b0 + (a0b1 + a1b0) + . . .+ (a0bn + . . .+ anb0)

= a0Bn + a1Bn−1 + . . .+ anB0

= a0(B + βn) + a1(B + βn−1) + . . .+ an(B + β0)

= AnB + γn
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with

γn = a0βn + a1βn−1 + . . .+ anβ0 =
n∑
j=0

ajβn−j .

Since An → A we have to show that γn → 0.
Let ε > 0 be given. Since βn → 0 there exists N = N1(ε) with

|βn| ≤ ε for all n ≥ N + 1 . (2.4)

In the following, N is fixed with (2.4). Using the absolute convergence of the series
∑

j aj and
α =

∑∞
j=1 |aj | we have for all n ≥ N :

|γn| ≤ |β0an|+ . . .+ |βNan−N |+ |βN+1an−N−1|+ . . .+ |βna0|
≤ |β0an|+ . . .+ |βNan−N |+ εα

≤ βmax

(
|an|+ . . .+ |an−N |

)
+ εα

Here the bracket contains N + 1 terms. Since an → 0 there exists N2(ε) = N2(ε,N) so that

|an| ≤
ε

N + 1
, . . . , |an−N | ≤

ε

N + 1

for n ≥ N2(ε). It follows that

|γn| ≤ ε(βmax + α) for n ≥ N2(ε) .

Here the constants βmax and α are independent of ε, and ε > 0 is arbitrary. This proves that
γn → 0.

b) Assume that both series (2.1) converge absolutely. We have

|cn| ≤ |a0||bn|+ . . .+ |an||b0| =: dn .

Here
∑
dn is the Cauchy product of the series

∑ |aj | and
∑ |bj |. By part a), the series

∑
dn

converges and, therefore,
∑ |cn| also converges. �

Remark: Assume that both series (2.1) converge, but none of them converges absolutely. Can
one still conclude that the Cauchy product of the two series converges? The answer is No, in

general. To give an example, let aj = bj = (−1)j√
j+1

for j = 0, 1, . . . Then, by Theorem 1.4, the series

(2.1) converge, but the convergence is not absolute. Here the general term of the Cauchy product
is

cn = (−1)n
n∑
j=0

1√
j + 1

√
n+ 1− j

and

1√
j + 1

√
n+ 1− j ≥

1√
n+ 1

√
n+ 1

=
1

n+ 1
, 0 ≤ j ≤ n .

It follows that |cn| ≥ 1; the Cauchy product of
∑
aj and

∑
bj diverges.

19



2.2 The Addition Theorem for the Exponential Function

For all z ∈ C the series

exp(z) :=

∞∑
j=0

zj

j!

converges absolutely by the quotient criterion (Theorem 1.3). We use the previous theorem to
prove the fundamental Addition Theorem for the exponential function.

Theorem 2.2
exp(a+ b) = exp(a) exp(b) for all a, b ∈ C . (2.5)

Proof: Note that

exp(a) =
∞∑
j=0

aj with aj =
aj

j!

and

exp(b) =
∞∑
j=0

bj with bj =
bj

j!
.

If
∑∞

n=0 cn denotes the Cauchy product of the series exp(a) and exp(b) then

cn =

n∑
j=0

aj

j!

bn−j

(n− j)! .

Also,

exp(a+ b) =

∞∑
n=0

1

n!
(a+ b)n

where

(a+ b)n =
n∑
j=0

(
n
j

)
aj bn−j with

(
n
j

)
=

n!

j!(n− j)! .

It follows that

1

n!
(a+ b)n =

n∑
j=0

aj

j!

bn−j

(n− j)! = cn .

Therefore,

exp(a+ b) =
∞∑
n=0

( n∑
j=0

1

j!
aj

1

(n− j)! b
n−j
)
.

This is precisely the Cauchy product of the series for exp(a) and exp(b). The claim follows from
Theorem 2.1. �
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Let us give a second proof of the Addition Theorem. It uses tools, however, which we will only
justify later. The function

f(z) =
∞∑
j=0

zj

j!

is entire and f ′(z) = f(z), f(0) = 1. Fix a ∈ C and consider the function g(z) = f(a + z). Then
g′(z) = g(z) and g(0) = f(a). The function h(z) = f(a)f(z) also satisfies h′(z) = h(z), h(0) = f(a).
Therefore, the functions g(z) and h(z) are both solutions of the initial–value problem

u′(z) = u(z), u(0) = f(a) .

Uniqueness of the solution of this initial–value problem implies that g(z) = h(z), i.e., f(a + z) =
f(a)f(z).

2.3 Powers of e

2.3.1 Integer Powers

One sets

e := exp(1) =
∞∑
j=0

1

j!
= 2.71828 18284 59046 . . . ,

a notation due to Euler.2 Then, by (2.5),

exp(2) = exp(1) exp(1) = e · e = e2

exp(3) = exp(1) exp(2) = e · e2 = e3

etc.
Also, since

exp(1) exp(−1) = exp(0) = 1 ,

we obtain

exp(−1) =
1

e
= e−1 .

In the same way as above,

exp(−2) = exp(−1) exp(−1) =
1

e

1

e
= e−2 .

etc. The arguments show that

exp(n) = en for all n ∈ Z

where, by definition,

2In 1873, Charles Hermite proved that the number e is transcendental; i.e., e is not a zero of any non–trivial
polynomial with integer coefficients.
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exp(n) =
∞∑
j=0

1

j!
nj

and where the standard definition of en is used.

2.3.2 Rational Powers

By definition,

α := e1/2 =
√
e

is the positive real number with α2 = e. If we set

β := exp(1/2)

then we have β > 0 and

β2 = exp(1/2) exp(1/2) = exp(1) = e .

Therefore, α = β, i.e.,

e1/2 = exp(1/2) .

More generally:

Lemma 2.1 Let q = m/n denote a positive rational number where m,n ∈ N. If

α := em/n = eq = n
√
em

denotes the positive n–th root of em, then

exp(q) = α .

In other words,

exp(q) = eq

for all positive rational numbers q = m/n.

Proof: Set β := exp(q). Then β > 0 and, using the addition theorem,

βn = exp(
m

n
) · . . . · exp(

m

n
) (n factors)

= exp(m)

= em

Also, αn = em and, therefore, αn = βn. Since α > 0 and β > 0 we conclude that α = β, i.e.,

n
√
em = em/n = exp(m/n) .

�
With similar arguments, it follows that the equation
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exp(q) = eq

also holds for negative rationals q. This justifies the standard notation

ez = exp(z), z ∈ C ,

where the exponential function is defined by the exponential series:

exp(z) =

∞∑
j=0

zj

j!
.

2.4 Euler’s Identity and Implications

Define

sin z =
∞∑
k=0

(−1)k

(2k + 1)!
z2k+1

cos z =

∞∑
k=0

(−1)k

(2k)!
z2k

For z = x ∈ R the above series are the Taylor series of the functions sinx and cosx, centered at
x0 = 0. The series converge absolutely for every z ∈ C. Using the definitions by the series, it is not
difficult to prove Euler’s identity,

Lemma 2.2
eiz = cos z + i sin z for all z ∈ C .

Proof: We have

eiz =
∞∑
j=0

(iz)j

j!

=
∞∑
k=0

(iz)2k

(2k)!
+
∞∑
k=0

(iz)2k+1

(2k + 1)!

=

∞∑
k=0

(−1)k
z2k

(2k)!
+ i

∞∑
k=0

(−1)k
z2k+1

(2k + 1)!

= cos z + i sin z

�

Lemma 2.3 For all z ∈ C:

cos2 z + sin2 z = 1 .
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Proof: We have

eiz = cos z + i sin z and e−iz = cos z − i sin z for all z ∈ C .

Therefore,

cos z =
1

2
(eiz + e−iz) ,

sin z =
1

2i
(eiz − e−iz) .

Using (2.5) one obtains that (eiz)2 = e2iz, thus

cos2 z + sin2 z =
1

4
(e2iz + 2 + e−2iz)− 1

4
(e2iz − 2 + e−2iz) = 1 .

�

Lemma 2.4 For all θ ∈ R:

|eiθ| = 1 .

Proof: By Euler’s identity:

eiθ = cos θ + i sin θ .

For real number θ, the values of cos θ and sin θ are real. Therefore,

|eiθ|2 = cos2 θ + sin2 θ = 1 .

�

2.5 The Polar Representation of a Complex Number

0 Re z

Im z

(x, y) ∼ z = reiθ

θ

r

Figure 2.1: Polar representation

Let z ∈ C, z 6= 0. Then ζ := z/|z| = x+ iy satisfies |ζ| = |z|/|z| = 1, thus

|ζ|2 = x2 + y2 = 1 .

From trigonometry (or calculus) we know the following result:

24



Lemma 2.5 Given any two real numbers x, y with x2 + y2 = 1 there is a unique real number θ
with −π < θ ≤ π and

x = cos θ, y = sin θ .

Remark: It is not at all obvious how to prove this result using the series representations of cos θ
and sin θ. In particular, one has to introduce the number π. One can define π/2 as the smallest
positive zero of the cosine–function. One can prove that the functions c(θ) = cos θ and s(θ) = sin θ
satisfy c′ = −s, s′ = c, thus c′′ + c = s′′ + s = 0. A proof of the lemma can be based on properties
of the solutions of the differential equation u′′ + u = 0.

Using the lemma we can write the number ζ = z/|z| = x+ iy in the form

ζ = x+ iy = cos θ + i sin θ = eiθ .

The representation

z = reiθ with r = |z| > 0, θ = arg(z) ∈ (−π, π] ,

is called the polar representation of z. It is very useful if one wants to visualize complex multipli-
cation geometrically since

z1 = r1e
iθ1 and z2 = r2e

iθ2

implies

z1z2 = r1r2e
i(θ1+θ2) .

Regarding the real exponential function x→ ex, we know from calculus:

Lemma 2.6 a) The function x→ ex defined for x ∈ R is strictly increasing and maps the real line
R onto the interval (0,∞) of positive real numbers.

b) If one defines the real logarithm by

ln r =

∫ r

1

ds

s
for r > 0

then

eln r = r for all r > 0

and

ln
(
ex
)

= x for all x ∈ R .

2.6 Further Properties of the Exponential Function

In the following, let z = x+ iy with real x, y. We want to understand the map

z → ez

from C into itself. We make the following observations:
1) ez 6= 0 for all z ∈ C. This follows from eze−z = e0 = 1.
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2) |ez| = |exeiy| = ex > 0 since |eiy| = 1.
3) For any fixed y ∈ R, the horizontal line

Hy = {z = x+ iy : x ∈ R}
is mapped to the half–line

ex(cos y + i sin y), 0 < ex <∞ .

4) For any fixed x ∈ R, the vertical line

Vx = {z = x+ iy : y ∈ R}
is mapped (infinitely often) to the circle of radius ex,

ex(cos y + i sin y), −∞ < y <∞ .

We note that the family of lines Hy is orthogonal to the family of lines Vx. Orthogonality also holds
for the corresponding image lines: The radial line

x→ ex(cos y + i sin y) (y fixed)

is orthogonal to the circular line

y → ex(cos y + i sin y) (x fixed) .

We will see below that this is not accidental, but preservation of angles holds generally for
holomorphic maps f(z) with f ′(z) 6= 0.

Roughly, the map

z → ez = exeiy

is oscillatory in y and has real exponential behavior in x. For x << −1, the complex number ez is
very small in absolute value; for x >> 1, the complex number ez is very large in absolute value.
This follows simply from

|ez| = ex .

2.7 The Main Branch of the Complex Logarithm

Consider the open horizontal strip

Sπ = {z = x+ iy : − π < y < π, x ∈ R}
and the slit plane

C− = C \ (−∞, 0] .

If z = x+ iy ∈ Sπ then −π < y < π, thus

ez = exeiy ∈ C− .

26



Re z

Im z

0

Figure 2.2: The slit plane C− = C \ (−∞, 0]

Lemma 2.7 The map

exp :

{
Sπ 7→ C−
z → ez

(2.6)

is one–to–one and onto.

Proof: a) Let z1 = x1 + iy1, z2 = x2 + iy2 ∈ Sπ and let ez1 = ez2 . It follows that ex1 = ex2

and eiy1 = eiy2 . Therefore, x1 = x2 is clear. The uniqueness statement of Lemma 2.5 yields that
y1 = y2. (Here it is important that we assume −π < yj < π for j = 1, 2.)

b) Let w = reiθ ∈ C− be given. Then we have r > 0 and may assume that −π < θ < π. Let
x = ln r and set z = x+ iθ. We have z ∈ Sπ and

ez = exeiθ = reiθ = w .

�
By definition, the inverse function of (2.6) is the main branch of the complex logarithm:

log :

{
C− 7→ Sπ
w → logw

(2.7)

with

exp(logw) = w for all w ∈ C− .

This log–function extends the real function

ln :

{
(0,∞) 7→ (−∞,∞)
r → ln r

(2.8)

from the positive real axis into the slit plane C−.
Given any w ∈ C−, write

w = reiθ with r > 0 and − π < θ < π .

Here the numbers r > 0 and θ with −π < θ < π are unique.
It holds that
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w = reiθ = eln reiθ = eln r+iθ ,

thus

logw = ln r + iθ .

If w = w1 + iw2 ∈ C− with w1, w2 ∈ R, then

r = (w2
1 + w2

2)1/2, θ = arctan(w2/w1) ,

thus

log(w1 + iw2) =
1

2
ln(w2

1 + w2
2) + i arctan(w2/w1) .

Here one has to choose the correct branch of arctan.

Example: Since eiπ/2 = i and iπ
2 ∈ Sπ we have

log i =
iπ

2
.

General Powers; Main Branch. Let b ∈ C and let a ∈ C−. One defines the main branch of
ab by

ab = eb log a .

Example: We have

eπi/2 = i ,

thus

log i = πi/2 .

Therefore,

ii = ei(πi/2)

= e−π/2

= 0.2078...

Somewhat surprisingly, the number ii is real. Euler discovered this result in 1746.

2.8 Remarks on the Multivalued Logarithm

If z ∈ Sπ and w = ez then w ∈ C− and

logw = z .

Here logw is defined above.
If n ∈ Z then

ez+2πin = ez = w .
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A possible view is to say that

logw = z + 2πin

where n can take on any integer value and then call log a multivalued function. However, this view
is not satisfying since it does not agree with the general notion of a function.

One can proceed as follows: Instead of defining w → logw as a multivalued function on C−
or on C \ {0} one introduces an appropriate Riemann surface S. On this surface the logarithm
function will become single valued.

To get an intuitive idea of the Riemann surface S, first consider the point w = −1 which lies
outside the slit plane C− = C \ (−∞, 0].

Set

wε = ei(π−ε) and w̃ε = ei(−π+ε) for 0 < ε << 1 .

Clearly,

wε → −1 and w̃ε → −1 as ε→ 0 .

Let log denote the main branch of the complex logarithm as defined above. We have

logwε = i(π − ε) and log w̃ε = i(−π + ε) .

Therefore,

logwε → iπ and log w̃ε → −iπ as ε→ 0 .

This shows that one cannot continue the function log from C− to C \ {0} as a continuous function.
Therefore, cut the set C\{0} along the line (−∞, 0) and then bend the part above the line upwards,
the part below the line downwards. Then extend the resulting surface appropriately. The function
w → logw can be extended continuously to the extended surface. The process can be repeated
an infinity of times. It leads to the Riemann surface for the function logw. On this surface the
function logw is single valued and smooth, except at w = 0. The point w = 0 is a so–called branch
point of the Riemann surface.
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3 Complex Differentiability and the Cauchy–Riemann Equations

3.1 Outline and Notations

We identify R2 and C using the correspondence

(x, y) ←→ z = x+ iy .

Let U ⊂ C denote an open set and let f : U → C be a map. We then define two real–valued
functions, u, v : U → R, by

f(x+ iy) = u(x, y) + iv(x, y) for z = x+ iy ∈ U .

Then the complex–valued map f : U → C corresponds to the map(
x
y

)
→
(
u(x, y)
v(x, y)

)
= F (x, y) (3.1)

from U ⊂ R2 into R2.
Loosely speaking, a map is differentiable at a point P if it can be approximated at P by a linear

map. In the present context, we must distinguish clearly between R–linearity and C–linearity.
Therefore, in the next section, we consider R–linear maps F : R2 → R2 and ask under what
assumptions an R–linear map F : R2 → R2 corresponds to a C–linear map f : C → C. The
condition is of an algebraic nature.

In Section 3.3 we will use this to discuss the relationship between real and complex differentia-
bility. Complex differentiability leads to the Cauchy–Riemann equations for the functions u(x, y)
and v(x, y).

3.2 R–Linear and C–Linear Maps from R2 ' C into Itself

If V is a vector space over a field K then a map f : V → V is called K–linear (or simply linear if
the field K is unambiguous) if

f(αv1 + βv2) = αf(v1) + βf(v2) for all v1, v2 ∈ V and for all α, β ∈ K .

The space R2 is a two–dimensional vector space over the field R. The general R–linear map
from R2 into itself has the form(

x
y

)
→
(
a b
c d

)(
x
y

)
=

(
ax+ by
cx+ dy

)
(3.2)

where a, b, c, d ∈ R.
The space C is a one–dimensional vector space over the field C and the general C–linear map

from C into itself has the form

z → wz =: f(z)

where w ∈ C.
Let w = α+ iβ and z = x+ iy where α, β, x and y are real. Then we have
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f(z) = wz

= (α+ iβ)(x+ iy)

= (αx− βy) + i(βx+ αy) .

The map z → f(z) = wz is a C–linear map from C into itself. We obtain that z → f(z) = wz
corresponds to the R–linear map (

x
y

)
→
(
α −β
β α

)(
x
y

)
. (3.3)

This is the map (3.2) with

a = d = α, −b = c = β .

In other words, an R–linear map (3.2) corresponds to a C–linear map iff

a = d and − b = c . (3.4)

If we write the R–linear map (3.2) in the form (3.1), then(
x
y

)
→
(
a b
c d

)(
x
y

)
=

(
u(x, y)
v(x, y)

)
(3.5)

and one obtains that

a = ux, b = uy, c = vx, d = vy .

The condition (3.4) becomes

ux = vy, −uy = vx .

In a more general setting, these are the Cauchy–Riemann equations. They require precisely that
the (real) Jacobian of the map (3.1) corresponds to a C–linear map.

To summarize:

Theorem 3.1 The R–linear map (3.2) corresponds to the C–linear map

z → (α+ iβ)z

if and only if

a = d = α, −b = c = β .

In other words, the R–linear map (3.2) corresponds to the C–linear map z → (α+ iβ)z if and only
if (

a b
c d

)
=

(
α −β
β α

)
.
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3.3 The Polar Representation of a Complex Number and the Corresponding
Matrix

This section can be skipped.
Let

w = α+ iβ = reiθ = r cos θ + ir sin θ, w 6= 0 .

The C–linear map z → wz corresponds to the R–linear map(
x
y

)
→
(
α −β
β α

)(
x
y

)
=: F (x, y) (3.6)

where

α = r cos θ and β = r sin θ .

Therefore, system matrix is(
α −β
β α

)
=
√
α2 + β2

(
cos θ − sin θ
sin θ cos θ

)
(3.7)

In terms of real variables, the complex map z → wz is the map of rotation by the angle θ,
counterclockwise, followed by stretching by the factor

r = |w| =
√
α2 + β2 .

Remark: The determinant of the matrix in (3.7) is

det F ′(x, y) = α2 + β2 = |w|2 = r2 .

The map z → wz stretches lengths by |w|. The determinant of the Jacobian matrix F ′(x, y)
describes the stretching of area, which is described by the factor |w|2 = r2.

3.4 Real and Complex Differentiability

In the following, ψ(h) denotes a function with ψ(h)→ 0 as h→ 0.
Let a < c < b be real numbers and let f : (a, b) → R be a real function. The function f is

real–differentiable at c if the limit

lim
h→0

1

h

(
f(c+ h)− f(c)

)
=: w (3.8)

exists. Equivalently, f is real differentiable at c if there exists w ∈ R with

f(c+ h) = f(c) + wh+ hψ(h) and lim
h→0

ψ(h) = 0 . (3.9)

If w ∈ R with (3.9) exists then w is unique since (3.9) implies (3.8). One writes w = f ′(c).

Let U ⊂ Rm be an open set and let f : U → Rn be a function. Let c ∈ U . The function f is
real–differentiable at the vector c if there exists a matrix A ∈ Rn×m with

f(c+ h) = f(c) +Ah+ ‖h‖ψ(h) and lim
h→0

ψ(h) = 0 . (3.10)
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If a matrix A ∈ Rm×n with (3.10) exists, then it is unique and one write A = f ′(c). This matrix
is called the Jacobian of f at the point c.

The entries of A agree with the partial derivatives of the components of f ,

ajk =
∂fj
∂xk

(c) .

Let U ⊂ C be an open set and let f : U → C be a function. Let z0 ∈ U . Then f is complex
differentiable at z0 if the limit

lim
h→0

1

h

(
f(z0 + h)− f(z0)

)
=: w (3.11)

exists. Equivalently, f is complex differentiable at z0 if there exists w ∈ C with

f(z0 + h) = f(z0) + wh+ hψ(h) and lim
h→0

ψ(h) = 0 . (3.12)

If w ∈ C with (3.12) exists then w is unique since (3.12) implies (3.11). One writes w = f ′(z0).

A function f : U → C which is complex differentiable at every point z ∈ C is called a holomor-
phic function on U . We then write f ∈ H(U). A function which is holomorphic on U = C is called
an entire function.

Example 1: Let n ∈ N. We claim that f(z) = zn is complex differentiable with f ′(z) = nzn−1.

Proof: Use the binomial formula

(a+ b)n =
n∑
j=0

(
n
j

)
an−jbj

with (
n
j

)
=

n!

j!(n− j)!
to obtain that

f(z + h)− f(z) = (z + h)n − zn = nzn−1h+O(h2) .

Therefore,

lim
h→0

1

h

(
f(z + h)− f(z)

)
= nzn−1 .

Example 2: We claim that f(z) = z̄ is not complex differentiable at any point z ∈ C.

Proof: For any z, h ∈ C we have

f(z + h)− f(z) = z̄ + h̄− z̄ = h̄ .

Therefore, for h 6= 0:

1

h
(f(z + h)− f(z)) =

h̄

h
.

If h = h1 ∈ R, h1 6= 0 then
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h̄

h
=
h1

h1
= 1 .

If h = ih2 6= 0, h2 ∈ R, then

h̄

h
=
−ih2

ih2
= −1 .

Therefore, the limit

lim
h→0

h̄

h

does not exist.

In the following, let U ⊂ C be an open set and let f : U → C be a function. We write

f(x+ iy) = u(x, y) + iv(x, y)

and identify f with the function(
x
y

)
→
(
u(x, y)
v(x, y)

)
=: F (x, y)

from U into R2.

Theorem 3.2 Let U ⊂ C be an open set and let f : U → C be a function. Let z0 ∈ U . Then the
following two conditions are equivalent:

1) f is complex differentiable at z0.
2) F is real differentiable at (x0, y0) and the real matrix

A =

(
ux uy
vx vy

)
(x0, y0)

determines a C–linear map, i.e.,

ux = vy, −uy = vx at (x0, y0) .

Proof: First let f be complex differentiable and let

f(z0 + h) = f(z0) + wh+ hψ(h) and lim
h→0

ψ(h) = 0 .

Let w = α+ iβ and h = h1 + ih2. We have

wh = (α+ iβ)(h1 + ih2)

= αh1 − βh2 + i(βh1 + αh2)

Therefore, the complex number wh corresponds to the vector(
α −β
β α

)(
h1

h2

)
∈ R2 .

It follows that F : U → R2 is real differentiable at the point (x0, y0) with Jacobian
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F ′(x0, y0) =

(
α −β
β α

)
.

The converse follows similarly. �

3.5 The Complex Logarithm as an Example

We have for z = x+ iy ∈ C−:

f(z) = log z =
1

2
ln(x2 + y2) + i arctan(y/x) ,

thus

u =
1

2
ln(x2 + y2) ,

v = arctan(y/x) .

The partial derivatives are

ux =
x

x2 + y2

uy =
y

x2 + y2

vx = − y

x2
· 1

1 + (y/x)2

= − y

x2 + y2

vy =
1

x
· 1

1 + (y/x)2

=
x

x2 + y2

We obtain that

ux = vy, uy = −vx .
Since the Cauchy–Riemann equations are satisfied, the function f(z) = log z is complex–differentiable
in C−. We compute its complex derivative:

f ′(z) = fx

= ux + ivx

=
x− iy
x2 + y2

=
x− iy

(x+ iy)(x− iy)

=
1

x+ iy

=
1

z
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This, of course, is not unexpected since the derivative of lnx is 1
x . We will obtain later that the

functions

f(z) = log z

and

f ′(z) =
1

z

are the only holomorphic extensions of the functions lnx and 1/x, defined for x > 0, into the slit
plane C− = C \ (−∞, 0].

3.6 Complex Conjugates

Let U ⊂ C be an open set and let f : U → C. We write

f(x+ iy) = u(x, y) + iv(x, y)

where u and v are real valued. We will assume that u, v ∈ C2(U). The function f(z) is holomorphic
on U if and only if

ux = vy and uy = −vx in U .

If the Cauchy–Riemann Equations hold then ∆u = ∆v = 0. The function v is called a harmonic
conjugate of u.

Computing a Harmonic Conjugate: Let u = xy. We have ∆u = 0 and want to compute a
harmonic conjugate v of u.

We have

vx = −uy = −x ,
thus

v(x, y) = −x
2

2
+ φ(y) .

Also,

vy = φ′(y) = ux = y ,

thus

φ(y) =
y2

2
+ const .

The function

v =
1

2
(y2 − x2)

is a harmonic conjugate of u = xy. The function

f(x+ iy) = xy +
i

2
(y2 − x2)
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is holomorphic on C. We have

f ′(z) = ux + ivx

= y − ix
= −i(x+ iy)

= −iz

and

f(z) = − i
2
z2

= − i
2

(x2 + 2ixy − y2)

= xy +
i

2
(y2 − x2)

Remark on Harmonic Conjugates: Let u and v be harmonic conjugates on U . For the
inner product of the gradients we have

(ux, uy) · (vx, vy) = uxvx + uyvy = 0

since vx = −uy and vy = ux. The orthogonality of the gradients implies that the lines given by
u(x, y) = c1 = const1 are orthogonal to the lines given by v(x, y) = c2 = const2.

3.7 The Operators ∂/∂z and ∂/∂z̄

This section can be skipped.
Let λ, µ ∈ C. Then the map

z → f(z) = λz + µz̄

from C to C is R–linear since the maps z → λz and z → z̄ are R–linear.
We can write λ = λ1 + iλ2 and µ = µ1 + iµ2 (with λj , µj ∈ R) and obtain that the map f(z)

depends on four real parameters, λ1, λ2, µ1, µ2. We also can start with formula (3.2) and obtain
that the general R–linear map from C into C depends on four real parameters a, b, c, d.

Let us derive the relations between the parameters λ1, λ2, µ1, µ2 and a, b, c, d. To do this, recall
that

z = x+ iy, z̄ = x− iy
and

x =
1

2
(z + z̄), iy =

1

2
(z − z̄) .

Therefore, if we start from the general form (3.2), then we have
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f(x+ iy) = (ax+ by) + i(cx+ dy)

= (a+ ic)x+ (b+ id)y

=
1

2
(a+ ic)(z + z̄)− i

2
(b+ id)(z − z̄)

= λz + µz̄

with

λ =
1

2
(a+ ic)− i

2
(b+ id)

µ =
1

2
(a+ ic) +

i

2
(b+ id)

This shows how to obtain the representation z → λz + µz̄ from (3.2).
Conversely, if we start from the general form

f(z) = λz + µz̄, λ = λ1 + iλ2, µ = µ1 + iµ2 ,

then we have

f(z) = λz + µz̄

= (λ1 + iλ2)(x+ iy) + (µ1 + iµ2)(x− iy)

= (λ1 + µ1)x+ (µ2 − λ2)y + i
(

(λ2 + µ2)x+ (λ1 − µ1)y
)

We obtain that

a = λ1 + µ1

b = µ2 − λ2

c = λ2 + µ2

d = λ1 − µ1

We obtain that the Cauchy–Riemann equations,

a = d and − b = c ,

are equivalent to the condition

µ = 0 .

Lemma 3.1 The map

f(z) = λz + µz̄

is complex differentiable if and only if µ = 0.
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Proof: This is clear since z → λz is complex differentiable and z → z̄ is not complex differentiable.
Another proof follows from the Cauchy–Riemann equations. �

Let

f(z) = f(x+ iy)

= λz + µz̄

= λ(x+ iy) + µ(x− iy)

We have

fx = λ+ µ and fy = iλ− iµ .
It follows that

λ =
1

2
fx −

i

2
fy and µ =

1

2
fx +

i

2
fy . (3.13)

Since

f(z) = λz + µz̄

it makes sense to write

fz = λ and fz̄ = µ .

Then (3.13) yields that

fz =
1

2
fx −

i

2
fy and fz̄ =

1

2
fx +

i

2
fy .

This motivates to define the operators

∂

∂z
=

1

2

∂

∂x
− i

2

∂

∂y

∂

∂z̄
=

1

2

∂

∂x
+
i

2

∂

∂y

Lemma 3.2 Let f : C→ C be an R–linear function, i.e.,

f(x+ iy) = (ax+ by) + i(cx+ dy)

= (a+ ic)x− i(b+ id)iy

=
1

2
(a+ ic)(z + z̄)− i

2
(b+ id)(z − z̄)

= λz + µz̄

with

λ =
1

2
(a+ ic)− i

2
(b+ id)

µ =
1

2
(a+ ic) +

i

2
(b+ id)

Then f is complex differentiable if and only if µ = fz̄ = 0.
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Let f : C→ C be R–linear and complex differentiable. Then we have

f(x+ iy) = (a+ ic)x− i(b+ id)iy = λz

with

a = d = λ1, −b = c = λ2 .

Therefore,

f ′ = fz

= λ

= λ1 + iλ2

= a+ ic

= −i(b+ id)

= fx

= −ify

One can show that for a complex differentiable function f(z) the following holds:

f ′ =
df

dz
=
∂f

∂z
=
∂f

∂x
= −i∂f

∂y
.
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4 Complex Line Integrals and Cauchy’s Theorems

Summary: We first introduce parameterized curves and line integrals of continuous functions along
such curves. Then we come to a central result of complex function theory, Goursat’s Lemma.
The lemma is a special case of Cauchy’s Integral Theorem. The proof of Goursat’s Lemma is
remarkably clean. Based on the lemma, we construct a primitive of a holomorphic function in a
disk and then prove Cauchy’s Integral Theorem and Integral Formulas for holomorphic functions
in a disk.

4.1 Curves

Let γ : [a, b]→ C denote a C1–map. This means the following: If we write

γ(t) = γ1(t) + iγ2(t), a ≤ t ≤ b ,
then the two functions γ1, γ2 : [a, b] → R are differentiable and their derivatives are continuous.
Intuitively, we think of the image set

{γ(t) : a ≤ t ≤ b}
as a curve in C, parameterized by the parameter t varying in a ≤ t ≤ b.

a b t

γ(t)

γ

Figure 4.1: Parameterization of a curve

Every curve has many different parameterizations. For example, the mappings

γ(t) = eit, 0 ≤ t ≤ 2π ,

and

δ(s) = e2is, 0 ≤ s ≤ π ,
both parameterize the circle C1 of radius one, centered at the origin. The map

ε(t) = e−it, 0 ≤ t ≤ 2π ,

has the same image set as γ but parameterizes C1 in opposite direction. We say that γ and δ both
parameterize C1 whereas the map ε parameterizes −C1.

It is not trivial to define the notion of a curve precisely. One can proceed as follows.

Definition: Let P denote the set of all pairs (γ, I) where I ⊂ R is a finite closed interval and
γ : I → C is a C1–map. Call (γ, I1), (δ, I2) ∈ P equivalent if there exists a C1-map (a parameter
transformation)

41



φ : I1 → I2 with φ′(t) > 0 for all t ∈ I1

which is one-to-one and onto and satisfies

δ(φ(t)) = γ(t) for t ∈ I1 .

A C1-curve is an equivalence class in P. If Γ is a C1-curve and (γ, I) ∈ Γ, then (γ, I) is called a
parameterization of the curve Γ.

Assume the curve Γ has the parameterization (γ, I). It is often convenient to identify the curve
Γ with the set

{γ(t) : t ∈ I} ,
but one should at least assign a direction to the above set.

Furthermore, it is convenient to work with curves that are only piecewise C1 and with param-
eterizations γ(t) where t varies in an unbounded interval. A curve which is piecewise C1 has a
continuous parameterization which is piecewise C1.

Length of a C1–curve: Let Γ denote a C1–curve with parameterization γ(t), a ≤ t ≤ b. Using
real analysis, one obtains that

length(Γ) =

∫ b

a

√
(γ′1(t))2 + (γ′2(t))2 dt

=

∫ b

a
|γ′(t)| dt .

The formula for the length of the curve Γ is plausible since γ(t+ ∆t)− γ(t) ∼ γ′(t)∆t for small
∆t > 0, thus

|γ(t+ ∆t)− γ(t)| ∼ |γ′(t)|∆t .

Example 4.1: Let

γ(t) = reit, 0 ≤ t ≤ 2π ,

denote a parameterization of the circle Cr of radius r centered at the origin. One obtains that
|γ′(t)| = r and length(Cr) = 2πr.

4.2 Definition and Simple Properties of Line Integrals

Let γ : [a, b]→ C denote a C1–map parameterizing the curve

Γ = {γ(t) : a ≤ t ≤ b}
and let

f : Γ→ C

denote a continuous function. We want to define the line integral of f along Γ, which we denote by
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∫
Γ
f(z) dz or

∫
γ
f(z) dz .

This line integral can be defined as a limit of Riemann sums as follows: Let

a = t0 < t1 < . . . < tn = b

denote a partition of the parameterization interval [a, b] and let tj−1 ≤ sj ≤ tj . The points
zj = γ(tj) and wj = γ(sj) line up along Γ. We have:

∫
Γ
f(z) dz ≈

n∑
j=1

f(wj)(zj − zj−1)

=

n∑
j=1

f(γ(sj))(γ(tj)− γ(tj−1))

≈
n∑
j=1

f(γ(sj))γ
′(sj)(tj − tj−1)

≈
∫ b

a
f(γ(t))γ′(t) dt

As the partition is refined, the sums converge. One obtains:∫
Γ
f(z) dz =

∫ b

a
f(γ(t))γ′(t) dt . (4.1)

We will use equation (4.1) as the definition of the line integral
∫

Γ f(z) dz. This is justified since the
right–hand side is independent of the parameterization γ of the curve Γ. To obtain this, use the
rule of substitution.

Note on Computation: To compute the integral on the right–hand side of (4.1), note the
following: If ψ : [a, b]→ C is a continuous complex–valued function,

ψ(t) = ψ1(t) + iψ2(t) ,

then ∫ b

a
ψ(t) dt =

∫ b

a
ψ1(t) dt+ i

∫ b

a
ψ2(t) dt . (4.2)

Using (4.1) and (4.2) with ψ(t) = f(γ(t))γ′(t) we obtain that, in principle, the evaluation of line
integrals is standard calculus.

Example 4.2: Let Γ denote a curve in C from P to Q and let f(z) = c = const. Applying the
Riemann sum definition one obtains that∫

Γ
c dz = c(Q− P ) .

Another view: If γ(t), a ≤ t ≤ b, parameterizes Γ, then∫
Γ
c dz = c

∫ b

a
γ′(t) dt = c

(
γ(b)− γ(a)

)
= c(Q− P ) .
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Example 4.3: Using the parameterization

γ(t) = eit, 0 ≤ t ≤ 2π ,

of the unit circle C1, obtain for any integer n:∫
C1
zn dz = 0 for n 6= −1 and

∫
C1

dz

z
= 2πi .

If one integrates along Cr with parameterization

γ(t) = reit, 0 ≤ t ≤ 2π ,

one obtains the same results.
Details: If f(z) = zn, γ(t) = reit, γ′(t) = ireit then

∫
Cr
f(z) dz =

∫ 2π

0
rneintireit dt

= irn+1

∫ 2π

0
ei(n+1)t dt

and the claim follows.

Example 4.4: ∫
Cr
z̄ dz = 2πir2 .

Note that zz̄ = |z|2, thus z̄ = r2

z for z ∈ Cr. The claim follows since∫
Cr

dz

z
= 2πi .

Another computation using the parameterization z(t) = reit, 0 ≤ t ≤ 2π, of Cr:

∫
Cr
z̄ dz =

∫ 2π

0
re−it rieit dt

= r2i

∫ 2π

0
dt

= 2πir2

A Simple Estimate: The estimate

|
∫

Γ
f(z) dz| ≤ max

z∈γ̃
|f(z)| length(Γ)

can be obtained using Riemann sums. It also follows from (4.1).

To practically evaluate line integrals, the following result, which is analogous to the fundamental
theorem of calculus, is very useful:
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Theorem 4.1 Let U ⊂ C denote an open set and let f : U → C be a continuous function. Suppose
that g : U → C is complex differentiable and g′ = f in U. If γ : [a, b]→ U parameterizes a C1–curve
Γ, then ∫

Γ
f(z) dz = g(γ(b))− g(γ(a)) = g(Q)− g(P ) .

Here Γ goes from P = γ(a) to Q = γ(b). If Γ is continuous and piecewise C1, the same result
holds.

Proof: We have

∫
Γ
f(z) dz =

∫ b

a
f(γ(t))γ′(t) dt

=

∫ b

a
g′(γ(t))γ′(t) dt

=

∫ b

a

d

dt
(g(γ(t)) dt

= g(γ(b))− g(γ(a))

= g(Q)− g(P )

�
Definition: If g ∈ H(U) and g′ = f in U , then g is called an anti-derivative or a primitive of

f in U .

The previous theorem says that we can evaluate line integrals of f easily if we have an anti-
derivative g of f . We will also obtain below that, conversely, line integrals can be used to construct
an anti-derivative of f if f is complex differentiable.

Example 4.5: Let f(z) = zn where n is an integer, n 6= −1. If n ≥ 0 then we can take U = C
and g(z) = 1

n+1 z
n+1. If n ≤ −2 we can take U = C \ {0} and again g(z) = 1

n+1 z
n+1. In both cases

we have g′(z) = f(z) = zn in U . It follows that∫
Γ
zn dz = 0

for any closed curve Γ in U .

Example 4.6: Consider f(z) = 1/z in U = C \ {0}. Since∫
C1

dz

z
= 2πi 6= 0 (4.3)

one obtains the following: There is no complex differentiable function g : U → C with g′(z) = 1/z
in U . We have obtained in Section 3.5 that we can extend the real function g(x) = lnx (defined
for 0 < x <∞) into the open slit plane

C− = C \ (−∞, 0] .

The extended function is the main branch of the complex logarithm, g(z) = log z. One can show
that g(z) = log z is holomorphic in C− and g′(z) = 1

z in C−. However, because of (4.3), one cannot
extend g(z) = log z holomorphically into U = C \ {0}.
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Example 4.7: Let Γ be a curve from γ(a) = z0 to γ(b) = z1. Then∫
γ
z3 dz =

1

4
z4

1 −
1

4
z4

0 .

4.3 Goursat’s Lemma

A curve Γ from P to Q is called closed if P = Q. A closed curve is called simply closed if it does not
intersect itself. Thus, if γ(t), a ≤ t ≤ b, parameterizes the simply closed curve Γ, then γ(t1) 6= γ(t2)
for a ≤ t1 < t2 ≤ b unless t1 = a and t2 = b.

Cauchy’s Integral Theorem can be stated, somewhat loosely, as follows:

Theorem 4.2 Let U ⊂ C be an open set and let f : U → C be complex differentiable in U . Let Γ
denote a simply closed continuous curve in U which is piecewise C1. Assume that the interior of Γ
lies in U , i.e., Γ does not surround any holes of U . Then∫

Γ
f(z) dz = 0 .

It is not easy to make precise what the interior of a closed curve is. (A possibility is to use the
Jordan curve theorem, a result of topology that is notoriously difficult to prove.)

We prove Cauchy’s theorem first for the case that the curve Γ is the boundary of a triangle ∆
in U . The corresponding result is known as Goursat’s Lemma.

Note that f ∈ H(U) implies that f is continuous in U . Therefore,
∫

Γ f(z) dz is defined for any
continuous curve Γ in U which is piecewise C1.

Theorem 4.3 (Goursat’s Lemma) Let U ⊂ C denote an open set and let f : U → C be complex
differentiable. Let ∆ be a closed triangle, ∆ ⊂ U , with boundary curve ∂∆. Then we have∫

∂∆
f(z) dz = 0 .

Proof: All the triangles below are assumed to be closed. Also, if P ∈ C and δ > 0, then

D(P, δ) = {z ∈ C : |z − P | < δ}
denotes the open disk of radius δ centered at P .

Some simple observations:
1) If ∆ is any triangle then

w, z ∈ ∆ implies |w − z| ≤ length(∂∆) . (4.4)

2) If ∆ is a triangle we subdivide it into four similar triangles by connecting the midpoints of
the sides of ∆. Then, if ∆′ is any of the four sub-triangles, we have

length(∂∆′) =
1

2
length(∂∆) . (4.5)

3) We use the abbreviation

a(∆) =

∫
∂∆

f(z) dz .
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If ∆1,∆2,∆3,∆4 are the four sub-triangles of ∆ obtained by the subdivision, then

a(∆) =
4∑
j=1

a(∆j) .

4) Choose ∆′ ∈ {∆1,∆2,∆3,∆4} with

|a(∆′)| = max
1≤j≤4

|a(∆j)| .

Then we have

|a(∆)| ≤
4∑
j=1

|a(∆j)| ≤ 4|a(∆′)| . (4.6)

By subdividing ∆′ etc. we obtain a sequence of triangles ∆n with

∆n+1 ⊂ ∆n ⊂ . . . ⊂ ∆

and

length(∂∆n) =
1

2n
length(∂∆)

and

|a(∆)| ≤ 4 |a(∆1)|
≤ 42|a(∆2)|
≤ 4n|a(∆n)|

One can show that there is a unique point P ∈ ∆ ⊂ U with

∞⋂
n=1

∆n = {P} .

Details: Uniqueness of P : Suppose P and Q are elements of
⋂∞
n=1 ∆n. Since P,Q ∈ ∆n for

all n it follows that

|P −Q| ≤ length(∂∆n)→ 0 as n→∞ ,

thus P = Q.
Existence of P : Let Pn ∈ ∆n. For n > m ≥ N we have

|Pn − Pm| ≤ length(∂∆N ) ≤ 1

2N
length(∂∆) .

Therefore, Pn is a Cauchy sequence. Let Pj → P . Since Pj ∈ ∆n for j ≥ n and since ∆n is closed,
it follows that P ∈ ∆n. Here n ∈ N is arbitrary. Therefore, P ∈ ⋂∞n=1 ∆n.

We now use complex differentiability of f at the point P and write

f(z) = f(P ) + f ′(P )(z − P ) +R(z), z ∈ U ,
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where

R(z) = (z − P )φ(z), φ ∈ C(U), φ(P ) = 0 .

It is easy to show that ∫
∂∆n

f(z) dz =

∫
∂∆n

R(z) dz

since a function of the form l(z) = a+ bz, with constants a, b ∈ C, has an antiderivative, thus∫
∂∆n

(a+ bz) dz = 0 .

One obtains

|a(∆)| ≤ 4n|a(∆n)|

= 4n
∣∣∣ ∫

∂∆n
f(z)dz

∣∣∣
= 4n

∣∣∣ ∫
∂∆n

R(z)dz
∣∣∣

≤ 4n length(∂∆n) ·max{|R(z)| : z ∈ ∂∆n}
≤ 4n length(∂∆n) · length(∂∆n) ·max{|φ(z)| : z ∈ ∂∆n}
= length(∂∆) · length(∂∆) ·max{|φ(z)| : z ∈ ∂∆n}

Thus, we have shown that

|
∫
∂∆

f(z)dz| = |a(∆)| ≤ (length(∂∆))2 ·max{|φ(z)| : z ∈ ∂∆n} .

Given ε > 0 there exists δ > 0 so that

|φ(z)| ≤ ε if |z − P | < δ .

Also, if n is large enough, then

∆n ⊂ D(P, δ) .

Therefore, given ε > 0, there exists n ∈ N with

max{|φ(z)| : z ∈ ∂∆n} ≤ ε .
Combining this bound with the above bound for |

∫
∂∆ f(z)dz| we obtain that

|
∫
∂∆

f(z)dz| ≤ (length(∂∆))2 · ε .

Since ε > 0 is arbitrary the integral is zero. �
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4.4 Construction of a Primitive in a Disk

We now use Goursat’s Lemma to construct an anti-derivative of a given function f ∈ H(U) where
U is an open disk.

Theorem 4.4 Let U = D(P, r) = {z ∈ C : |z − P | < r} denote an open disk. If f ∈ H(U) then
there exists g ∈ H(U) with g′ = f .

U

z0

z0 + h

r P

Γz0

Figure 4.2: Construction of a Primitive

Proof: For any z0 ∈ U let Γz0 denote the straight line from P to z0 and define

g(z0) =

∫
Γz0

f(z) dz .

We claim that g ∈ H(U) and g′(z0) = f(z0) for every z0 ∈ U .
Fix z0 ∈ U and let ε = r − |P − z0|, thus ε > 0. If |h| < ε then

|P − (z0 + h)| < |P − z0|+ ε = r ,

thus z0 + h ∈ U . Also,

g(z0 + h) =

∫
Γz0+h

f(z) dz .

Let Ch denote the straight line from z0 to z0 + h. We have, by Goursat’s Lemma:∫
Γz0+h

f(z) dz =

∫
Γz0

f(z) dz +

∫
Ch
f(z) dz ,

thus

g(z0 + h) = g(z0) +

∫
Ch
f(z) dz .

Since Ch has the parameterization

γ(t) = z0 + th, 0 ≤ t ≤ 1 ,

one obtains
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g(z0 + h)− g(z0) =

∫ 1

0
f(z0 + th)h dt .

Therefore, for 0 < |h| < ε:

1

h
(g(z0 + h)− g(z0)) =

∫ 1

0
f(z0 + th) dt =: Int(h) .

We write

f(z0 + th) = f(z0) +
(
f(z0 + th)− f(z0)

)
.

Therefore,

Int(h) = f(z0) +R(h)

with

|R(h)| ≤ max
0≤t≤1

|f(z0 + th)− f(z0)| .

Continuity of f in z0 implies that |R(h)| → 0 as h→ 0. This shows that g′(z0) = f(z0). �
Remark: A set U ⊂ C is called star–shaped if there exists a point P ∈ U so that for every Q ∈ U
the straight line from P to Q lies in U . One then says that U is star–shaped w.r.t. P . For example,
the set C− = C \ (−∞, 0] is star–shaped w.r.t. P = 1. The set C \ {0} is not star–shaped.

If U ⊂ C is an open set that is star–shaped with respect to P ∈ U and if f ∈ H(U), then the
same method as above can be used to construct a primitive g of f in U .

4.5 Cauchy’s Theorem in a Disk

Theorem 4.5 Let U = D(P, r) and let f ∈ H(U). If Γ is a closed curve in U , then∫
Γ
f(z) dz = 0 .

Proof: Using the previous theorem, there exists g ∈ H(U) with g′ = f . Then, if Γ is a curve in U
from P to Q we have ∫

Γ
f(z) dz = g(Q)− g(P ) .

If Γ is closed then Q = P , and the integral is zero. �

4.6 Extensions

If U ⊂ C is any open set and f ∈ H(U), will it hold that∫
Γ
f(z) dz = 0 (4.7)

whenever Γ is a closed curve in U? The example

U = C \ {0}, f(z) =
1

z
, Γ = ∂D(0, 1) ,
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shows that the answer is no, in general, since
∫

Γ dz/z = 2πi.

Definition: An open set U ⊂ C is called connected if for any two points P,Q ∈ U there is a curve
in U from P to Q. An open connected set is called a region.

Definition: Let Γ0 and Γ1 be two C1–curves in U from P to Q parameterized by γ0(t) and
γ1(t), a ≤ t ≤ b. The curve Γ0 is called homotopic to Γ1 in U with fixed endpoints if there exists a
continuous function

γ : [0, 1]× [a, b]→ U

with:

γ(0, t) = γ0(t) for a ≤ t ≤ b
γ(1, t) = γ1(t) for a ≤ t ≤ b
γ(s, a) = P for 0 ≤ s ≤ 1

γ(s, b) = Q for 0 ≤ s ≤ 1

γ(s, ·) ∈ C1[a, b] for 0 ≤ s ≤ 1 .

Definition: A region U in C is called simply connected if every closed curve Γ in U , which goes
from a point P ∈ U to itself, is homotopic in U with fixed endpoints to the constant curve P .

If U is simply connected, then (4.7) holds whenever f ∈ H(U) and Γ is a closed curve in U . We
will explain this below.

Theorem 4.6 Let U be a region in C and let Γ0 and Γ1 be two C1 curves in U which are homotopic
in U with fixed endpoints. If f ∈ H(U) then∫

Γ0

f(z) dz =

∫
Γ1

f(z) dz .

Proof: Consider two curves Γs1 and Γs2 parameterized by t → γ(sj , t) for j = 1, 2. If s2 is
sufficiently close to s1 then one can use Theorem 4.5 to show that∫

Γs1

f(z) dz =

∫
Γs2

f(z) dz .

�
The previous theorem is often used for closed curves as follows:

Theorem 4.7 Let U ⊂ C be an open set. Let Γ denote a closed curve in U from P to P which is
homotopic in U to the curve P . If f ∈ H(U) then∫

Γ
f(z) dz = 0 .

Fresnel Integrals. The Fresnel integrals

C(r) =

∫ r

0
cos(x2) dx and S(r) =

∫ r

0
sin(x2) dx
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are used in optics. There is no simple expression for these integrals. But one can use Cauchy’s
Theorem to prove that ∫ ∞

0
cos(x2) dx =

∫ ∞
0

sin(x2) dx =
1

2

√
π

2
.

First recall that ∫ ∞
0

e−x
2
dx =

1

2

√
π .

This is shown as follows: If

J :=

∫ ∞
−∞

e−x
2
dx

then

J2 =

∫ ∞
−∞

∫ ∞
−∞

e−x
2−y2 dxdy

=

∫ 2π

0

∫ ∞
0

e−r
2
r drdφ

= π

∫ ∞
0

e−r
2
2r dr

= π

∫ ∞
0

e−q dq

= π

Let r > 0 and consider the lines Γj with parameterizations

γ1(t) = t for 0 ≤ t ≤ r
γ2(t) = r + it for 0 ≤ t ≤ r
γ3(t) = (1 + i)t for 0 ≤ t ≤ r

Let f(z) = e−z
2
. We have ∫

Γ3

f(z) dz =

∫
Γ1

f(z) dz +

∫
Γ2

f(z) dz .

Here

Int1(r) =

∫
Γ1

f(z) dz =

∫ r

0
e−x

2
dx→ 1

2

√
π as r →∞ .

Also,

Int2(r) =

∫
Γ2

f(z) dz =

∫ r

0
e−(r+it)2i dt ,

thus
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|Int2(r)| ≤
∫ r

0
e−r

2+t2 dt

≤ e−r
2

∫ r

0
ert dt

≤ 1

r

Therefore,

Int2(r)→ 0 as r →∞ .

One obtains that ∫
Γ3

e−z
2
dz = (1 + i)

∫ r

0
e−2it2 → 1

2

√
π as r →∞ .

Therefore, ∫ ∞
0

e−2it2 dt =
1

2

√
π

1

1 + i
=

√
π

4
(1− i) .

Since

e−2it2 = cos(2t2)− i sin(2t2)

one obtains that ∫ ∞
0

cos(2t2) dt =

∫ ∞
0

sin(2t2) dt =

√
π

4
.

With

2t2 = x2, dt = dx/
√

2

this yields that ∫ ∞
0

cos(x2) dx =

∫ ∞
0

sin(x2) dx =
1

2

√
π/2 .

Theorem 4.8 Let U be a region in C and let f ∈ H(U). Then f has an anti-derivative in U if
and only if ∫

Γ
f(z) dz = 0 (4.8)

for every closed curve Γ in U .

Proof: a) If g′ = f in U then (4.8) holds by Theorem 4.1.
b) Assume that (4.8) holds for every closed curve in U . Fix a point P ∈ U and, for every

z0 ∈ U , let Γz0 denote a curve in U from P to z0. Define

g(z0) =

∫
Γz0

f(z) dz .

53



Because of (4.8) the value of g(z0) does not depend on the choice of the curve Γz0 . As in the proof
of Theorem 4.4 it follows that g′(z0) = f(z0). �

If U is a simply connected region and f ∈ H(U) then∫
Γ
f(z) dz = 0

for every closed curve Γ in U . This holds since Γ can be deformed continuously to a point in U
where all deformed curves lie in U . The next result follows from the previous theorem.

Theorem 4.9 Let U be a simply connected region in C and let f ∈ H(U). Then f has an an-
tiderivative in U , i.e., there exists g ∈ H(U) with g′(z) = f(z) for all z ∈ U .

Example 4.8: Let

f(z) =
1

z(1− z) =
1

z
+

1

1− z , z ∈ V := C \ {0, 1} .

We claim that f does not have an antiderivative in V . Let Γ = ∂D(0, 1/2). Then∫
Γ
f(z) dz =

∫
Γ

dz

z
= 2πi 6= 0 ,

and Theorem 4.8 implies that an antiderivative of f in V does not exists.

We claim that f has an anti-derivative in

U = C \ [0, 1] .

First let Γ denote a simply closed curve in U which goes around [0, 1] once in the positive sense.
Let 0 < ε < 1

2 . Define the parameterizations

γ1(t) = εeit and γ2(t) = 1 + εeit for 0 ≤ t ≤ 2π

and let Γ1 and Γ2 denote the corresponding curves. We can deform Γ continuously in C \ {0, 1}
and obtain that ∫

Γ
f(z) dz =

∫
Γ1

f(z) dz +

∫
Γ2

f(z) dz .

We have ∫
Γ1

f(z) dz =

∫
Γ1

dz

z
= 2πi

and, similarly, ∫
Γ2

f(z) dz =

∫
Γ2

dz

1− z = −2πi .

The equation ∫
Γ
f(z) dz = 0
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follows. One can then construct an anti-derivative of f in U using line–integrals as described in
the proof of Theorem 4.8.

A more practical approach: First proceeding formally, we try

g(z) = log z − log(1− z) = log
z

1− z .

But we have to make precise how the log–function is defined.
We claim: If z ∈ U := C \ [0, 1] then

z

1− z ∈W := C \ [0,∞) .

Proof: Suppose that

z

1− z =: α ≥ 0 .

Then z = α− αz, thus

z =
α

1 + α
,

thus 0 ≤ z < 1. This shows that z ∈ U = C \ [0, 1] impies

z

1− z ∈W = C \ [0,∞) .

We have to define a log–function on W . If w ∈W then

w = |w|eiφ = eln |w|+iφ where 0 < φ < 2π .

We set

logW (w) = ln |w|+ iφ

and obtain

elogW (w) = w, w log′W (w) = 1 .

Therefore,

log′W (w) =
1

w
for w ∈W .

The function

g(z) = logW

( z

1− z
)
, z ∈ U = C \ [0, 1] ,

is holomorphic on U and

g′(z) =
1− z
z
· 1

(1− z)2
=

1

z(1− z) = f(z) for z ∈ U .

A second approach: Try

g(z) = log z − log(z − 1) = log
z

z − 1
for z ∈ U = C \ [0, 1] .
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We claim: If z ∈ U then z/(z − 1) /∈ (−∞, 0]. Suppose that

z

z − 1
= β ≤ 0 .

Then z = βz − β, thus

z =
β

β − 1
.

Sketching the function β/(β − 1) for β ≤ 0 we obtain that z ∈ [0, 1). Therefore, if z ∈ U then
z/(z − 1) ∈ C \ (−∞, 0]. The formula

g(z) = log
z

z − 1
, z ∈ U ,

gives an antiderivative of f(z) where logw denotes the main branch of the logarithm.

4.7 Cauchy’s Integral Formula in a Disk

Notations: Let P ∈ C and let r > 0. We set

D = D(P, r) = {z : |z − P | < r}
D̄ = D̄(P, r) = {z : |z − P | ≤ r}

∂D = ∂D(P, r) = {z : |z − P | = r}

With

γ(t) = γ(t, P, r) = P + reit, 0 ≤ t ≤ 2π ,

we denote the standard parameterization of the boundary curve of D(P, r).

Theorem 4.10 (Cauchy’s integral formula) Let U ⊂ C be open and let f ∈ H(U). Let D̄ =
D̄(P, r) ⊂ U and let ∂D denote the boundary curve of D(P, r). Then we have for all z0 ∈ D(P, r):

f(z0) =
1

2πi

∫
∂D

f(z)

z − z0
dz . (4.9)

Proof: Deform ∂D to a small curve Γε about z0 with parameterization

γε(t) = z0 + εeit, 0 ≤ t ≤ 2π .

Write

f(z) = f(z)− f(z0) + f(z0)

and

f(z)

z − z0
=
f(z)− f(z0)

z − z0
+
f(z0)

z − z0
, z 6= z0 .

Integrate over Γε to obtain∫
∂D

f(z)

z − z0
dz =

∫
Γε

f(z)− f(z0)

z − z0
dz + 2πi f(z0) .
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Use that ∣∣∣f(z)− f(z0)

z − z0

∣∣∣ ≤ C for 0 < |z − z0| ≤ ε0 .

Here C is a constant depending on z0, but not on z. Then obtain for ε→ 0:∫
∂D

f(z)

z − z0
= 2πi f(z0) .

The formula (4.9) follows. �
With a change of notation, the formula (4.9) is also written as

f(z) =
1

2πi

∫
∂D

f(ζ)

ζ − z dζ, z ∈ D . (4.10)

Remark: The assumption that z ∈ D is very important for the above formula. If z lies on
the boundary of D, then the integral may not exist since the function ζ → 1/(ζ − z) is singular at
ζ = z. If z lies outside of D then the integral is zero.

One can use formula (4.10) to show that a holomorphic function f(z) has complex derivatives
of all orders. Differentiation of (4.10) with respect to z under the integral sign can be justified.
One obtains:

Theorem 4.11 (Cauchy’s integral formula for derivatives) Let U ⊂ C be open and let f ∈ H(U).
Let D̄(P, r) ⊂ U and let Γ denote the positively oriented boundary curve of D(P, r). Then we have
for all z ∈ D(P, r):

f (j)(z) =
j!

2πi

∫
Γ

f(ζ)

(ζ − z)j+1
dζ, j = 0, 1, 2, . . . (4.11)

Proof: We may assume that P = 0. We will prove the equation (4.11) for j = 1. Using induction,
one can prove (4.11) for j = 1, 2, 3, . . . with similar arguments.

Let z ∈ D(0, r) and let

|z| =: r1 < r .

Let h ∈ C with

0 < |h| ≤ 1

2
(r − r1) .

We have

|z + h| ≤ r1 + |h| ≤ 1

2
(r + r1) < r .

By (4.10) obtain:

1

h

(
f(z + h)− f(z)

)
=

1

2πi

1

h

∫
Γ
f(ζ)

( 1

ζ − (z + h)
− 1

ζ − z
)
dζ .

For fixed ζ ∈ Γ set

g(z) :=
1

ζ − z for |z| < r .
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We have

g(j)(z) =
j!

(ζ − z)j+1
for j = 0, 1, 2, . . . (4.12)

Set

q(z) :=
1

2πi

∫
Γ
f(ζ)g′(z) dz =

1

2πi

∫
Γ
f(ζ)(ζ − z)−2 dζ .

We must show that ∣∣∣1
h

(
f(z + h)− f(z)

)
− q(z)

∣∣∣→ 0 as h→ 0 . (4.13)

Set

M := max
ζ∈Γ
|f(ζ)|

and obtain: ∣∣∣1
h

(
f(z + h)− f(z)

)
− q(z)

∣∣∣ ≤Mrmax
|ζ|=r

∣∣∣1
h

(
g(z + h)− g(z)

)
− g′(z)

∣∣∣ (4.14)

where

|z| = r1, 0 < |h| ≤ 1

2
(r − r1) .

By Taylor expansion,

g(z + h) =
∞∑
j=0

hj

j!
g(j)(z) ,

thus

g(z + h) = g(z) + hg′(z) +R(h)

where

|R(h)| =
∣∣∣ ∞∑
j=2

hj

j!
g(j)(z)

∣∣∣
≤

∞∑
j=2

|h|j
|ζ − z|j+1

≤ |h|2
|ζ − z|3

∞∑
j=0

|h|j
|ζ − z|j

Here

|ζ| = r, |z| = r1 < r, |ζ − z| ≥ r − r1

and |h| ≤ 1
2 (r − r1), thus
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|h|
|ζ − z| ≤

1

2
.

It follows that

|R(h)| ≤ 2|h|2
|ζ − z|3 .

The constant

C =
2

(r − r1)3

is independent of h and independent of ζ ∈ Γ; the estimate |R(h)| ≤ C|h|2 holds. The convergence
(4.13) follows from (4.14). �
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5 Holomorphic Functions Written As Power Series

Summary: If U ⊂ C is an open set then a function f : U → C is called complex differentiable (or
holomorphic) in U if the limit

lim
h→0

1

h
(f(z + h)− f(z)) =: f ′(z)

exists for every z ∈ U . (See Section 1.3.) In this chapter we will prove that a holomorphic function
can locally be written as a power series,

f(z) =
∞∑
j=0

aj(z − z0)j for z ∈ D(z0, ρ) ⊂ U .

As we will prove in the next chapter, this implies that a complex differentiable function is
always infinitely often differentiable. (This result also follows from Cauchy’s integral formula for
derivatives, Theorem 4.11.)

Clearly, this shows that there is a major difference between complex and real differentiability
of functions.

The important concept of uniform convergence of a sequence of functions will be used.

5.1 Main Result

Definition: Let U ⊂ C and let fn : U → C denote a sequence of functions. Also, let f : U → C
denote a function. Let K ⊂ U . The sequence fn converges to f uniformly on K if for every ε > 0
there exists N(ε) ∈ N so that

|f(z)− fn(z)| < ε for n ≥ N(ε) for all z ∈ K .

It is important that the integer N(ε) does not depend on the point z ∈ K: As n gets large, the
difference |f(z)− fn(z)| goes to zero, uniformly on K.

Theorem 5.1 Let U denote an open subset of C and let f : U → C be a holomorphic function.
Let z0 ∈ U be arbitrary and assume

D(z0, ρ) ⊂ U, ρ > 0 .

Then there exist unique complex numbers numbers a0, a1, . . . so that

f(z) =

∞∑
j=0

aj(z − z0)j for |z − z0| < ρ . (5.1)

The series converges absolutely for every z ∈ D(z0, ρ) and the convergence is uniform for |z−z0| ≤ r
if 0 < r < ρ is fixed.

We will show that the power series representation (5.1) follows rather easily from Cauchy’s
Integral Formula and convergence of the geometric series. Also, we will prove in the next chapter
that the coefficients aj of the power series (5.1) are uniquely determined.

The theorem says that any holomorphic function f can locally be written as a power series.
Furthermore, the power series expansion is valid in any open disk D(z0, ρ) which lies completely in
the open set U where f is holomorphic. The convergence of the power series is uniform on every
closed disk D̄(z0, r) if 0 < r < ρ and D(z0, ρ) ⊂ U .
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5.2 The Geometric Series

The power series

∞∑
j=0

wj (5.2)

is called the geometric series. Its partial sums

sn(w) =

n∑
j=0

wj , w ∈ C ,

satisfy

sn(w)(1− w) = (1 + w + . . .+ wn)(1− w) = 1− wn+1 ,

thus

sn(w) =
1− wn+1

1− w for w 6= 1 .

If |w| < 1 then wn+1 → 0 as n→∞. Therefore, for |w| < 1:

1

1− w − sn(w) =
wn+1

1− w → 0 as n→∞ ,

thus

∞∑
j=0

wj =
1

1− w for |w| < 1 . (5.3)

Fix 0 < r < 1 and consider the difference

1

1− w − sn(w) =
wn+1

1− w
for |w| ≤ r < 1. Obtain that∣∣∣ 1

1− w − sn(w)
∣∣∣ =
|w|n+1

|1− w| ≤
rn+1

1− r → 0 as n→∞ .

This shows that the convergence in formula (5.3) is uniform for |w| ≤ r if 0 < r < 1 is fixed.

Remark on Exchange of Limits: For 0 < r < 1 we have

max
|w|≤r

∣∣∣ 1

1− w −
n∑
j=0

wj
∣∣∣ =

rn+1

1− r .

Here

lim
r→1−

(
lim
n→∞

rn+1

1− r
)

= 0

and
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lim
n→∞

(
lim
r→1−

rn+1

1− r
)

=∞ .

Clearly, exchanging the order of the two limit processes leads to different results. The first limit
process expresses the uniform convergence of the geometric series in D̄(0, r) for each 0 < r < 1.
The second limit process yields that uniform convergence does not hold for w ∈ D(0, 1).

5.3 Power Series Expansion Using the Geometric Series

Let U ⊂ C be an open set and let f : U → C be holomorphic. Let D = D(z0, r) and assume that
D̄ ⊂ U . Let ∂D denote the positively oriented boundary curve of D.

By Cauchy’s Integral Formula (Theorem 4.10) we have, for all z ∈ D,

f(z) =
1

2πi

∫
∂D

f(ζ)

ζ − z dζ .

Let us first assume that z0 = 0. Then we have for z ∈ D and ζ ∈ ∂D

|z| < |ζ| = r

and can write

ζ − z = ζ
(

1− z

ζ

)
with

∣∣∣z
ζ

∣∣∣ =
|z|
r
< 1 ,

thus

1

ζ − z =
1

ζ
· 1

1− z
ζ

=
1

ζ

∞∑
j=0

zj

ζj

For fixed z ∈ D the convergence of the series is uniform for ζ ∈ ∂D. Therefore, we may exchange
the order of integration and summation to obtain

f(z) =
1

2πi

∫
∂D

f(ζ)

ζ − z dζ

=
1

2πi

∞∑
j=0

zj
∫
∂D

f(ζ)

ζj+1
dζ

=

∞∑
j=0

ajz
j

with

aj =
1

2πi

∫
∂D

f(ζ)

ζj+1
dζ .

Clearly, the numbers aj do not depend on z ∈ D. We have written f(z) as a convergent power
series in z for z ∈ D.
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In the general case, where z0 is not assumed to be z0 = 0, we write

ζ − z = (ζ − z0)− (z − z0) = (ζ − z0)
(

1− z − z0

ζ − z0

)
and obtain that

1

ζ − z =
1

ζ − z0

∞∑
j=0

(z − z0)j

(ζ − z0)j
.

In the same way as for z0 = 0 one obtains that

f(z) =
∞∑
j=0

aj(z − z0)j

with

aj =
1

2πi

∫
∂D

f(ζ)

(ζ − z0)j+1
dζ .

The numbers aj do not depend on z ∈ D.
We have shown:

Theorem 5.2 Let U ⊂ C be an open set and let f : U → C be holomorphic. Let D = D(z0, r) and
assume that D̄ ⊂ U . With ∂D we denote the boundary curve of D. We have, for all z ∈ D,

f(z) =
∞∑
j=0

aj(z − z0)j

with

aj =
1

2πi

∫
∂D

f(ζ)

(ζ − z0)j+1
dζ .

This shows that any function f ∈ H(U) can locally be written as a power series. If D̄(z0, r) ⊂ U
then the power series with expansion point z0 converges to f(z) at least in D(z0, r).

We now make a further fine point. Let f ∈ H(U) and consider an open disk D(z0, ρ). Assume

D(z0, ρ) ⊂ U, ρ > 0 .

Fix 0 < r < ρ. Set

aj =
1

2πi

∫
∂D

f(ζ)

(ζ − z0)j+1
dζ .

Our previous considerations show that

f(z) =
∞∑
j=0

aj(z − z0)j for |z − z0| < r .

It is clear, by Cauchy’s Integral Theorem, that the coefficients aj are independent of r. Therefore,
since the number r with 0 < r < ρ was arbitrary, one obtains that
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f(z) =
∞∑
j=0

aj(z − z0)j for |z − z0| < ρ

if the open disk D(z0, ρ) is a subset of U .

To complete the proof of Theorem 5.1 it remains to prove the following:

a) The coefficients aj with (5.1) are unique.
b) The series

∑∞
j=0 aj(z − z0)j converges absolutely for z ∈ D(z0, ρ) if D(z0, ρ) ⊂ U .

c) The series
∑∞

j=0 aj(z − z0)j converges uniformly to f(z) for z ∈ D̄(z0, r) if 0 < r < ρ and
D(z0, ρ) ⊂ U .

We will prove this in the next chapter where we consider general power series.
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6 Functions Defined by Power Series

Summary: An expression of the form

∞∑
j=0

aj(z − z0)j (6.1)

is called a power series centered at z0 with coefficients a0, a1, . . . It is good to think of z in the
expression (6.1) as a complex variable. As we will show, for any power series (6.1) there is a unique
value r (with 0 ≤ r ≤ ∞) so that:

a) If 0 < r <∞ then (6.1) converges for all z with |z − z0| < r and diverges for |z − z0| > r.
b) If r = 0 then (6.1) converges only for z = z0.
c) If r =∞ then (6.1) converges for all z ∈ C.

The number r (possibly r =∞) is called the radius of convergence of the power series.
For many properties of power series it is convenient to assume z0 = 0. Extensions to general z0

are typically trivial.
The next theorem is an important result, which we prove in this chapter:

Theorem 6.1 Assume that the power series
∑
ajz

j has radius of convergence r where 0 < r ≤ ∞.
Then the function

f(z) =

∞∑
j=0

ajz
j , |z| < r , (6.2)

is holomorphic in D(0, r). Furthermore,

f ′(z) =

∞∑
j=1

jajz
j−1, |z| < r , (6.3)

and the series
∑
jajz

j−1 also has radius of convergence equal to r.

The theorem says that the power series representation (6.2) of f(z) can be differentiated term
by term to give the power series representation (6.3) of f ′(z). In other words, two limit processes,
differentiation and summation, can be exchanged for power series.

Hadamard’s Formula for the Radius of Convergence of a Power Series. If s0, s1, . . .
denotes any sequence of real numbers then one defines

lim sup
j→∞

sj := lim
n→∞

(
sup
j≥n

sj

)
and lim inf

j→∞
sj := lim

n→∞

(
inf
j≥n

sj

)
.

After reviewing some properties of these real analysis concepts, we will prove in Section 6.4
Hadamard’s formula for the radius of convergence of the power series (6.1):

r =
1

lim supj→∞ |aj |1/j
.

Here, by convention, 1/0 =∞ and 1/∞ = 0.
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6.1 Remarks on the Exchange of Limits

Let us recall the basic concept of a uniformly convergent sequence of functions sn : Ω→ C, where
Ω ⊂ Rm is a nonempty set. Let s : Ω → C be a function. The sequence sn = sn(z) converges
uniformly on Ω to s = s(z) if for any ε > 0 there is N ∈ N with

|sn(z)− s(z)| < ε for n ≥ N and for all z ∈ Ω .

We know from real analysis that the uniform limit of a sequence of continuous functions is
continuous:

Theorem 6.2 If sn ∈ C(Ω) for all n and if sn converges to s uniformly on Ω, then s ∈ C(Ω).

Proof: Fix any z0 ∈ Ω, and let ε > 0 be given. There exists N ∈ N so that

sup
z∈Ω
|sN (z)− s(z)| < ε/3 .

Use the continuity of sN : There is δ > 0 so that |sN (z)− sN (z0)| < ε/3 if z ∈ Ω and |z − z0| < δ.
Then, using the triangle inequality,

|s(z)− s(z0)| ≤ |s(z)− sN (z)|+ |sN (z)− sN (z0)|+ |sN (z0)− s(z0)|
<

ε

3
+
ε

3
+
ε

3
= ε

for z ∈ Ω with |z − z0| < δ. �
Under the assumptions of the above theorem, let xk, x0 ∈ Ω and let xk → x0 as k → ∞.

Consider the values

sn(xk) ∈ C for n = 1, 2, . . . and for k = 1, 2 . . .

and consider the following diagram

sn(xk) → s(xk) as n→∞
↓ ↓ as k →∞

sn(x0) → s(x0) as n→∞
The convergences

sn(xk)→ s(xk) for all k and sn(x0)→ s(x0) (as n→∞)

express the pointwise convergence of the functions sn(x) to the function s(x). We can also first fix
n and let k →∞. The convergences

sn(xk)→ sn(x0) for all n and s(xk)→ s(x0) (as k →∞)

express the continuity of the functions sn(x) and s(x) at the point x0.
Since the limit processes n → ∞ and k → ∞ lead to the same result, namely s(x0), one says

that the above diagram commutes. Here the continuity of the limit function s(x) is essential.
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If continuous functions sn(x) only converge pointwise, but not uniformly, to a limit s(x), then
s(x) may be discontinuous, and the two limit processes n→∞ and k →∞ may not commute.

Example: Consider sn(x) = xn for 0 ≤ x ≤ 1. We have for n→∞:

xn →
{

0 for 0 ≤ x < 1
1 for x = 1

.

If

xk = 1− 1

k
for k = 1, 2, . . .

then

lim
k→∞

lim
n→∞

sn(xk) = lim
k→∞

lim
n→∞

(
1− 1

k

)n
= 0

and

lim
n→∞

lim
k→∞

sn(xk) = lim
n→∞

lim
k→∞

(
1− 1

k

)n
= 1 .

A reasonable question is: Assume that sn and s are smooth functions, for example infinitely
often differentiable real functions. Is it allowed to exchange differentiation and taking the limit
n → ∞? In real analysis, the answer is No, in general. The sequence sn(x, y) = 1

n cos(n2(x + y))
gives a simple example. Clearly, sn converges uniformly on R2 to s(x, y) ≡ 0, but the derivatives
of sn do not converge to the derivatives of s as n→∞.

It is, therefore, remarkable and important that for functions defined by power series, f(z) =∑
j aj(z − z0)j , one can differentiate term by term within the open disk of convergence. We will

prove this in Section 6.6.

6.2 The Disk of Convergence of a Power Series

An expression

∞∑
j=0

aj(z − z0)j

is called a power series centered at z0. We often take z0 = 0 for convenience.
The following simple result is important.

Lemma 6.1 (Abel) Assume that the power series

∞∑
j=0

ajz
j

converges for some z 6= 0. If |w| < |z|, then the series

∞∑
j=0

ajw
j

converges absolutely. If a number r with 0 < r < |z| is fixed, then the convergence is uniform for
all w with |w| ≤ r.
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Proof: Since |aj ||z|j → 0 as j →∞ there exists M > 0 so that

|aj ||zj | ≤M for all j = 0, 1, . . .

Also,

q :=
|w|
|z| < 1 if |w| < |z| .

Therefore,

|aj ||wj | = |aj ||zj |
( |w|
|z|
)j
≤Mqj if |w| < |z| .

Since
∑
qj converges, the claim follows from the Comparison Criterion, Theorem 1.2. �

Definition 6.1 For any given power series,

∞∑
j=0

ajz
j (6.4)

define the radius r of convergence as follows:

r := sup
{
|z| :

∞∑
j=0

ajz
j converges

}
.

Clearly, we have

0 ≤ r ≤ ∞ .

There are three cases:
a) r =∞: In this case, by the previous lemma, the series converges absolutely for every z. We

will prove that the series (6.4) defines an entire function.
b) r = 0: In this case the series converges only for z = 0.
c) 0 < r <∞: In this case, the series converges absolutely for |z| < r and diverges for |z| > r.

We will prove that the series (6.4) defines a function which is holomorphic in the open disk D(0, r).

In many cases, one can obtain the radius r of convergence as follows:

Theorem 6.3 Let
∑∞

j=0 ajz
j denote a power series and assume aj 6= 0 for all large j. If∣∣∣aj+1

aj

∣∣∣→ q as j →∞

with 0 ≤ q ≤ ∞, then the radius of convergence is

r =
1

q
.

Here one uses the conventions 1/∞ = 0 and 1/0 =∞.
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Proof: Let αj = ajz
j , z 6= 0. We have∣∣∣αj+1

αj

∣∣∣→ q|z| as j →∞ .

By the Quotient Criterion (Theorem 1.3) the power series
∑
ajz

j converges absolutely if q|z| < 1
and diverges if q|z| > 1. This implies that the radius of convergence is r = 1/q. �

Example 6.1: For
∑∞

j=0 j!z
j the radius of convergence is r = 0 by Theorem 6.3.

Example 6.2: For
∑∞

j=0
1
j! z

j the radius of convergence is r =∞ by Theorem 6.3. We have

∞∑
j=0

1

j!
zj = ez, z ∈ C .

Example 6.3: For
∑∞

j=0 z
j the radius of convergence is r = 1 by Theorem 6.3. We have

∞∑
j=0

zj =
1

1− z , |z| < 1 .

Example 6.4: For
∑∞

j=1 jz
j the radius of convergence is r = 1 by Theorem 6.3. We have for

|z| < 1:

∞∑
j=1

jzj = z
∞∑
j=0

d

dz
zj

= z
d

dz

∞∑
j=0

zj

= z
d

dz

1

1− z
=

z

(1− z)2

The fact that we can take d/dz out of the infinite sum will be justified below.

Example 6.5: Taylor expansion of the real function

f(x) = ln(1 + x), x > −1 ,

about x = 0 leads to the series

∞∑
j=1

(−1)j+1

j
xj .

This follows from f(0) = 0 and

f ′(x) =
1

1 + x
=

1

1− (−x)
=

∞∑
j=0

(−1)jx for |x| < 1 .

The radius of convergence of the corresponding complex series
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∞∑
j=1

(−1)j+1

j
zj

is r = 1 by Theorem 6.3. This suggest that

log(1 + z) =
∞∑
j=1

(−1)j+1

j
zj , |z| < 1 ,

where log denotes the main branch of the complex logarithm. In other words, if w = 1 + z,

logw =
∞∑
j=1

(−1)j+1

j
(w − 1)j , |w − 1| < 1 .

We will show below that this expansion is valid, indeed.

Example 6.6: The Taylor expansion of the real function

f(x) =
1

1 + x2

about x = 0 can be obtained using the geometric series: With ε = −x2 we have for |x| < 1:

1

1 + x2
=

1

1− ε

=
∞∑
j=0

εj

=
∞∑
j=0

(−1)jx2j

= 1− x2 + x4 . . .

The corresponding complex series

∞∑
j=0

(−1)jz2j =
1

1 + z2

has the radius of convergence equal to 1.

6.3 Remarks on lim sup and lim inf

Definition 6.2: Let sj denote a sequence of real numbers. One defines

lim sup
j→∞

sj := lim
n→∞

(
sup
j≥n

sj

)
=: L (6.5)

and
lim inf
j→∞

sj := lim
n→∞

(
inf
j≥n

sj

)
. (6.6)

Let us first show that the limit (6.5) always exists as an element of the extended real line,
R̄ = R ∪ {±∞}. (The limit (6.6) can be treated similarly.) Set
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Ln := sup
j≥n

sj .

Case 1: The sequence sj is not bounded from above. In this case Ln = ∞ for all n and,
therefore, L =∞.

Case 2: Assume sj → −∞. In this case Ln → −∞, thus L = −∞.
Case 3: In all other cases, the numbers Ln form a monotonically decreasing sequence of real

numbers which is bounded from below. It therefore converges to some real number L̃,

L̃ ≤ . . . ≤ Ln+1 ≤ Ln for n = 1, 2, . . . and Ln → L .

This shows that

L = lim sup
j→∞

sj = lim
n→∞

Ln

always exists as an element of R̄ = R ∪ {±∞}.

Lemma 6.2 Let sj ∈ R and let

L := lim sup
j→∞

sj = lim
n→∞

Ln with Ln = sup
j≥n

sj .

Assume that L ∈ R.
a) For any ε > 0 there exist infinitely many j ∈ N with sj ≥ L− ε.
b) For any ε > 0 there exists J(ε) ∈ N with

sj ≤ L+ ε for j ≥ J(ε) .

Proof: a) Since Ln+1 ≤ Ln for all n ∈ N we have Ln > L−ε for all n ∈ N. Set n1 = 1 and consider

L− ε < L1 = sup
j≥1

sj .

There exists j1 ≥ 1 with

sj1 ≥ L− ε .
Set

n2 = j1 + 5 .

(The number 5 can be replaced by any positive integer.) We have

L− ε < Ln2 = sup
j≥n2

sj .

There exists j2 ≥ n2 = j1 + 5 with

sj2 ≥ L− ε .
The process can be continued and one obtains a sequence of positive integers

j1 < j2 < j3 < . . .
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with

sjk ≥ L− ε for k = 1, 2, 3, . . .

b) Since Ln → L we have

Ln ≤ L+ ε for n ≥ J(ε) .

Since

Ln = sup
j≥n

sj

we have

sj ≤ Ln for j ≥ n .
Therefore,

sj ≤ L+ ε for j ≥ J(ε) .

�

Lemma 6.3 Let aj > 0 for all j and set

lim sup
j→∞

aj+1

aj
= Q1 ,

lim inf
j→∞

aj+1

aj
= Q2 ,

lim sup
j→∞

a
1/j
j = L1 ,

lim inf
j→∞

a
1/j
j = L2 .

Then we have

Q2 ≤ L2 ≤ L1 ≤ Q1 .

Proof: We will show that L1 ≤ Q1 =: Q. (The proof of the inequality Q2 ≤ L2 is similar.) Set
qn := an+1/an. Let ε > 0. Since lim supn→∞ qn = Q there exists N = Nε so that qn ≤ Q+ ε for all
n ≥ N . Thus,

an+1 ≤ (Q+ ε)an, n ≥ N .

It follows that

aN+j ≤ (Q+ ε)jaN = (Q+ ε)N+j aN
(Q+ ε)N

, j ≥ 0 .

Therefore,

a
1/(N+j)
N+j ≤ (Q+ ε)M1/(N+j), j ≥ 0 ,

with
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M =
aN

(Q+ ε)N
.

Since M1/(N+j) → 1 as j →∞ it follows that

a
1/k
k ≤ Q+ 2ε for k ≥ K(ε) .

This implies that L1 ≤ Q+ 2ε. Since ε > 0 was arbitrary, one obtains that L1 ≤ Q. �
A simple implication of the previous lemma is:

Lemma 6.4 Let aj > 0 for all j. If

lim
j→∞

aj+1

aj
= Q

then the sequence

a
1/j
j

also converges to Q.

Proof: We have Q1 = Q2 = Q in the previous lemma. �
Example: Let aj = j for j = 1, 2, . . . Since

j + 1

j
→ 1 as j →∞

it follows that j1/j → 1 as j →∞.
Another proof of j1/j → 1 as j →∞ goes as follows: We know that

ln(j1/j) =
1

j
ln j → 0 as j →∞ .

Therefore,

j1/j = eln(j1/j) → e0 = 1 as j →∞ .

6.4 The Radius of Convergence of a Power Series: Hadamard’s Formula

Hadamard gave a formula for the radius of convergence r of a power series
∑
ajz

j . The formula
has more theoretical than practical value. In other words, one often uses it in proofs, but it is less
useful for computing r.

Theorem 6.4 (Hadamard) Let
∑
ajz

j have radius of convergence equal to r where 0 ≤ r ≤ ∞.
Then we have:

1

r
= lim sup

j→∞
|aj |1/j

with the conventions

1

0
=∞, 1

∞ = 0 .
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Proof of Hadamard’s Formula: Let r denote the radius of convergence of the power series∑
ajz

j . Set

L = lim sup
j→∞

|aj |1/j .

Assume 0 < L <∞. (The cases L = 0 and L =∞ can be treated similarly.)
a) Let |z| > 1/L. We have L|z| > 1. There exists ε > 0 with

(L− ε)|z| > 1 .

By Lemma 6.2 a) there exist infinitely many j with |aj |1/j ≥ L− ε, thus

|aj |1/j |z| > 1, |aj ||z|j > 1

for infinitely many j. It follows that the series
∑∞

j=1 ajz
j diverges for |z| > 1/L. This implies that

r ≤ 1/L.
(Reason: If r > 1/L then there exists z with r > |z| > 1/L, and one obtains a contradiction.)
b) Let

|z| < 1

L
, L|z| < 1 .

There exists ε > 0 with

(L+ ε)|z| =: q < 1 .

By Lemma 6.2 b) we have

|aj |1/j ≤ L+ ε for j ≥ J(ε) .

It follows that

|aj |1/j |z| ≤ (L+ ε)|z| = q < 1 for j ≥ J(ε) ,

thus

|aj ||z|j ≤ qj for j ≥ J(ε) where 0 < q < 1 .

The series
∑∞

j=1 ajz
j converges. Therefore, |z| ≤ r. This implies that r ≥ 1/L.

(Reason: If r < 1/L then there exists z with r < |z| < 1/L, and one obtains a contradiction.)
In a) we have shown that r ≤ 1/L and in b) we have shown that r ≥ 1/L. The equation r = 1/L

follows. �

6.5 Matrix–Valued Analytic Functions and Hadamard’s Formula for the Spec-
tral Radius of a Matrix

This section can be skipped.
An expression like lim supj→∞ |aj |1/j also comes up in matrix theory.
In this section we assume that ‖ · ‖ denotes a vector norm on Cm. The corresponding matrix

norm for matrices A ∈ Cm×m is defined by
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‖A‖ = max{‖Au‖ : u ∈ Cm, ‖u‖ = 1}
= min{C ≥ 0 : ‖Au‖ ≤ C‖u‖ for all u ∈ Cm}

Let Aj ∈ Cm×m denote a sequence a square matrices. We consider the series

∞∑
j=0

zjAj (6.7)

with variable z ∈ C. The partial sums are the matrices

Sn(z) =
n∑
j=0

zjAj . (6.8)

As n→∞, we may consider convergence of Sn(z) in the space of matrices Cm×m or, alternatively,
we may consider convergence of the m2 scalar series

∞∑
j=0

zj(Aj)µν , 1 ≤ µ, ν ≤ m , (6.9)

where (Aj)µν denotes the matrix entries of Aj .
With arguments as in the proof of Theorem 6.4, the following result can be shown:

Theorem 6.5 Set

q = lim sup
j→∞

‖Aj‖1/j .

a) If |z| < 1
q then the series (6.7) converges in Cm×m. If |z| > 1

q then the series (6.7) diverges

in Cm×m.
b) If |z| < 1

q then the m2 scalar series (6.9) converge in C. If |z| > 1
q then at least one of the

m2 scalar series (6.9) diverges.

Of particular interest is the case where A ∈ Cm×m is a fixed matrix and Aj = Aj , i.e., A0 =
I, A1 = A,A2 = A2, etc.

We denote the set of eigenvalues of A by

σ(A) = {λ1, . . . , λk}
and denote the spectral radius of A by

ρ(A) = max
j
|λj | .

Theorem 6.6 (Hadamard) For any matrix A ∈ Cm×m we have

ρ(A) = lim
j→∞

‖Aj‖1/j = inf
j
‖Aj‖1/j . (6.10)
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Proof: First note that ρ(A) ≤ ‖A‖ and

(ρ(A))j = ρ(Aj) ≤ ‖Aj‖ ,
thus

ρ(A) ≤ ‖Aj‖1/j , j = 1, 2, . . . .

Let ε > 0 be arbitrary and set

B = Bε =
1

ρ(A) + ε
A .

Then ρ(B) < 1 and, by a theorem of linear algebra, Bj → 0 as j →∞. In particular, there exists
J = Jε ∈ N with

‖Bj‖ ≤ 1 for j ≥ J .

This yields that

1

(ρ(A) + ε)j
‖Aj‖ ≤ 1 for j ≥ J .

Therefore,

ρ(A) ≤ ‖Aj‖1/j ≤ ρ(A) + ε for j ≥ Jε .
Since ε > 0 was arbitrary, the formula (6.10) is shown. �

Linear Algebra Argument: Let B ∈ Cm×m, ρ(B) < 1. We claim that Bj → 0 as j → ∞.
There exists T ∈ Cm×m so that

T−1BT = Λ +R

where Λ is diagonal and R is strictly upper triangular. Then let

Dε = diag(1, ε, . . . , εm−1) .

Obtain

D−1
ε (Λ +R)Dε = Λ +O(ε) .

One obtains that

‖D−1
ε (Λ +R)Dε‖ < 1

if ε > 0 is small enough. The claim Bj → 0 follows.

Power Series: Consider the powers series

∞∑
j=0

Ajzj ∈ Cm×m

where A ∈ Cm×m. We claim that the series converges if |z|ρ(A) < 1 and diverges if |z|ρ(A) ≥ 1.

Proof: Set B = zA, thus ρ(B) = |z|ρ(A). If |z|ρ(A) < 1 then ρ(B) < 1 and
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∞∑
j=0

Bj = (I −B)−1 .

If |z|ρ(A) ≥ 1 then ρ(B) ≥ 1 and

∞∑
j=0

Bj

diverges.

6.6 Differentiation of Power Series

Let
∑∞

j=0 ajz
j have radius of convergence equal to r > 0. Then the function

f(z) =

∞∑
j=0

ajz
j = a0 + a1z + a2z

2 + . . .

is defined for z ∈ D = D(0, r). Also, the convergence is uniform on any compact subset of D.
Therefore, by Theorem 6.3 the limit function f(z) is continuous in D. More is true as we will show
below: The formally differentiated power series has the same radius of convergence as the power
series for f(z), and the formally differentiated series converges to the complex derivative of f(z).

Let

g(z) :=
∞∑
j=1

jajz
j−1

= a1 + 2a2z + 3a3z
2 + . . .

=
1

z

∞∑
j=1

jajz
j , z 6= 0 ,

be obtained by differentiating the series for f(z) term by term. We claim that the radius of
convergence for g(z) equals r and that f(z) has the complex derivative g(z):

Lemma 6.5 The series
∑∞

j=0 ajz
j and the series

∑∞
j=1 jajz

j−1 have the same radius of conver-
gence.

Proof: This follows from Hadamard’s formula and the following lemma. �

Lemma 6.6
lim
j→∞

j1/j = 1

Proof: We have shown this above, but give another simple proof here. For t ≥ 0 we have

et ≥ 1 +
t2

2
, e−tt2 ≤ 2 ,

thus

lim
t→∞

e−tt = 0 .
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With

t = ln j, e−t =
1

j

obtain that

ln(j1/j) =
1

j
ln j = e−tt ,

thus
ln(j1/j)→ 0 as j →∞ .

This implies that

j1/j = eln(j1/j) → 1 as j →∞ .

�
Remark: The result j1/j → 1 also follows from Lemma 6.4.

The lemma together with Hadamard’s formula imply that the series for f(z) and g(z) have the
same radius of convergence.

Theorem 6.7 Let f(z) =
∑∞

j=0 ajz
j be holomorphic in D(0, r) and let g(z) :=

∑∞
j=1 jajz

j−1.
Then

f ′(z) = g(z) for |z| < r .

Proof: Let z with |z| < r be fixed. Fix r1 with |z| < r1 < r. In the following, we let h ∈ C, h 6= 0,
be so small that

|z + h| ≤ |z|+ |h| ≤ r1 < r .

Set

sn(z) =

n∑
j=0

ajz
j and ηn(z) =

∞∑
j=n+1

ajz
j

and let ε > 0 be given. Then, using that f(w) = sn(w) + ηn(w), we have for all n = 0, 1, . . .

∣∣∣1
h

(f(z + h)− f(z))− g(z)
∣∣∣ ≤ ∣∣∣1

h
(sn(z + h)− sn(z))− s′n(z)

∣∣∣+ |s′n(z)− g(z)|

+
∣∣∣1
h

(ηn(z + h)− ηn(z))
∣∣∣

=: A+B + C

To estimate the term C we use the following lemma:

Lemma 6.7 Let a, b ∈ C and let M = max{|a|, |b|}. Then we have

|aj − bj | ≤ |a− b|jM j−1 for j = 1, 2 . . .

78



Proof of lemma: This follows from

aj − bj = (a− b)(aj−1 + aj−2b+ . . .+ bj−1) .

�
Applying the lemma, we obtain

|(z + h)j − zj | ≤ |h|j(|z|+ |h|)j−1 ≤ |h|j rj−1
1 .

Therefore,

C ≤
∞∑

j=n+1

j|aj |rj−1
1 ≤ ε

for n ≥ N1 = N1(ε). Here we use that r1 < r and absolute convergence of the series
∑∞

j=1 jajz
j−1

for z ∈ D(0, r).
Also,

B = |s′n(z)− g(z)| ≤ ε
for n ≥ N2 = N2(ε). This follows from the fact that the power series defining g(z) converges in
D(0, r) and |z| < r.

Fix n = max{N1, N2}. Then, since sn(z) is a polynomial, there exists δ > 0 with

A =
∣∣∣1
h

(sn(z + h)− sn(z))− s′n(z)
∣∣∣ ≤ ε

for 0 < |h| ≤ δ. To summarize, given ε > 0 there exists δ > 0 so that∣∣∣1
h

(f(z + h)− f(z))− g(z)
∣∣∣ ≤ 3ε for 0 < |h| ≤ δ .

This proves the theorem. �
One can apply the previous theorem repeatedly and obtain the following result: If

∑
ajz

j has
radius of convergence r > 0 then the function

f(z) =
∞∑
j=0

ajz
j , |z| < r ,

is infinitely often complex differentiable and all derivatives can be obtained by differentiating the
series term by term:

f ′(z) =
∞∑
j=1

jajz
j−1

f ′′(z) =
∞∑
j=2

j(j − 1)ajz
j−2

etc. The power series for each derivative also has radius of convergence equal to r. In particular,
we have that
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f(0) = a0

f ′(0) = a1

f ′′(0) = 2a2

f ′′′(0) = 2 · 3a3

f (k)(0) = k! ak

This implies that the coefficients of a power series are uniquely determined by the function repre-
sented by the series. Precisely:

Lemma 6.8 Assume that

f(z) =

∞∑
j=0

ajz
j , |z| < rf

g(z) =

∞∑
j=0

bjz
j , |z| < rg

where rf > 0 and rg > 0 denote the radii of convergence. If, for some r > 0,

f(z) = g(z) for all z with |z| < r

then aj = bj for all j. Therefore, rf = rg and f(z) = g(z) for all z with |z| < rf .

Summary: Let U ⊂ C be open and let f ∈ H(U). Let D(z0, ρ) ⊂ U and let 0 < r < ρ. Let Γ
denote the boundary curve of D(z0, r). Set

aj =
1

j!
f (j)(z0) =

1

2πi

∫
Γ

f(ζ)

(ζ − z0)j+1
dζ .

We then have

f(z) =
∞∑
j=0

aj(z − z0)j for z ∈ D(z0, ρ) . (6.11)

The convergence of the series is absolute for z ∈ D(z0, ρ) and uniform for |z − z0| ≤ r < ρ.
In particular, if R denotes the radius of convergence of the series (6.11), then R ≥ ρ as long as

D(z0, ρ) ⊂ U . One obtains that R =∞ if U = C. If U 6= C then the complement

U c = C \ U
is a non–empty, closed set. One obtains that

R ≥ dist(z0, U
c) .

Example 6.7: Consider the function

f(z) =
ez

z2 + 9
, z ∈ U ,
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with

U = C \ {3i,−3i} .
Expansion of the function about z0 = 4 yields a series

f(z) =
∞∑
j=0

aj(z − 4)j , |z − 4| < R .

By the previous considerations, the radius of convergence is at least R = 5. (Here R = 5 is the
distance between the expansion point z0 = 4 and the pole–set {3i,−3i}.) If the power series would
converge in D(4, R′) with R′ > 5 then the function f(z) would be bounded near ±3i, which is not
true. It follows that the radius of convergence of the series is exactly R = 5.

Example 6.8: The geometric sum

∞∑
j=0

zj

has radius of convergence equal to r = 1. The value of the series is

f(z) =

∞∑
j=0

zj =
1

1− z , |z| < 1 .

The function f(z) = 1
1−z is holomorphic in U = C \ {1}. If we expand the function f(z) about

z0 = i/2, we obtain a series of the form

f(z) =
∞∑
j=0

aj

(
z − i

2

)j
. (6.12)

Since we know that z1 = 1 is the only singularity of f(z), the radius r of convergence of the series
(6.12) is the distance between z0 = i/2 and z1 = 1. Thus,

r =
1

2

√
5 .

We can determine the precise form of the expansion (6.12) as follows:

f(z) =
1

1− z
=

1

1− i
2 − (z − i

2)

=
1

1− i
2

(
1− z − i

2

1− i
2

)−1

=
∞∑
j=0

aj

(
z − i

2

)j
with

aj =
(

1− i

2

)−j−1
.
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Using the quotient criterion, it is easy to confirm that the radius of convergence is r = 1
2

√
5. To

see this, note that

|aj+1/aj |2 =
∣∣∣1− i

2

∣∣∣−2
=
(

1 +
1

4

)−1
=

4

5
.

Example 6.9: Consider the series

g(z) =
∞∑
j=0

bjz
j

where

bj =
2 + sin(j)

3 + cos(j2)
.

Since

1

4
≤ bj ≤

3

2

it follows from Hadamard’s formula that the radius of convergence is r = 1. In this case, we do not
know a simple analytic expression for g(z). If we expand g(z) about z0 = i/2 we can say that the
radius of convergence is at least 1

2 and not larger than 3
2 . But it will be difficult to determine the

radius precisely.

82



7 The Cauchy Estimates and Implications

Summary: For a complex differentiable function f(z) one can bound derivatives f ′(z), f ′′(z), etc.
in terms of values of the function. Here the constants in the bounds do not depend on the function
f , but on some distance.

The Cauchy estimates express bounds of derivatives of f in terms of values of f . The estimates
have many implications. We will use them to prove Liouville’s theorem: Every bounded holomor-
phic function is constant. Liouville’s theorem will then be used to prove the fundamental theorem
of algebra.

7.1 The Cauchy Estimates

Let U ⊂ C be an open set and let f : U → C be a holomorphic function. Let D̄(z0, r) ⊂ U . We
have

f(z) =

∞∑
j=0

aj(z − z0)j for |z − z0| < r

with

aj =
1

2πi

∫
Γ

f(ζ)

(ζ − z0)j+1
dζ, Γ = ∂D(z0, r) ,

and

f (j)(z0) = j! aj .

See Theorem 4.11.
Clearly, the curve Γ has length 2πr. Therefore, noting that

|ζ − z0| = r for ζ ∈ Γ ,

we obtain the following bound:

|f (j)(z0)| ≤ j!

rj
max
|ζ−z0|=r

|f(ζ)|, j = 0, 1, . . . (7.1)

The above estimates are called Cauchy estimates:

Theorem 7.1 (Cauchy Estimates) Let f ∈ H(U) where U is an open subset of C. If D̄(z0, r) ⊂ U
then the estimates (7.1) hold.

7.2 Liouville’s Theorem

Theorem 7.2 (Liouville) Let f : C→ C be holomorphic and bounded. Then f is constant.

Proof: We have, for all z ∈ C,

f(z) =
∞∑
j=0

ajz
j with aj =

1

j!
f (j)(0) .

By the Cauchy estimates:
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|f (j)(0)| ≤ j!

rj
M(r)

with

M(r) = max
|ζ|=r
|f(ζ)| .

By assumption, M(r) is bounded as r → ∞. Therefore, if j ≥ 1, then the term M(r)/rj goes to
zero as r →∞ and consequently aj = 0 for j ≥ 1. It follows that f(z) ≡ a0. �

The following generalization says that if an entire function f(z) grows at most like |z|k for
z → ∞, then f(z) is a polynomial of degree less than or equal to k. For short: Entire functions
with polynomial growth are polynomials.

Theorem 7.3 Let f : C → C be holomorphic. Assume that there are positive constants C,R and
q with

|f(z)| ≤ C|z|q for |z| ≥ R .

If k denotes the integer with k ≤ q < k+ 1 then f is a polynomial of degree less than or equal to k.

Proof: By an estimate as in the previous proof obtain that aj = 0 for j > k. �

7.3 The Fundamental Theorem of Algebra

Theorem 7.4 Let p(z) = a0 + a1z + . . .+ akz
k with ak 6= 0, i.e., p(z) is a polynomial of degree k.

If k ≥ 1 then there exists z1 ∈ C with p(z1) = 0.

Proof: It is easy to check (see below) that |p(z)| → ∞ as |z| → ∞ because p(z) has a positive
degree. If a zero z1 of p(z) would not exist, then

f(z) =
1

p(z)

would be a bounded entire function. By Liouville’s theorem, f(z) = const, thus p(z) = const, a
contradiction. �

For completeness, we show here that |p(z)| → ∞ as |z| → ∞: Write

p(z) = akz
k + q(z) where ak 6= 0

and

q(z) = a0 + a1z + . . .+ ak−1z
k−1 .

Let

M := |a0|+ |a1|+ . . .+ |ak−1| .
Then, for all z with |z| ≥ 1,

|q(z)| ≤M |z|k−1 .

Therefore, for |z| ≥ 1,
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|p(z)| ≥ |ak||z|k − |q(z)|
≥ |ak||z|k −M |z|k−1

= |z|k−1(|ak||z| −M)

=
1

2
|ak||z|k +

(1

2
|ak||z|k −M

)
It follows that

|p(z)| ≥ 1

2
|ak||z|k

if |z| ≥ 1 and |z| ≥ 2M/|ak|.
Extension: We want to show that every polynomial p(z) =

∑k
j=0 ajz

j of degree k can be
factorized:

p(z) = ak(z − z1) · · · (z − zk) .
This follows from Theorem 7.4 and the following lemma.

Lemma 7.1 Let p(z) =
∑k

j=0 ajz
j denote a polynomial of degree k where k ≥ 2. Further, let

z1 ∈ C be a zero of the polynomial p(z), i.e, p(z1) = 0. Then there is a polynomial q(z) of degree
k − 1 with

p(z) = (z − z1)q(z) .

Proof: Using the binomial formula for (a+ b)j , we write

p(z) =
k∑
j=0

ajz
j

=
k∑
j=0

aj

(
(z − z1) + z1

)j
=

k∑
j=0

bj(z − z1)j

where bk = ak. Since 0 = p(z1) = b0 we obtain

p(z) = (z − z1)
(
b1 + b2(z − z1) + . . .+ bk(z − z1)k−1

)
.

This proves the lemma. �
Clearly, if k − 1 ≥ 1, we can apply Theorem 7.4 to the polynomial q(z) which occurs in the

factorization p(z) = (z − z1)q(z). This process can then be repeated. This proves:

Theorem 7.5 (Fundamental Theorem of Algebra) Let p(z) = a0 + a1z + . . . + akz
k with ak 6= 0,

i.e., p(z) is a polynomial of degree k. Let k ≥ 1. Then there are k (not necessarily distinct) numbers
z1, z2, . . . , zk ∈ C with

p(z) = ak(z − z1) · · · (z − zk) .
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7.4 The Zeros of p(z) and p′(z)

This section can be skipped.

z1

z2

z3

z5
c

z4

z6
z7

Figure 7.1: Convex hull of zeros of p(z)

Let

p(z) = a(z − z1) · · · (z − zn) = a

n∏
j=1

(z − zj)

denote a polynomial of degree n ≥ 2. We claim: If c is a zero of the derivative p′(z), then c lies in
the convex hull of z1, . . . , zn, i.e., c can be written in the form

c =
∑
j

αjzj with αj ≥ 0 and
∑
j

αj = 1 .

To show this, we may assume that c 6= zj for all j, i.e., p(c) 6= 0. (If c = zj then the claim is trivial.)
We have

p′(z)
p(z)

=
∑
j

1

z − zj
, z ∈ C \ {z1, . . . , zn} , (7.2)

and the assumption p′(c) = 0 yields (using that |w|2 = ww̄):

0 =
∑ 1

c− zj
=
∑ c̄− z̄j
|c− zj |2

.

Therefore,

0 =
∑ c− zj
|c− zj |2

.

Set

γj = |c− zj |−2 > 0

and obtain

c
∑
k

γk =
∑
j

γjzj .

Therefore,
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c =

∑
j γjzj∑
k γk

=
∑
j

αjzj

with

αj =
γj∑
k γk

.

We have shown:

Theorem 7.6 Let p(z) be a polynomial of degree n with zeros z1, . . . , zn. (The zj are not necessarily
distinct.) Any zero c of p′(z) lies in the convex hull of z1, . . . , zn.

Another simple implication of (7.2) is the following: Assume that z is a complex number with
p(z) 6= 0 and p′(z) 6= 0. Then (7.2) yields∣∣∣p′(z)

p(z)

∣∣∣ ≤ nmax
j

1

|z − zj |
,

thus

n
∣∣∣ p(z)
p′(z)

∣∣∣ ≥ min
j
|z − zj | .

This says that for every z with p′(z) 6= 0 the closed disk

D̄(z,R) with R = n
∣∣∣ p(z)
p′(z)

∣∣∣
contains at least one zero zj of p(z). Here n is the degree of p.

The reason is simple: If

R ≥ min
j
|z − zj |

then there exists zj with R ≥ |z − zj |.

Theorem 7.7 Let p(z) be a polynomial of degree n. Let z ∈ C and p′(z) 6= 0. Set

Rz = n
∣∣∣ p(z)
p′(z)

∣∣∣ .
The closed disk

D̄(z,Rz)

contains at least one zero of p.

87



8 Morera’s Theorem and Locally Uniform Limits of Holomorphic
Functions; Stirling’s Formula for the Γ–Function

Summary: Let U ⊂ C be open and simply connected. If f : U → C is holomorphic then, by
Cauchy’s Theorem, ∫

Γ
f(z) dz = 0 (8.1)

for every closed curve Γ in U . Morera’s Theorem is a converse: If f : U → C is continuous and
(8.1) holds for every closed curve Γ in U then f is holomorphic on U .

Morera’s Theorem is very useful if one wants to prove the holomorphy of a limit function f(z)
of a sequence of holomorphic functions fn(z). One needs the concept of local uniform convergence
of a sequence of functions. We will use it to show that the Gamma–function Γ(z) is holomorphic
for Re z > 0. We will also show Stirling’s formula

Γ(x+ 1) =
(x
e

)x√
2πx

(
1 +O(x−1)

)
as x→∞ ,

which is used in statistics.

8.1 On Connected Sets

If (X, d) is a metric space, one calls X disconnected if one can write X = X1 ∪X2 where X1 and
X2 are nonempty, disjoint, open subsets of X:

X = X1 ∪X2, X1 ∩X2 = ∅, X1 6= ∅ 6= X2, Xj open .

Otherwise, X is called connected. The study of a function f defined on a metric space X can
typically be reduced to the study of f on the connected components of X. Therefore, without
much loss of generality, one may often assume that X is connected.

For a complicated subset X of R2 it may not be easy to determine if it connected or disconnected.
For example, consider the set X = X1 ∪X2 where

X1 = {(0, y) : − 1 ≤ y ≤ 1}
and

X2 = {(x, sin(1/x)) : x > 0} .
One could believe that X is disconnected, but it is not. Note that the subset X2 of X is not closed
in X.

Since we will only deal with open subsets U of C, the issue of connectedness is simple. One can
show that an open subset U of C is connected if and only if for any two points P,Q in U there is
a smooth curve Γ in U from P to Q.

Suppose U ⊂ C is disconnected and U = U1 ∪ U2 where the Uj are nonempty, disjoint, and
open. Then, if g ∈ H(U1), h ∈ H(U2), the function f : U → C defined by

f(z) = g(z) for z ∈ U1, f(z) = h(z) for z ∈ U2 ,

is holomorphic on U . This says that the behavior of any f ∈ H(U) on the set U1 may be completely
unrelated to the behavior of f on U2. In other words, it suffices to study holomorphic maps on
open, connected sets.
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8.2 Morera’s Theorem

Morera’s theorem is a converse of Cauchy’s integral theorem. It is very useful when studying
convergence of sequences and series of holomorphic functions.

Theorem 8.1 (Morera) Let U ⊂ C be open and connected. Let f : U → C be continuous. Assume
that ∫

Γ
f(z) dz = 0

for all closed, piecewise smooth curves Γ in U . Then there is a holomorphic function F : U → C
with F ′ = f . In particular, f is holomorphic.

Proof: Fix P0 ∈ U and, for any P ∈ U , let ψP denote a curve in U from P0 to P . Define

F (P ) =

∫
ψP

f(z) dz .

Note: Because of the assumption
∫

Γ f(z) dz = 0 for any closed curve Γ in U , the value F (P ) is
well-defined: The value F (P ) does not depend on the choice of ψP as long as ψP lies in U and goes
from P0 to P .

Fix any P ∈ U . We will prove that F ′(P ) = f(P ). There is r > 0 with D(P, r) ⊂ U . Let
0 < |h| < r. Define the curve γh by

γh(t) = P + th, 0 ≤ t ≤ 1 .

Then the curve

ψP+h − (ψP + γh)

is closed. Therefore,

F (P + h)− F (P ) =

∫
γh

f(z) dz

=

∫ 1

0
f(P + th)h dt ,

thus

1

h

(
F (P + h)− F (P )

)
=

∫ 1

0
f(P + th) dt .

The function t → f(P + th) converges to f(P ) as h → 0, uniformly for 0 ≤ t ≤ 1. (This follows
from the continuity of f in P .) Therefore,

1

h

(
F (P + h)− F (P )

)
→ f(P ) as h→ 0 .

�
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8.3 Modes of Convergence of a Sequence of Functions

Let X denote any non–empty set and let f0, f1, f2, . . . and f denote functions from X to C. What
does it mean that the sequence fn converges to f as n→∞? Different definitions are used, leading
to different notions of convergence. The most commonly used notions are pointwise convergence
and uniform convergence. Recall:

Definition 1: The sequence fn converges to f pointwise on X if for every z ∈ X and every ε > 0
there exists N = N(ε, z) ∈ N so that |fn(z)− f(z)| < ε for all n ≥ N .

Definition 2: The sequence fn converges to f uniformly on X if for every ε > 0 there exists
N = N(ε) so that |fn(z)− f(z)| < ε for all n ≥ N and all z ∈ X.

It turns out that both theses concepts are not completely perfect in complex analysis. The
concept of pointwise convergence is too weak: One cannot integrate the limit relation fn(z)→ f(z)
if the convergence is only pointwise. On the other hand, the concept of uniform convergence is too
restrictive, because it typically does not hold on the whole domain where the functions fn and f
are defined. For example, let

fn(z) =
n∑
j=0

zj and f(z) =
1

1− z for z ∈ D(0, 1) .

Then fn converges pointwise to f on D(0, 1), but not uniformly. The convergence is uniform,
however, on any subdomain D(0, r) with 0 < r < 1.

The following two notions of convergence, which turn out to be equivalent, are very useful in
complex analysis. Let U ⊂ C be an open set and let fn, f : U → C be functions.

Definition 3: The sequence fn converges to f uniformly on compact sets in U if the following
holds: For every compact set K ⊂ U and for every ε > 0 there exists N = N(ε,K) so that

|fn(z)− f(z)| < ε

for all n ≥ N and all z ∈ K.

Definition 4: The sequence fn converges to f locally uniformly in U if the following holds: For
every z0 ∈ U there is a neighborhood D(z0, r) ⊂ U so that for every ε > 0 there is N = N(ε, z0)
with

|fn(z)− f(z)| < ε

for all n ≥ N and all z ∈ D(z0, r).

Remark: If one replaces U by a general metric space, the two notions of uniform convergence on
compact sets and local uniform convergence, may differ from one another.

Theorem 8.2 Let U denote an open subset of C and let fn, f : U → C be functions. The sequence
fn converges to f uniformly on compact sets in U if and only if it converges to f locally uniformly
in U .

Proof: 1) Assume that fn converges to f uniformly on compact sets in U . Let z0 ∈ U . There
exists r > 0 with D̄(z0, r) ⊂ U ; etc.

2) Assume that fn converges to f locally uniformly in U . Let K ⊂ U be compact. For every
z ∈ K there exists rz > 0 so that fn converges to f uniformly on D(z, rz). The sets D(z, rz) for
z ∈ K form an open cover of K. Since K is compact there are finitely many sets
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Dj = D(zj , rzj ), j = 1, . . . , J ,

whose union covers K. For every ε > 0 and for every j there exists Nj = N(ε, j) with

|fn(z)− f(z)| < ε for n ≥ Nj

if z ∈ Dj . Set N(ε) := maxjNj then

|fn(z)− f(z)| < ε for n ≥ N(ε)

and z ∈ K. �
We have proved that local uniform convergence in U of a sequence fn : U → C is equivalent to

uniform convergence on compact sets in U . Next, let us consider series of functions fj(z).

Normal convergence of a series of functions. Let U ⊂ C denote an open set and let
fj : U → C denote a sequence of functions. The series

∞∑
j=1

fj(z), z ∈ U , (8.2)

has the partial sums

sn(z) =
n∑
j=1

fj(z), n = 1, 2, . . .

One says that the series (8.2) converges uniformly on the compact set K ⊂ U if the sequence of
partial sums sn(z) converges uniformly on K.

Example: We claim that the series

∞∑
j=1

(−1)j

z + j
, z ∈ U := C \ {−1,−2, . . .} ,

converges uniformly on every compact set K ⊂ U , but the convergence is not absolute. Proof: If
K ⊂ U is compact then K ⊂ D̄(0, R) for some R > 0. If j ≥ 2R and z ∈ K then |z| ≤ R and

|z + j| ≥ j − |z| ≥ j/2
|z + j + 1| ≥ j + 1− |z| ≥ j/2

thus ∣∣∣ 1

z + j
− 1

z + j + 1

∣∣∣ ≤ 4

j2
for j ≥ 2R .

This can be used to show that the sequence of partial sums sn(z) is a Cauchy sequence with respect
to the maximum norm on K, defined by

|f |K = sup
{
|f(z)| : z ∈ K

}
.

It is clear that the series
∑ (−1)j

z+j does not converge absolutely. A very useful convergence
concept for a series of functions is normal convergence.
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Definition 5: The series (8.2) converges normally on U if for every compact set K ⊂ U the series

∞∑
j=1

|fj |K

converges.

Example: Assume that the power series

∞∑
j=0

ajz
j

has radius of convergence r > 0. We claim that the series converges normally in D(0, r). If
K ⊂ D(0, r) is compact then

K ⊂ D̄(0, r1)

for some 0 < r1 < r. For all z ∈ K we have

|ajzj | ≤ |aj | rj1, j = 0, 1, 2, . . .

and the series

∞∑
j=0

|aj |rj1

converges by Abel’s Lemma, Lemma 6.1. Therefore, if fj(z) = aj z
j , then

|fj |K ≤ |aj |rj1 ,
and

∞∑
j=0

|fj |K .

converges.

A simple and important convergence theorem for holomorphic functions is stated next. Its proof
is based on Morera’s theorem and the Cauchy estimates.

Theorem 8.3 Let U ⊂ C be open; let fn, f : U → C be functions. Assume that all fn are
holomorphic. If fn converges to f locally uniformly in U , then f is also holomorphic. Furthermore,
f ′n converges to f ′ locally uniformly in U .

Proof: 1) First note that the continuity of all fn and the local uniform convergence of fn to f
implies that f is continuous.

2) Let D = D(z0, r) be any disk in U . Let Γ be any closed curve in D. Then, by Cauchy’s
theorem, ∫

Γ
fn(z) dz = 0

for all n. Since Γ is compact, the fn converge to f uniformly on Γ. It follows that
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∫
Γ
f(z) dz = 0 .

By Morera’s theorem, f is holomorphic in D. Since D was an arbitrary open disk in U , the function
f is holomorphic in U .

3) Let z0 ∈ U . There exists r > 0 so that D̄(z0, 2r) ⊂ U . Then, by Cauchy’s estimate (7.1) we
have for z ∈ D(z0, r),

|f ′n(z)− f ′(z)| ≤ 1

r
max
|ζ−z|=r

|fn(ζ)− f(ζ)|

≤ 1

r
max

ζ∈D̄(z0,2r)
|fn(ζ)− f(ζ)| =: Mn .

As n → ∞, the maximum Mn converges to zero since fn converges to f uniformly on D̄(z0, 2r).
Also, Mn is uniform for all z ∈ D(z0, r). This proves the theorem. �

8.4 Integration with Respect to a Parameter

Theorem 8.4 Let U be an open subset of C and let F : U × [a, b] → C denote a function. Here
[a, b] is a compact interval in R. Assume that F is continuous on U × [a, b] and that z → F (z, t) is
holomorphic on U for every fixed t. Then

f(z) =

∫ b

a
F (z, t) dt, z ∈ U ,

is holomorphic on U .

Proof: 1) Let D̄ = D̄(z0, r) ⊂ U . Since F (x, t) is uniformly continuous on D̄× [a, b] it follows that
the function f(z) is continuous.

2) Let D = D(P, r) be any open disk in U and let Γ be a smooth closed curve in D. By Cauchy’s
theorem, ∫

Γ
F (z, t) dz = 0 for all a ≤ t ≤ b .

We have

∫
Γ
f(z) dz =

∫
Γ

∫ b

a
F (z, t) dt dz

=

∫ b

a

∫
Γ
F (z, t) dz dt

= 0 .

Therefore, by Morera’s theorem, the function f(z) is holomorphic in D. Since D is an arbitrary
disk in U , the function f(z) is holomorphic in U .

Note that, in the second equation, we have exchanged the order of integration. Let us justify
this. If Γ has the parameterization γ(s), c ≤ s ≤ d, then
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∫
Γ

∫ b

a
F (z, t) dt dz =

∫ d

c

∫ b

a
F (γ(s), t)γ′(s) dt ds

=

∫ b

a

∫ d

c
F (γ(s), t)γ′(s) ds dt

=

∫ b

a

∫
Γ
F (z, t) dz dt

Here, in the second step, the continuous function (s, t)→ F (γ(s), t)γ′(s) is integrable over [c, d]×
[a, b], and Fubini’s theorem justifies to exchange the order of integration. �

8.5 Application to the Γ–Function: Analyticity in the Right Half–Plane

Let Hr = {z = x + iy : x > 0} denote the open right half–plane. For z ∈ Hr define Euler’s
Γ–function by

Γ(z) =

∫ ∞
0

tz−1e−t dt . (8.3)

We will prove that Γ(z) is holomorphic on Hr.
For ε > 0 and z ∈ C define

Γε(z) =

∫ 1/ε

ε
tz−1e−t dt .

Note: If t > 0 then

t = eln t

and

tz = ez ln t .

For every fixed t > 0, the function

z → tz−1e−t = e(z−1) ln te−t

is entire. Also,
(z, t)→ tz−1e−t = e(z−1) ln te−t

is continuous on C× [ε, 1
ε ]. Therefore, by Theorem 8.4, each function Γε(z) is entire.

Fix 0 < a < b <∞ and consider the vertical strip

Sa,b = {z = x+ iy : a ≤ x ≤ b, y ∈ R} .
For z = x+ iy ∈ Sa,b and 0 < ε ≤ 1 we have

|Γ(z)− Γε(z)| ≤
∫ ε

0
tx−1e−t dt+

∫ ∞
1/ε

tx−1e−t dt

≤
∫ ε

0
ta−1 dt+

∫ ∞
1/ε

tb−1e−t dt

=: R(ε)
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(Note: If 0 < t ≤ 1 then ln t ≤ 0. Therefore, 0 < a ≤ x yields that a ln t ≥ x ln t, thus tx ≤ ta.)
It is clear that R(ε)→ 0 as ε→ 0. Therefore,

sup
z∈Sa,b

|Γ(z)− Γε(z)| → 0 as ε→ 0 .

If K ⊂ Hr is an arbitrary compact set, then there exist 0 < a < b < ∞ with K ⊂ Sa,b. It follows
that Γε(z) converges to Γ(z) as ε → 0, uniformly on compact subsets K of Hr. This implies that
Γ(z) is holomorphic on Hr.

Remarks: 1) We will show later that Γ(z) can be continued as a holomorphic function defined
for z ∈ U where

U = C \ {0,−1,−2, . . .} .
The extended function, also denoted by Γ(z), has a simple pole at each n ∈ {0,−1,−2, . . .}.

The integral representation (8.3) for Γ(z) only holds for Re z > 0, however, since the integral
does not exist if Re z ≤ 0. The singularity of the function t → tz−1 at t = 0 is not integrable if
Re z ≤ 0.

2) Consider

Γ(x) =

∫ ∞
0

tx−1e−t dt for 0 < x <∞ .

For 0 < x << 1 we have

Γ(x) ∼
∫ 1

0
tx−1 dt =

1

x
tx
∣∣∣t=1

t=0
=

1

x
.

This suggests that, for z ∼ 0,

Γ(z) =
1

z
+

∞∑
j=0

ajz
j

where the series converges for z ∼ 0. This can in fact be shown. The above representation holds
for |z| < 1. The function Γ(z) has a simple pole at z = 0 with

Res(Γ(z), z = 0) = 1 .

3) Consider

Γ(x+ 1) =

∫ ∞
0

txe−t dt for x >> 1 .

The term tx is very large for large t. In fact, one can show that Γ(x+ 1) grows faster than eαx as
x→∞, for any α > 0.

Stirling’s formula says that

Γ(x+ 1)(
x
e

)x√
2πx

→ 1 as x→∞ . (8.4)

For any α > 0,

ln
( xx
eαx

)
= x(lnx− α)→∞ as x→∞ .
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Therefore, using (8.4),

Γ(x+ 1)

eαx
→∞ as x→∞ .

Thus, Γ(x) grows faster than any exponential eαx. On the other hand, if ε > 0, then

ln
( xx

e(x1+ε)

)
= x(lnx− xε)→ −∞ as x→∞ .

Therefore, using (8.4),

Γ(x+ 1)

e(x1+ε)
→ 0 as x→∞ .

Thus, for any ε > 0 the function e(x1+ε) grows faster than Γ(x) as x→∞.
4) Let z = x+ iy, x > 0, y ∈ R. We have

Γ(z) =

∫ ∞
0

tx−1tiye−t dt

where

tiy = eiy ln t = cos(y ln t) + i sin(y ln t) .

Let us try to understand the formula

Re Γ(z) =

∫ ∞
0

tx−1 cos(y ln t)e−t dt for z = x+ iy, x > 0 .

For y 6= 0 the function cos(y ln t)) varies rapidly in the interval 0 < t <∞ as t→ 0 and as t→∞.
Fix y 6= 0 and let x = 0. The integral∫ ∞

0
t−1 cos(y ln t)e−t dt

does not exist since the singularity at t = 0 is not integrable. However, the integrand varies rapidly
as t→ 0, leading to cancellations. This is an intuitive reason why the limit

lim
x→0+

Γ(x+ iy) =: Γ(iy)

exists for y 6= 0 and Γ(z) can be continued analytically into parts of the left half–plane.

8.6 Stirling’s Formula

Consider the Gamma–function for real positive x,

Γ(x+ 1) =

∫ ∞
0

txe−t dt .

Stirling’s formula,

Γ(x+ 1) ∼
(x
e

)x√
2πx ,

gives an approximation for Γ(x+ 1) which is valid for large x. Precisely:
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Theorem 8.5 As x→∞ we have

Γ(x+ 1) =
(x
e

)x√
2πx

(
1 +O(x−1)

)
. (8.5)

Proof: By definition, the term O(x−1) is a function for which the following holds: There are
constants C > 0 and x0 > 0 so that

|O(x−1| ≤ C/x for x > x0 .

To prove (8.5) we first make simple linear substitutions:

Γ(x+ 1) =

∫ ∞
0

txe−t dt (substitute t = xs, dt = xds)

= xx+1

∫ ∞
0

sxe−sx ds (use that s = eln s)

= xx+1

∫ ∞
0

ex(ln s−s) ds (substitute s = 1 + u, ds = du)

= xx+1

∫ ∞
−1

ex(ln(1+u)−1−u) du

=
(x
e

)x
x

∫ ∞
−1

ex(ln(1+u)−u) du .

We have to analyze the integral

J(x) =

∫ ∞
−1

exφ(u) du for x >> 1

where

φ(u) = ln(1 + u)− u for u > −1 .

We must show that

J(x) =

√
2π

x
+O(x−3/2) =

√
2π

x

(
1 +O(x−1

)
. (8.6)

Note: If x is large, then the main contribution to the integral defining J(x) comes from the u–
interval where φ(u) is maximal.

Clearly, φ(0) = 0 and

φ′(u) =
1

1 + u
− 1, φ′′(u) = − 1

(1 + u)2
< 0 .

Therefore, the function φ(u) attains its maximum at u = 0. Since

ln(1 + u) = u− u2

2
+
u3

3
− u4

4
+ . . . for |u| < 1

we have

φ(u) = −u
2

2
+O(u3) for u ∼ 0 .
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Here, and in the following, the term O(uj) denotes a smooth function of u which satisfies an
estimate |O(uj)| ≤ C|u|j for |u| ≤ 1/2.

If one neglects the O(u3)–term then one obtains

J(x) ∼
∫ ∞
−1

e−xu
2/2 du (substitute v =

√
x/2u)

∼
√

2

x

∫ ∞
−∞

e−v
2
dv

=

√
2π

x

To prove (8.6) we have to be precise about the error terms.

Details 1: Fix a small constant c > 0. It is not difficult to show that

J(x) =

∫ ∞
−1

exφ(u) du

=

∫ c

−c
exφ(u) du+ error(x)

where

|error(x)| ≤ e−κx for x ≥ x0 .

Here κ > 0 and x0 is sufficiently large. This holds since there are positive constants c1, c2 with

φ(u) ≤ −c1 − c2(u− c) for u ≥ c ,
thus ∫ ∞

c
exφ(u) du ≤ e−c1x

∫ ∞
0

e−c2xu du .

The integral ∫ −c
−1

exφ(u) du

can be estimated similarly. Therefore,

J(x) =

∫ c

−c
exφ(u) du+O(e−κx) as x→∞ .

Details 2: We have

φ(u) = −u
2

2

(
1− 2u

3
+O(u2)

)
= −u

2

2

(
1− u

3
+O(u2)

)2

for |u| ≤ c. In the integral
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J1(x) =

∫ c

−c
exφ(u) du

=

∫ c

−c
e−(x/2)u2(1−u/3+O(u2))2 du

use the substitution

u
(

1− u

3
+O(u2)

)
= y .

From

u =
y

1− u/3 +O(u2)

= y(1 + u/3 +O(u2))

= y(1 + y/3 +O(y2))

obtain that

du =
(

1 +
2

3
y +O(y2)

)
dy .

Therefore,

J1(x) =

∫ y2

y1

e−xy
2/2
(

1 +
2

3
y +O(y2)

)
dy

where

y1 = −c+O(c2), y2 = c+O(c2) .

Details 3: As in Details 1, the interval y1 ≤ y ≤ y2 can be changed to −∞ < y < ∞. The
error is O(e−κx). One obtains:

J1(x) =

∫ ∞
−∞

e−xy
2/2
(

1 +
2

3
y +O(y2)

)
dy +O(e−κx)

=

√
2π

x
+

∫ ∞
−∞

e−xy
2/2O(y2) dy +O(e−κx)

In the next integral use the substitution
√
xy = q and obtain∫ ∞

−∞
e−xy

2/2y2 dy = x−3/2

∫ ∞
−∞

e−q
2/2q2 dq = Cx−3/2 .

This proves the formula (8.6) and Stirling’s formula. �
Remark: According to [Whittaker, Watson, p. 253]:

Γ(x+ 1) =
(x
e

)x√
2πx

(
1 +

1

12x
+

1

288x2
− 139

51840x3
− 571

2488320x4
+O(x−5

)
as x→∞ .
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9 Zeros of Holomorphic Functions and the Identity Theorem; An-
alytic Continuation

Summary: Let U ⊂ C be open and connected; let f, g : U → C denote two holomorphic functions.
The Identity Theorem gives a rather simple condition which implies that f and g are identical,
i.e., f(z) = g(z) for all z ∈ U . The condition is that the set Z = {z ∈ U : f(z) = g(z)} has an
accumulation point P ∈ Z, i.e., there exists a sequence zn ∈ Z \ {P} with zn → P .

We first prove connectedness of the interval [0, 1]. The result will be used to prove the Identity
Theorem.

Lemma 9.1 Let A ⊂ [0, 1]. Assume:
a) 0 ∈ A.
b) A is open in [0, 1], i.e., for every t ∈ A there is ε > 0 such that

{s ∈ [0, 1] : |s− t| < ε} ⊂ A .

c) A is closed in [0, 1], i.e., if tn ∈ A converges to t ∈ [0, 1], then t ∈ A.
Under these assumptions we have A = [0, 1].

Proof: Suppose B = Ac = [0, 1] \A is not empty. Then let

β = inf B .

Since 0 ∈ A and A is open in [0, 1] we have that β > 0. Also, [0, β) ⊂ A. Since A is closed, it follows
that β ∈ A. Therefore, [0, β] ⊂ A. If β = 1, then Ac is empty, which contradicts our assumption.
Thus, β < 1. But then, since β ∈ A and A is open in [0, 1], there is ε > 0 such that [0, β + ε) ⊂ A.
This contradicts the definition, β = inf Ac. �
Definition: Let S ⊂ C be non–empty. Let P ∈ C. The point P is called an accumulation point
of S if there exists a sequence of points zn ∈ S \ {P} with zn → P . Here P may or may not be a
point of S. If P ∈ S and P is not an accumulation point of S, then P is called an isolated point of
S.

The following theorem is called the Identity Theorem. It implies that two holomorphic
functions, f, g ∈ H(U), are identical on U if U is connected and if the set of all z ∈ U with
f(z) = g(z) has an accumulation point in U . In particular, if f(z) = g(z) for all z in an open disk
in U or if f(z) = g(z) for all z on a line segment of positive length, then f and g are identical on
U .

Theorem 9.1 (Identity Theorem) Let U be an open and connected subset of C. Let f : U → C be
holomorphic. Let

Z = {z ∈ U : f(z) = 0}
be the set of points in U where f is zero. If Z has an accumulation point belonging to U , then
f ≡ 0.

Proof: a) Let P ∈ U be an accumulation point of Z and let zn ∈ Z with zn → P , zn 6= P . Let

f(z) =

∞∑
j=0

aj(z − P )j , |z − P | < r .
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We claim that aj = 0 for all j. Otherwise, let

a0 = a1 = . . . = aJ = 0, aJ+1 6= 0 .

Then we have

f(z) = (z − P )J+1(aJ+1 + aJ+2(z − P ) + . . .)

= (z − P )J+1g(z)

with g(z) holomorphic in D(P, r) and g(P ) 6= 0. There exists ε > 0 so that g(z) 6= 0 for |z−P | < ε.
Therefore,

f(z) 6= 0 for 0 < |z − P | < ε .

This contradicts
zn → P, zn 6= P, f(zn) = 0 .

b) Let

V = {z ∈ U : f (j)(z) = 0 for all j} .
We have shown that P ∈ V and claim that V = U . To show this, let Q ∈ U be arbitrary. Let
γ : [0, 1]→ U be a continuous function with

γ(0) = P, γ(1) = Q .

Such a function γ exists since U is a connected set. Let

A = {t ∈ [0, 1] : γ(t) ∈ V } .
We have that 0 ∈ A since γ(0) = P ∈ V . If t ∈ A then γ(t) ∈ V , and therefore f ≡ 0 in a
neighborhood of the point γ(t). This implies that A is open in [0, 1]. If tn ∈ A and tn → t, then

f (j)(γ(tn)) = 0

for all n and all j. This yields that

f (j)(γ(t)) = 0

for all j. Therefore, t ∈ A, thus A is closed. By the previous lemma, we have A = [0, 1]. Therefore,
Q ∈ V . �
Remark: We can use a different argument for part b) of the proof if we use the definition of
connectedness of U from topology. The set V is closed in U since all f (j) are continuous. Also, if
z ∈ V then f is zero in a neighborhood of z. Therefore, V is open in U . Since P ∈ V we have that
V 6= ∅. The connectedness of U then implies that V = U showing that f is zero on U .

Analytic Continuation: Let U ⊂ V ⊂ C where U and V are open sets and where V is connected.
Let f ∈ H(U), g ∈ H(V ). The function g is called an analytic continuation of U in V if g(z) = f(z)
for all z ∈ U . The above arguments imply that f has at most one analytic continuation in V . If
an analytic continuation (in an open connected set) exists, then it is unique.
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10 Isolated Singularities and Laurent Expansion

Summary: If f(z) is a holomorphic function in the punctured disk D(P, r) \ {P} then f has an
isolated singularity at P . There are three types: An isolated singularity can be removable, it can
be a pole, or it can be essential. The Casorati–Weierstrass Theorem says that for 0 < ε < r the
image set f(D(P, ε) \ {P}) is dense in C if the singularity at P is essential.

If f is holomorphic on D(P, r) \ {P} then f can be written as a Laurent series,

f(z) =
∞∑

j=−∞
aj(z − P )j for 0 < |z − P | < r .

The singularity at P is essential if and only if there are infinitely many negative j ∈ Z with aj 6= 0.
More generally, a Laurent series

∞∑
j=−∞

aj(z − P )j

converges in an annulus

A(P, r1, r2) =
{
z ∈ C : r1 < |z − P | < r2

}
where 0 ≤ r1 < r2 ≤ ∞.

10.1 Classification of Isolated Singularities

Let P ∈ C and let r > 0. Then the set

D(P, r) \ {P}
is a so–called punctured disk, a disk where the center is removed. If f = f(z) is holomorphic in
the set D(P, r) \ {P} for some r > 0, then one says that f has an isolated singularity at P .

For simplicity of notation, let P = 0. There are three cases:

Case 1: There exists ε > 0 and M > 0 with

|f(z)| ≤M for 0 < |z| ≤ ε .

Case 2: |f(z)| → ∞ as z → 0, i.e., for all R > 0 there exists ε > 0 with

|f(z)| ≥ R for 0 < |z| ≤ ε .

Case 3: Neither Case 1 nor Case 2 holds.

Terminology: Assume that f has an isolated singularity at P , i.e., f is a holomorphic function
in D(P, r) \ {P} for some r > 0. In Case 1, one says that f has a removable singularity at P .
This terminology is justified by Riemann’s theorem on removable singularities, which we will prove
below. In Case 2, one says that f has a pole at P . In Case 3 one says that f has an essential
singularity at P .

Example 1: The function
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f(z) =
z2 − 9

z − 3
for z 6= 3

has an isolated singularity at z = 3. For z 6= 3 we have

f(z) = z + 3 .

Case 1 holds. By setting f(3) = 6 we can remove the singularity of f at z = 3. The point z = 3 is
a removable singularity of the function f(z) = (z2 − 9)/(z − 3).

Example 2: The function

f(z) =
1

z2
for z 6= 0

has an isolated singularity at z = 0. Case 2 holds. The point z = 0 is a pole of order 2 of the
function f(z) = 1/z2.

Example 3: The function

f(z) = e1/z for z 6= 0

has an isolated singularity at z = 0. We claim that Case 3 holds. To show this, let

an =
1

in
, bn =

1

n
for n = 1, 2, 3, . . .

Then we have

f(an) = ein, |f(an)| = 1 ,

and

f(bn) = en .

Since an → 0 and |f(an)| = 1 for all n, Case 2 does not hold. Since bn → 0 and f(bn) → ∞.
Case 1 does not hold. The point z = 0 is an essential singularity of the function f(z) = e1/z.

10.2 Removable Singularities

Theorem 10.1 (Riemann’s Theorem on Removable Singularities) Let f ∈ H
(
D(0, r) \ {0}

)
for

some r > 0. Assume that Case 1 holds, i.e., f is bounded near the isolated singularity at P = 0:
|f(z)| ≤M for 0 < |z| ≤ ε. Then

lim
z→0

f(z) =: f0

exists and the extended function, fe(z), defined by

fe(z) = f(z) for 0 < |z| < r, fe(0) = f0 ,

is holomorphic in D(0, r).
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Proof: Set

g(z) = z2f(z) for 0 < |z| < r, g(0) = 0 .

Clearly, g is holomorphic at every z with 0 < |z| < r and g is continuous at z = 0. We will show
that g is also complex differentiable at z = 0.

For 0 < |h| < ε we have

∣∣∣1
h

(g(h)− g(0))
∣∣∣ =

∣∣∣1
h
g(h)

∣∣∣
= |h||f(h)|
≤ M |h| .

Therefore, g′(0) exists and is zero. Since g is holomorphic in D(0, r) we can write

g(z) = a0 + a1z + a2z
2 + . . . for |z| < r .

Also, since g(0) = g′(0) = 0, we have a0 = a1 = 0. Therefore,

g(z) = z2(a2 + a3z + . . .) for |z| < r .

Here the power series converges for |z| < r. Since g(z) = z2f(z) for 0 < |z| < r it follows that

f(z) = a2 + a3z + . . . for 0 < |z| < r .

This implies that limz→0 f(z) exists, is equal to f0 := a2, and that the extended function fe(z) is
holomorphic in D(0, r). This proves the theorem. �

10.3 Theorem of Casorati–Weierstrass on Essential Singularities

The following result is known as the Casorati–Weierstrass Theorem:

Theorem 10.2 Let f be a holomorphic function defined on D(P, r) \ {P} and assume that f has
an essential singularity at P . Then, for any 0 < δ < r, the set

f
(
D(P, δ) \ {P}

)
is dense in C.

Proof: Suppose this does not hold. Then fix 0 < δ < r so that the set

f
(
D(P, δ) \ {P}

)
is not dense in C. This means that there exists Q ∈ C and ε > 0 with

|f(z)−Q| ≥ ε for 0 < |z − P | < δ .

Set

g(z) =
1

f(z)−Q for 0 < |z − P | < δ .
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We have |g(z)| ≤ 1
ε . By Riemann’s removability theorem,

lim
z→P

g(z) =: g0

exists.
Case 1: g0 6= 0. In this case,

lim
z→P

(f(z)−Q) =
1

g0
.

This implies that f(z) is bounded near P , which contradicts the assumption that f has an essential
singularity at P .

Case 2: g0 = 0. In this case,

lim
z→P
|f(z)−Q| =∞ .

It follows that f has a pole at P , which contradicts the assumption that f has an essential singularity
at P . �
Remark: A deeper result is Picard’s Big Theorem:

Theorem 10.3 Under the same assumptions as in the Casorati–Weierstrass theorem, we have

f
(
D(P, δ) \ {P}

)
= C for every δ with 0 < δ < r

or, for some Q ∈ C,

f
(
D(P, δ) \ {P}

)
= C \ {Q} for every δ with 0 < δ < r .

In other words, only the following two possibilities exist:
Possibility 1:

For any w ∈ C and any 0 < δ < r the equation f(z) = w has infinitely many solutions z = zn with
0 < |zn − P | < δ.

Possibility 2:
There is a point Q ∈ C so that for any w ∈ C \ {Q} and any 0 < δ < r the equation f(z) = w has
infinitely many solutions z = zn with 0 < |zn − P | < δ.

Example 1: Let f(z) = e1/z, z 6= 0. Clearly, f has an essential singularity at P = 0. Here we
can directly verify that possibility 2 holds with Q = 0. If w ∈ C, w 6= 0, is given, then we can write

w = reiθ = eln r+iθ+2πin

for any n ∈ Z. If

zn :=
1

ln r + iθ + 2πin

then f(zn) = w and |zn| < δ if |n| is large. This shows that the function

f(z) = e1/z, z ∈ C \ {0} ,
has the following property: Given any w ∈ C \ {0} and given any δ > 0, there are infinitely many
points zn with 0 < |zn| < δ and f(zn) = w. In other words: In any neighborhood of its essential
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singularity at P = 0, the function f(z) = e1/z attains every value w ∈ C, except for w = 0, infinitely
many times.

Example 2: f(z) = sin(1/z), z 6= 0. Again, f has an essential singularity at P = 0. In this
case, for any w ∈ C and any δ > 0 the equation f(z) = w has infinitely many solutions z = zn with
0 < |zn| ≤ δ. Proof: We solve

sinα =
1

2i

(
eiα − e−iα

)
= w

by setting

q = eiα .

The equation becomes

q − 1

q
= 2iw or q2 − 2iwq − 1 = 0 .

Clearly, given any w ∈ C there exists a solution q ∈ C, q 6= 0. The equation

eiα = q

has the solutions

αn = αpar + 2πn, n ∈ Z ,

where αpar is a particular solution. For n ∈ Z with αn 6= 0 set

zn =
1

αn
=

1

αpar + 2πn
.

We have

ei/zn = eiαn = q

and obtain that

sin(1/zn) = sinαn

=
1

2i

(
eiαn − e−iαn

)
=

1

2i

(
q − 1

q

)
= w

Also, |zn| < δ for large |n|.

10.4 Laurent Series

10.4.1 Terminology

An expression

∞∑
j=−∞

aj(z − P )j (10.1)
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is called a Laurent series centered at P . The series (10.1) is called convergent at z if the limits

lim
n→∞

n∑
j=0

aj(z − P )j =: L1

and

lim
n→∞

−1∑
j=−n

aj(z − P )j =: L2

exist. If these limits exist then the value of (10.1) is L1 + L2.
Assume that 0 < r2 ≤ ∞ is the radius of convergence of the power series

∞∑
j=0

aj(z − P )j

and 0 < 1/r1 ≤ ∞ is the radius of convergence of the power series

∞∑
j=1

a−jwj .

Then the series

−1∑
j=−∞

aj(z − P )j

converges for r1 < |z − P | <∞ and defines a holomorphic function for r1 < |z − P | <∞. If

0 ≤ r1 < r2 ≤ ∞
then the Laurent series (10.1) converges for r1 < |z − P | < r2 and defines a holomorphic function
in the annulus

A = A(P, r1, r2) = {z : r1 < |z − P | < r2} .
The set A(P, r1, r2) is called the annulus centered at P with inner radius r1 and outer radius

r2.
We will prove below that, conversely, every function f(z), which is holomorphic in an annulus,

can be written as a Laurent series:

f(z) =
∞∑

j=−∞
aj(z − P )j for z ∈ A(P, r1, r2) .

The coefficients aj are uniquely determined.

10.4.2 Characterization of Isolated Singularities in Terms of Laurent Expansions

If the holomorphic function f has an isolated singularity at P then P is removable or a pole or an
essential singularity. We will prove that these three possibilities have a simple characterization in
terms of the Laurent expansion of f in D(P, r) \ {P}.

Let A = A(P, 0, r) = D(P, r) \ {P}. We will show: If f : A → C is holomorphic, then f has a
Laurent expansion in A,
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r1
r2

P

z

Figure 10.1: The annulus A(P, r1, r2)

f(z) =
∞∑

j=−∞
aj(z − P )j , z ∈ A ,

where the aj are uniquely determined. Clearly, there are three cases:

Case A: aj = 0 for all j < 0.

Case B: There exists J < 0 with aJ 6= 0 and aj = 0 for all j < J . We will show below that this
case holds if and only if f has a pole at P ; one says that f has a pole of order |J | at P .

Case C: There are infinitely many j < 0 with aj 6= 0.

We will prove:

Theorem 10.4 Let f = f(z) be holomorphic in D(P, r) \ {P},

f(z) =
∞∑

j=−∞
aj(z − P )j for 0 < |z − P | < r .

Then f has a removable singularity at P if and only if Case A holds; f has a pole at P if and only
if Case B holds; f has an essential singularity at P if and only if Case C holds.

10.4.3 Convergence of Laurent Series

Theorem 10.5 Assume the Laurent series
∑

j aj(z − P )j converges for z = z1 and z = z2 with

r1 = |z1 − P | < r2 = |z2 − P | .
Then the series converges for all z with

r1 < |z − P | < r2 .

Furthermore, the series

∞∑
j=0

aj(z − P )j =: g(z)

converges absolutely for |z − P | < r2 and the series
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−1∑
j=−∞

aj(z − P )j =: h(z)

converges absolutely for |z − P | > r1. Also,

n∑
j=0

aj(z − P )j → g(z) as n→∞

normally in D(P, r2) and

−1∑
j=−n

aj(z − P )j → h(z) as n→∞

normally for |z − P | > r1, i.e., in A(P, r1,∞).

Proof: This follows, essentially, from Abel’s Lemma for power series. �

10.4.4 Examples

1) The Laurent series

f(z) =

∞∑
j=−10

zj

j2 + 1

converges for 0 < |z| < 1. The annulus of convergence is A(0, 0, 1). The function f(z) has a pole
of order 10 at z = 0.

2) The Laurent series

f(z) =
50∑

j=−∞
2jzj

converges if

2−1|z−1| < 1

and diverges if

2−1|z−1| > 1 .

Thus, convergence holds for |z| > 1
2 . The annulus of convergence is A(0, 1

2 ,∞). The function f(z)
does not have an isolated singularity at z = 0.

3) In the following example we show that the Laurent expansion of a function f(z) in an annulus
A(P, r1, r2) not only depends on P , but also on r1 and r2. Consider the function

f(z) =
1

(1− z)(2− z) =
1

1− z −
1

2− z , z ∈ C \ {1, 2} .

It can be written as a Laurent series, centered at z = 0, in
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A1 = A(0, 0, 1)

A2 = A(0, 1, 2)

A3 = A(0, 2,∞)

a) The expansion in A1 is the Taylor expansion about 0: We have

1

1− z =
∞∑
j=0

zj , |z| < 1 ,

and

1

2− z =
1

2(1− z/2)

=
1

2

∞∑
j=0

2−jzj , |z| < 2 .

Therefore,

f(z) =
∞∑
j=0

(1− 2−j−1)zj , |z| < 1 .

b) To obtain the Laurent expansion in A2 we write

1

1− z = −1

z

1

1− 1/z

= −1

z

∞∑
j=0

z−j

for |z| > 1. Together with the expansion of 1/(2− z) of the previous case:

f(z) = −1

z

∞∑
j=0

z−j −
∞∑
j=0

2−j−1zj for 1 < |z| < 2 .

c) To obtain the Laurent expansion in A3 we write for |z| > 2:

− 1

2− z =
1

z

1

1− 2/z

=
1

z

∞∑
j=0

2jz−j

Therefore,

f(z) =
1

z

∞∑
j=0

(2j − 1)z−j .
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10.4.5 Laurent Expansion: Uniqueness

Let P = 0, for simplicity. Let 0 ≤ r1 < r2 ≤ ∞ and let

A = A(0, r1, r2)

denote an annulus. Assume that

f(z) =
∞∑

j=−∞
ajz

j , z ∈ A . (10.2)

Since the convergence is normal in A, the function f(z) is holomorphic in A. Let r1 < r < r2 and
let

γ(t) = reit, 0 ≤ t ≤ 2π .

We claim that

an =
1

2πi

∫
γ

f(z)

zn+1
dz, n ∈ Z .

The proof is easy: Since the convergence of the series (10.2) is uniform on γ, we can exchange
summation and integration. Therefore,∫

γ

f(z)

zn+1
dz =

∑
j

aj

∫
γ

zj

zn+1
dz = 2πi an .

This result shows that the coefficients aj of the expansion (10.2) are uniquely determined by the
function f(z).

10.4.6 Laurent Expansion: Existence

Let A = A(0, r1, r2) denote the annulus as above and let f : A→ C be holomorphic. Let z ∈ A be
arbitrary. Choose real numbers s1 and s2 with

r1 < s1 < |z| < s2 < r2 .

Let

γ1(t) = s1e
it, γ2(t) = s2e

it, 0 ≤ t ≤ 2π .

We claim that

2πif(z) =

∫
γ2

f(ζ)

ζ − z dζ −
∫
γ1

f(ζ)

ζ − z dζ =: r.h.s. .

In order to show this, we deform the curves −γ1 and γ2 so that the right–hand side becomes

r.h.s. =

∫
γε

f(ζ)

ζ − z dζ

with

γε = z + εeit, 0 ≤ t ≤ 2π .
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Writing

f(ζ) = f(z) + (f(ζ)− f(z))

and taking the limit ε→ 0 one obtains that

r.h.s. = 2πi f(z) .

The Laurent expansion of f(z) can now be obtained by using the geometric sum formula. The
details are as follows. We have

2πif(z) = Int2 − Int1
with

Intk =

∫
γk

f(ζ)

ζ − z dζ, k = 1, 2 .

Consider Int2 first. We have |ζ| > |z|, thus

1

ζ − z =
1

ζ(1− z/ζ)

=
1

ζ

∞∑
j=0

(z
ζ

)j
Therefore,

Int2 =
∞∑
j=0

ajz
j

with

aj =

∫
γ2

f(ζ)

ζj+1
dζ .

When considering Int1, we note that |ζ| < |z|. Therefore,

1

ζ − z = −1

z

1

1− ζ/z

= −1

z

∞∑
j=0

(ζ
z

)j
This yields

Int1 =

∞∑
j=0

bjz
−j−1

with

bj = −
∫
γ1

f(ζ)ζj dζ .

We summarize:
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Theorem 10.6 Let A = A(P, r1, r2) denote an open annulus and let f ∈ H(A). There are uniquely
determined coefficients aj , j ∈ Z, so that

f(z) =
∞∑

j=−∞
aj(z − P )j for z ∈ A . (10.3)

This series representation of f is called the Laurent expansion of f in A.

10.4.7 Local Behavior and Laurent Expansion

Assume that f has an isolated singularity at P . There are three cases: P is a removable singularity;
P is a pole; or P is an essential singularity. These notions have been defined in Section 10.1 in
terms of the local behavior of f near P . We now characterize the three cases in terms of the Laurent
expansion of f near P .

Theorem 10.7 Let f be a holomorphic function defined in D(P, r) \ {P},

f(z) =
∞∑

j=−∞
aj(z − P )j , 0 < |z − P | < r .

a) The point P is a removable singularity of f if and only if aj = 0 for all j < 0.
b) The point P is a pole of f if and only if there exists J < 0 with

aJ 6= 0 and aj = 0 for all j < J .

c) The point P is an essential singularity of f if and only if there are infinitely many j < 0 with
aj 6= 0.

Proof: For simplicity, assume P = 0.
a) If P is removable, then aj = 0 for all j < 0 by Riemann’s removability theorem. The converse

is trivial.
b) First assume that J exists, i.e., with J = −k,

f(z) = z−k(a−k + a−k+1z + . . .) = z−kg(z) .

The function g(z) has a removable singularity at z = P and |g(z)| ≥ 1
2 |a−k| for |z − P | < ε. It

follows that f(z) has a pole at z = P . Conversely, let |f(z)| → ∞ as z → P . Set g(z) = 1/f(z) for
0 < |z − P | < ε and apply Riemann’s theorem to g(z). Obtain that, for some m ≥ 0,

g(z) = zm(bm + bm+1z + . . .), bm 6= 0 .

This yields that

f(z) = z−mQ(z)

where Q(z) has a holomorphic extension at z = P . The statement c) now follows trivially. �
Terminology: If

f(z) =
∞∑

j=−∞
aj(z − P )j , 0 < |z − P | < r ,
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is a holomorphic function in D(P, r) \ {P} then

−1∑
j=−∞

aj(z − P )j

is called the singular part of f (about P ). Note that the singular part defines a holomorphic
function in C \ {P}. The coefficient

a−1 = Res(f, P )

is called the residue of f at P .
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11 The Calculus of Residues; Evaluation of Integrals; Partial Frac-
tion Decompositions

Summary: Let γr(θ) = reiθ, 0 ≤ θ ≤ 2π, parameterize the circle of radius r centered at the origin.
We know that ∫

γr

zj dz =

{
0 for j ∈ Z, j 6= −1

2πi for j = −1

Therefore, if f ∈ H
(
D(0, R) \ {0}

)
has the Laurent expansion

f(z) =

∞∑
j=−∞

ajz
j for 0 < |z| < R

then ∫
γr

f(z) dz = 2πi a−1 for 0 < r < R .

For this reason, the residue

a−1 = Res(f, 0)

is very important.
In Section 11.1 we discuss methods to calculate residues. In Section 11.2 we use residues to

evaluate integrals.

For a ∈ C \ Z the function

q(z) =
cot(πz)

(z − a)2
=

cos(πz)

(z − a)2 sin(πz)
, z ∈ C \ (Z ∪ {a}) ,

has a simple pole at each integer j and a double pole at z = a unless cos(πa) = 0. If cos(πa) = 0
then the pole of q(z) at z = a is simple.

In Section 11.3 we will apply residue calculus to q(z) to obtain the partial fraction decomposition

π2

sin2(πa)
=

∞∑
j=−∞

1

(j − a)2
, a ∈ C \ Z .

This partial fraction decomposition can be used to obtain that

π cot(πz) =
1

z
+

∞∑
j=1

2z

z2 − j2
, z ∈ C \ Z .

This is the partial fraction decomposition of the function π cot(πz). It will be used in the next
Chapter to evaluate the Zeta–function at even integers.
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11.1 Computation of Residues

Let f be holomorphic in

D(P, r) \ {P} = {z : 0 < |z − P | < r} ,

i.e., f has an isolated singularity at P . We have shown that f has a Laurent expansion in
D(P, r) \ {P}:

f(z) =
∞∑

j=−∞
aj(z − P )j , 0 < |z − P | < r ,

where the coefficients aj are uniquely determined. The coefficient

a−1 = Res(f, P )

is called the residue of f at P .

11.1.1 The Case of a Simple Pole

If a−1 6= 0, but aj = 0 for all j ≤ −2, then the point P is a simple pole of the function f(z). If f
has a simple pole at P then one can write

f(z) =
g(z)

z − P , 0 < |z − P | < r ,

where, after extension, g is holomorphic in D(P, r). In this case,

a−1 = Res(f, P ) = g(P ) .

Example A: Let

f(z) =
ez

(z − 1)(z − 2)
.

To determine Res(f, 1) we write

f(z) =
g(z)

z − 1
with g(z) =

ez

z − 2
.

Therefore,
Res(f, 1) = g(1) = −e .

To determine Res(f, 2) we write

f(z) =
g(z)

z − 2
with g(z) =

ez

z − 1
.

Therefore,
Res(f, 2) = g(2) = e2 .

A general result about the residue at a simple pole is the following:
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Lemma 11.1 Let f, g ∈ H(D(P, r)) with

g(P ) = 0, g′(P ) 6= 0, f(P ) 6= 0 .

Then the quotient function

q(z) =
f(z)

g(z)
, 0 < |z − P | < ε ,

has a simple pole at z = P and

Res(q, P ) =
f(P )

g′(P )
.

Proof: We have

g(z) = g′(P )(z − P ) +O((z − P )2)

= (z − P )g′(P )
(

1 +O(z − P )
)
.

Therefore,

q(z) =
f(z)

g(z)
=

1

z − P
( f(P )

g′(P )
+O(z − P )

)
.

�
Example B: Let a ∈ C \ Z. We apply the lemma to

q(z) =
cot(πz)

(z − a)2
=

cos(πz)

(z − a)2 sin(πz)
, z ∈ C \ (Z ∪ {a})

and determine Res(q, j) for j ∈ Z. The denominator

g(z) = (z − a)2 sin(πz)

has a simple zero at each integer z = j ∈ Z and we have

g′(j) = π(j − a)2 cos(πj) 6= 0 ,

thus

Res(q, j) =
cos(πj)

g′(j)
=

1

π(j − a)2
, j ∈ Z .

11.1.2 Poles of Order 2

If f(z) has a pole of order 2 has z = P then

f(z) =
α

(z − P )2
+

β

z − P + h(z) for 0 < |z − P | < r

where α 6= 0 and h ∈ H(D(P, r)). Obtain

(z − P )2 f(z) = α+ β (z − P ) + (z − P )2 h(z)
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and

d

dz

(
(z − P )2 f(z)

)∣∣∣
z=P

= β = Res(f, P ) .

This formula for the residue can be generalized to poles of any order k.

11.1.3 Poles of Order ≤ k
Let k ≥ 1 and assume that f has a pole of order less than or equal to k at P ,

f(z) =
∞∑

j=−k
aj(z − P )j for 0 < |z − P | < r .

Then we have

(z − P )kf(z) = a−k + a−k+1(z − P ) + a−k+2(z − P )2 + . . . =: g(z)

and g(z) has a removable singularity at P .
Since

g(z) = a−k + a−k+1(z − P ) + . . .+ a−1(z − P )k−1 + a0(z − P )k + . . .

we have

(d/dz)k−1g(z)
∣∣∣
z=P

= (k − 1)! a−1 .

Here a−1 = Res(f, P ).
One obtains:

Lemma 11.2 If f(z) has a pole of order less than or equal to k at P then

Res(f, P ) =
1

(k − 1)!

( d
dz

)k−1 (
(z − P )kf(z)

)∣∣∣
z=P

.

Example C: Consider the same function as in the previous example,

q(z) =
cot(πz)

(z − a)2
=

cos(πz)

(z − a)2 sin(πz)
, z ∈ C \ (Z ∪ {a})

where a ∈ C \ Z. We want to determine

Res(q, a) .

First assume that cos(πa) 6= 0. Then q(z) has a double pole at z = a and we apply Lemma 11.2
with k = 2.

We have

Res(q, a) =
d

dz

(
(z − a)2q(z)

)∣∣∣
z=a

=
( d
dz

cot(πz)
)∣∣∣
z=a

= − π

sin2(πa)
.
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Second, assume that cos(πa) = 0. In this case the function q(z) has a simple pole at z = a. We
use the Taylor expansion of cot(πz) about z = a:

cot(πz) = cot(πa) +
( d
dz

cot(πz)
)∣∣∣
z=a

(z − a) +O
(

(z − a)2
)
.

Since ( d
dz

cot(πz)
)∣∣∣
z=a

= − π

sin2(πa)

one obtains that (assuming cos(πa) = 0):

cot(πz) = cot(πa)− π

sin2(πa)
(z − a) +O

(
(z − a)2

)
= − π

sin2(πa)
(z − a) +O

(
(z − a)2

)
Therefore,

q(z) =
cot(πz)

(z − a)2

= − π

sin2(πa)
· 1

z − a +O(1)

It follows that

Res(q, a) = − π

sin2(πa)

if cot(πa) = 0.

For later reference we summarize the results of Examples B and C:

Lemma 11.3 Let a ∈ C \ Z and let

q(z) =
cot(πz)

(z − a)2
=

cos(πz)

(z − a)2 sin(πz)
, z ∈ C \ (Z ∪ {a}) .

We have

Res(q, j) =
1

π(j − a)2
for j ∈ Z

and

Res(q, a) = − π

sin2(πa)
.

Example D: Let

f(z) =
ez

(z − 1)3
.

The function has a pole of order 3 at P = 1. By Lemma 11.2 we have
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Res(f, 1) =
1

2

( d2

dz2
ez
)∣∣∣
z=1

=
e

2

It may be difficult to remember Lemma 11.2. One often can proceed more directly using Taylor
expansion. Application to Example D: Let

g(z) = (z − 1)3f(z) = ez .

We make a Taylor expansion of g(z) = ez about z = 1. We have

g(z) = g(1) + g′(1)(z − 1) +
1

2
g′′(1)(z − 1)2 + . . .

If g(z) = ez then g(j)(1) = e for all j. Therefore,

f(z) = (z − 1)−3
(
e+ e(z − 1) +

e

2
(z − 1)2 + . . .

)
= e(z − 1)−3 + e(z − 1)−2 +

e

2
(z − 1)−1 + . . .

It follows that

Res(f, 1) =
e

2
.

11.2 Calculus of Residues

Let U ⊂ C be an open set and let P ∈ U . Let f ∈ H(U \ {P}), thus f has an isolated singularity
at P . Let

γε(t) = P + εeit, 0 ≤ t ≤ 2π .

Assume that ε > 0 is so small that γε ⊂ U and the curve γε encircles only the singularity P of f ,
but no other singularities of f . In this case,∫

γε

f(z) dz = 2πi a−1

with

a−1 = Res(f, P ) .

Together with Cauchy’s theorem, which allows the deformation of curves in regions where f is
holomorphic, this yields a very powerful tool for the evaluation of integrals. We formalize this in
the residue theorem.

Theorem 11.1 (Residue Theorem) Let U ⊂ C be an open set and let Γ ⊂ U be a simply closed
curve which is positively oriented. Let V denote the region encircled by Γ and assume that V ⊂ U .
Let P1, . . . , Pk ∈ V and let f ∈ H(U \ {P1, . . . , Pk}). Then we have∫

Γ
f(z) dz = 2πi

k∑
j=1

Res(f, Pj) .
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11.2.1 Direct Applications of the Residue Theorem

In Examples 1 to 3 we evaluate integrals directly using residue calculus.

Example 1: Let γ(t) = eit, 0 ≤ t ≤ 2π, denote the parameterized unit circle. We want to evaluate

I =

∫
γ
z2 sin(1/z) dz .

We have

sinw = w − 1

6
w3 + . . . ,

thus

sin(1/z) = z−1 − 1

6
z−3 + . . . ,

thus

z2 sin(1/z) = z − 1

6
z−1 + . . . .

Therefore,

Res
(
z2 sin(1/z), z = 0

)
= −1

6

and

I = −2πi

6
= −πi

3
.

Example 2: Let γ(t) = 2eit, 0 ≤ t ≤ 2π. We want to evaluate

I =

∫
γ

5z − 2

z(z − 1)
dz .

We have

f(z) =
1

z
· 5z − 2

z − 1
=

1

z − 1
· 5z − 2

z
,

thus

Res(f, 0) = 2

and

Res(f, 1) = 3 .

It follows that

I = (2 + 3)2πi = 10πi .

Example 3: Let γ(t) = 2eit, 0 ≤ t ≤ 2π. We want to evaluate
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I =

∫
γ

sinh z

z4
dz .

We have

ez = 1 + z +
z

2
+
z3

6
+ . . .

e−z = 1− z +
z

2
− z3

6
+ . . .

thus

sinh z =
1

2
(ez − e−z) = z +

z3

6
+
z5

5!
+ . . .

Therefore,

sinh z

z4
= z−3 +

z−1

6
+
z

5!
+ . . .

This yields that

Res
(sinh z

z4
, z = 0

)
=

1

6

and

I =
πi

3
.

11.2.2 Use of the Substitution z = eit

Integrals involving trigonometric functions can sometimes be rewritten as complex line integrals
and then be evaluated using the calculus of residues.

In the following example we use the substitution

z(t) = eit, 0 ≤ t ≤ 2π ,

to turn an integral involving a trigonometric function into an integral along the unit circle, C1.

Example 4: For a > 1 evaluate

I =

∫ π

0

dt

a+ cos t
.

Using the symmetry cos t = cos(2π − t) and cos t = (eit + e−it)/2 we obtain

2I =

∫ 2π

0

dt

a+ (eit + e−it)/2
.

The function z(t) = eit, 0 ≤ t ≤ 2π, parameterizes the unit circle C1 and dz = ieit dt = iz dt. If
f(z) is a continuous function on C1, then
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∫
C1
f(z) dz =

∫ 2π

0
f(eit)ieit dt .

Therefore, to evaluate 2I, we define f(z) by

f(z)iz =
1

a+ (z + 1/z)/2

and obtain

f(z) =
2

i
· 1

z2 + 2az + 1
.

Therefore,

2I =

∫ 2π

0

dt

a+ (eit + e−it)/2
=

∫
C1
f(z) dz .

This yields that

I =
1

i

∫
C1

dz

z2 + 2az + 1
.

Thus we have written the integral I as a complex line integral. We now evaluate I using residue
calculus. The solutions of

z2 + 2az + 1 = 0

are

z1 = −a+
√
a2 − 1, z2 = −a−

√
a2 − 1

with z1z2 = 1, thus

z2 < −1 < z1 < 0 .

Set

g(z) =
1

z2 + 2az + 1
=

1

(z − z1)(z − z2)
,

thus

Res(g, z1) =
1

z1 − z2
=

1

2
√
a2 − 1

.

Therefore,

I = 2πiRes
(g
i
, z1

)
=

π√
a2 − 1

.

Note: We have I = I(a)→∞ as a→ 1+. This is expected since a+cos t = 0 for t = π if a = 1.
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Re zR−R 0

Im z

iR
Γ2R

i

Γ1R

Figure 11.1: Integrals: Examples 5 and 6

11.2.3 Integrals over −∞ < x <∞
Example 5: We know from calculus that

I :=

∫ ∞
−∞

dx

1 + x2
= π . (11.1)

In calculus, one uses that (d/dx) arctanx = (1 + x2)−1. Let us obtain (11.1) using the calculus of
residues. Let

Γ1R(x) = x, −R ≤ x ≤ R
and

Γ2R(t) = Reit, 0 ≤ t ≤ π .
Then ΓR = Γ1R + Γ2R is a closed curve, consisting of the part −R ≤ x ≤ R of the x–axis and a
semi–circle in the upper half–plane.

We assume R > 1. Then, by residue calculus,

∫
ΓR

dz

z2 + 1
=

∫
ΓR

dz

(z − i)(z + i)

=
2πi

2i
= π

We have ∫ ∞
−∞

dx

1 + x2
= lim

R→∞

∫
Γ1R

dz

z2 + 1

and the corresponding integral along Γ2R tends to zero as R→∞. Therefore, I = π.

Example 6: We claim that for a > 0:

I =

∫ ∞
−∞

cosx

a2 + x2
dx =

π

a
e−a .

A crude simple bound for the integral follows from

|I| ≤
∫ ∞
−∞

1

a2 + x2
=
π

a
.
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Let Γ1R,Γ2R, and ΓR be defined as in Example 5. One should note that

cos z =
1

2
(eiz + e−iz)

becomes exponentially large in the upper half–plane: If z = x+ iy, then |eiz| = e−y ≤ 1 for y ≥ 0,
but

|e−iz| = ey, y ≥ 0 .

Thus we cannot directly proceed as in the previous example, because the integral of cos z/(a2 + z2)
along Γ2R does not converge to zero as R → ∞. Instead, we recall that eix = cosx + i sinx for
x ∈ R, thus

cos z = Re eiz for z = x ∈ R .

Therefore,

I = Re

∫ ∞
−∞

eiz

a2 + z2
dz .

We have

g(z) :=
eiz

a2 + z2
=

eiz

(z − ia)(z + ia)

with

Res(g, ia) =
e−a

2ia
.

Therefore, for R > a,

∫
ΓR

g(z) dz = 2πiRes(g, ia)

=
π

a
e−a .

It remains to show that ∫
Γ2R

g(z) dz → 0 as R→∞ . (11.2)

Note that |eiz| ≤ 1 in the upper half–plane. Also, if |z| = R ≥ 2a then

|a2 + z2| ≥ |z|2 − a2 ≥ 3

4
R2 ,

thus

|g(z)| ≤ 4

3
R−2.

This implies (11.2).
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11.2.4 Extensions Using Jordan’s Lemma

Example 7: We claim that, for a > 0,

I =

∫ ∞
−∞

x sinx

a2 + x2
dx = π e−a .

Here, by definition,

I = lim
R→∞

∫ R

−R

x sinx

a2 + x2
dx .

Let Γ1R,Γ2R, and ΓR be defined as in Example 5. Since eix = cosx+ i sinx for x ∈ R, we have

sin z = Im eiz for z = x ∈ R .

Setting

g(z) =
zeiz

a2 + z2
=

zeiz

(z − ia)(z + ia)
(11.3)

we have

I = Im lim
R→∞

∫
Γ1R

g(z) dz .

Since

g(z) =
1

z − ia ·
zeiz

z + ia

we have

Res(g, ia) =
1

2
e−a ,

Therefore, for R > a: ∫
ΓR

g(z) dz = 2πiRes(g, ia) = πie−a .

It remains to prove (11.2) for the function g(z) defined in (11.3). Note that the estimate of the
previous example, |g(z)| ≤ CR−2 for z ∈ Γ2R, does not hold here. We must estimate the integral
along Γ2R more carefully.

Theorem 11.2 (Jordan’s Lemma) Recall that Γ2R denotes the semi–circle with parameterization

z(t) = Reit, 0 ≤ t ≤ π .
Let H̄ denote the closed upper half–plane and let f : H̄→ C be a continuous function. Let

MR = max{|f(z)| : z ∈ Γ2R}
and assume that MR → 0 as R→∞. Then we have

IR :=

∫
Γ2R

f(z)eiz dz → 0 as R→∞ .
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Re zR−R 0

Im z

iR
Γ2R

Figure 11.2: Contour for Jordan’s Lemma

Proof: Noting that

z(t) = R(cos t+ i sin t) and |z′(t)| = R

we have

|IR| ≤ MR

∫ π

0
|eiz(t)|Rdt

= RMR

∫ π

0
e−R sin t dt

= 2RMR

∫ π/2

0
e−R sin t dt .

Since

sin t ≥ 2t

π
for 0 ≤ t ≤ π

2

we have, with c = 2R/π:

∫ π/2

0
e−R sin t dt ≤

∫ π/2

0
e−ct dt

≤ 1

c

=
π

2R

Therefore,

|IR| ≤ πMR → 0 as R→∞ .

�
Applying Jordan’s Lemma with

f(z) =
z

a2 + z2
where a > 0

one obtains that (11.2) holds for
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g(z) =
zeiz

a2 + z2
.

This completes the proof of the formula∫ ∞
−∞

x sinx

a2 + x2
dx = π e−a .

11.2.5 A Pole on the Real Axis

Example 8: We want to show ∫ ∞
−∞

sinx

x
dx = π .

The integral exists as an improper Riemann integral. Note that the function f(z) = sin z
z does not

have a pole, but we will integrate the function eiz/z, which does have a pole at z = 0.
We first discuss the existence of the integral. The integral

∫∞
π

sinx
x dx does not exist as a proper

Riemann or Lebesgue integral since the integrand decays too slowly. To see this, note that, for
j = 1, 2, . . .

| sinx| ≥ 1√
2

for π(j +
1

4
) ≤ x ≤ π(j +

3

4
)

Therefore,

| sinx|
x

≥ 1√
2

1

π(j + 1)
=:

c

j + 1
for π(j +

1

4
) ≤ x ≤ π(j +

3

4
)

where c = 1/(
√

2π). It follows that∫ π(j+1)

πj

| sinx|
x

dx ≥ c

j + 1
· π

2
.

Since
∑∞

j=1
1
j+1 =∞ one obtains that ∫ ∞

π

| sinx|
x

dx =∞ .

A theorem of integration theory implies that the integral∫ ∞
π

sinx

x
dx

does not exist as a Lebesgue or Riemann integral.
However, for 1 < R <∞:

∫ R

1

sinx

x
dx = −1

x
cosx

∣∣∣R
1
−
∫ R

1

1

x2
cosx dx

= − 1

R
cosR+ cos 1−

∫ R

1

1

x2
cosx dx

Therefore, the limit
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lim
R→∞

∫ R

1

sinx

x
dx

exists since the integral ∫ ∞
1

1

x2
cosx dx

is finite.
By definition,

I := P.V.

∫ ∞
−∞

sinx

x
dx = lim

R→∞

∫ R

−R

sinx

x
dx (11.4)

where P.V. stands for principle value. It is common to drop the P.V. notation and to say that the
integral

I =

∫ ∞
−∞

sinx

x
dx

exists as an improper integral, defined by (11.4).

Computation of I: We have

I = lim
R→∞, ε→0

I(R, ε)

with

I(R, ε) =

∫ −ε
−R

sinx

x
dx+

∫ R

ε

sinx

x
dx .

Also, for x = z ∈ R:

sinx

x
= Im

(eiz
z

)
,

thus

I(R, ε) = Im
(∫ −ε
−R

eiz

z
dz +

∫ R

ε

eiz

z
dz
)
.

The term in brackets is

K(R, ε) :=

∫
Γ−R,−ε+Γε,R

eiz

z
dz .

Let Γ denote the closed curve shown in Figure 11.3:

Γ = Γ−R,−ε + Γ−ε,ε + Γε,R + Γ2R .

By Cauchy’s theorem, ∫
Γ

eiz

z
dz = 0 .

Therefore,
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−R −ǫ Re z

Im z

Γ2R

iR

Γ−ǫ,ǫ

0 ǫ R

Γ−R,−ǫ Γǫ,R

Figure 11.3: Contour for
∫∞
−∞

sinx
x dx, Example 8

K(R, ε) := −
∫

Γ−ε,ε+Γ2R

eiz

z
dz .

By Jordan’s lemma, 3 the integral along Γ2R tends to zero as R→∞. Also,

eiz

z
=

1

z
+ g(z)

where g(z) is holomorphic near z = 0. Therefore,

lim
ε→0

∫
Γ−ε,ε

eiz

z
dz = −πi .

One obtains that

lim
R→∞, ε→0

K(R, ε) = πi ,

thus I = π.

Remarks on Fourier transforms: Let χJ(x) denote the characteristic function of the interval
J = [−1, 1]. Its Fourier transform is

3Jordan’s Lemma is applied with f(z) = 1
z
. The function 1/z is not continuous in the closed upper half–plane,

but the proof of Jordan’s Lemma shows that the singularity at z = 0 is not important.
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χ̂J(k) =
1√
2π

∫ ∞
−∞

χJ(x)e−ikx dx

=
1√
2π

∫ 1

−1
e−ikx dx

=
1√
2π

1

−ik e
−ikx

∣∣∣1
−1

=
1√
2π

1

−ik (e−ik − eik)

=

√
2

π

1

k

1

2i
(eik − e−ik)

=

√
2

π

sin k

k

for k ∈ R, k 6= 0. The function χ̂J(k) is not integrable over R since 1/k decays too slowly. The
inverse Fourier transform of χ̂J(k) exists only in the principle value sense. We have for the inverse
Fourier transform of χ̂J(k):

g(x) :=
1√
2π

√
2

π

∫ ∞
−∞

sin k

k
eikx dk .

In Example 8 we have shown that
∫∞
−∞(sin k)/k dk = π and obtain

g(0) =
1√
2π

√
2

π
π = 1 .

This is to be expected since χJ(0) = 1. One can also say that the formula
∫∞
−∞(sin k)/k dk = π is

a special case of the Fourier inversion theorem applied to the function χJ(x).

11.2.6 Use of a Second Path

Example 9: For 0 < a < 1: ∫ ∞
−∞

eax

1 + ex
dx =

π

sin(πa)
. (11.5)

This integral will be used in Chapter 13 to show the reflection property of the Γ–function.
Let f(z) = eaz

1+ez . Consider the rectangle R with corners at

−R, R, R+ 2πi, −R+ 2π where R > 0 .

Denote the positively oriented boundary curve of R by

ΓR = Γ1R + Γ2R + Γ3R + Γ4R .

The pieces have parameterizations

Γ1R : z(x) = x, −R ≤ x ≤ R
−Γ3R : z(x) = x+ 2πi, −R ≤ x ≤ R

Γ2R : z(y) = R+ iy, 0 ≤ y ≤ 2π

−Γ4R : z(y) = −R+ iy, 0 ≤ y ≤ 2π
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The function f(z) = eaz/(1+ez) has one singularity in the rectangle R. The singularity is a simple
pole at P = πi and, using Lemma 11.1,

Res(f, πi) =
eaπi

eπi
= −eaπi .

By the residue theorem: ∫
ΓR

f(z) dz = −2πi eaπi . (11.6)

It is not difficult to show that

QR :=

∫
Γ2R+Γ4R

f(z) dz → 0 as R→∞ .

(See Details below.) Set

IR :=

∫
Γ1R

f(z) dz =

∫ R

−R
f(x) dx .

The main trick of the whole approach is that the integral IR occurs again when one integrates along
Γ3R: ∫

−Γ3R

f(z) dz = e2πai

∫ R

−R
f(x) dx = e2πaiIR .

Therefore, using (11.6):

2πiRes(f, πi) = −2πi eaπi = IR(1− e2πai) +QR .

This implies that

IR =
2πi

eπai − e−πai + Q̃R =
π

sin(πa)
+ Q̃R

where Q̃R → 0 as R→∞. As R→∞ one obtains (11.5).

Details: For z ∈ Γ2R we have z = R+ iy, 0 ≤ y ≤ 2π, and

f(z) =
eaz

1 + ez
=

eaR eiay

1 + eR eiy
.

Therefore, since 0 < a < 1:

|f(z)| ≤ eaR

eR − 1
→ 0 as R→∞ .

It follows that ∫
Γ2R

f(z) dz → 0 as R→∞ .

For z ∈ Γ4R we have z = −R+ iy, 0 ≤ y ≤ 2π, and

f(z) =
eaz

1 + ez
=

e−aR eiay

1 + e−R eiy
.
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The convergence ∫
Γ4R

f(z) dz → 0 as R→∞

follows since a > 0.

11.3 Derivation of a Partial Fraction Decomposition via Integration

Example 10: Let a ∈ C \ Z and consider the function

q(z) =
cot(πz)

(z − a)2
, z ∈ C \ (Z ∪ {a}) .

The function q(z) has a simple pole at each integer j and a double pole at z = a unless cos(πa) = 0.
Also, by Lemma 11.3:

Res(q, j) =
1

π(j − a)2
, j ∈ Z ,

and

Res(q, a) = − π

sin2(πa)
.

For positive integers n, let γn denote the boundary curve of the rectangle in Figure 11.4. Assume
that n > |a|. By the residue theorem,

1

2πi

∫
γn

q(z) dz =
n∑

j=−n

1

π(j − a)2
− π

sin2(πa)
. (11.7)

By estimating the integrand q(z) on γn we will prove that∫
γn

q(z) dz → 0 as n→∞ .

Therefore,

∞∑
j=−∞

1

π(j − a)2
=

π

sin2(πa)
for a ∈ C \ Z .

The following lemma will be used to bound cot(πz) on γn. If one sets

Q := e2πiz

then

cot(πz) =
1
2(eiπz + e−iπz)
1
2i(e

iπz − e−iπz) = i
Q+ 1

Q− 1
.

Therefore, in order to bound | cot(πz)| for z ∈ γn, we have to bound |Q − 1| away from zero for
z ∈ γn. We show:
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0 n+ 1−n− 1 −n −1... 1 n...

Im z

−ni

Re z

niγn

Figure 11.4: Contour γn for 1
2πi

∫
γn

cot(πz)
(z−a)2

dz

Lemma 11.4 For n = 1, 2, . . . let z ∈ γn and set Q = e2πiz. Then we have

|Q− 1| ≥ 1

2
.

Proof: a) Let z = (n+ 1
2) + iy, y ∈ R. We have

Q = e2πi(n+ 1
2

)e−2πy = −e−2πy < 0 ,

thus |Q− 1| > 1.
The same argument works for z = −(n+ 1

2) + iy, y ∈ R.
b) Let z = x+ ni, x ∈ R. We have

Q = e2πixe−2πn, |Q| ≤ e−2π <
1

2
.

c) Let z = x− ni, x ∈ R. We have

Q = e2πixe2πn, |Q| ≥ e2π > 2 .

This proves the lemma. �

Lemma 11.5 For n = 1, 2, . . . we have

| cot(πz)| ≤ 6 for all z ∈ γn .

Proof: With Q = e2πiz we have

cot(πz) =
1
2(eiπz + e−iπz)
1
2i(e

iπz − e−iπz) = i
Q+ 1

Q− 1
.

By the previous lemma, |Q− 1| ≥ 1
2 .

Case 1: |Q| ≥ 2, thus 1 ≤ 1
2 |Q|. We have

|Q+ 1| ≤ |Q|+ 1 ≤ 3

2
|Q|

|Q− 1| ≥ |Q| − 1 ≥ 1

2
|Q|
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thus ∣∣∣Q+ 1

Q− 1

∣∣∣ ≤ 3 .

Case 2: |Q| ≤ 2. Recall that |Q− 1| ≥ 1
2 . We have∣∣∣Q+ 1

Q− 1

∣∣∣ ≤ 3
1
2

= 6 .

This proves the lemma. �
Let Ω be a compact subset of the open set U = C \ Z. Let a ∈ Ω. There exists a constant C,

depending on Ω but not on a, so that

|q(z)| ≤ C

n2
for z ∈ γn, a ∈ Ω ,

for n ≥ N = N(Ω). The detailed argument is as follows: If z ∈ γn, then |z| ≥ n. Since Ω is
bounded, there exists N(Ω) ∈ N with

2|a| ≤ N(Ω) for all a ∈ Ω .

If n ≥ N(Ω) then n ≥ 2|a|, thus

|z − a| ≥ |z| − |a| ≥ n− n

2
=
n

2
.

This implies that

1

|(z − a)2| ≤
4

n2
for n ≥ N(Ω) and a ∈ Ω .

Using the previous lemma one obtains that

|
∫
γn

q(z) dz| ≤ C1

n
for n ≥ N(Ω) .

This proves that ∣∣∣ n∑
j=−n

1

(j − a)2
− π2

sin2(πa)

∣∣∣ ≤ πC1

n
for n ≥ N(Ω) .

We now write a = −z and obtain:

Theorem 11.3 We have

lim
n→∞

n∑
j=−n

1

(z − j)2
=

π2

sin2(πz)
for z ∈ C \ Z .

The convergence is uniform on every compact subset of C \ Z.
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The above formula is also written as

∞∑
j=−∞

1

(z − j)2
=

π2

sin2(πz)
, z ∈ C \ Z . (11.8)

The left–hand side is called the partial fraction decomposition of the meromorphic function

f(z) =
π2

sin2(πz)
, z ∈ C \ Z .

The Special Value z = 1
2 . By substituting special values for z into (11.8) one can obtain

interesting (and uninteresting) results. For z = 1
2 obtain:

π2 = 4

∞∑
0

1

(2j + 1)2
+ 4

−1∑
−∞

1

(2j + 1)2

= 8(1 +
1

32
+

1

52
+ . . .) ,

thus

∞∑
j=0

1

(2j + 1)2
=

1

11
+

1

32
+

1

52
+ . . . =

π2

8
.

With a trick we can also evaluate the following series:

S = 1 +
1

22
+

1

32
+

1

42
+ . . .

=
π2

8
+

1

4

(
1 +

1

22
+

1

32
+

1

42
+ . . .

)
=

π2

8
+

1

4
S

Therefore, 3
4 S = π2

8 and S = π2

6 . We have shown that

ζ(2) =

∞∑
j=1

1

j2
=
π2

6
.

Here the Riemann zeta–function is defined by

ζ(z) =

∞∑
j=1

1

jz
for Re z > 1 .

Another proof of the partial fraction decomposition (11.8).
Let

f(z) =
π2

sin2(πz)
and g(z) =

∞∑
j=−∞

1

(z − j)2
for z ∈ U := C \ Z .
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Both functions f and g are holomorphic and 1–periodic on U . Also, both functions have a pole of
order 2 at each j ∈ Z with singular part

1

(z − j)2
.

Therefore, after removing the singularities, the function

h(z) = f(z)− g(z)

is entire. We will use Liouville’s Theorem to show that h(z) is constant. Growth estimates of f(z)
and g(z) imply that the constant is zero.

Bounds for |f(z)| and |g(z)|. Since the functions are 1–periodic and satisfy

f(z̄) = f̄(z), g(z̄) = ḡ(z)

it suffices to derive bounds in the strip

S =
{
z = x+ iy : |x| ≤ 1

2
, y ≥ 1

}
.

A bound for |f(z)| in S.
We have

2i sin(πz) = eiπz − e−iπz = eiπxe−πy − e−iπxeπy ,
thus

2| sin(πz)| ≥ eπy − e−πy ≥ 1

2
eπy for y ≥ 1 .

Therefore,

|f(z)| ≤ 16π2e−2πy for z ∈ S .

A bound for |g(z)| in S.
We have |z − j|2 = (j − x)2 + y2 and

|j − x| ≥
∣∣∣|j| − |x|∣∣∣ ≥ 1

2
|j| for |x| ≤ 1

2
.

Therefore,

|z − j|2 ≥ 1

4
(j2 + 4y2)

and

|g(z)| ≤ 4

∞∑
j=−∞

1

j2 + 4y2

=
1

y2
+ 8

∞∑
j=1

1

j2 + 4y2
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Since

∞∑
j=1

1

j2
<∞

it follows that |g(z)| is bounded in S. Also, given ε > 0, there exists N = N(ε) ∈ N so that

8
∞∑

j=N+1

1

j2
≤ ε .

Therefore,

|g(z)| ≤ 1

y2
+ 8

N∑
j=1

1

j2 + 4y2
+ ε

≤ (2N + 1)
1

y2
+ ε

≤ 2ε

for y ≥ yε. This shows that |g(z)| is bounded in S and |g(z)| → 0 as y →∞.
Boundedness of the entire function h(z) = f(z)− g(z) follows. By Liouville’s Theorem we have

h(z) ≡ const. Since f(z) → 0 and g(z) → 0 as y → ∞ the constant is zero. This proves that
f(z) ≡ g(z).

11.4 The Partial Fraction Decomposition of π cot(πz)

We want to show that the partial fraction decomposition of the meromorphic function

π cot(πz), z ∈ C \ Z ,

can be obtained by integrating (11.8). First note that for z ∈ C \ Z:

d

dz
π cot(πz) = − π2

sin2(πz)

d

dz
(z − j)−1 = −(z − j)−2

We define

tn(z) :=

n∑
j=−n

(z − j)−1, z ∈ C \ Z .

By Theorem 11.3 we have

lim
n→∞

d

dz
tn(z) =

d

dz
π cot(πz), z ∈ C \ Z , (11.9)

where the convergence is uniform on compact subsets of C \ Z.
We have
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tn(z) =
n∑

j=−n

1

z − j

=
1

z
+

n∑
j=1

( 1

z − j +
1

z + j

)
=

1

z
+

n∑
j=1

2z

z2 − j2

and

tn(z)→ t(z) :=
1

z
+

∞∑
j=1

2z

z2 − j2

normally on U := C \ Z. Therefore,

t′n(z)→ t′(z)

normally on U . (This follows, essentially, from Cauchy’s inequalities.)
Using (11.9) it follows that

d

dz
π cot(πz) = t′(z)

on U . Therefore, the function

h(z) := π cot(πz)− t(z)
is constant on U . Take z = 1

2 . We have cot(π/2) = 0. Also,

tn(1/2) =
n∑
k=0

1
1
2 − k

+
n∑
j=1

1
1
2 + j

=
n−1∑
k=0

1
1
2 − k

+
1

1
2 − n

+
n∑
j=1

1
1
2 + j

=

n∑
j=1

1
1
2 − j − 1

+
1

1
2 − n

+

n∑
j=1

1
1
2 + j

=
1

1
2 − n

The last equation holds since

1
1
2 − j − 1

+
1

1
2 + j

= 0 .

This shows that tn(1/2)→ 0 as n→∞, thus t(1/2) = 0.
We have shown that
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lim
n→∞

n∑
j=−n

1

z − j = π cot(πz), z ∈ C \ Z .

In this case, it is not good to write the result as

∞∑
j=−∞

1

z − j = π cot(πz), z ∈ C \ Z ,

since the series

∞∑
j=1

1

z − j

does not converge for any z. However,

tn(z) =

n∑
j=−n

1

z − j

=
1

z
+

n∑
j=1

2z

z2 − j2
.

One obtains:

1

z
+

∞∑
j=1

2z

z2 − j2
= π cot(πz), z ∈ C \ Z . (11.10)

This is the partial fraction decomposition of π cot(πz).

11.5 Summary of Examples

Example 1: Let γ(t) = eit, 0 ≤ t ≤ 2π, denote the parameterized unit circle. Then we have∫
γ
z2 sin(1/z) dz = −πi

3
.

Example 2: Let γ(t) = 2eit, 0 ≤ t ≤ 2π. We have∫
γ

5z − 2

z(z − 1)
dz = 10πi .

Example 3: Let γ(t) = 2eit. We have∫
γ

sinh z

z4
dz =

πi

3
.

Example 4: For a > 1: ∫ π

0

dt

a+ cos t
=

π√
a2 − 1

.

Example 5: We know from calculus that
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∫ ∞
−∞

dx

1 + x2
= π ,

which can also be obtained using residues.

Example 6: For a > 0: ∫ ∞
−∞

cosx

a2 + x2
dx =

π

a
e−a .

Example 7: For a > 0: ∫ ∞
−∞

x sinx

a2 + x2
dx = π e−a .

(This requires Jordan’s lemma.)

Example 8: We have: ∫ ∞
−∞

sinx

x
dx = π .

The integral exists as an improper Riemann integral.

Example 9: For 0 < a < 1: ∫ ∞
−∞

eax

1 + ex
dx =

π

sin(πa)
.

Example 10: Let z ∈ C \ Z. Then we have the partial fraction decomposition:

∞∑
j=−∞

1

(z − j)2
=

π2

sin2(πz)
.

This follows by integrating the function

q(ζ) =
cot(πζ)

(ζ + z)2

along a closed rectangle γn for n→∞.

Example 11: For z ∈ C \ Z we have:

1

z
+
∞∑
j=1

2z

z2 − j2
= π cot(πz) .

This partial fraction decomposition can be obtained by integrating the partial fraction decomposi-
tion of the previous example.
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11.6 Practice Problems

Problem 1: Prove or disprove: ∫ ∞
−∞

cosx

1 + x2
dx =

π

e
.

Problem 2: Prove or disprove: ∫ ∞
−∞

sinx

1 + x2
dx = 0 .

Problem 3: Prove or disprove: ∫ ∞
−∞

1

1 + x4
dx =

π√
2
.

Problem 4:
Let −1 < α < 1. Prove or disprove:∫ ∞

0

xα

x2 + 1
dx =

π

2 cos(πα/2)
.
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12 The Bernoulli Numbers, the Values ζ(2m), and the Sums of
Powers

Summary: Bernoulli number Bν , ν = 0, 1, 2, . . . occur in some interesting formulas. The numbers
Bν can be defined by the Taylor expansion

z

ez − 1
=
∞∑
ν=0

Bν
ν!

zν , |z| < 2π .

Using the function z/(ez − 1) and its relation to cot z we will derive the Taylor expansion

πz cot(πz) = 1 +
∞∑
j=1

(−1)j
(2π)2j

(2j)!
B2j z

2j , |z| < 1 , (12.1)

where the Bernoulli numbers come up.
Using the partial fraction decomposition of π cot(πz) derived in Section 11.1 we also have

πz cot(πz) = 1− 2
∞∑
n=1

z2

n2 − z2
for z ∈ C \ Z . (12.2)

Using equality of the right–hands sides of (12.1) and (12.2) one can derive explicit formulas for the
values of the ζ–function at even integers, i.e., for

ζ(2m) =
∞∑
n=1

1

n2m
, m = 1, 2, 3, . . .

The Bernoulli numbers show up in the value of ζ(2m).
The Bernoulli numbers also occur in formulas for sums of powers,

Sk(n− 1) =
n−1∑
j=1

jk = 1 + 2k + 3k + . . .+ (n− 1)k, k = 1, 2, 3, . . .

12.1 The Bernoulli Numbers

The function g(z) defined by

g(z) = z/(ez − 1) for 0 < |z| < 2π, g(0) = 1 ,

is holomorphic in D(0, 2π). We write its Taylor series as

g(z) =
∞∑
ν=0

Bν
ν!

zν , |z| < 2π , (12.3)

where the numbers Bν are, by definition, the Bernoulli numbers. Since

g(z) =
1

1 + 1
2z + 1

6z
2 + . . .

= 1− 1

2
z + . . .
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it follows that

B0 = 1, B1 = −1

2
.

Lemma 12.1 The function

h(z) = g(z) +
z

2

is even. Consequently,

Bν = 0 for ν ≥ 3, ν odd .

Proof: We must show that

g(−z)− z

2
= g(z) +

z

2
,

i.e.,

g(−z)− g(z) = z .

We have

g(−z)− g(z) =
−z

e−z − 1
− z

ez − 1

= z
( 1

1− e−z −
1

ez − 1

)
= z

( ez

ez − 1
− 1

ez − 1

)
= z .

�
One can compute the Bernoulli numbers using a recursion. First recall the binomial coefficients(

n
ν

)
=

n!

ν!(n− ν)!

We claim:

Lemma 12.2 For n ≥ 1 we have

n∑
ν=0

(
n+ 1
ν

)
Bν = 0 .

Proof: We have, for 0 < |z| < 2π:
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1 =
ez − 1

z
· z

ez − 1

=
( ∞∑
µ=0

zµ

(µ+ 1)!

)
·
( ∞∑
ν=0

Bν
ν!

zν
)

=

∞∑
µ,ν=0

Bν
ν!(µ+ 1)!

zµ+ν (with µ = n− ν)

=
∞∑
n=0

( n∑
ν=0

Bν
ν!(n+ 1− ν)!

)
zn

Therefore,

n∑
ν=0

Bν
ν!(n+ 1− ν)!

= 0 for n ≥ 1 .

Since (
n+ 1
ν

)
=

(n+ 1)!

ν!(n+ 1− ν)!

the lemma is proved. �
Using Pascal’s triangle, we can compute the binomial coefficients. Then, using the previous

lemma and B0 = 1 we obtain:
For n = 1:

B0 + 2B1 = 0, thus B1 = −1

2
.

For n = 2:

B0 + 3B1 + 3B2 = 0, thus B2 =
1

6
.

For n = 3:
B0 + 4B1 + 6B2 + 4B3 = 0, thus B3 = 0 .

For n = 4:

B0 + 5B1 + 10B2 + 10B3 + 5B4 = 0, thus B4 = − 1

30
.

Continuing this process, one obtains the following non–zero Bernoulli numbers:

B6 =
1

42

B8 = − 1

30

B10 =
5

66

B12 = − 691

2730

B14 =
7

6
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etc.

Remark: The sequence |B2ν | is unbounded since otherwise the series (12.3) would have an
infinite radius of convergence. More precisely, by Hadamard’s formula,

lim sup
ν→∞

(
|B2ν |/(2ν)!

)1/(2ν)
=

1

2π
.

Also, we will see below that (−1)ν+1B2ν > 0. Thus, the sign pattern observed for B2 to B14

continuous.

12.2 The Taylor Series of z cot z in Terms of Bernoulli Numbers

Recall that

g(w) =
w

ew − 1
=
∞∑
ν=0

Bν
ν!

wν .

We now express the Taylor series for z cot z about z = 0 in terms of Bernoulli numbers. Note that

cos z =
1

2
(eiz + e−iz)

sin z =
1

2i
(eiz − e−iz)

cot z = i
eiz + e−iz

eiz − e−iz

= i
e2iz + 1

e2iz − 1

= i
e2iz − 1 + 2

e2iz − 1

= i
(

1 +
2

e2iz − 1

)
for 0 < |z| < π .

Therefore,

cot z = i+
1

z
· 2iz

e2iz − 1
for 0 < |z| < π ,

thus, for |z| < π:

z cot z = iz + g(2iz)

= iz + 1− 1

2
(2iz) +

∞∑
ν=2

Bν
ν!

(2iz)ν (set ν = 2j)

= 1 +

∞∑
j=1

(−1)j
22j

(2j)!
B2j z

2j .

We substitute πz for z and summarize:
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Lemma 12.3 If Bν denotes the sequence of the Bernoulli numbers, then we have the Taylor series
expansion

πz cot(πz) = 1 +
∞∑
j=1

(−1)j
(2π)2j

(2j)!
B2j z

2j for |z| < 1 . (12.4)

12.3 The Values ζ(2m),m = 1, 2, . . .

For Re s > 1 the Riemann Zeta–function is defined by

ζ(s) =

∞∑
n=1

1

ns
.

In Section 11.4 we have shown the following partial fraction decomposition (also called Mittag–
Leffler expansion):

π cot(πz) =
1

z
+ 2z

∞∑
n=1

1

z2 − n2
, z ∈ C \ Z .

(See equation (11.10).)
Therefore,

πz cot(πz) = 1− 2
∞∑
n=1

z2

n2 − z2
, z ∈ C \ Z .

Here, for |z| < 1:

z2

n2 − z2
=

(z/n)2

1− (z/n)2

=
∞∑
m=1

( z
n

)2m

Therefore,

πz cot(πz) = 1− 2

∞∑
n=1

∞∑
m=1

( z
n

)2m
(12.5)

= 1− 2

∞∑
m=1

∞∑
n=1

( z
n

)2m
(12.6)

= 1− 2

∞∑
m=1

( ∞∑
n=1

1

n2m

)
z2m (12.7)

= 1− 2

∞∑
m=1

ζ(2m) z2m (12.8)

Comparing the expressions (12.8) and (12.4), we obtain the following result about the values
of the Riemann ζ–function at positive even integers. (This result was already known to Euler in
1734. Nothing similar has ever been derived for the zeta–values at odd integers.)
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Theorem 12.1 For m = 1, 2, . . . the value of ζ(2m) is

ζ(2m) =
∞∑
n=1

1

n2m
=

1

2
(−1)m+1 (2π)2m

(2m)!
B2m . (12.9)

Remark: Since, clearly, ζ(2m) > 0 we obtain that (−1)m+1B2m > 0.
Examples:
For m = 1 we have B2 = 1

6 , thus

ζ(2) =
(2π)2

2 · 2 ·
1

6
=
π2

6
.

For m = 2 we have B4 = − 1
30 , thus

ζ(4) =
(2π)4

2 · 4!
· 1

30
=
π4

90
.

For m = 3 we have B6 = 1
42 , thus

ζ(6) =
(2π)6

2 · 6!
· 1

42
=

π6

945
.

For m = 4 one obtains

ζ(8) =
π8

9450
.

12.4 Sums of Powers and Bernoulli Numbers

It is not difficult to show the following formulae by induction in n:

S1(n− 1) ≡
n−1∑
j=1

j =
1

2
n2 − 1

2
n

S2(n− 1) ≡
n−1∑
j=1

j2 =
1

3
n3 − 1

2
n2 +

1

6
n

S3(n− 1) ≡
n−1∑
j=1

j3 =
1

4
n4 − 1

2
n3 +

1

4
n2 + 0n

Recalling that

B1 = −1

2
, B2 =

1

6
, B3 = 0 ,

we notice that the three formulae have the pattern:

n−1∑
j=1

jk =
1

k + 1
nk+1 − 1

2
nk + . . .+Bk n ,

but it is not obvious how the general formula should read.
Define the sum
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Sk(n− 1) =

n−1∑
j=1

jk

where k = 1, 2, 3, . . . and n = 1, 2, 3, . . .. We claim that, for every fixed integer k ≥ 1, the sum
Sk(n− 1) is a polynomial

Φk(n)

of degree k + 1 in the variable n and that the coefficients of Φk(n) can be obtained in terms of
Bernoulli numbers. Precisely:

Theorem 12.2 For every integer k ≥ 1, let Φk(n) denote the polynomial of degree k + 1 given by

Φk(n) =
1

k + 1

k∑
µ=0

(
k + 1
µ

)
Bµn

k+1−µ .

Then we have

Sk(n− 1) = Φk(n) for all n = 1, 2, · · · .

Remark: Writing out a few terms of Φk(n), the theorem says that

Sk(n− 1) =
1

k + 1
nk+1 − 1

2
nk +

1

k + 1

(
k + 1

2

)
B2n

k−1 + · · ·+Bk n .

Proof of Theorem: The trick is to write the finite geometric sum

En(w) = 1 + ew + e2w + · · ·+ e(n−1)w

in two ways and then to compare coefficients. We have

En(w) =

n−1∑
j=0

ejw

=
n−1∑
j=0

∞∑
k=0

jk

k!
wk

=

∞∑
k=0

(n−1∑
j=0

jk
) 1

k!
wk

=

∞∑
k=0

1

k!
Sk(n− 1)wk

Here we have used the convention 00 = 1.
On the other hand, we have
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En(w) =
enw − 1

ew − 1

=
w

ew − 1
· e

nw − 1

w

=
( ∞∑
µ=0

Bµ
µ!

wµ
)
·
( ∞∑
λ=0

nλ+1

(λ+ 1)!
wλ
)

=
∞∑
k=0

( ∑
µ+λ=k

Bµ
µ!(λ+ 1)!

nλ+1
)
wk

Comparison yields that

Sk(n− 1) =
∑

µ+λ=k

k!

µ!(λ+ 1)!
Bµ n

λ+1 (with λ = k − µ)

=
1

k + 1

k∑
µ=0

(k + 1)!

µ!(k + 1− µ)!
Bµ n

k+1−µ

This proves the claim since (
k + 1
µ

)
=

(k + 1)!

µ!(k + 1− µ)!
.

�

150



13 Properties of the Γ–Function

13.1 Extension of the Domain of Definition of Γ(z) Using the Functional Equa-
tion

The Γ–function is defined by

Γ(z) =

∫ ∞
0

tz−1e−t dt for Re z > 0 .

It is a holomorphic function in the half–plan Re z > 0 satisfying the functional equation

Γ(z + 1) = zΓ(z) for Re z > 0 .

The functional equation follows through integration by parts,

Γ(z + 1) =

∫ ∞
0

tze−t dt

= −tze−t
∣∣∣∞
0

+ z

∫ ∞
0

tz−1e−t dt

= zΓ(z)

Therefore,

Γ(z) =
1

z
Γ(z + 1) for Re z > 0 .

The right–hand side is defined for

Re z > −1, z 6= 0 .

If one sets

r0(z) :=
1

z
Γ(z + 1) for Re z > −1, z 6= 0 ,

then one obtains a holomorphic function r0(z) defined in the region

{z : Re z > −1, z 6= 0} .
The function r0(z) agrees with the Γ–function for Re z > 0. The identity theorem yields that r0(z)
satisfies the functional equation

r0(z + 1) = zr0(z) for Re z > −1, z 6= 0 .

One extends the domain of definition of Γ by setting

Γ(z) = r0(z) for Re z > −1, z 6= 0 .

The process can be repeated: Set

Γ(z) =
1

z
Γ(z + 1) for − 2 < Re z ≤ −1, z /∈ {0,−1} .

etc.
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Repeating the process, one obtains a holomorphic function Γ(z) in the region

C \ {0,−1,−2, . . .} .
The extended Γ–function satisfies the functional equation

Γ(z + 1) = zΓ(z) for z ∈ C \ {0,−1,−2, . . .} .
Since Γ(x) is real for x > 0, the extended Γ–function is real for

x ∈ R \ {0,−1,−2, . . .} .
Also, since Γ(x) > 0 for every x > 0, it follows that

Γ(x) < 0 for − 1 < x < 0 ,

Γ(x) > 0 for − 2 < x < −1 ,

etc. The function Γ(x), x ∈ R \ {0,−1,−2, . . .} is sketched in Figure 13.1.

13.2 Extension of the Domain of Definition of Γ(z) Using Series Expansion

One can extend the definition of Γ also as follows. First, assume again that Re z > 0 and write

Γ(z) =

∫ 1

0
tz−1e−t dt+

∫ ∞
1

tz−1e−t dt

=: g(z) + h(z)

It is easy to show that the formula

h(z) =

∫ ∞
1

tz−1e−t dt, z ∈ C ,

defines an entire function. (Use that tz−1 = e(ln t)(z−1) and apply Cauchy’s theorem and Morera’s
theorem. See Section 8.4.)

In the formula defining g(z) we write out the exponential series and interchange summation
and integration. Thus, for Re z > 0:

g(z) =

∞∑
j=0

(−1)j

j!

∫ 1

0
tz−1tj dt

=

∞∑
j=0

(−1)j

j!

1

z + j

The infinite series converges for every

z ∈ U := C \ {0,−1,−2, . . .} .
The convergence of

gn(z) =

n∑
j=0

(−1)j

j!

1

z + j
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Figure 13.1: Gamma function on the real axis

to g(z) is normal in U . Thus, g ∈ H(U).
To summarize, the formula

Γ(z) =
∞∑
j=0

(−1)j

j!

1

z + j
+

∫ ∞
1

tz−1e−t dt

defines Γ(z) as a holomorphic function in U = C \ {0,−1,−2, . . .}.
Poles of Γ: For every k = 0, 1, 2, . . . we have

g(z) =
(−1)k

k!

1

z + k
+

∞∑
j=0, j 6=k

(−1)j

j!

1

z + j
.

Here the infinite sum is holomorphic in a neighborhood of z = k. It follows that Γ(z) has a simple
pole at every number zk = −k for k = 0, 1, 2, . . . Also,

Res(Γ,−k) =
(−1)k

k!
for k = 0, 1, 2, . . .

13.3 The Reflection Formula

Let 0 < a < 1. We have shown in Chapter 11, Example 9 that∫ ∞
−∞

eax

1 + ex
dx =

π

sin(πa)
.

We will use this to prove the so–called reflection formula for the Γ–function:

Theorem 13.1 We have

Γ(z)Γ(1− z) =
π

sin(πz)
for all z ∈ C \ Z .

Proof: Using the identity theorem for holomorphic functions, it sufficies to prove that

Γ(s)Γ(1− s) =
π

sin(πs)
for 0 < s < 1 .
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We have

Γ(s) =

∫ ∞
0

ts−1e−t dt

and

Γ(1− s) =

∫ ∞
0

t−se−t dt (rename t = u)

=

∫ ∞
0

u−se−u du (substitute u = tv for fixed t > 0)

= t

∫ ∞
0

(tv)−se−tv dv for t > 0 .

Obtain that

Γ(s)Γ(1− s) =

∫ ∞
0

ts−1e−tΓ(1− s) dt

=

∫ ∞
0

ts−1e−t
(
t

∫ ∞
0

(tv)−se−tv dv
)
dt

=

∫ ∞
0

∫ ∞
0

v−se−(1+v)t dv dt

=

∫ ∞
0

v−s
∫ ∞

0
e−(1+v)t dt dv

=

∫ ∞
0

v−s

1 + v
dv

=

∫ ∞
0

v1−s

1 + v

dv

v
(substitute v = ex,

dv

v
= dx)

=

∫ ∞
−∞

e(1−s)x

1 + ex
dx

=
π

sin(π(1− s))
=

π

sin(πs)

This proves the reflection formula for 0 < s < 1. �

13.4 Special Values of Γ(z)

We have

Γ(1) =

∫ ∞
0

e−t dt = 1 .

Using the functional equation:

Γ(1 + 1) = 1 · Γ(1) = 1

Γ(2 + 1) = 2 · Γ(2) = 2

Γ(3 + 1) = 3 · Γ(3) = 2 · 3
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etc. In general,

Γ(n+ 1) = n!, n ∈ Z+ .

From the reflection formula one obtains that

Γ(
1

2
) =
√
π .

Then one can use the functional equation to compute Γ(n+ 1
2) for every n ∈ N:

Γ(
1

2
+ 1) =

1

2
· Γ(

1

2
) =

1

2
· √π

Γ(
3

2
+ 1) =

3

2
· Γ(

3

2
) =

1 · 3
2 · 2 ·

√
π

Γ(
5

2
+ 1) =

5

2
· Γ(

5

2
) =

1 · 3 · 5
2 · 2 · 2 ·

√
π

In general, for all n ∈ Z+:

Γ(n+
1

2
) =

1 · 3 · . . . · (2n− 1)

2n
· √π

=
1 · (2 · 1) · 3 · (2 · 2) · 5 · . . . · (2n− 1) · (2 · n)

22nn!
· √π

=
(2n)!

4n n!

√
π

13.5 Applications

The Γ–function is used in many formulas.

Example 1: Using the substitution x2 = t, dt = 2xdx, one obtains:

∫ ∞
0

x2ne−x
2
dx =

1

2

∫ ∞
0

x2n−1 e−x
2

2xdx

=
1

2

∫ ∞
0

tn+ 1
2
−1 e−t dt

=
1

2
Γ(n+

1

2
)

Recall that the integral ∫ ∞
0

x2e−x
2
dx =

1

2
Γ(1 +

1

2
) =

√
π

4

appears in the error term of Stirling’s formula.

Example 2: Using the substitution

t = − lnx for 0 < x ≤ 1, e−t = x, dx = −e−tdt ,

one obtains for Re z > −1:
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Γ(z + 1) =

∫ ∞
0

tze−t dt

= −
∫ ∞

0
tz(−e−t) dt

=

∫ 1

0
(− lnx)z dx

In particular, for n = 0, 1, 2, . . . ∫ 1

0
(− lnx)n dx = Γ(n+ 1) = n! .

13.6 The Function ∆(z) = 1/Γ(z)

We know that Γ(n) > 0 for all n ∈ N. Also, the reflection formula implies that Γ(z) 6= 0 for all
z ∈ C \ Z. Therefore,

Γ(z) 6= 0 for all z ∈ C \ {0,−1,−2, . . .} .
Since Γ has a (simple) pole at every k = 0,−1,−2, . . . one can use Riemann’s theorem on removable
singularities (Theorem 10.1) to show that the function ∆(z) defined by

∆(z) = 1/Γ(z) for z ∈ C \ {0,−1,−2, . . .}
∆(z) = 0 for z ∈ {0,−1,−2, . . .}

is entire. Weierstrass based his theory of the Γ–function on the investigation of ∆(z).

13.7 Log–Convexity of Γ(x)

We know that

Γ : (0,∞)→ (0,∞)

is a C∞–function.

Theorem 13.2 For all x > 0:

d2

dx2
ln Γ(x) > 0 .

Proof: If φ(x) := ln Γ(x) then

φ′ =
Γ′

Γ
, φ′′ =

Γ′′Γ− Γ′2

Γ2
.

We must show that

Γ′′(x)Γ(x) > Γ′2(x) for x > 0 . (13.1)

We have
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Γ(x) =

∫ ∞
0

tx−1e−t dt

with

tx = ex ln t for t > 0 .

Since

d

dx
tx = (ln t)ex ln t

d2

dx2
tx = (ln t)2ex ln t

we obtain:

Γ′(x) =

∫ ∞
0

(ln t)tx−1e−t dt

Γ′′(x) =

∫ ∞
0

(ln t)2tx−1e−t dt

For fixed 0 < x <∞ define the quadratic

g(u) = u2Γ(x) + 2uΓ′(x) + Γ′′(x), u ∈ R .

The above expressions for Γ(x) and its derivatives yield:

g(u) =

∫ ∞
0

{
u2 + 2u ln t+ (ln t)2

}
tx−1e−t dt

Here

u2 + 2u ln t+ (ln t)2 = (u+ ln t)2 > 0 for u 6= ln t .

This implies that

g(u) > 0 for all u ∈ R .

Since

g′(u) = 2uΓ(x) + 2Γ′(x)

the function g(u) attains its minimum at

u0 = −Γ′(x)/Γ(x) .

Evaluating g(u) at u = u0 one obtains:

min
u
g(u) = g(u0)

= −Γ′2(x)

Γ(x)
+ Γ′′(x)
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Since

min g(u) > 0

we have shown (13.1), and the theorem is proved. �

13.8 Summary

The formula

Γ(z) =

∫ ∞
0

tz−1e−t dt

defines Γ(z) for Re z > 0 as an analytic function. We have zΓ(z) = Γ(z + 1) and Γ(n+ 1) = n! for
n = 0, 1, 2 . . . Using the formula

Γ(z) =

∞∑
j=0

(−1)j

j!

1

z + j
+

∫ ∞
1

tz−1e−t dt

one obtains the analytic continuation of Γ(z) in

U := C \ {0,−1,−2, . . .} .

The function Γ ∈ H(U) has a simple pole at −k for k = 0, 1, 2, . . . and Res(Γ,−k) = (−1)k

k! .
The reflection formula

Γ(z)Γ(1− z) =
π

sin(πz)
, z ∈ C \ Z ,

holds. It implies that Γ(1/2) =
√
π and that Γ(z) 6= 0 for all z ∈ U . The function ∆(z) = 1/Γ(z)

is entire.
For real x, x ∈ R \ {0,−1,−2, . . .}, the value Γ(x) is real. We have

(d/dx)2 ln Γ(x) > 0 for x > 0

and
Γ(x) =

(x
e

)x√
2πx

(
1 +O(x−1)

)
as x→∞ ,

which is Stirling’s formula proved in Section 8.6.
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14 Log Functions

Summary: The main branch of the log–function is defined on U := C \ (−∞, 0] by

log z = ln |z|+ iθ where z = |z|eiθ, −π < θ < π .

For many other simply connected regions one can also use polar coordinates. Another possibility
is to invert the exponential function or to integrate the function 1/w.

14.1 The Main Branch of log(z): Use of Polar Coordinates

Let U = C \ (−∞, 0]. The main branch of the complex logarithm can be introduced as a function
defined on U as follows: Take any z ∈ U and write

z = reiθ = eln r+iθ where r = |z| > 0 and − π < θ < π .

The real numbers r > 0 and θ ∈ (−π, π) are uniquely determined. Then we have

log z = ln r + iθ .

If z = x+ iy then r = (x2 + y2)1/2 and

θ = arctan(y/x) .

Here one must choose the correct branch of the arctan–function and must be careful when x = 0.
One obtains

log(x+ iy) = ln
(

(x2 + y2)1/2
)

+ i arctan(y/x) .

With some effort (in particular for x = 0) one can use the Cauchy–Riemann equations to prove
that the function log(x+ iy) is holomorphic on U .

From the point of view of complex variables, there is a better way to introduce log z, z ∈ U ,
namely as the inverse of ew. We will do this below. To construct log z we will use the formula

log z =

∫
Γz

dw

w
, z ∈ U ,

where Γz is a curve in U from z0 = 1 to z.

14.2 Auxiliary Results

Recall the following (see Theorems 4.8 and 4.9):

Theorem 14.1 Let U ⊂ C be open and simply connected and let g ∈ H(U). Fix z0 ∈ U and, for
every z ∈ U choose a curve Γz in U from z0 to z. Then:

1. The function

f(z) =

∫
Γz

g(w) dw, z ∈ U ,

is well–defined, i.e., it does not depend on the particular choice of Γz.
2. We have f ∈ H(U) and f ′(z) = g(z), z ∈ U .
3. f(z0) = 0.
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Lemma 14.1 Let U ⊂ C be open and connected and let g ∈ H(U). Assume that g′(z) = 0 for all
z ∈ U . Then g(z) is constant in U .

Proof: Fix z0 ∈ U and let z ∈ U be arbitrary. Choose a curve Γz in U from z0 to z. We have

g(z)− g(z0) =

∫
Γz

g′(w) dw = 0 ,

thus g(z) = g(z0). �

14.3 The Main Branch of the Complex Logarithm: Inversion of w → ew

Theorem 14.2 Let U = C\ (−∞, 0]. There is a unique function L ∈ H(U) with the following two
properties:

1. L(1) = 0;
2. eL(z) = z for all z ∈ U .

This function L(z) is denoted by
L(z) = log z, z ∈ U ,

and is called the main branch of the complex logarithm. The function L(z) = log z satisfies L′(z) =
1/z, z ∈ U , and we have

L(x) = lnx :=

∫ x

1

ds

s
for 0 < x <∞ .

Proof: Let Γz denote a curve in U from z0 = 1 to z ∈ U .

Uniqueness of L: Suppose L ∈ H(U) has the properties 1. and 2. We have

eL(z)L′(z) = 1 for z ∈ U ,
thus

L′(z) = e−L(z)

=
1

z

in U . Therefore,

L(z) = L(z)− L(1)

=

∫
Γz

dw

w

The value of the integral does not depend on the curve Γz in U from z0 = 1 to z since the region
U is simply connected.

Existence of L: Define

L(z) =

∫
Γz

dw

w
, z ∈ U .

We then have L(1) = 0 and L′(z) = 1
z , z ∈ U . Therefore,
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d

dz

(
ze−L(z)

)
= e−L(z) − ze−L(z)L′(z) = 0 .

This shows that

ze−L(z) = const

At z0 = 1 we obtain

const = 1 e0 = 1 ,

thus eL(z) = z.
For 0 < x <∞ we have

L(x) =

∫ x

1

dw

w
= lnx .

�

Lemma 14.2 We have

log(1 + z) =
∞∑
j=1

(−1)j−1

j
zj for |z| < 1 .

Proof: The derivative of the left–hand side is

l′(z) =
1

1 + z
, |z| < 1 .

The derivative of the right–hand side is

r′(z) =
∞∑
j=1

(−1)j−1 zj−1

=

∞∑
k=0

(−z)k

=
1

1 + z
, |z| < 1

It follows that l(z)− r(z) is constant. Also,

l(0)− r(0) = log(1)− 0 = 0 ,

thus r(z) ≡ l(z) for |z| < 1. �
Discontinuity along the negative real axis: Fix −∞ < x < 0. We have

x = |x|eiπ = |x|e−iπ .
Consider the circle γ of radius r = |x| with parameterization

z(θ) = reiθ, −π ≤ θ ≤ π .
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On the circle γ consider the points

zε = rei(π−ε) and wε = rei(−π+ε) for 0 < ε << 1 .

As ε→ 0+ we have

zε → reiπ = −r = x

and

wε → re−iπ = −r = x .

As ε→ 0+ the points zε and wε both converge to x. However,

log zε = ln r + i(π − ε)→ ln r + iπ

logwε = ln r + i(−π − ε)→ ln r − iπ

Since zε → x and wε → x, but log zε and logwε have different limits, one cannot extend the function
log z defined on U = C \ (−∞, 0] continuously to the axis −∞ < x < 0. Also, since ln r → −∞ as
r → 0+ the function log z is singular at z = 0.

14.4 Complex Logarithms in Other Simply Connected Regions

Theorem 14.3 Let V ⊂ C be open and simply connected. Assume that 0 /∈ V . Fix z0 ∈ V and
write

z0 = r0e
iθ0 where r0 > 0 and θ ∈ R .

Then there is a unique function L ∈ H(V ) with
1. L(z0) = ln(r0) + iθ0;
2. eL(z) = z for all z ∈ V .

This function L(z) satisfies L′(z) = 1/z, z ∈ V .

Proof: Let Γz denote a curve in V from z0 to z ∈ V .
Uniqueness of L. Suppose L ∈ H(U) satisfies the conditions 1. and 2. We have

L′(z)eL(z) = 1,

thus

L′(z) = e−L(z)

=
1

z

in V . Therefore,

L(z)− L(z0) =

∫
Γz

dw

w
.

This shows that L(z) is uniquely determined.
Existence of L. Define

162



L(z) = ln(r0) + iθ0 +

∫
Γz

dw

w
, z ∈ V .

We then have L(z0) = ln(r0) + iθ0 and L′(z) = 1
z , z ∈ V . Therefore,

d

dz

(
ze−L(z)

)
= e−L(z) − zL′(z)e−L(z) = 0 .

This shows that

ze−L(z) = const

At z = z0 we have

eL(z0) = r0e
iθ = z0 ,

thus

const = z0e
−L(z0) = 1 .

This proves that

eL(z) = z, z ∈ V .

�
We call the function L(z) the logarithm in V with normalization L(z0) = ln(r0) + iθ0. If we

drop the dependency on the normalization in our notation, we write

L(z) = logV (z), z ∈ V .

In particular, we have shown the existence statement of the following theorem:

Theorem 14.4 Let V ⊂ C be open and simply connected. Assume that 0 /∈ V . Then there exists
a function L ∈ H(V ) with eL(z) = z for all z ∈ V . Any such function satisfies L′(z) = 1/z in V .

If L1, L2 ∈ H(V ) satisfy eL1(z) = eL2(z) for all z ∈ V , then there exists n ∈ Z with

L1(z) = L2(z) + 2πin, z ∈ V . (14.1)

Proof: We only have to show (14.1). We know that ew = 1 holds if and only if w = 2πin for some
n ∈ Z. Therefore,

eL1(z)−L2(z) = 1

implies that L1(z)− L2(z) = 2πin(z), n(z) ∈ Z. However, since n(z) ∈ H(V ), the function n(z) is
constant. �

Definition: If V ⊂ C is an open set and if L ∈ H(V ) then we call L a logarithm on V if
eL(z) = z for all z ∈ V .

Using the above terminology, Theorem 14.4 says that a logarithm exists on V if V is simply
connected and 0 /∈ V . Furthermore, any two logarithms on V differ by an integer multiple of 2πi.
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14.5 Argument Functions

Let V ⊂ C be open and simply connected and assume that 0 /∈ V . Let L ∈ H(V ) denote a
logarithm on V and write

L(z) = LR(z) + iLI(z)

with real functions LR and LI . We have

z = eLR(z)eiLI(z),

thus

|z| = eLR(z), LR(z) = ln |z| .

Definition: Let V ⊂ C denote an open set. A C∞–function

arg : V → R

is called an argument function on V if

z = eln |z|+i arg (z) for all z ∈ V .

Our results say that an argument function exists on V if V is simply connected and 0 /∈ V . In
fact, arg (z) = ImL(z) is an argument function on V if L is a logarithm on V . Furthermore, any
two argument functions on V differ by an integer multiple of 2πi.
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15 Extensions of Cauchy’s Theorem in a Disk

Summary: Let ⊂ C be a region and let f ∈ H(U). If γ0 is a curve in U which can be smoothly
deformed into the curve γ1, without leaving U and without changing endpoints, then∫

γ0

f(z) dz =

∫
γ1

f(z) dz .

We give a formal proof.

15.1 Homotopic Curves

In the following, let U ⊂ C be a region, i.e., U is open and connected.
Let γ0(t), γ1(t), a ≤ t ≤ b, denote parameterizations of two curves in U with

γ0(a) = γ1(a) = P, γ0(b) = γ1(b) = Q .

Thus, γ0 and γ1 have the same starting point, P , and the same endpoint, Q.

Definition: The curve γ0 is homotopic to the curve γ1 in U (with fixed end points), if there exists
a continuous function

γ : [0, 1]× [a, b]→ U

with the following properties:
1) For a ≤ t ≤ b:

γ(0, t) = γ0(t), γ(1, t) = γ1(t) .

2) For 0 ≤ s ≤ 1:

γ(s, a) = P, γ(s, b) = Q .

3) For every parameter s ∈ [0, 1] the function

t→ γ(s, t), a ≤ t ≤ b ,
is continuous and piecewise C1.

Terminology: The function γ(s, t) is called a homotopy (with fixed end points). The parameter
s is called the homotopy parameter and t is called the curve parameter. Intuitively, γ describes a
continuous deformation of the curve γ0 into γ1.

We will only consider homotopies with fixed end points. Therefore we will drop the term.

15.2 Cauchy’s Theorem

Theorem 15.1 Let U be a region in C and let f ∈ H(U). If γ0 and γ1 are two curves in U which
are homotopic in U then ∫

γ0

f(z) dz =

∫
γ1

f(z) dz .
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Proof: a) The set

K = γ
(

[0, 1]× [a, b]
)

is a compact subset of U . Assume that U c = C \U is not empty. (Otherwise, the following will be
trivial.) Let

ε := dist(K,U c) = inf{|k − z| : k ∈ K, z ∈ U c}
denote the distance between K and U c. Since K is compact and U c is closed and K ∩ U c = ∅, it
follows that ε > 0. (Proof of this statement: If ε = 0 then, for every n ∈ N there is kn ∈ K and
zn ∈ U with

|kn − zn| <
1

n
.

For a subsequence, kn → k and zn → z. Since k ∈ K and z ∈ U c and |k − z| = 0, one obtains a
contradiction to K ∩ U c = ∅.)

It follows that

D(γ(s, t), ε) ⊂ U
for all (s, t) ∈ [0, 1]× [a, b].

b) Since γ is uniformly continuous, there exists δ > 0 with

|s− s′|+ |t− t′| < δ ⇒ |γ(s, t)− γ(s′, t′)| < ε .

c) Choose N ∈ N so large that

1

N
+
b− a
N

< δ .

Define a grid in

Q = [0, 1]× [a, b]

by

sj =
j

N
, tk = a+ (b− a)

k

N
, 0 ≤ j, k ≤ N .

The rectangle Q is partitioned into the sub-rectangles

Qjk = [sj , sj+1]× [tk, tk+1] .

If (s, t) and (s′, t′) are two points in Qjk, then

|s− s′|+ |t− t′| < δ .

Therefore,

γ(Qjk) ⊂ D(γ(sj , tk), ε) ⊂ U .

d) Set

γsj (t) = γ(sj , t), a ≤ t ≤ b .
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We claim that ∫
γsj

f dz =

∫
γsj+1

f dz .

To show this, we apply Cauchy’s integral theorem in the disks

D(γ(sj , tk), ε)

successively for k = 0, 1, . . . , N − 1 to deform the curve γsj into γsj+1 . Since the deformation takes
place in disks that lie in U , the integral does not change. �
Definition: Let U be a region in C and let γ0(t), a ≤ t ≤ b, be a closed curve in U . Then γ0 is
called null–homotopic in U if γ0 is homotopic in U (with fixed endpoints) to the constant curve
γ1(t) defined by

γ1(t) ≡ γ0(a) = γ0(b), a ≤ t ≤ b .

The following three theorems are different versions of Cauchy’s Theorem.

Theorem 15.2 Let U be a region in C and let γ be null–homotopic in U . If f ∈ H(U) then∫
γ
f(z) dz = 0 .

Definition: A region U in C is called simply connected if every closed curve in U is null–homotopic
in U .

Theorem 15.3 Let U be a simply connected region in C. If γ is a closed curve in U and f ∈ H(U)
then ∫

γ
f(z) dz = 0 .

Theorem 15.4 Let U be a region in C. (It is not assumed that U is simply connected.) Let
f ∈ H(U). There exists a function F ∈ H(U) with F ′ = f in U if and only if∫

γ
f(z) dz = 0

for every closed curve γ in U .
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16 The General Residue Theorem and the Argument Principle

Summary: If an equation gets perturbed, what happens to the solutions of the equation? The
implicit function theorem gives an important result. It’s proof is based on contraction.

Complex variables has a different tool, the winding number or index, which is an integer. If
an integer gets slightly perturbed, it remains unchanged. This can be used to obtain information
about solutions of an equation under perturbations. One has to be precise about the multiplicities
of zeros of holomorphic functions and relate their multiplicities to an integral. The result is called
the argument principle.

16.1 Remarks on Solutions of Equations under Perturbations

A general questions of mathematics, vaguely formulated, is the following: Suppose u0 is the solution
of an equation and the equation gets perturbed by ε. Will the perturbed equation have a solution
u(ε) near u0? A precise result of this nature is formalized in the implicit function theorem, which
is itself based on completeness of the underlying solution space (all Cauchy sequences converge)
and contraction. To formalize ideas, assume that

F : Rn × Rm → Rn

is a smooth map and consider the equation

F (u, λ) = 0 . (16.1)

Here we consider λ as a vector of parameters in the parameter space Rm. The solutions u lie in
the state space Rn. The space Rn is also the space of right-hand sides so that, for fixed λ ∈ Rm,
the system F (u, λ) = 0 has n scalar unknowns and n scalar equations. Suppose that

F (u0, λ0) = 0 ,

where u0 ∈ Rn and λ0 ∈ Rm, i.e., for λ = λ0 the equation (16.1) has the solution u0. Let λ = λ0 +ε
where ε ∈ Rm is small in norm. We ask if the equation

F (u, λ0 + ε) = 0 (16.2)

has a solution u = u(ε) ∼ u0. To ensure that this is true, we assume that the Jacobian

A := Fu(u0, λ0) ∈ Rn×n

is nonsingular. Then, proceeding formally, we try to find a solution u of (16.2) of the form

u = u0 + δ, δ ∈ Rn ,

where the vector δ is small in norm. We have, formally,

0 = F (u0 + δ, λ0 + ε)

= F (u0, λ0) +Aδ + Fλ(u0, λ0)ε+Q(δ, ε)

where
|Q(δ, ε)| ≤ C(|δ|2 + |ε|2) .
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Since F (u0, λ0) = 0 we obtain

δ = −A−1Fλ(u0, λ0)ε−A−1Q(δ, ε) .

This is a fixed point equation for δ, suggesting the iteration

δj+1 = −A−1Fλ(u0, λ0)ε−A−1Q(δj , ε), δ0 = −A−1Fλ(u0, λ0)ε .

If ε is small enough, one can use a contraction argument to show that the equation

F (u0 + δ, λ0 + ε) = 0

has a unique small solution δ ∈ Rn. This is made precise by the implicit function theorem.
Complex variables offers another tool, different from contraction, to study the solutions of an

equation under perturbation. The tool is, ultimately, Cauchy’s integral theorem, which allows us
to count the number of zeros of a function in terms of an integral. The idea is as follows: If the
function is perturbed slightly, the integral only changes slightly. Since the integral is an integer, it
does not change at all and, consequently, the number of zeros of the perturbed function equals the
number of zeros of the unperturbed function. See Rouché’s Theorem in the next chapter.

In a more general form, this tool is developed further in degree theory, an advanced topic of
analysis and topology. 4

16.2 The Winding Number or Index

Let γ(t), a ≤ t ≤ b, be a parameterization of a closed curve in C, thus γ(a) = γ(b). We denote the
curve parameterized by γ also by γ. Let P ∈ C \ γ, i.e., P is a point in the complex plane that
does not lie on the curve γ.

The number

Indγ(P ) :=
1

2πi

∫
γ

dz

z − P

=
1

2πi

∫ b

a

γ′(s)
γ(s)− P ds

is called the index of γ w.r.t. P or the winding number of γ w.r.t. P . Intuitively, Indγ(P ) counts
how many times γ winds around P in the positive sense. If Indγ(P ) is negative, then γ winds
around P clockwise.

It is not completely trivial to prove that the index defined above is always an integer.

Lemma 16.1 Under the above assumptions, the number Indγ(P ) is an integer.

Proof: Set

g(t) :=

∫ t

a

γ′(s)
γ(s)− P ds, a ≤ t ≤ b .

We have g(a) = 0 and

4An interesting result of index theory is Brower’s fixed point theorem: If K ⊂ Rn is compact and convex and if
f : K → K is a continuous function, then there exists P ∈ K with f(P ) = P , i.e., f has a fixed point.
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1

2πi
g(b) = Indγ(P ) .

Define

φ(t) := e−g(t)(γ(t)− P ), a ≤ t ≤ b .
We will prove that φ(t) is constant. We have

φ(a) = e−g(a)(γ(a)− P )

= γ(a)− P

and

φ(b) = e−g(b)(γ(b)− P )

= e−g(b)(γ(a)− P ) .

In the last equation we have used that γ(a) = γ(b), which holds since the curve γ is assumed to be
closed.

Note that the definition of g(t) yields that

g′(t) = γ′(t)(γ(t)− P )−1 .

We use this to prove that φ(t) is constant:

φ′(t) = e−g(t)
(
− g′(t)

)
(γ(t)− P ) + e−g(t)γ′(t)

= e−g(t)
(
− γ′(t)

)
+ e−g(t)γ′(t)

= 0 .

We obtain that

φ(a) = φ(b) .

Therefore,

γ(a)− P = φ(a)

= φ(b)

= e−g(b)(γ(a)− P )

and φ(a)− P 6= 0 yields that

e−g(b) = 1 .

Therefore,

g(b) = 2πin for some n ∈ Z .
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Finally,

Indγ(P ) =
g(b)

2πi
= n ∈ Z .

�
Remark: It is not easy to formalize our intuition about the winding number. It is difficult to prove
Jordan’s Lemma, which seems to be quite obvious. Jordan’s Lemma: Let Γ ⊂ R2 denote a Jordan
curve, i.e., there exists a bijective continuous map φ : S1 → Γ. Here S1 = {(x, y) : x2 + y2 = 1}
is the unit circle. Then there exists two open connected subsets A,B of R2 with

R2 \ Γ = A ∪B, A ∩B = ∅ ,
where A is bounded and B is unbounded.

16.3 The General Residue Theorem

Recall that an open connected set U ⊂ C is called a region. Also, recall that a closed curve γ
in U is called null–homotopic in U if one can deform γ continuously to a point in U where the
deformations of γ all lie in U .

Theorem 16.1 Let U be a region in C. Let P1, . . . PJ ∈ U be J distinct points in U and let

f ∈ H
(
U \ {P1, . . . , PJ}

)
.

Let γ be a closed curve in U which is null–homotopic in U and avoids the points Pj, i.e.,

Pj /∈ γ, j = 1, . . . , J .

Under these assumptions: ∫
γ
f(z) dz = 2πi

J∑
j=1

Res(f, Pj) Indγ(Pj) .

Proof: For 0 < |z − Pj | < ε:

f(z) =

−1∑
k=−∞

a
(j)
k (z − Pj)k + gj(z)

where gj ∈ H(D(Pj , ε)) and

a
(j)
−1 = Res(f, Pj) .

The singular part of the Laurent expansion of f near Pj is:

sj(z) =

−1∑
k=−∞

a
(j)
k (z − Pj)k ;

this function is holomorphic in C \ {Pj}. (See the results on Laurent expansions.) Therefore,

g(z) := f(z)−
J∑
j=1

sj(z)
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can be extended to a holomorphic function in U , i.e., the singularity of g at every point Pj is
removable.

One obtains:

∫
γ
f(z) dz =

∫
γ
g(z) dz +

J∑
j=1

∫
γ
sj(z) dz

=
J∑
j=1

a
(j)
−1

∫
γ

dz

z − Pj

=
J∑
j=1

Res(f, Pj) 2πi Indγ(Pj)

�

16.4 Zero–Counting of Holomorphic Maps

We show here that the zeros of a holomorphic function f(z) can be counted (according to their
multiplicity) by an integral. This is very useful if one perturbs the function f(z) or if one counts
the solutions zj of the perturbed equation

f(z)− w = 0

for small w ∈ C instead of the zeros of f .

16.4.1 The Multiplicity of a Zero

Let U be a region in C and let f ∈ H(U). We assume that f is not identically zero. If z0 ∈ U and
f(z0) = 0 then z0 is called a zero of f . For |z − z0| < ε we can write:

f(z) =

∞∑
j=M

aj(z − z0)j

= (z − z0)Mh(z)

where M ≥ 1 and aM 6= 0. The function h(z) is holomorphic in

D(z0, ε)

and we have, for sufficiently small ε:

h(z) 6= 0 for |z − z0| ≤ ε .
The number M is called the multiplicity of the zero z0 of f . We write

M = multf (z0)

and note that

f (j)(z0) = 0 for j = 0, . . . ,M − 1, f (M)(z0) = aM M ! 6= 0 .
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Note: If the holomorphic function f(z) has a zero of multiplicity M at z0 then there exists ε > 0
so that

f (j)(z) 6= 0 for 0 < |z − z0| < ε, 0 ≤ j ≤M − 1 ,

and

f (M)(z) 6= 0 for 0 ≤ |z − z0| < ε .

16.4.2 The Zeros of a Holomorphic Function in a Disk

Let U be a region in C and let f ∈ H(U). We assume that f is not identically zero.
Let D̄ = D̄(P, r) ⊂ U be a closed disk in U . We assume that f(z) 6= 0 for all z ∈ ∂D̄, i.e., f

has no zero on the boundary of the disk D̄. Let

γ(t) = P + reit, 0 ≤ t ≤ 2π ,

denote the positively oriented boundary curve of D̄.
Let z1, . . . , zJ denote the distinct zeros of f in the open disk D = D(P, r) with multiplicities

Mj = multf (zj) .

The following result is called the argument principle for holomorphic functions.

Theorem 16.2 Under the above assumptions:

1

2πi

∫
γ

f ′(z)
f(z)

dz =
J∑
j=1

Mj , (16.3)

i.e., the integral can be used to count the zeros of f encircled by γ according to their multiplicities.

Proof: If ε > 0 is sufficiently small, then the curve

γjε(t) = zj + εeit, 0 ≤ t ≤ 2π ,

encircles the zero zj , but no other zero of f . We have∫
γ

f ′(z)
f(z)

dz =
J∑
j=1

∫
γjε

f ′(z)
f(z)

dz .

Fix j and set M = Mj . From

f(z) = (z − zj)M h(z) for z ∈ Dj := D(zj , ε)

with

h ∈ H(Dj), h(z) 6= 0 for z ∈ D̄j ,

we obtain:

f ′(z) = M(z − zj)M−1h(z) + (z − zj)Mh′(z)
and
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f ′(z)
f(z)

=
M

z − zj
+ g(z), g ∈ H(Dj) .

Therefore, ∫
γjε

f ′(z)
f(z)

dz = 2πiM = 2πiMj .

This proves the claim. �
Remark: In Section 17.6 we will consider the argument principle for meromorphic functions.

Interpretation of Equation (16.3) in Terms of the Image Curve f(γ): Let

µ(t) = f(γ(t)) = f(P + reit), 0 ≤ t ≤ 2π ,

denote the image of the curve γ under the map f . Then µ(t) 6= 0 for 0 ≤ t ≤ 2π since, by
assumption, f has no zero on ∂D. The winding number of the curve µ(t), 0 ≤ t ≤ 2π, w.r.t. the
point 0 is

Indµ(0) =
1

2πi

∫
µ

dw

w
(w = µ(t), dw = µ′(t) dt)

=
1

2πi

∫ 2π

0

µ′(t)
µ(t)

dt

=
1

2πi

∫ 2π

0

f ′(γ(t))γ′(t)
f(γ(t))

dt (z = γ(t), dz = γ′(t) dt)

=
1

2πi

∫
γ

f ′(z)
f(z)

dz

In other words, the left–hand side of (16.3) is the number of times by which the point f(γ(t)) moves
counterclockwise around 0 when t changes from 0 to 2π. (If f has no zero in the disk D(P, r) then
Indµ(0) = 0 and the curve µ(t) = f(γ(t)), 0 ≤ t ≤ 2π, does not go around the point 0.)

We obtain the following reformulation of Theorem 16.2:

Theorem 16.3 Let D̄(P, r) ⊂ U and let f ∈ H(U). Assume that f has no zero on ∂D(P, r). Then
the number of zeros of f in D(P, r) (counting multiplicities) equals the number of times by which
the curve

µ(t) = f(P + reit), 0 ≤ t ≤ 2π ,

winds counterclockwise around w = 0.

Example: Let f(z) = z3 and let D(0, 1) denote the unit circle. The boundary curve of D(0, 1)
is

γ(t) = eit, 0 ≤ t ≤ 2π .

The f–image of this curve is

µ(t) = e3it, 0 ≤ t ≤ 2π .

Then µ(t) winds three times counterclockwise around w = 0. The function f(z) = z3 has three
zeros (counting multiplicities) in D(0, 1).
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16.4.3 The Argument Principle and Log–Functions

The result of Theorem 16.2 is often called the argument principle. To explain this, we first make
some remarks on log–functions.

If r > 0 we denote by ln r =
∫ r

0
dx
x the usual real natural logarithm of r. We know that

d
dr ln r = 1

r for r > 0.
The function

r → ln r, r > 0 ,

cannot be extended as a holomorphic function logw defined for all w ∈ C \ {0}. Otherwise, by the
identity theorem,

d

dw
logw =

1

w
, w 6= 0 .

However, we know that ∫
γ

dw

w
= 2πi 6= 0 ,

where γ(t) = eit, 0 ≤ t ≤ 2π.

Log–functions in a simply connected region. If W ⊂ C is a simply connected region with
0 /∈W , then we can make a continuous choice for arg(w), w ∈W , and write

w = rei arg(w), r = |w| > 0, w ∈W .

We define

logW (w) = ln r + i arg(w), w ∈W ,

and obtain

elogW (w) = w, w ∈W .

Now let us make the same assumptions as in the previous subsection: Let U be a region in C
and let f ∈ H(U). We assume that f is not identically zero. Let D̄ = D̄(P, r) ⊂ U be a closed disk
in U . We assume that f(z) 6= 0 for all z ∈ ∂D̄. Let

γ(t) = P + reit, 0 ≤ t ≤ 2π ,

denote the positively oriented boundary curve of D̄.
Let us assume that f has at least one zero in D. Then the curve

w(t) = f(γ(t)), 0 ≤ t ≤ 2π ,

winds around zero, and we cannot define logw(t) consistently for 0 ≤ t ≤ 2π.
Make a subdivision of the interval 0 ≤ t ≤ 2π by choosing points

t0 = 0 < t1 < . . . < tK = 2π

and let

γk(t) = γ(t), tk−1 ≤ t ≤ tk for k = 1, . . . ,K .
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We have

γ = γ1 + . . .+ γK .

We make the subdivision fine enough so that each curve γk(t) lies in a simply connected region Wk

with 0 /∈Wk. On Wk we have a log–function, which we call logk(w). We have

d

dw
logk(w) =

1

w
, w ∈Wk .

If z is chosen so that f(z) ∈Wk then

d

dz
logk(f(z)) =

f ′(z)
f(z)

.

Therefore, ∫
γk

f ′(z)
f(z)

dz = logk f(γ(tk))− logk f(γ(tk−1)) = logk(wk/wk−1)

with

wk := f(γ(tk)), 0 ≤ k ≤ K .

(Note that w0 = wK since γ(t0) = γ(0) = γ(2π) = γ(tk).)
Write

wk = rke
i argk(wk) .

We then have∫
γk

f ′(z)
f(z)

dz = logk wk/wk−1) = ln(rk/rk−1) + i
(
argk(wk)− argk(wk−1)

)
.

Summation over k from 1 to K yields that∫
γ

f ′(z)
f(z)

dz =
K∑
k=1

ln(rk/rk−1) + i
K∑
k=1

(
argk(wk)− argk(wk−1)

)
.

The first part involves logs of real numbers:

K∑
k=1

ln(rk/rk−1) = ln
(r1

r0
· r2

r1
· . . . · rK

rK−1

)
= ln 1

= 0

Here we have used that w0 = wK , thus r0 = rK .
The real number

K∑
k=1

(
argk(wk)− argk(wk−1)

)
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is the total change of argument of the function w(t) = f(γ(t)) as t goes from 0 to 2π. In other
words,

1

2πi

∫
γ

f ′(z)
f(z)

dz =
1

2πi
i

K∑
k=1

(
argk(wk)− argk(wk−1)

)
is the number of times by which w(t) moves around zero when t goes from 0 to 2π. This confirms
our earlier interpretation of the left–hand side of the above equation.

Example: Let

f(z) = z3(z − 1)2, z ∈ C .

Let D = D(0, 2) and let γ(t) = 2eit, 0 ≤ t ≤ 2π, denote the boundary curve of D. By Theorem
16.2 we have

1

2πi

∫
γ

f ′(z)
f(z)

dz = 5

since f has five zeros in D. This is easily confirmed by the residue theorem: Since

f ′(z) = 3z2(z − 1)2 + 2z3(z − 1)

we have

f ′(z)
f(z)

=
3

z
+

2

z − 1
.

The curve with parameterization

µ(t) = 8e3it(2eit − 1)2, 0 ≤ t ≤ 2π ,

is the image of γ(t) under f . By Theorem 16.3 the curve µ(t) winds five times counterclockwise
around zero. See the figure below. Note that µ(0) = 8 and µ(π) = −72.

16.5 The Change of Argument and Zeros of Polynomials

Let U ⊂ C denote an open set and let f ∈ H(U). Let Γ denote a curve in U and assume that
f(z) 6= 0 for all z ∈ Γ. The real number

Im

∫
Γ

f ′(z)
f(z)

dz =: ∆Γ arg f

is called the change of argument of f along Γ.

Interpretation: Let z(t), a ≤ t ≤ b, denote a parameterization of Γ. The curve Γ goes from
A = z(a) to B = z(b). First assume that f(Γ) ⊂ W , where W ⊂ C is an open set, and that logw
is a logarithm on W . We have, for z near Γ,

d

dz
log f(z) =

f ′(z)
f(z)

,

thus
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Figure 16.1: Graph of Image Curve

∫
Γ

f ′(z)
f(z)

dz = log f(B)− log f(A)

= ln
∣∣∣f(B)

f(A)

∣∣∣+ i
(

arg f(B)− arg f(A)
)
,

thus

∆Γ arg f = Im

∫
Γ

f ′(z)
f(z)

dz

= arg f(B)− arg f(A) .

Note that the difference in argument does not depend on the specific argument function on W . A
main assumption is that f(Γ) ⊂W and that a log–function exists on W .

In the general case, let Γ denote a curve in U with parameterization z(t), a ≤ t ≤ b. Let
f ∈ H(U) and assume f(z) 6= 0 for z ∈ Γ. Choose a subdivision

t0 = a < t1 < . . . < tK = b

and obtain
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∆Γ arg f = Im

∫
Γ

f ′(z)
f(z)

dz

= Im
∑
k

∫
Γk

f ′(z)
f(z)

dz

=
∑
k

(
arg kf(zk)− arg kf(zk−1)

)
.

Here zk = z(tk), zk−1 = z(tk−1) and Γk is the curve with parameterization z(t), tk−1 ≤ t ≤ tk. Also,
f(Γk) ⊂Wk and arg k(w) is an argument function on Wk.

Example 1: Let ΓR denote the curve, along the imaginary axis, parameterized by z(t) =
it,−R ≤ t ≤ R, and let Γ denote the whole imaginary axis with parameterization z(t) = it,−∞ <
t <∞.

Consider the polynomial f(z) = z + 1 with the simple zero z1 = −1 to the left of Γ. We note
that f(Γ) lies in the right half–plane and we can work with the main branch, logw.

We have

∫
ΓR

dz

z + 1
= log(iR+ 1)− log(−iR+ 1)

= ln(R2 + 1)1/2 + iθR − (ln(R2 + 1)1/2 − iθR)

with

θR =
π

2
− αR, αR = arctan(1/R) = O(1/R) .

Therefore,

∆ΓR arg (z + 1) = π +O(1/R)

and, as R→∞,

∆Γ arg (z + 1) = π .

Similarly, if z1 is any point to the left of Γ, one finds that

∆Γ arg (z − z1) = π .

Example 2: Let ΓR and Γ denote the same curves as in Example 1 and consider the polynomial
f(z) = z − 1 with zero z2 = 1 to the right of Γ. In this case, f(Γ) lies to the left of the imaginary
axis, and the main branch, logw, is not defined along f(Γ). One obtains

∆ΓR arg (z − 1) =
(π

2
+ αR

)
−
(3π

2
− αR

)
= −π +O(1/R)

and, as R→∞,
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∆Γ arg (z − 1) = −π .
Similarly, if z2 is any point to the right of Γ, one finds that

∆Γ arg (z − z2) = −π .

Example 3: As in Examples 1 and 2, let Γ denote the imaginary axis, z(t) = it,−∞ < t <∞.
Let

f(z) = Πn
j=1(z − zj)

denote a polynomial and assume that none of the zeros zj of f lies on Γ. Since

f ′(z)
f(z)

=
∑ 1

z − zj
one obtains that

∆Γ arg f = π(p− q)
if p of the zeros of f lie to the left and q = n− p of the zeros of f lie to the right of Γ.

With a change of variables, one obtains the following result.

Theorem 16.4 Let Γ denote the straight line with parameterization

z(t) = A+Bt, −∞ < t <∞ ,

where A,B are complex numbers and B 6= 0. If f(z) is any polynomial without a zero on Γ then
we have

∆Γ arg f = π(p− q)
if f has p zeros to the left and q zeros to the right of Γ.
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17 Applications and Extensions of the Argument Principle

Summary: The argument principle can be used to study how zeros of a holomorphic function are
perturbed if the function is perturbed. We will use this to prove the Open Mapping Theorem.

In Section 17.4 we give a generalization of the argument principle and will use it to show that
the local inverse of a holomorphic function is holomorphic if the inverse exists.

If f(z) and p(z) are holomorphic functions, where p(z) is a perturbation term, how are the
solutions of the perturbed equation f(z) + p(z) = 0 related to the solutions of the unperturbed
equation f(z) = 0? Rouché’s Theorem gives an important result.

17.1 Perturbation of an Equation: An Example

We first consider a simple example. Let

f(z) = z3, z ∈ C .

Let D = D(0, 1) denote the unit disk with boundary curve γ. In this case, the function f(z) = z3

has the zero

z0 = 0

of multiplicity M = 3. We have

f ′(z)
f(z)

=
3

z

and Theorem 16.2 yields that

1

2πi

∫
γ

3z2

z3
dz = 3 .

Consider the perturbed equation for the unknown z:

z3 = w

where w ∈ C is small in absolute value, w = reiθ, r > 0,−π < θ ≤ θ.
The solutions are

z1(w) = r1/3 eiθ/3

z2(w) = r1/3 eiθ/3 e2πi/3

z3(w) = r1/3 eiθ/3 e4πi/3

These are simple zeros of the function

g(z) = z3 − w .

Theorem 16.2 applied to g(z) yields that

1

2πi

∫
γ

3z2

z3 − w dz = 3 if |w| < 1 .

In this example, the triple zero z0 = 0 of f(z) = z3 splits into three simple zeros for the perturbed
function g(z) = z3 − w if w 6= 0. We want to generalize this result.
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17.2 Perturbation of a Multiple Zero

We make the same assumptions as in 16.4.2: U is a region in C; f ∈ H(U) is not identically zero.

Let z0 ∈ U be a zero of f of multiplicity M . We choose r > 0 with

a) D̄ = D̄(z0, r) ⊂ U ;

b) f(z) 6= 0 for 0 < |z − z0| ≤ r;
c) f ′(z) 6= 0 for 0 < |z − z0| ≤ r.

Let γ(t) = z0 + reit, 0 ≤ t ≤ 2π. Set η := min{|f(z)| : |z − z0| = r}, thus η > 0. We consider the
equation

f(z) = w, z ∈ D(z0, r) ,

where w ∈ C with |w| < η is given.
Let us make a plausibility consideration first: We have w ∼ 0. Also, for z close to z0:

f(z) ∼ aM (z − z0)M , aM 6= 0 .

We must solve

aM (z − z0)M ∼ w ,

i.e.,

(z − z0)M ∼ w

aM
=: ρeiθ where − π < θ ≤ π .

If ρ > 0 then the equation for q ∈ C

qM =
w

aM
= ρeiθ

has M distinct solutions qj :

q1 = ρ1/M eiθ/M

q2 = q1 e
2πi/M

q3 = q1 e
4πi/M

. . . = . . .

qM = q1 e
(M−1)2πi/M

We expect that the equation

f(z) = w

has M distinct solutions

zj(w) ∼ z0 + qj , j = 1, . . . ,M

if |w| is small, but w 6= 0.
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Theorem 17.1 Let U denote a region in C and let f ∈ H(U). Assume that f is not identically
zero. Let z0 ∈ U denote a zero of f of multiplicity M . Choose r > 0 so that the disk D = D(z0, r)
satisfies the conditions D̄(z0, r) ⊂ U ; f(z) 6= 0 for 0 < |z − z0| ≤ r; f ′(z) 6= 0 for 0 < |z − z0| ≤ r.
Define η := min{|f(z)| : |z − z0| = r} and let 0 < |w| < η. Then the equation f(z) = w has M
distinct solutions z1, . . . , zM in D. Every zj is a simple zero of the function g(z) = f(z)− w, i.e.,
g′(zj) = f ′(zj) 6= 0.

Proof: Let g(z) = f(z)− w. If |w| < η and |z − z0| = r then

|g(z)| ≥ |f(z)| − |w| ≥ η − |w| > 0 .

Therefore, the function

F (w) :=
1

2πi

∫
γ

f ′(z)
f(z)− w dz, |w| < η ,

is integer valued. Here γ denotes the positively oriented circle of radius r centered at z0.
We know that F (w) is the number of zeros of g(z) in D(z0, r), where the zeros are counted

according to their multiplicity.
We claim that F (w) is holomorphic for |w| < η. In fact, for |z − z0| = r we have

1

f(z)− w =
1

f(z)
· 1

1− w/f(z)

=
∞∑
j=0

wj

(f(z))j+1

For every fixed w with |w| < η the convergence is uniform for z ∈ γ. This yields:

F (w) =
1

2πi

∞∑
j=0

bjw
j

with

bj =

∫
γ

f ′(z)
(f(z))j+1

dz .

A holomorphic function that is integer–valued is constant. One obtains that

F (w) ≡M .

It follows that the number of zeros of g(z) in D is M if zeros are counted according to their
multiplicity.

Now let 0 < |w| < η and let z1 ∈ D be a zero of g. Then f(z1) = w, thus z1 6= z0. It follows
that f ′(z1) 6= 0; thus all zeros of g(z) are simple. The equation f(z) = w has M distinct zeros
z1, . . . , zM ∈ D(z0, r) if 0 < |w| < η. �
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Figure 17.1: Open Mapping Theorem

17.3 The Open Mapping Theorem

If U and V are metric spaces (or, more generally, topological spaces) and f : U → V is a map,
then f is called open if the set f(Ω) is an open subset of V whenever Ω is an open subset of
U . (This notion is different from continuity. A map f : U → V can be shown to be continuous
on U if and only if f−1(W ) is an open subset of U whenever W is an open subset of V . Here
f−1(W ) = {u ∈ U : f(u) ∈W}.)

The following result is know as the Open Mapping Theorem of complex analysis. (There is
another Open Mapping Theorem of functional analysis, which is different.) 5

Theorem 17.2 Let U be a region in C and let f ∈ H(U) be a non–constant function. Then the
mapping f : U → C is open.

Remark: Such a result is not true in R. For example, if f(x) = x2, then f(R) = [0,∞). The
set [0,∞) is not open in R.

Proof: Let Ω ⊂ U be an open non–empty set. We must show that f(Ω) is open. To this end, let
Q ∈ f(Ω) be an arbitrary point. We must show that there exists ε > 0 with D(Q, ε) ⊂ f(Ω).

Since Q ∈ f(Ω) there exists P ∈ Ω with f(P ) = Q. We will apply Theorem 17.1 to the function

h(z) = f(z)−Q, z ∈ Ω .

(The function h(z) is not identically zero since f(z) is not constant.) Note that h(P ) = f(P )−Q =
0.

Let M denote the multiplicity of the zero P of the function h(z). There exists r > 0 with:

a) D̄(P, r) ⊂ Ω;

b) f(z) 6= Q for 0 < |z − P | ≤ r;
c) f ′(z) 6= 0 for 0 < |z − P | ≤ r.

Let η := min{|f(z)−Q| : |z − P | = r}, thus η > 0. If |v| < η then the equation

f(z) = Q+ v

has M solutions zj ∈ D(P, r) ⊂ Ω. In particular, if Q+ v ∈ D(Q, η) then Q+ v lies in f(Ω). This
says that D(Q, η) ⊂ f(Ω), proving the theorem. �

5Open mapping theorem of functional analysis: Let X and Y be Banach spaces and let T : X → Y be linear,
continuous and onto. Then T is an open mapping.
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17.4 Extension of Theorem 16.2

The following is a useful generalization of Theorem 16.2. The assumptions are similar to those in
Theorem 16.2, but a general function φ ∈ H(U) appears in Theorem 17.3. (In Theorem 16.2 the
corresponding function is φ(z) ≡ 1.)

Theorem 17.3 Let U be a region and let f, φ ∈ H(U). Let D̄ = D̄(P, r) ⊂ U . Assume that

f(z) 6= 0 for |z − P | = r

and let γ(t) = P + reit, 0 ≤ t ≤ 2π. Let z1, . . . , zJ denote the distinct zeros of f in D with
multiplicities Mj = multf (zj). Then we have

1

2πi

∫
γ
φ(z)

f ′(z)
f(z)

dz =

J∑
j=1

Mjφ(zj) .

Proof: Let ε > 0 be small enough and let

γjε(t) = zj + εeit, 0 ≤ t ≤ 2π .

Fix j and let M = Mj . In the following, the functions hk(z) are holomorphic for |z − zj | < ε. We
have

f(z) = (z − zj)Mh1(z), h1(zj) 6= 0 ,

f ′(z)/f(z) = M(z − zj)−1 + h2(z)

φ(z) = φ(zj) + h3(z), h3(zj) = 0

φ(z)f ′(z)/f(z) = Mφ(zj)(z − zj)−1 + h4(z)

This implies that ∫
γjε

φ(z)
f ′(z)
f(z)

dz = 2πiMj φ(zj) .

The theorem follows by summing over j. �
Special Case: Assume J = 1,M1 = 1, φ(z) ≡ z. Then we have

1

2πi

∫
Γ
z
f ′(z)
f(z)

dz = z1

where z1 is the unique simple zero of f in D(P, r). This case is used in the proof of Theorem 17.4
below.

17.5 Local Inverses of Holomorphic Functions

Let U be a region in C and let f ∈ H(U). We ask for conditions under which the mapping
f : U → C is 1− 1. First assume that f ′(z0) = 0 for some z0 ∈ U . If Q := f(z0) then z0 is a zero
of multiplicity M ≥ 2 of the function

h(z) = f(z)−Q, z ∈ U .
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Choose any v ∈ C, v 6= 0, with |v| small. By Theorem 17.1 there are M distinct points z1, . . . , zM ∈
D(z0, r) which have the same image under f , thus

f(zj) = Q+ v, j = 1, . . . ,M .

One obtains that f cannot be 1− 1 if f ′(z0) = 0 for some z0.
Now assume that f ′(z) 6= 0 for all z ∈ U . The example f(z) = ez shows that f may still fail to

be globally 1− 1 since

e0 = e2πi = 1 .

However, as we will prove below, if f ′(z0) 6= 0, then f is locally 1 − 1 near z0. This means that
there exists ε > 0 so that f is 1− 1 on D(z0, ε). In addition, if Q = f(z0), then the local inverse of
f is defined and holomorphic in a disk D(Q, η) for some η > 0.

Theorem 17.4 (local inversion of holomorphic functions) Let f ∈ H(U). Let P ∈ U with f ′(P ) 6=
0. Set Q = f(P ). Then there exists an open neighborhood U0 of P with U0 ⊂ U and there exists
an open disk D(Q, η) so that the following holds:

a) f : U0 → D(Q, η) is 1− 1 and onto;
b) there is a unique function g : D(Q, η)→ U0 which is 1− 1 and onto satisfying

f(g(w)) = w for all w ∈ D(Q, η)

and

g(f(z)) = z for all z ∈ U0 .

This uniquely determined function g is holomorphic on D(Q, η).

Proof: 1) Choose r > 0 with

a) D̄(P, r) ⊂ U ;

b) f(z) 6= Q for 0 < |z − P | ≤ r;
c) f ′(z) 6= 0 for 0 ≤ |z − P | ≤ r.

If γ(t) = P + reit, 0 ≤ t ≤ 2π, then

1

2πi

∫
γ

f ′(z)
f(z)−Q dz = 1 .
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This holds since the equation f(z)−Q = 0 has precisely one solution z in D(P, r), namely z = P ,
and the solution z = P is simple since f ′(P ) 6= 0.

Set

η := min{|f(z)−Q| : |z − P | = r} > 0 .

If |w −Q| < η then the equation

f(z) = w

has a unique solution z1 ∈ D(P, r). We call this solution z1 = g(w). In this way we have defined a
function

g : D(Q, η)→ D(P, r)

with

f(g(w)) = w for all w ∈ D(Q, η) .

This equation implies that g is 1− 1. We note that g(Q) = P since P is the unique solution of the
equation f(z) = Q, z ∈ D(P, r).

2) Apply Theorem 17.3 with φ(z) ≡ z to obtain

1

2πi

∫
γ
z · f ′(z)

f(z)− w dz = g(w) for w ∈ D(Q, η) . (17.1)

(Note that z1 = g(w) is the unique zero of the function z → f(z)− w in D(P, r) and z1 = g(w) is
a simple zero. Also, if φ(z) ≡ z, then φ(g(w)) = g(w).)

We use the representation (17.1) of the function g to prove that g is holomorphic on D(Q, η).
To this end, note that for z ∈ γ and w ∈ D(Q, η):

f(z)− w = (f(z)−Q)− (w −Q)

with

|f(z)−Q| ≥ η > |w −Q| .
Therefore,

1

f(z)− w =
1

(f(z)−Q)− (w −Q)

=
1

f(z)−Q ·
1

1− w−Q
f(z)−Q

=

∞∑
j=0

(w −Q)j

(f(z)−Q)j+1

The convergence is uniform for z ∈ γ. Using the above series in (17.1) and exchanging summation
and integration, we obtain the expansion

g(w) =
1

2πi

∞∑
j=0

bj(w −Q)j
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with

bj =

∫
γ

zf ′(z)
(f(z)−Q)j+1

dz .

This proves that g ∈ H(D(Q, η)).
c) Define U0 := g(D(Q, η)). Then, by the Open Mapping Theorem, U0 is an open neighborhood

of P and U0 ⊂ D(P, r) ⊂ U . The remaining claims of the theorem are now easily verified: The
mapping

g : D(Q, η)→ U0

is 1 − 1 and onto. If z ∈ U0 is given, then there exists a unique w ∈ D(Q, η) with g(w) = z. We
have f(g(w)) = w, thus

g(f(g(w))) = g(w) .

Recalling that z = g(w) this becomes:

g(f(z)) = z for all z ∈ U0 .

This equation implies that f is 1− 1 on U0.
Let w ∈ D(Q, η) be given. Then z := g(w) ∈ U0 satisfies f(z) = f(g(w)) = w. Thus we have

shown that f : U0 → D(Q, η) is 1 − 1 and onto, with inverse function g. The uniqueness of g is
trivial. �

Remark: One can also prove the previous theorem by power series expansion. Assume P =
Q = 0, for simplicity, and let

f(z) =
∞∑
j=1

ajz
j , |z| < r, a1 6= 0 .

We try to determine a function

g(w) =
∞∑
k=1

bkw
k, |w| < η ,

with

|g(w)| < r and f(g(w)) = w for all |w| < η .

First proceeding formally, we write

f(g(w)) = a1(b1w + b2w
2 + . . .) + a2(b1w + b2w

2 + . . .)2 + . . .

= a1b1w + w2(a1b2 + a2b
2
1) + w3(a1b3 + 2a2b1b2 + a3b

3
1) + . . .

The condition f(g(w)) = w yields that

a1b1 = 1, thus b1 = 1/a1 .

Further,

188



a1b2 + a2b
2
1 = 0, thus b2 = −a2b

2
1/a1 ,

and

a1b3 + 2a2b1b2 + a3b
3
1 = 0, thus b3 = − 1

a1
(2a2b1b2 + a3b

3
1) .

This process can be continued. The bk are determined recursively. One then has to prove that the
series

g(w) =
∞∑
k=1

bkw
k

has a positive radius of convergence.

17.6 The Argument Principle for Meromorphic Functions

Roughly speaking, a function which is holomorphic except for poles is called meromorphic. Let us
be more precise.

Definition: A set S ⊂ C is called discrete if for all z ∈ S there exists r > 0 with S∩D(z, r) = {z}.
Example: Let S = { 1

n : n ∈ N}. Then S is a discrete set. The set S ∪ {0} is not discrete.

Definition: Let U ⊂ C be open. Assume that S ⊂ U is a discrete subset of C which is closed
in U , i.e., if zn ∈ S and zn → z ∈ U , then z ∈ S. Let f ∈ H(U \ S). The function f is called
meromorphic in U with singular set S if every zj ∈ S is a pole of f . Often one simply says that f
is meromorphic in U and writes f ∈M(U).

Example: Let S = { 1
n : n ∈ N}. This set is not closed as a subset of C. However, if U = {z =

x+ iy : x > 0} denotes the right half–plane, then S is closed in U .

Example: Let p(z) and q(z) be polynomials which have no common zero. The rational function

f(z) =
p(z)

q(z)

is meromorphic in C with singular set

S = {zj : q(zj) = 0} .

Example: The function

f(z) =
1

sin(πz)

is meromorphic in C with singular set S = Z.

Example: Let

S = {zn =
1

nπ
: n ∈ Z, n 6= 0}

and let

S0 = S ∪ {0} .
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Note that 0 is an accumulation point of S and of S0. Consider the function

f(z) =
1

sin(1/z)
, z ∈ C \ S0 .

Clearly, f is holomorphic on C \ S0. The function f is not meromorphic on C \ S0 since the
singularity at z = 0 is not isolated. The singularity at z = 0 is neither a pole nor an essential
singularity. If U = C \ {0}, then f is meromorphic on U with singular set S.

Theorem 17.5 Let U ⊂ C be open and let f ∈M(U). Let D̄ = D̄(P, r) ⊂ U be a closed disk in U
and assume that f has no zero and no pole on the boundary ∂D of D. Let γ(t) = P+reit, 0 ≤ t ≤ 2π,
denote the boundary curve of D. Let z1, . . . , zJ denote the distinct zeros of f in D with multiplicities
Mj = multf (zj) and let p1, . . . , pK denote the distinct poles of f in D with orders Nk = ordf (pk).
Then we have

1

2πi

∫
γ

f ′(z)
f(z)

dz =
J∑
j=1

Mj −
K∑
k=1

Nk .

In other words,

1

2πi

∫
γ

f ′(z)
f(z)

dz = #(zeros)−#(poles) .

Here the zeros and poles of f in D are counted with their multiplicities.

Proof: The proof is similar to the proof of Theorem 16.2. We only note that if pk is a pole of order
N = Nk of f , then we have for 0 < |z − pk| < ε:

f(z) = a−N (z − pk)−N (1 + h1(z)), a−N 6= 0 ,

and

f ′(z) = (−N)a−N (z − pk)−N−1(1 + h2(z)) ,

thus

f ′(z)
f(z)

=
−N
z − pk

+ h3(z) .

Here h1,2,3 are holomorphic near pk. The claim then follows as in the proof of Theorem 16.2. �

17.7 Rouché’s Theorem and Hurwitz’s Theorem

Rouché’s Theorem 6 is very useful if one studies the solutions of an equation f(z) = 0 under
perturbations of f . In the following theorem the perturbed equation is g(z) = 0.

Theorem 17.6 (Rouché) Let U ⊂ C be open and let f, g ∈ H(U). Let D̄(P, r) ⊂ U . Assume that
f and g are close to each other in the sense that

|f(z)− g(z)| < |f(z)|+ |g(z)| for |z − P | = r . (17.2)

6Eugene Rouché (1832–1910) was a French mathematician.
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Then f and g have the same number of zeros in D(P, r) where zeros are counted with their multi-
plicities. In other words, if γ(t) = P + reit, then

1

2πi

∫
γ

f ′(z)
f(z)

dz =
1

2πi

∫
γ

g′(z)
g(z)

dz . (17.3)

Proof: Let |z − P | = r. Then (17.2) implies that

f(z) 6= 0 6= g(z) .

Therefore the integrals in (17.3) are defined. We claim that, for |z − P | = r, the complex number

λ :=
f(z)

g(z)

does not belong to (−∞, 0]. Otherwise,

∣∣∣f(z)

g(z)
− 1
∣∣∣ = |λ− 1|

= −λ+ 1

=
∣∣∣f(z)

g(z)

∣∣∣+ 1

Multiplying by |g(z)| one obtains that

|f(z)− g(z)| = |f(z)|+ |g(z)|
in contradiction to the assumption (17.2).

Consider the function

ft(z) = tf(z) + (1− t)g(z), z ∈ U ,

for 0 ≤ t ≤ 1. If |z−P | = r then ft(z) 6= 0 since, otherwise, one obtains that f(z)/g(z) is negative.
It follows that

I(t) =
1

2πi

∫
γ

f ′t(z)
ft(z)

dz, 0 ≤ t ≤ 1 ,

is integer valued and continuous. Therefore, I(0) = I(1), proving the theorem. �
Example: Let f(z) = z7 + 5z3 − z − 2 and g(z) = 5z3. For |z| = 1 we have

|f(z)− g(z)| = |z7 − z − 2| ≤ 4

and
|g(z)| = 5 .

Therefore, the assumption (17.3) holds for P = 0 and r = 1. Clearly, g(z) = 5z3 has a zero of
multiplicity 3 in D(0, 1), and has no other zero. Therefore, by Rouché’s theorem, the polynomial
f(z) has exactly three zeros zj with |zj | < 1, counting multiplicities. These three zeros are not
necessarily distinct.

Rouché’s Theorem is often formulated somewhat differently by assuming that the function g(z)
has the form
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g(z) = f(z) + p(z)

where p(z) perturbs f(z).

Theorem 17.7 (Rouché, 2nd version) Let U ⊂ C be open and let f, p ∈ H(U). Let D̄(P, r) ⊂ U .
Assume that p(z) is small so that

|p(z)| < |f(z)|+ |f(z) + p(z)| for |z − P | = r . (17.4)

Then f and f + p have the same number of zeros in D(P, r) where zeros are counted with their
multiplicities. In other words, if γ(t) = P + reit, then

1

2πi

∫
γ

f ′(z)
f(z)

dz =
1

2πi

∫
γ

f ′(z) + p′(z)
f(z) + p(z)

dz . (17.5)

The following theorem of Hurwitz 7 is often used in limit arguments.

Theorem 17.8 (Hurwitz) Let U be a region and let fn ∈ H(U) for n = 1, 2, . . . Assume that
fn(z) converges locally uniformly to f(z). (Thus, f ∈ H(U).) If fn(z) 6= 0 for all z ∈ U and all
n = 1, 2, . . ., then either f ≡ 0 or f(z) 6= 0 for all z ∈ U .

Proof: Suppose that f is not identically zero, but f(P ) = 0 for some P ∈ U . Let M denote the
multiplicity of the zero P of f ,

M = multf (P ) ≥ 1 .

There exists r > 0 with D̄(P, r) ⊂ U and f(z) 6= 0 for 0 < |z−P | ≤ r. Let γ(t) = P + reit, 0 ≤ t ≤
2π. One obtains that

1

2πi

∫
γ

f ′(z)
f(z)

dz = M, but
1

2πi

∫
γ

f ′n(z)

fn(z)
dz = 0

for all n. As n → ∞, the quotient f ′n(z)/fn(z) converges uniformly on γ to f ′(z)/f(z), and we
obtain a contradiction. �

Details: Details regarding uniform convergence on the curve γ: For every z ∈ γ there exists
ε(z) > 0 so that f ′n(ζ)/fn(ζ) converges uniformly on D(z, ε(z)) to f ′(ζ)/f(ζ). Since the curve γ is
a compact set, there exist finitely many points z1, . . . , zJ so that

γ ⊂ ∪Jj=1D(zj , ε(zj)) ,

and uniform convergence on γ follows.

7Adolf Hurwitz (1859–1919) was a German mathematician.
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17.8 An Application of Rouché’s Theorem

Lemma 17.1 Let

p(z) = zn + an−1z
n−1 + . . .+ a1z + a0

denote a normalized polynomial. Then there exists z ∈ C with

|p(z)| ≥ 1 and |z| = 1 .

Proof: Set f(z) = zn and

g(z) = −
(
an−1z

n−1 + . . .+ a1z + a0

)
,

thus

p(z) = f(z)− g(z) .

Note that |f(z)| = |zn| = 1 for |z| = 1. We may assume that g(z) is not identically zero. (Otherwise
the claim is trivial.) Suppose that

|p(z)| = |f(z)− g(z)| < 1 for all z with |z| = 1 .

Then, by Rouché’s Theorem, the functions f(z) = zn and g(z) have the same number of zeros in
D(0, 1). However, f(z) = zn has a zero of multiplicity n at z = 0, and g(z) has only n − 1 zeros.
This contradiction proves that there exists z ∈ C with |z| = 1 and |p(z)| ≥ 1. �

17.9 Another Proof of the Fundamental Theorem of Algebra

Let

p(z) = zn + an−1z
n−1 + . . .+ a1z + a0

denote a normalized polynomial of degree n ≥ 1. We claim that p(z) has n zeros. The function
g(z) = zn has n zeros and

|g(z)| = Rn for |z| = R .

If R is large then

|p(z)− g(z)| ≤ CRn−1 < Rn = |g(z)| for |z| = R ≥ C .

By Rouché’s Theorem the functions p(z) and g(z) = zn have the same number of zeros in D(0, R)
if R is large.
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18 Matrix–Valued and Operator Valued Analytic Functions

Summary: Let A ∈ Cn×n denote a square matrix and let σ(A) = {λ1, . . . , λs} denote the set of
eigenvalues of A. The matrix valued holomorphic function

(zI −A)−1, z ∈ C \ σ(A) ,

is called the resolvent of A. It is an important generalization of the scalar function 1
z−a where

a ∈ C. We will show: If Γ ⊂ C \ σ(A) is a positively oriented simply closed curve then the matrix

PA :=
1

2πi

∫
Γ
(zI −A)−1 dz

is the projector onto U along V where U is the sum of the generalized eigenspaces to the eigenvalues
λj inside Γ and V is the sum of the generalized eigenspaces to the eigenvalues λj outside Γ.

If a ∈ C lies inside Γ then, under suitable assumptions on the holomorphic function φ(z), we
have

1

2πi

∫
Γ

φ(z)

z − a dz = φ(a) .

If the eigenvalues of A ∈ Cn×n lie inside Γ then one can use the corresponding formula

1

2πi

∫
Γ
φ(z)(zI −A)−1 dz = φ(A)

to obtain the matrix φ(A). Under suitable assumptions, generalizations to unbounded linear oper-
ators A on Banach spaces are possible and one can study eAt using the resolvent of A.

18.1 Outline and Examples

Let γ(t), a ≤ t ≤ b, denote a parameterization of a simply closed positively oriented curve in C.
We denote the curve again by γ. If λ is a complex number, λ /∈ γ, then we have by the residue
theorem:

1

2πi

∫
γ
(z − λ)−1 dz =

{
1, λ inside γ
0, λ outside γ

(18.1)

It is interesting that one can generalize the formula to the case where λ is replaced by a matrix
A ∈ Cn×n or a more general operator defined on a dense subspace of a Banach space. We will
consider here only the case of a matrix A, but generalizations are possible and important.

Let A ∈ Cn×n. With σ(A) = {λ1, . . . , λs} we denote the set of distinct eigenvalues of A. (More
generally, σ(A) denotes the spectrum of the operator A.) The matrix valued function

(zI −A)−1, z ∈ C \ σ(A) ,

is called the resolvent of A. By Cramer’s rule, each matrix entry

((zI −A)−1)jk

is a rational function of z defined for z ∈ C \ σ(A). See Section 18.6.
Assume that γ is a curve, as above, and λj /∈ γ for j = 1, . . . , s. We set
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PA :=
1

2πi

∫
γ
(zI −A)−1 dz , (18.2)

where the integral is defined elementwise, i.e.,

(PA)jk =
1

2πi

∫
γ

(
(zI −A)−1

)
jk
dz, 1 ≤ j, k ≤ n .

Example 1: Let A denote the 4× 4 diagonal matrix,

A =


λ1

λ2

λ3

λ4

 .

We have

(zI −A)−1 =


(z − λ1)−1

(z − λ2)−1

(z − λ3)−1

(z − λ4)−1

 .

Assume that λ1,2 lie inside and λ3,4 lie outside γ. Using (18.1) it is then clear that

PA =


1

1
0

0

 .

We now give an interpretation of PA: Let e1, . . . , e4 denote the standard bases of C4. For the
diagonal matrix A, the space U = span{e1, e2} is the sum of the eigenspaces of λ1,2 and V =
span{e3, e4} is the sum of the eigenspaces of λ3,4. The matrix PA is the projector onto U along V .

The result generalizes. Even if A ∈ Cn×n is not diagonalizable, the matrix PA defined in (18.2)
is the projector onto a space U along a space V . Here U is the sum of the generalized eigenspaces of
the eigenvalues inside γ and V is the sum of the generalized eigenspaces of the eigenvalues outside
γ.

Definition 1: Let A ∈ Cn×n. If λj is an eigenvalue of A, then

E(λj) = {u ∈ Cn : (A− λjI)u = 0}
is the geometric eigenspace of A to the eigenvalue λj and

G(λj) =
{
u ∈ Cn : (A− λjI)mu = 0 for some m ∈ {1, 2, . . . , n}

}
is the generalized eigenspace to λj .

Example 2: Let A denote the 2× 2 matrix:

A =

(
λ1 1
0 λ1

)
= λ1I + J

with
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J =

(
0 1
0 0

)
.

The only eigenvalue of A is λ1, which is geometrically simple, but algebraically double. The
geometric eigenspace is

E(λ1) = span{
(

1
0

)
}

and the generalized eigenspace is G(λ1) = C2.
For z 6= λ1 we have

zI −A = (z − λ1)I − J = (z − λ1)
(
I − 1

z − λ1
J
)
.

Since J2 = 0 one obtains:

(zI −A)−1 =
1

z − λ1

(
I +

1

z − λ1
J
)

=
1

z − λ1
I +

1

(z − λ1)2
J .

For

PA =
1

2πi

∫
γ
(zI −A)−1 dz

one obtains PA = I if λ1 lies inside and PA = 0 if λ1 lies outside γ.

This result indicates that the generalized eigenspace is important, not the geometric eigenspace.
We will prove:

Theorem 18.1 Let A ∈ Cn×n denote a matrix with distinct eigenvalues λ1, . . . , λs. Let γ be a
simply closed positively oriented curve in C. Set

U = G(λ1)⊕ . . .⊕G(λk)

and

V = G(λk+1)⊕ . . .⊕G(λs)

where λ1, . . . , λk lie inside and λk+1, . . . , λs lie outside γ. Then

PA =
1

2πi

∫
γ
(zI −A)−1 dz (18.3)

is the projector onto U along V .

We will prove the theorem in Section 18.4

The formula for PA is useful if one studies perturbations of A. Assume, for example, that
A = A(w) depends analytically in a parameter w ∈ C. The eigenvalues λj(w) are continuous
functions of w (if this is properly defined), but they are generally not smooth functions of w unless
they are algebraically simple.8

8An eigenvalue λ of a matrix A is called algebraically simple, if λ is a simple zero of the characteristic polynomial
p(z) = det(zI −A).
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The formula (18.3) shows, however, that PA(w) depends analytically on w as long as the eigen-
values λj(w) do not cross γ. Thus, the projector PA behaves better under perturbations of A than
the eigenvalues of A.

Example 3: Let A(w) denote a 2× 2 matrix

A(w) =

(
0 1
w 0

)
, w ∈ C .

The eigenvalues are

λ1 =
√
w, λ2 = −√w .

These functions are not differentiable at w = 0 and are not analytic in C \ {0}.

18.2 Analyticity of the Resolvent

Lemma 18.1 Let A ∈ Cn×n and let σ(A) denote the set of eigenvalues of A. Then each matrix
entry of the resolvent (zI −A)−1,

((zI −A)−1)jk (18.4)

is a rational function on C \ σ(A).

This result follows from Cramer’s rule for the inverse of a matrix. See Section 18.6.
Another way to prove analyticity of the functions (18.4) uses the Neumann series. See Section

18.7. This proof generalizes to operators in Banach spaces.

18.3 Complementary Subspaces and Projectors

We want to make the concept of a projector onto a space U along a space V precise.

Definition 2: Let W be a vector space. Two subspaces U and V of W are called complementary
subspaces of W if for every w ∈W there exists a unique u ∈ U and a unique v ∈ V with

w = u+ v, u ∈ U, v ∈ V .

If U, V are complementary subspaces of W one writes

W = U ⊕ V
and calls W the direct sum of U and V .

Definition 3: Let W be a vector space. A linear map P : W → W is called a projector if
P 2 = P .

There is a close relation between pairs of complementary subspaces of W and projectors P from
W into itself. The following is not difficult to prove:

Theorem 18.2 1. Let U, V be complementary subspaces of W . The map P : W →W defined by

Pw = u where w = u+ v, u ∈ U, v ∈ V ,

is a projector. We have
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U = R(P ) = range of P

V = N(P ) = nullspace of O

The linear map P is called the projector onto U along V .
2. Let P : W →W be a projector. Then the subspaces

U := R(P ), V := N(P ) ,

are complementary and the projector onto U along V is P .
3. If P : W →W is a projector, then Q = I − P is also a projector. We have

R(P ) = N(Q), N(P ) = R(Q) .

18.3.1 The Matrix Representation of a Projector

In the following, let U and V denote subspaces of Cn and assume that

Cn = U ⊕ V .

Let

t1, . . . , tr

be a basis of U and let

tr+1, . . . , tn

be a basis of V . Then

T = (t1, . . . , tn) ∈ Cn×n

is a nonsingular matrix.

Lemma 18.2 Under the above assumptions, the projector P onto U along V has the matrix rep-
resentation

P = T

(
Ir 0
0 0

)
T−1 . (18.5)

Proof: Let P denote the projector onto U along V . If w ∈ Cn is any given vector, we write

w = x1t
1 + . . .+ xnt

n = Tx, x ∈ Cn ,

and obtain

u := Pw = x1t
1 + . . .+ xrt

r .

This holds since Ptj = tj for 1 ≤ j ≤ r and Ptj = 0 for r + 1 ≤ j ≤ n. If we write x in the form

x =

(
xI

xII

)
, xI ∈ Cr, xII ∈ Cn−r ,
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then we have

u = Pw

= T

(
xI

0

)
= T

(
Ir 0
0 0

)
x

= T

(
Ir 0
0 0

)
T−1w .

The equation x = T−1w holds since w = Tx by the definition of x. This proves the formula (18.5)
for the projector P onto U along V . �

18.4 Proof of Theorem 18.1

First assume, for simplicity, that A is diagonalizable. This holds if and only if all generalized
eigenspaces agree with the geometric eigenspaces, G(λj) = E(λj) for j = 1, . . . , s. In this case,

U = E(λ1)⊕ . . .⊕ E(λk)

and

V = E(λk+1)⊕ . . .⊕ E(λs) .

Let t1, . . . , tr denote a basis of U , consisting of eigenvectors of A, and let tr+1, . . . , tn denote a basis
of V , consisting of eigenvectors of A. Set

T = (t1, . . . , tn) ∈ Cn×n .

We have

AT = TΛ

where

Λ = diag
(
λ1, . . . λk, λk+1, . . . , λs

)
.

For z ∈ C \ σ(A):

A = TΛT−1

zI −A = T (zI − Λ)T−1

(zI −A)−1 = T (zI − Λ)−1T−1

It follows that

199



PA =
1

2πi

∫
γ
(zI −A)−1 dz

=
1

2πi
T

∫
γ
(zI − Λ)−1 dz T−1

= T

(
Ir 0
0 0

)
T−1

By Lemma 18.2 the matrix PA is the projector onto U along V .

Next consider the general case where A is not necessarily diagonalizable. By Schur’s Theorem
and Blocking (or by transformation to Jordan normal form) there exists a nonsingular matrix
T ∈ Cn×n so that T−1AT has block diagonal form:

T−1AT = diag
(
B1, . . . , Bk, Bk+1, . . . , Bs

)
=: B .

Here

Bj = λjIαj +Rj , j = 1, . . . , s ,

where αj is the dimension of the generalized eigenspace G(λj) and

Rj ∈ Cαj×αj

is strictly upper triangular. Therefore,

Rmj = 0 for m ≥ αj .
From T−1AT = B obtain that

(zI −A)−1 = T (zI −B)−1T−1 .

Consider a term

Qj :=
1

2πi

∫
γ
(zIαj −Bj)−1 dz .

We have for z 6= λj :

zIαj −Bj = (z − λj)Iαj −Rj
= (z − λj)

(
Iαj −

1

z − λj
Rj

)
Therefore, for z ∈ C \ σ(A):

(
zIαj −Bj

)−1
=

1

z − λj

(
Iαj +

αj−1∑
m=1

(z − λ)−mRmj
)
.

It follows that

Qj = Iαj for 1 ≤ j ≤ k
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and

Qj = 0 for k + 1 ≤ j ≤ s .
Therefore,

PA =
1

2πi

∫
γ
(zI −A)−1 dz

=
1

2πi
T

∫
γ
(zI −B)−1 dz T−1

= T

(
Ir 0
0 0

)
T−1

We have shown that the matrix PA is the projector onto U along V . �

18.5 The Dunford–Taylor Integral

We first recall some familiar facts.
Let Γ denote a positively oriented, simply closed curve in C. Then C \ Γ has two connected

components, the interior of Γ and the exterior of Γ. These are denoted by

int Γ and ext Γ ,

respectively. Let a ∈ C \ Γ. We have

1

2πi

∫
Γ

dz

z − a = 1 if a ∈ int Γ

and

1

2πi

∫
Γ

dz

z − a = 0 if a ∈ ext Γ .

Lemma 18.3 Let U ⊂ C be an open set containing Γ and int Γ. Let φ ∈ H(U). Assuming
a ∈ int Γ, we have

1

2πi

∫
Γ

φ(z)

z − a dz = φ(a) . (18.6)

In particular, for φ(z) = zj, one obtains that

1

2πi

∫
Γ

zj

z − a dz = aj for j = 0, 1, 2, . . .

We want to generalize the formula (18.6) to the case where the number a is replaced by a matrix
A ∈ Cn×n. Then 1/(z − a) will be replaced by

(zI −A)−1 .

From our previous results, we have:
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Lemma 18.4 Let Γ be a curve as above and let A ∈ Cn×n. Assuming that

σ(A) ⊂ int Γ

we have

1

2πi

∫
Γ
(zI −A)−1 dz = I .

We now introduce a scalar function φ(z) multiplying (zI−A)−1 in the integral, i.e., we consider
the so-called Dunford–Taylor integral

1

2πi

∫
Γ
φ(z)(zI −A)−1 dz . (18.7)

Here it is assumed that φ : U → C is holomorphic in U where U ⊂ C is an open set containing Γ
and int Γ.

Under suitable assumptions, the formula (18.7) can be used to define the matrix φ(A) in a
reasonable way.

18.5.1 The Case of a Polynomial

We first prove:

Lemma 18.5 Let Γ be a curve as above and let A ∈ Cn×n with σ(A) ⊂ intΓ. For j = 0, 1, . . . we
have

1

2πi

∫
Γ
zj(zI −A)−1 dz = Aj .

Proof: Write

(zI)j = (zI −A+A)j

= (zI −A)j + . . .+Aj

=

j∑
k=0

(
j
k

)
(zI −A)kAj−k

= Aj +

j∑
k=1

(
j
k

)
(zI −A)kAj−k

Consider a term

(zI −A)kAj−k(zI −A)−1 = Aj−k(zI −A)k−1 .

If k ≥ 1 then the above function is holomorphic as a function of z and the corresponding integral
is zero. Thus, a nontrivial contribution is obtained for k = 0 only. One obtains
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∫
Γ
zj(zI −A)−1 dz =

∫
Γ
Aj(zI −A)−1 dz

= Aj
∫

Γ
(zI −A)−1 dz

= 2πiAj

This proves the lemma. �
If

p(z) =
N∑
j=0

ajz
j

is a polynomial, then one defines

p(A) =

N∑
j=0

ajA
j .

Using the previous lemma, it is clear that

1

2πi

∫
Γ
p(z)(zI −A)−1 dz = p(A) . (18.8)

18.5.2 The Case of a Power Series

Next let

φ(z) =
∞∑
j=0

ajz
j , |z| < ρ , (18.9)

denote a convergent power series with radius of convergence ρ, 0 < ρ ≤ ∞. We let

φN (z) =
N∑
j=0

ajz
j , |z| < ρ

denote the partial sums of φ(z).

Lemma 18.6 Let φ(z) denote the power series (18.9). If σ(A) ⊂ D(0, ρ) then the sequence of
matrices

SN := φN (A) =
N∑
j=0

ajA
j , N = 1, 2, . . .

converges in Cn×n. The limit is denoted by

lim
N→∞

SN = φ(A) =
∞∑
j=0

ajA
j .
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Proof: Since the spectral radius of A is strictly less than ρ, there exists a vector norm ‖ · ‖ on Cn
so that the corresponding matrix norm of A satisfies

r := ‖A‖ < ρ .

For N > M ≥ N(ε) we have (note that ‖Aj‖ ≤ ‖A‖j = rj):

‖SN − SM‖ = ‖
N∑

j=M+1

ajA
j‖

≤
N∑

j=M+1

|aj |rj

≤ ε .

Thus, SN is a Cauchy sequence in Cn×n. �
Let us connect this result with the Dunford–Taylor integral.

Theorem 18.3 We make the same assumptions on A and φ(z) as in the previous lemma. Let Γ
be a positively oriented, simply closed curve in D(0, ρ) with σ(A) ⊂ intΓ. Then we have

1

2πi

∫
Γ
φ(z)(zI −A)−1 dz = φ(A) . (18.10)

Here φ(A) is defined as the limit of the matrix sequence φN (A) considered in Lemma 18.5.

Proof: By (18.8) we have

1

2πi

∫
Γ
φN (z)(zI −A)−1 dz = φN (A)

for every finite N = 1, 2, . . .. Taking the limit as N →∞, we obtain (18.10). �
Example: Let t ∈ R be fixed and let φ(z) = etz. If A ∈ Cn×n is any matrix and if Γ is a

positively oriented, simply closed curve surrounding σ(A), then

etA =
1

2πi

∫
Γ
ezt(zI −A)−1 dz .

Here, by definition, etA =
∑∞

j=0
1
j! (tA)j .

18.5.3 A General Holomorphic Function

The formula

1

2πi

∫
Γ
φ(z)(zI −A)−1 dz =: φ(A) (18.11)

can be used to define φ(A) under more general assumptions than those of Theorem 18.3, where
φ(z) was assumed to be a power series. All one needs is φ ∈ H(U) and a positively oriented, simply
closed curve Γ in U with

σ(A) ⊂ intΓ ⊂ U .
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Example: Let A be any nonsingular matrix. Choose a simply connected region U with

0 /∈ U, σ(A) ⊂ U .

We know that there exists a logarithm function logU ∈ H(U) with

exp(logU (z)) = z for all z ∈ U .

If Γ is a positively oriented, simply closed curve in U with σ(A) ⊂ int Γ, then

logU (A) :=
1

2πi

∫
Γ

logU (z)(zI −A)−1 dz

is a well–defined matrix. We will prove that

exp(logU (A)) = A .

Theorem 18.4 Let U ⊂ C be open and simply connected and assume that 0 /∈ U . Let log(z)
denote a holomorphic function on U with

exp(log(z)) = z for all z ∈ U .

Let A ∈ Cn×n denote a nonsingular matrix with σ(A) ⊂ U and let Γ denote a positively oriented
simply closed curve in U surrounding σ(A). Then the matrix

B :=
1

2πi

∫
Γ

log(z)(zI −A)−1 dz

satisfies eB = A.

To prove the theorem we will use the following result.

Theorem 18.5 Let U ⊂ C be open and simply connected; let f, g ∈ H(U). Let A ∈ Cn×n denote a
matrix with σ(A) ⊂ U and let Γ denote a positively oriented simply closed curve in U surrounding
σ(A). If

B1 :=
1

2πi

∫
Γ
f(z)(zI −A)−1 dz

B2 :=
1

2πi

∫
Γ
g(z)(zI −A)−1 dz

then

B1B2 =
1

2πi

∫
Γ
f(z)g(z)(zI −A)−1 dz .

Proof: Using transformation to Jordan normal form it suffices to prove the theorem for matrices
A = λI + J where

J =


0 1 0

0
. . .
. . . 1

0 0

 ∈ Rn×n .
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In the following we assume that A = λI + J and let

f(z) =
∞∑
j=0

aj(z − λ)j , g(z) =
∞∑
k=0

bk(z − λ)k for |z − λ| < r .

Then let

h(z) := f(z)g(z)

=
( ∞∑
j=0

aj(z − λ)j
)
·
( ∞∑
k=0

bk(z − λ)k
)

=
∞∑
l=0

cl(z − λ)l

with

cl =
l∑

j=0

ajbl−j .

We have

B1 =
1

2πi

∞∑
j=0

aj

∫
Γ
(z − λ)j(zI −A)−1 dz .

Here, for z 6= λ,

zI −A = (z − λ)I − J = (z − λ)
(
I − 1

z − λ J
)
,

thus

(zI −A)−1 =
1

z − λ
n−1∑
k=0

1

(z − λ)k
Jk

=
n−1∑
k=0

(z − λ)−k−1 Jk

Therefore,

1

2πi

∫
Γ
(z − λ)j(zI −A)−1 dz = J j

and

B1 =

n−1∑
j=0

ajJ
j .

In the same way it follows that
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B2 =

n−1∑
k=0

bkJ
k

and

1

2πi

∫
Γ
f(z)g(z)(zI −A)−1 dz =

n−1∑
l=0

clJ
l

with

cl =

l∑
j=0

ajbl−j .

Also,

B1B2 =
( n−1∑
j=0

ajJ
j
)
·
( n−1∑
k=0

bkJ
k
)

=

n−1∑
l=0

n−1∑
j=0

ajbl−j J
j

=
n−1∑
l=0

clJ
l

This proves that

1

2πi

∫
Γ
f(z)g(z)(zI −A)−1 dz = B1B2

for A = λI + J . The case of a general matrix A then follows by transformation to Jordan normal
form. �

Proof of Theorem 18.4: Recall that

B :=
1

2πi

∫
Γ

log(z)(zI −A)−1 dz .

We claim that

1

2πi

∫
Γ
(log z)j(zI −A)−1 dz = Bj for j = 0, 1, 2 . . . (18.12)

We have B0 = I and (18.12) follows from Lemma 18.5 for j = 0. For j ≥ 2 the formula (18.12)
follows from Theorem 18.5 by induction in j. Obtain that

1

2πi

∫
Γ

( N∑
j=0

1

j!
(log z)j

)
(zI −A)−1 dz =

N∑
j=0

1

j!
Bj .

We let N →∞ and note that
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∞∑
j=0

1

j!
(log z)j = exp(log z) = z .

Therefore,

1

2πi

∫
Γ
z(zI −A)−1 dz =

∞∑
j=0

1

j!
Bj = eB .

Using Lemma 18.5 with j = 1 yields that A = eB. �

18.5.4 Remarks on Unbounded Operators

An important point of the formula

1

2πi

∫
Γ
φ(z)(zI −A)−1 dz =: φ(A) (18.13)

is that one can use it for linear operators A more general than matrices, even for unbounded
operators A that are densely defined in some Banach space. Such operators A appear when one
formulates initial value problems for PDEs abstractly as

ut = Au, u(0) = u(0), t ≥ 0 .

The formal solution is

u(t) = etAu(0), t ≥ 0 ,

but if A is unbounded, one cannot use the exponential series to define etA. Instead, one considers
the resolvent

(zI −A)−1, z ∈ C \ σ(A) ,

and (under suitable assumptions) defines

etA :=
1

2πi

∫
Γ
etz(zI −A)−1 dz . (18.14)

Typically, the spectrum σ(A) is unbounded and Γ cannot surround σ(A). Instead, Γ is chosen as
an infinite line,

Γ : z(ξ) = b+ iξ, −∞ < ξ <∞ ,

which must lie to the right of σ(A). Since dz = i dξ one obtains

etA =
1

2π

∫ ∞
−∞

et(b+iξ)
(

(b+ iξ)I −A
)−1

dξ . (18.15)

(The Laplace transform of the scalar function eta is

L(eta)(s) =

∫ ∞
0

e−(s−a)t dt =
1

s− a .

The formulas (18.14) and (18.15) are versions of the inverse Laplace transform of an exponential.)
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Details of these ideas lead to so–called semi–group theory, a part of functional analysis. The
name semi–group arises since the family of operators

etA, t ≥ 0 ,

satisfies

esAetA = e(s+t)A for all s, t ≥ 0, e0A = I .

In other words, one can multiply the operators etA, obtaining the rules of associativity and commu-
tativity. However, in general, the operator etA does not have an inverse since e−tA does not exist
for t > 0. Thus, the family of operators etA, t ≥ 0, does not have the structure of a group.

18.6 Auxiliary Results: Determinants and Cramer’s Rule

Determinants: For A ∈ Cn×n the determinant is defined by

detA =
∑
σ∈Sn

sgn (σ)a1σ1 . . . anσn .

Here Sn denotes the group of all permutations of the set {1, 2, . . . , n}.
A matrix A ∈ Cn×n is non–singular if and only if detA 6= 0.
The function

pA(z) = det (zI −A), z ∈ C ,

is a polynomial of degree n, the characteristic polynomial of A. By the fundamental theorem of
algebra,

pA(z) = Πs
j=1(z − λj)αj ,

where λ1, . . . , λs are the distinct zeros of pA(z) and α1, . . . , αs ∈ N are the multiplicities of the
zeros.

Eigenvalues: The numbers λ1, . . . , λs, introduced as the distinct zeros of the polynomial pA(z),
are the distinct eigenvalues of the matrix A. The number αj ∈ N is the algebraic multiplicity of
the eigenvalue λj for j = 1, . . . , s. I.e., αj is the dimension of the generalized eigenspace

G(λj) =
{
u ∈ Cn : (A− λjI)mu = 0 for some m ∈ {1, 2, . . . , n}

}
.

Cramer’s Rule: For j, k ∈ {1, 2, . . . , n} let Mjk ∈ C denote the determinant of the (n− 1)×
(n − 1) matrix which is obtained by deleting the j–th row and the k–th column of A. Define the
matrix Â ∈ Cn×n by

(Â)jk = (−1)j+kMjk for j, k ∈ {1, 2, . . .} .
If detA 6= 0 then, by Cramer’s Rule:

A−1 =
1

detA
(Â)T .

Application to the Resolvent: Let σ(A) = {λ1, . . . , λs} denote the set of eigenvalues of A.
The function

209



1

pA(z)
=

1

det (zI −A)
, z ∈ C \ σ(A) ,

is a rational function. It has a pole of order αj at z = λj .
For every j, k ∈ {1, 2, . . . , n} and z ∈ C \ σ(A) we have(

(zI −A)−1
)
kj

=
(−1)j+k

pA(z)
Mjk(z)

where Mjk(z) is the determinant of the (n− 1)× (n− 1) matrix which is obtained by deleting the
j–th row and the k–th column of zI −A. It follows that Mjk(z) is a polynomial of degree ≤ n− 1.

Therefore, every entry of the resolvent

(zI −A)−1, z ∈ C \ σ(A) ,

is a rational function of z. Poles only occur at the eigenvalues of A.
Since the degree of every polynomial Mjk(z) is ≤ n − 1 and the degree of pA(z) equals n, it

follows that there exist constants C > 0 and R > 0 so that

|(zI −A)−1| ≤ C

|z| for z ∈ C with |z| ≥ R .

18.7 Auxiliary Results: Analyticity of the Resolvent

We will use the geometric sum formula for matrices: If P ∈ Cn×n and ‖P‖ < 1 then

(I − P )−1 =
∞∑
j=0

P j .

Let A ∈ Cn×n have the spectrum

σ(A) = {λ1, . . . , λs} .
We will give another proof of the analyticity of the resolvent

z → (zI −A)−1, z ∈ C \ σ(A) .

(This proof generalizes to certain densely defined operators A in Banach spaces.)
Fix any λ ∈ C \ σ(A) and set

B = λI −A .

The matrix B is nonsingular. Let z ∈ C and assume that

|z − λ| < 1

‖B−1‖ .

We have

zI −A = (z − λ)I +B

= B
(
I − (λ− z)B−1

)
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Since

‖(λ− z)B−1‖ < 1

we can use the geometric sum formula and obtain

(zI −A)−1 =

∞∑
j=0

(λ− z)j(B−1)j+1 for |z − λ| < 1

‖B−1‖ .

The formula shows that the resolvent (zI − A)−1 is analytic in a neighborhood of any point λ ∈
C \ σ(A).
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19 The Maximum Modulus Principle for Holomorphic Functions

Summary: Let f ∈ H(U) where U ⊂ C is bounded region, i.e., U is open, connected, and bounded.
In many cases the function f(z) is also a continuous function on the closure of U , i.e., f ∈ C(Ū),
where Ū = U ∪ ∂U . Here ∂U is the boundary of U . If f(z) is not a constant function then the
maximum modulus principle says that

|f(z)| < M0 for all z ∈ U
where

M0 = max{|f(z)| : z ∈ ∂U} .
This estimate is useful to obtain bounds for the absolute value of holomorphic functions.

If the region U is unbounded and |f(z)| satisfies some growth restriction, then the maximum
modulus principle may still be valid. We will give an example.

19.1 Local Maxima and the Maximum Principle in Bounded Regions

Definition: Let U ⊂ C be an open set and let φ : U → R be a real–valued function. Then z0 ∈ U
is called a local maximum of φ if there exists r > 0 with D(z0, r) ⊂ U and

φ(z) ≤ φ(z0) for all z ∈ D(z0, r) .

We will apply this concept to functions φ(z) = |f(z)| where f ∈ H(U).

Theorem 19.1 (local maximum modulus principle for holomorphic functions) Let U be a region
and let f ∈ H(U). Assume that f is not constant. Then the function |f(z)| does not attain any
local maximum in U .

Proof: 1) Suppose that |f(z)| attains a local maximum at the point z0 ∈ U , i.e.,

|f(z)| ≤ |f(z0)| for |z − z0| ≤ ε ,
for some ε > 0. The set W := f(D(z0, ε)) is open by Theorem 17.2, the Open Mapping Theorem.
Set w0 := f(z0) ∈ W . Since W is open there exists η > 0 so that D(w0, 2η) ⊂ W . Let w0 = ρeiθ

and set
w1 := (ρ+ η)eiθ .

Then we have

|w1| > |w| = |f(z0)|
and w1 ∈W , a contradiction.

2) We give a second proof, not using the Open Mapping Theorem. Suppose that |f(z)| attains
a local maximum at z0. We can write

f(z) = f(z0) +
∞∑
j=M

aj(z − z0)j for |z − z0| < 2ε ,

with M ≥ 1 and aM 6= 0.
Obtain that
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f(z) = f(z0) + (z − z0)M (aM + h(z))

with h(z0) = 0, thus

|h(z)| ≤ 1

2
|aM | for |z − z0| ≤ ε

if ε > 0 is sufficiently small.
Set a0 := f(z0). We may assume a0 6= 0 since |f(z)| attains a local maximum at z0. Let

aM/a0 = ρeiθ where ρ > 0 and θ ∈ R .

Set

z := z0 + εeiφ

where φ will be chosen below. We have

f(z) = a0

(
1 + (z − z0)M (

aM
a0

+
h(z)

a0
)
)

with

(z − z0)M
aM
a0

= εMρeiMφ+iθ .

Choosing

φ = − θ

M

one obtains that

(z − z0)M
aM
a0

= εMρ > 0 .

Also, ∣∣∣(z − z0)M
h(z)

a0

∣∣∣ ≤ εM 1

2
ρ .

This yields that

|f(z)| ≥ |a0|(1 + εMρ)− |a0|
1

2
εMρ

= |a0|(1 +
1

2
εMρ)

> |a0|
= |f(z0)|

Thus |f(z)| is not maximal at z0. This contradiction proves the theorem. �
Another form of the maximum modulus theorem is the following. As above, ∂U denotes the

boundary of the set U .
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Theorem 19.2 Let U be a bounded region. Let f ∈ H(U) ∩ C(Ū) and set

M0 := |f |∂U = max
z∈∂U

|f(z)| .

Then

|f(z)| < |f |∂U for all z ∈ U
unless f is constant.

Proof: Let

M1 := max
z∈Ū
|f(z)| = |f(z1)| .

First assume that M1 > M0. In this case, |f(z)| attains a local maximum at a point z1 ∈ U . By
the previous theorem, f is constant, a contradiction.

Therefore, we may assume that M1 = M0. Again, if there exists z1 ∈ U with |f(z1)| = M1,
then f is constant, a contradiction. It follows that |f(z)| < M0 for all z ∈ U . �

19.2 Some Results in Unbounded Regions

For some applications (in particular to the Paley–Wiener Theorem of Fourier analysis) it is
important to extend the maximum modulus theorem to certain unbounded domains. A straight-
forward generalization is wrong, however.

Example: Let

U = {z = reiθ : r > 0, |θ| < π

4
}

and consider

f(z) = e(z2), z ∈ C .

Clearly, f ∈ H(U) ∩ C(Ū). If z ∈ ∂U then

z = x(1 + i) or z = x(1− i), x ≥ 0 .

Therefore,

z2 = ±2ix2 ,

thus

|f(z)| = 1 for all z ∈ ∂U .

However, f(x) = ex
2

is unbounded for x > 0. Thus, the values of |f(z)| for z ∈ U are not bounded
by the boundary values of |f(z)|.

The following is an example of a Phragmén–Lindelöf Theorem. 9

9Lars Phragmén (1863–1937) was a Swedish mathematician; Ernst Lindelöf (1870–1946) was a Finnish mathe-
matician.
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Im z

0 Re z

π/4

U

Figure 19.1: Region U in Theorem 19.3

Theorem 19.3 Let U denote the unbounded region of the above example and let f ∈ H(U)∩C(Ū).
Assume that |f(z)| ≤ 1 for all z ∈ ∂U and assume that

|f(z)| ≤ Cec|z| for all z ∈ Ū , (19.1)

where C and c are positive constants. Then the bound

|f(z)| ≤ 1

holds for all z ∈ Ū .

Proof: For z ∈ Ū we can write

z = reiθ with r ≥ 0 and |θ| ≤ π

4
;

we define

z3/2 = r3/2 ei3θ/2 = r3/2
(

cos(3θ/2) + i sin(3θ/2)
)
.

(Note: For z ∈ U we have z = elog z, z3/2 = e(3/2) log z, thus the function z3/2 is holomorphic on U .)
Let ε > 0. With the above definition of z3/2 we set

fε(z) := f(z)e−εz
3/2

and note that fε ∈ H(U) ∩ C(Ū). If z = |z|eiθ ∈ Ū then |θ| ≤ π
4 and

3|θ|/2 ≤ 3π/8 .

Therefore, for z ∈ Ū :

Re (z3/2) = r3/2 cos(3θ/2) ≥ c1r
3/2 where c1 := cos(3π/8) > 0 .

This implies that

|fε(z)| ≤ Cecre−εc1r
3/2

for z ∈ Ū where r = |z| .
The bound tends to zero as r →∞.

We may assume that f is not identically zero and set
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Mε := sup
z∈Ū
|fε(z)| > 0 .

There exists z0 = z0(ε) ∈ Ū with

Mε = |fε(z0)| .
The existence of z0 = z0(ε) follows since |fε(z)| is smaller than Mε if |z| is large.

Note that for z ∈ ∂U we have

z = re±iπ/4 ,

thus

z3/2 = r3/2
(

cos(3π/8)± i sin(3π/8)
)

where

cos(3π/8) = c1 > 0 .

It follows that

|e−εz3/2 | ≤ 1 for z ∈ ∂U ,

thus

|fε(z)| ≤ 1 for z ∈ ∂U .

Suppose that Mε = |fε(z0)| > 1. Then the function fε(z) attains its maximum at an interior point,
at z0 ∈ U , and we obtain a contradiction to the Open Mapping Theorem applied to the function
fε ∈ H(U) ∩ C(Ū).

We conclude that Mε ≤ 1, which yields that

|f(z)| ≤ |eεz3/2 | for z ∈ Ū .

Here ε > 0 is arbitrary. It follows that |f(z)| ≤ 1 for all z ∈ Ū . �
Remark: The assumption |f(z)| ≤ Cec|z| for z ∈ Ū can be replaced by the weaker assumption

|f(z)| ≤ Cec|z|α for z ∈ Ū
where α < 3

2 .
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20 Harmonic Functions

Summary: In two space dimensions, harmonic functions u : U → R are solutions of the partial
differential equation

∆u(x, y) ≡ uxx(x, y) + uyy(x, y) = 0, (x, u) ∈ U .

Here U ⊂ R2=̂C is a region, an open and connected set. If f(x + iy) = u(x, y) + iv(x, y) is
holomorphic in U , then the functions u(x, y) and v(x, y) are harmonic conjugates on U .

If u(x, y) is harmonic on U and U is a simply connected region, then a harmonic conjugate
v(x, y) of u(x, y) exists on U , i.e., the function u(x, y) is the real part of a function f(x+ iy) which
is holomorphic on U . If the region U is not simply connected, then a function u(x, y), harmonic on
U , may not have a harmonic conjugate on U . The function

u(x, y) = ln
(√

x2 + y2
)
, (x, y) ∈ R2 \ {(0, 0)} ,

is an example.
Let U ⊂ R2 be a bounded region with boundary curve ∂U and let u0 : ∂U → R be a continuous

function. The Dirichlet problem of PDEs is to determine a function u ∈ C2(U) ∩ C(Ū) with

∆u = 0 in U and u = u0 on ∂U .

If U = D(0, 1) is the open unit disk, then complex variables (essentially, Cauchy’s integral formula)
can be used to solve the Dirichlet problem. If V ⊂ R2 is a bounded region different from D(0, 1)
and a biholomorphic map

f : D(0, 1)→ V

is known which extends continuously to a map from D̄(0, 1) to V̄ , then one can transform the
Dirichlet problem on V to a Dirichlet problem on D(0, 1).

20.1 Basic Concepts: Harmonic Functions and Harmonic Conjugates

Let U ⊂ Rn be an open set and let u : U → R be a C2–function. The function u ∈ C2(U) is called
harmonic in U if ∆u = 0 in U . Here

∆ =
∂2

∂x2
1

+ . . .+
∂2

∂x2
n

denotes the Laplace operator.

Applications: Stationary states of the heat equation ut = ∆u are given by harmonic functions.
If ρ = ρ(x) is the charge density and u = u(x) is the potential of the electric field generated by
ρ, then (in suitable units) −∆u = ρ. This is Poisson’s equation. In regions free of charge, the
potential u is a harmonic function.

Theorem 20.1 Let U ⊂ C be open and let f ∈ H(U). Write f(z) = u(x, y)+iv(x, y) for z = x+iy.
Then ∆u = ∆v = 0.

Proof: This follows directly from the Cauchy–Riemann equations

ux = vy, uy = −vx and vyx = vxy .
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�
In the following, let U be a region in C. If f = u + iv is holomorphic in U then one calls v a

harmonic conjugate of u in U . Harmonic conjugates, if they exist, are unique up to a constant. To
show this, assume that f1 = u+iv1 and f2 = u+iv2 are holomorphic in U . Then f1−f2 = i(v1−v2)
is also holomorphic. By the open mapping theorem, f1 − f2 is constant in the region U .

If U is simply connected and ∆u = 0 in U , then u has a harmonic conjugate v in U ; this is
Theorem 20.2 below.

In Section 20.3 we consider the harmonic function u(x, y) = ln((x2 +y2)1/2) in U = R2 \{(0, 0)}
to show that a harmonic conjugate does not always exist unless the domain U is simply connected.

An elementary observation is the following: Let v be a harmonic conjugate of u in U , i.e.,
f = u+ iv ∈ H(U). The Cauchy–Riemann equations

ux = vy, uy = −vx
imply that

(ux, uy) · (vx, vy) = uxvx + uyvy

= −uxuy + uyux

= 0

In other words, at every point (x, y) ∈ U the gradient vector ∇u(x, y) = (ux, uy)(x, y) is orthogonal
to the gradient vector ∇v(x, y) = (vx, vy)(x, y). Therefore, the family of lines defined by

u(x, y) = c1

is orthogonal to the family of lines

v(x, y) = c2 .

In other words, every function f = u + iv ∈ H(U) yields two families of mutually orthogonal
coordinate lines in U .

Details: Let (x(t), y(t)), a ≤ t ≤ b, denote a parameterized line Γ where

u(x(t), y(t)) ≡ c1 for a ≤ t ≤ b .
We have

0 = ux(x(t), y(t))x′(t) + uy(x(t), y(t))y′(t)

= ∇u(x(t), y(t)) · (x′(t), y′(t))

Thus, ∇u(P ) is orthogonal to the tangent vector (x′(t), y′(t)) of Γ at the point P = (x(t), y(t)).
The orthogonality

∇u(P ) · ∇v(P ) = 0

implies that the two lines given by

u(x, y) ≡ c1 and v(x, y) ≡ c2
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are orthogonal at their intersection point P .

Example: Let f(z) = z2, thus

f(x+ iy) = (x+ iy)2 = x2 − y2 + 2ixy .

The equations

x2 − y2 = c1

and

2xy = c2

determine two families of hyperbolas. Each hyperbola of the family

y = ±
√
x2 − c1

is orthogonal to each hyperbola

y =
c2

2x

of the other family at the intersection points.
Take c1 = −3 and c2 = 4, for example. The hyperbola Γ1 given by

u(x, y) = x2 − y2 = −3 or y =
√
x2 + 3

and the hyperbola Γ2 given by

v(x, y) = 2xy = 4 or y =
2

x

intersect at the point P = (1, 2). The tangent vector to Γ1 at P is

∇u(P ) =
(
ux(P ), uy(P )

)
= (2,−4)

and the tangent vector to Γ2 at P is

∇v(P ) =
(
vx(P ), vy(P )

)
= (4, 2) .

Since

∇u(P ) · ∇v(P ) = 0

the hyperbolas Γ1 and Γ2 intersect orthogonally at P .

20.2 The Harmonic Conjugate in a Simply Connected Region

We begin with a simple lemma, showing uniqueness of harmonic conjugates up to a constant. The
argument is elementary and does not use the open mapping theorem.

Lemma 20.1 Let U ⊂ C be a region and let u ∈ C2(U,R) be harmonic. If v and w are harmonic
conjugates of u in U , then v(x, y) = w(x, y) + c in U for some constant c.
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Proof: Let b(x, y) = v(x, y)− w(x, y). We have

vx = −uy and wx = −uy ,
thus bx ≡ 0. Similarly, by ≡ 0 in U . Let P and Q denote two arbitrary points in U and let Γ
be a curve in U from P to Q. Let γ(t), 0 ≤ t ≤ 1, parameterize Γ. Define the auxiliary function
h(t) = b(γ(t)). We have

b(Q)− b(P ) = h(1)− h(0) =

∫ 1

0
h′(t) dt .

Here, by the chain rule,

h′(t) = bx(γ(t))γ′1(t) + by(γ(t))γ′2(t) ≡ 0 .

Therefore, h(Q) = h(P ). Fixing P and letting Q ∈ U vary, we find that b is constant. �
Existence of a harmonic conjugate is assured if the region U is simply connected.

Theorem 20.2 Let U ⊂ C be a simply connected region and let u ∈ C2(U,R) be harmonic. Then
there exists a function v ∈ C2(U,R) so that f = u+ iv is holomorphic in U .

Proof: 1. (real analysis proof of the existence of v) We must show existence of a function v ∈ C2

satisfying the Cauchy–Riemann equations:

vx = −uy, vy = ux .

In terms of real analysis, we try to find a potential v of the vector field F = (−uy, ux), because the
Cauchy–Riemann equations require that

∇v = (−uy, ux) .

The Jacobian of F is

JF =

(
−uyx −uyy
uxx uxy

)
.

The assumption uxx + uyy = 0 yields that the Jacobian JF is symmetric. Then, by a theorem of
real analysis (see Theorem 20.3), the vector field F = (−uy, ux) has a potential in U . Any potential
v of the vector field F = (−uy, ux) is a harmonic conjugate of u.

2. (complex variables proof of the existence of v) Suppose first that v is a harmonic conjugate
of u and set f = u+ iv. Then we have

f ′ = ux + ivx = ux − iuy .
In other words, f ′ can be determined in terms of u. This motivates to define

g := ux − iuy .
Let us prove that g ∈ H(U): The Jacobian of g is

Jg =

(
uxx uxy
−uyx −uyy

)
.
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We note that the Cauchy–Riemann equations are fulfilled for the real and imaginary parts of g
since

(Re g)x = uxx, (Im g)y = −uyy = uxx = (Re g)x

and

(Re g)y = uxy, (Im g)x = −uyx = −uxy = −(Re g)y .

Consequently, g ∈ H(U). By Theorem 4.9, there exists f ∈ H(U) with f ′ = g. Let f =
a(x, y) + ib(x, y). Then we have

f ′ = ax + ibx = ax − iay
and the equation f ′ = g = ux − iuy yields that

ax = ux, ay = uy .

As shown in the proof of the previous lemma, this implies a(x, y) = u(x, y) + c where c is a real
constant. Since b is a harmonic conjugate of a = u+ c, the function b is also a harmonic conjugate
of u. Just note that u+ ib = a− c+ ib = f − c is holomorphic. Thus we have shown that u has a
harmonic conjugate in U . �

In real analysis, one shows the following:

Theorem 20.3 Let U ⊂ Rn be open and simply connected. Let F : U → Rn be a C1–vector field
and assume that the Jacobian

JF (x) =
(∂Fj(x)

∂xi

)
1≤i,j≤n

is a symmetric matrix for all x ∈ U . Then F has a potential in U , i.e., there exists a scalar
C1–function v : U → R with

∇v(x) = F (x), x ∈ U .

20.3 A Harmonic Function in C \ {0} Without Harmonic Conjugate

In this section, let

U = C \ {0} and U1 = C \ (−∞, 0] .

Both sets are open and connected. The set U1 is simply connected, but U is not simply connected.
We will show:

Lemma 20.2 The function

u(x, y) = ln
(

(x2 + y2)1/2
)
, (x, y) 6= (0, 0) ,

is harmonic in U , but does not have a harmonic conjugate in U .
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Proof: 1. We first show that ∆u = 0 an U = C \ {0}. Recall the main branch of the complex
logarithm defined in U1: If z ∈ U1 then

z = reiθ, r > 0, −π < θ < π ,

and

f(z) := log z = ln r + iθ .

If one writes

f(x+ iy) = u(x, y) + iv(x, y) for x+ iy ∈ U1 ,

then

u(x, y) = ln r = ln
(

(x2 + y2)1/2
)

and

v(x, y) = θ = arctan(y/x) .

Here one must choose the correct branch of the arctan–function and the correct limiting values for
x = 0.

Since f ∈ H(U1) we have

∆u = ∆v = 0 in U1 .

The function u is C∞ in U , and one obtains that

∆u = 0 in U .

Of course, this can also be verified directly by calculus.
2. Next, we prove that u does not have a complex conjugate in U = C \ {0}. Suppose that

w(x, y) is a complex conjugate of u(x, y) in U . Thus

wy = ux, wx = −uy and ∆w = 0 .

Then the function

g(x+ iy) := u(x, y) + iw(x, y), x+ iy ∈ U ,

is holomorphic in U . Recall that f(z) = log z for z ∈ U1 = C \ (−∞, 0]. We have, for z ∈ U1,

f(z)− g(z) = i(v(x, y)− w(x, y)) .

By the open mapping theorem, one obtains that f(z)− g(z) = const in U1. Therefore,

f ′(z)− g′(z) = 0 in U1 .

Therefore,

g′(z) =
1

z
, z ∈ U1 .
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By assumption, g ∈ H(U), thus g′ ∈ H(U). Also, the function 1
z lies in H(U). By the identity

theorem, applied to functions in H(U), we obtain that

g′(z) =
1

z
, z ∈ U .

This would mean that the function 1
z has an antiderivative in U , namely g(z). Then, if Γ is any

closed curve in U , we would obtain that ∫
Γ

dz

z
= 0 .

Since this is not true, we conclude that u(x, y) does not have a harmonic conjugate in U . �
Real Analysis Arguments. We want to show the above lemma using arguments of real

analysis. In the following, let

arctan : R→ (−π/2, π/2)

denote the main branch of the inverse tangent. Set

V = C \ {iy : y ∈ R} = {z = x+ iy : x, y ∈ R, x 6= 0} .

Lemma 20.3 Define the functions

u(x, y) = ln
(

(x2 + y2)1/2
)
, (x, y) 6= (0, 0) ,

and
v(x, y) = arctan(y/x), x 6= 0 .

We have ∆u = 0 in U , ∆v = 0 in V and

ux = vy, uy = −vx in V .

Thus, v is a harmonic conjugate of u in V .

Proof: Apply calculus to u = ln
(

(x2 + y2)1/2
)

:

ux = x(x2 + y2)−1

uxx = (x2 + y2)−1 − 2x2(x2 + y2)−2

uy = y(x2 + y2)−1

uyy = (x2 + y2)−1 − 2y2(x2 + y2)−2

It follows that ∆u = 0.
Also, if v(x, y) = arctan(y/x), x 6= 0, then
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vx =
1

1 + y2/x2
· (−yx−2)

= −y(x2 + y2)−1

vxx = 2xy(x2 + y2)−2

vy =
1

1 + y2/x2
· x−1

= x(x2 + y2)−1

vyy = −2xy(x2 + y2)−2

It follows that ∆v = 0 in V . We also obtain that

ux = vy, uy = −vx
in V . �

Let us prove that u(x, y) = ln((x2 +y2)1/2) does not have a harmonic conjugate in U = C\{0}.
Suppose that w(x, y) is a harmonic conjugate of u in U . By Lemma 20.1 there are constants, c1

and c2, with

w(x, y) = arctan(y/x) + c1 for x > 0

and

w(x, y) = arctan(y/x) + c2 for x < 0 .

Fix y = 1, for example, and consider the limit as x→ 0. We obtain, for x > 0 and x→ 0:

w(0, 1) =
π

2
+ c1 .

For x < 0 and x→ 0:

w(0, 1) = −π
2

+ c2 .

Now fix y = −1, for example, and again consider the limit as x→ 0. For x > 0 and x→ 0:

w(0,−1) = −π
2

+ c1 .

For x < 0 and x→ 0:

w(0,−1) =
π

2
+ c2 .

Therefore,

π

2
+ c1 = −π

2
+ c2

and

−π
2

+ c1 =
π

2
+ c2 .
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The first equation requires that

c1 − c2 = −π
and the second equation requires that

c1 − c2 = π .

This contradiction implies that u does not have a harmonic conjugate in U though u has a harmonic
conjugate in the open left half–plane (namely v(x, y) = arctan(y/x), x < 0) and another harmonic
conjugate in the open right half–plane (namely v(x, y) = arctan(y/x), x > 0).

20.4 Dirichlet’s Problem and the Poisson Kernel for the Unit Disk

Let U ⊂ C be a bounded region with boundary ∂U . Let u0 ∈ C(∂U), i.e, u0 is a continuous
function on ∂U . We assume that u0 is real valued. The Dirichlet problem for Laplace’s equation
is: Determine u ∈ C2(U) ∩ C(Ū) with

∆u = 0 in U, u = u0 on ∂U . (20.1)

If U is unbounded, one must specify additional conditions about the behavior of u(x, y) for large
(x, y). In this section we consider the Dirichlet problem (20.1) for

U = D = D(0, 1) ,

i.e., U is the unit disk D. We let γ(t) = eit, 0 ≤ t ≤ 2π, and denote the boundary curve of D by Γ.

Let f ∈ H(D(0, 1 + ε)) where ε > 0. By Cauchy’s integral formula:

f(z) =
1

2πi

∫
Γ

f(w)

w − z dw for all z ∈ D . (20.2)

For 0 < |z| < 1 let

z1 = 1/z̄ .

The mapping

z = reiθ → 1/z̄ = z1 =
1

r
eiθ

is a reflection w.r.t. ∂D, the boundary of the unit disk.
Since |z1| > 1 we have

0 =
1

2πi

∫
Γ

f(w)

w − z1
dw for 0 < |z| < 1 . (20.3)

Recall that z1 = 1/z̄. Therefore,

1

w − z1
=

z̄

wz̄ − 1
for w ∈ Γ and 0 < |z| < 1

and

0 =
1

2πi

∫
Γ

z̄f(w)

z̄w − 1
dw, z ∈ D . (20.4)
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From (20.2) and (20.4) obtain that

f(z) =

∫
Γ
H(z, w)f(w) dw for z ∈ D

where (for |z| < 1, |w| = 1):

H(z, w) =
1

2πi

( 1

w − z +
z̄

1− wz̄
)

(20.5)

=
1

2πi

1− |z|2
w − z − w2z̄ + w|z|2 (20.6)

=
1

2πiw

1− |z|2
1− w̄z − wz̄ + |z|2 (20.7)

=
1

2πiw

1− |z|2
|w − z|2 (20.8)

With

w = eit, dw = iw dt

one obtains the formula

f(z) =
1

2π

∫ 2π

0

1− |z|2
|eit − z|2 f(eit) dt

or, with z = reiθ:

f(reiθ) =
1

2π

∫ 2π

0

1− r2

1− 2r cos(θ − t) + r2
f(eit) dt .

One defines the Poisson kernel Pr(α) for the unit disk by

Pr(α) =
1

2π

1− r2

1− 2r cosα+ r2
, 0 ≤ r < 1, α ∈ R .

Our derivation shows:

Lemma 20.4 Let f ∈ H(D(0, 1 + ε)) for some ε > 0. Then we have

f(reiθ) =

∫ 2π

0
Pr(θ − t)f(eit) dt

for reiθ ∈ D(0, 1).

Properties of the Poisson Kernel: 1. For 0 ≤ r < 1 and all real α we have

1− 2r cosα+ r2 = 1− 2r + r2 + 2r(1− cosα)

≥ (1− r)2

> 0

thus
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0 < Pr(α) ≤ Pr(0) =
1

2π

1 + r

1− r .

In particular, Pr(0)→∞ as r → 1−.
2) Applying the previous lemma with f ≡ 1 yields that∫ π

−π
Pr(α) dα = 1 for 0 ≤ r < 1 . (20.9)

3) Despite the fact that Pr(0)→∞ as r → 1−, we will show that Pr(α)→ 0 as r → 1− if α is
bounded away from zero. A precise statement is:

Lemma 20.5 For any δ1 > 0, ε1 > 0 there exists η > 0 with

Pr(α) ≤ ε1

if

0 < δ1 ≤ |α| ≤ π and 1− η ≤ r < 1 .

Proof: For 1
2 ≤ r < 1 and δ1 ≤ |α| ≤ π we have:

1− 2r cosα+ r2 = 1− 2r + r2 + 2r(1− cosα)

≥ 1− cosα

≥ δ2 > 0

where δ2 = 1− cos δ1, i.e., δ2 depends only on δ1. Therefore,

Pr(α) ≤ 1− r2

2πδ2
≤ ε1 for 1− η ≤ r < 1

if η > 0 is small enough. �
We now use these properties of Pr(α) to prove the following result about the Poisson kernel.

Theorem 20.4 Let D = D(0, 1) denote the open unit disk and let u0 ∈ C(∂D) be real valued. The
function u(z) defined for z ∈ D̄ by

u(reiθ) =

∫ 2π

0
Pr(θ − t)u0(eit) dt for 0 ≤ r < 1 (20.10)

u(eiθ) = u0(eiθ) for r = 1 (20.11)

solves the Dirichlet problem with boundary data u0 on ∂D. In particular:
a) u ∈ C∞(D) ∩ C(D̄);
b) ∆u = 0 in D.

To show that u is harmonic in D, we use the following simple result:
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Lemma 20.6 Suppose that g(z) is a holomorphic function in some open set V and let

G(z) = g(z̄) for z ∈ V1 = {z : z̄ ∈ V } .
Then the real and imaginary parts of G are harmonic in V1.

Proof: If g(x+ iy) = u(x, y) + iv(x, y) then

G(x+ iy) = u(x,−y) + iv(x,−y) .

�
To prove that the function u defined by (20.10) is harmonic in D, recall that our derivation

shows:

u(z) =

∫
Γ
H(z, w)u0(w) dw, z ∈ D , (20.12)

where H(z, w) is defined in (20.5). By the previous lemma, the real and imaginary parts of z →
H(z, w) are harmonic in D, for each fixed w ∈ γ. Since one can differentiate (20.12) under the
integral sign, it follows that ∆u = 0 in D. (For another argument, using series, see the next section.)

We now show that the function u(z) defined by (20.10) and (20.11) is continuous at every point
z0 = eit0 .

Because of (20.9) we have

u(reiθ)− u(eit0) =

∫ 2π

0
Pr(θ − t)

(
u0(eit)− u0(eit0)

)
dt . (20.13)

For given ε > 0 there exists δ > 0 with

|u0(eit)− u0(eit0)| ≤ ε for |t− t0| ≤ δ . (20.14)

We split the integral in (20.13):∫ 2π

0
=

∫
|t−t0|<δ

+

∫
|t−t0|>δ

=: I1 + I2 .

Using (20.9) and (20.14) we have

I1 ≤ ε .
To estimate I2 we assume that |θ − t0| < δ/2. Then the assumption |t− t0| > δ yields that

|θ − t| > δ

2
=: δ1 .

It follows that

I2 ≤ 2|u0|∞ · 2π max
δ1≤|α|≤π

Pr(α) .

Using Lemma 20.5 we obtain that

I2 ≤ ε for 1− η ≤ r < 1

if η > 0 is sufficiently small. To summarize, if ε > 0 is given, then there exists δ > 0 and η > 0
with
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|u(reiθ)− u(eit0)| ≤ 2ε

if |θ− t0| < δ/2 and 1− η ≤ r < 1. Since u is continuous on ∂U this shows that u is continuous at
z0 = eit0 . This completes the proof of Theorem 20.4. �

Remark: We have derived the Poisson kernel for the unit disk,

Pr(α) =
1

2π

1− r2

1− 2r cosα+ r2
, 0 ≤ r < 1, α ∈ R .

For a disk of radius R > 0 the Poisson kernel is

P (R)
r (α) =

1

2π

R2 − r2

R2 − 2Rr cosα+ r2
, 0 ≤ r < R, α ∈ R .

The solution of the Dirichlet problem,

∆u = 0 in D(0, R), u(Reiθ) = u0(Reiθ) for 0 ≤ θ ≤ 2π ,

is

u(reiθ) =

∫ 2π

0
P (R)
r (θ − t)u0(Reiθ) dθ for 0 ≤ r < R ,

and

u(Reiθ) = u0(Reiθ) for 0 ≤ θ ≤ 2π .

20.5 The Poisson Kernel and Fourier Expansion

We have derived the Poisson kernel for the unit disk using Cauchy’s integral formula. An alternative
derivation proceeds via Fourier expansion.

Let u0 : ∂D→ C denote a continuous function. We want to determine a function

u ∈ C2(D) ∩ C(D̄)

with

∆u = 0 in D, u(z) = u0(z) for |z| = 1 .

Set

g(t) = u0(eit), t ∈ R .

Then g is a continuous, 2π–periodic function and

g(t) =
∞∑

k=−∞
ĝ(k)eikt, ĝ(k) =

1

2π

∫ 2π

0
e−iktg(t) dt ,

is the Fourier expansion of g(t). We ignore questions of convergence. We obtain, formally,

u0(z) =

∞∑
k=−∞

ĝ(k)zk, |z| = 1 .
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Note that, for |z| = 1 we have z−1 = z̄, thus

zk = z̄|k| for |z| = 1, k < 0 .

Therefore, formally,

u0(z) =
∞∑
k=0

ĝ(k)zk +
−1∑

k=−∞
ĝ(k)z̄|k|, |z| = 1 .

This second representation of the given function u0(z), z ∈ ∂D, has the advantage that every term

zk for k ≥ 0, z̄|k| for k ≤ −1 ,

is a harmonic function in D. In contrast, the function zk has a pole at z = 0 if k < 0.
We claim that the solution of the Dirichlet problem is given by

u(z) =

∞∑
k=0

ĝ(k)zk +

−1∑
k=−∞

ĝ(k)z̄|k| for |z| < 1 (20.15)

and
u(z) = u0(z) for |z| = 1 .

First note that the sequence of Fourier coefficients ĝ(k) is bounded. This follows from the bound-
edness of the function g(t) = u0(eit), t ∈ R.

Therefore,

u1(z) =

∞∑
k=0

ĝ(k)zk for |z| < 1

and

u2(z) =
−1∑

k=−∞
ĝ(k)z̄|k| for |z| < 1

are harmonic functions in D. (Note that ū2(x) is holomorphic in D.) Thus, u ∈ C∞(D) and ∆u = 0
in D.

It remains to prove that u ∈ C(D̄). To show this, we derive an integral representation of u(z),
the Poisson integral formula.

Setting z = reiθ for 0 ≤ r < 1 we have

u(reiθ) =
1

2π

∞∑
k=0

rk
∫ 2π

0
eik(θ−t)g(t)dt +

1

2π

−1∑
k=−∞

r|k|
∫ 2π

0
eik(θ−t)g(t)dt

=

∫ 2π

0
Pr(θ − t)g(t) dt

with

Pr(α) =
1

2π

∞∑
k=0

rkeikα +
1

2π

−1∑
k=−∞

r|k|eikα .
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We have used the integral formula for ĝ(k) in (20.15) and have changed the order of summation and
integration. This is allowed since the series converge uniformly in t for every fixed r with 0 ≤ r < 1.

Set

w = reiα .

Then we have

2πPr(α) =
∞∑
k=0

wk +
∞∑
k=1

w̄k

=
1

1− w +
w̄

1− w̄

=
1− |w|2

1− w − w̄ + |w|2

=
1− r2

1− 2r cosα+ r2

We have obtained the Poisson kernel for the unit disk D using Fourier expansion.

Remarks on Fourier Expansion: Let X denote the space of all 2π–periodic continuous
functions

g : R→ C .

(More generally, one could take X = L2(0, 2π).) On X one defines the L2–inner product and norm
by

(u, v)L2 =

∫ 2π

0
ū(t)v(t)dt, ‖u‖2L2

= (u, u)L2 .

The functions in the sequence

eikt, k ∈ Z ,

are L2–orthogonal to each other and

(eijt, eikt)L2 = 2πδjk .

If g ∈ X then its Fourier series is

∞∑
k=−∞

ĝ(k)eikt

where

ĝ(k) =
1

2π
(eikt, u(t))L2 , k ∈ Z ,

is the k–th Fourier coefficient of g. Let

Sn(t) =
n∑

k=−n
ĝ(k)eikt
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denote the n–th partial sum of the Fourier series of g. Then it is known that

‖g − Sn‖L2 → 0 as n→∞ ,

i.e., the Fourier series of g represents g in the L2–sense. Pointwise convergence and convergence in
maximum norm hold if g ∈ C1, for example.

20.6 The Mean Value Property of Harmonic Functions

Let U be an open set and let f ∈ H(U). If D̄(P, r) ⊂ U and γ(t) = P + reit then, by Cauchy’s
integral formula:

f(P ) =
1

2πi

∫
γ

f(z)

z − P dz

=
1

2π

∫ 2π

0
f(P + reit) dt .

This says that f(P ) is the mean value of the values of f along the circle ∂D(P, r).
Let u : U → R be harmonic in U and let D̄(P, r) ⊂ U , as above. Let ε > 0 and let D(P, r+ε) ⊂

U . In D(P, r + ε) there exists a harmonic conjugate v of u. Applying the above equation to
f = u+ iv and taking real parts, one obtains that

u(P ) =
1

2π

∫ 2π

0
u(P + reit) dt .

In other words, harmonic functions have the following mean value property: If D̄(P, r) lies in the
region U where u is harmonic, then u(P ) equals the mean value of u on the circle ∂D((P, r).

Example: Let f(z) = ez and take P = 0, r = 1. Cauchy’s integral formula says that

1 = e0 =
1

2πi

∫
γ

ez

z
dz .

This also follows from the residue theorem, of course.
Using

z(t) = eit = cos t+ i sin t, dz = iz dt,
dz

z
= idt ,

one obtains the mean value formula

2π =

∫ 2π

0
ecos t+i sin t dt

=

∫ 2π

0
ecos t

(
cos(sin t) + i sin(sin t)

)
dt

This yields that

I1 :=

∫ 2π

0
ecos t cos(sin t) dt = 2π
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and

I2 :=

∫ 2π

0
ecos t sin(sin t) dt = 0 .

Let h(t) = ecos t sin(sin t). Then h(−t) = −h(t) and h(t) has period 2π. Therefore, I2 =∫ π
−π h(t) dt = 0 is obvious. The formula for I1 = 2π does not look obvious.

20.7 The Maximum Principle for Harmonic Functions

Let U be a bounded region and let u ∈ C2(U) ∩ C(Ū) be a real valued function. Assume that
∆u = 0 in U and that u is not constant. Let

M1 = max{u(z) : z ∈ Ū} .
We claim that

u(P ) < M1

for all P ∈ U . Suppose the strict inequality u(P ) < M1 does not hold for some P ∈ U . Then we
have u(P ) = M1, and P is a local maximum of U . Using the mean value property, one finds that
for some r > 0:

u(z) = M1 for |z − P | ≤ r .
Set

Z = {z ∈ U : u(z) = M1} .
The above argument shows that Z is open. Also, by continuity, Z is closed in U . Since U is
assumed to be connected, one obtains that Z = U . Thus, u is constant.

We can apply the same reasoning to −u and obtain:

Theorem 20.5 Let U be a bounded region and let u ∈ C2(U) ∩ C(Ū) be harmonic in U . Assume
that u is not constant. Then, for every P ∈ U :

min
z∈∂U

u(z) < u(P ) < max
z∈∂U

u(z) .

A simple implication is the following: If U is a bounded region, then the solution of the Dirichlet
problem

∆u = f in U, u = u0 on ∂U ,

is unique (if the solution exists). (If u1 and u2 are two solutions, then u = u1 − u2 is harmonic in
U and has zero boundary values. By Theorem 20.5 it follows that u ≡ 0.)

20.8 The Dirichlet Problem in More General Regions

Let us first summarize our results for the Dirichlet problem in the unit disk,

D = D(0, 1) .
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Theorem 20.6 Let u0 : ∂D→ R be a continuous function. Then there is a unique function

u ∈ C2(D) ∩ C(D̄)

with

∆u = 0 in D, u = u0 on ∂D .

For z = reiθ ∈ D the solution u is given by

u(reiθ) =

∫ 2π

0
Pr(θ − t)u0(eit) dt

where Pr(α) is the Poisson kernel for D.

Let V ⊂ C be any bounded region and assume that there are holomorphic mappings

f : D→ V, g : V → D

which are 1− 1, onto, and inverse to each other. We also assume that f and g can be continuously
extended as bijective mappings to the closures of D and V , respectively. We denote the extensions
again by f and g. Thus we assume that

f : D̄→ V̄ , g : V̄ → D̄ ,

are continuous, 1− 1, onto and

f(g(z)) = z for all z ∈ V̄ ,

g(f(w)) = w for all w ∈ D̄ .

This implies that boundaries are mapped to boundaries:

f(∂D) = ∂V, g(∂V ) = ∂D .

We will discuss the existence and construction of such mappings f and g later in connection with
the Riemann Mapping Theorem.

Now let v0 : ∂V → R be a given continuous function and consider the Dirichlet problem: Find

v ∈ C2(V ) ∩ C(V̄ )

with

∆v = 0 in V, v = v0 on ∂V .

We can transform this problem to the Dirichlet problem on D in the following way: Set

u0(w) = v0(f(w)), w ∈ ∂D .

This transforms the given boundary function v0, defined on ∂V , to a boundary function u0 defined
on ∂D.

Then let u ∈ C2(D)∩C(D̄) solve the Dirichlet problem in D with boundary data u0. We claim
that
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v(z) = u(g(z)), z ∈ V̄ ,

solves the Dirichlet problem in V . Clearly, if z ∈ ∂V , then g(z) ∈ ∂D and

v(z) = u0(g(z))

= v0(f(g(z)))

= v0(z) ,

showing that v satisfies the boundary conditions. It remains to prove that v is harmonic in V . This
follows from the following result.

Theorem 20.7 Let U, V be regions and let g : V → U be holomorphic. Let u1 : U → R be
harmonic in U . Then v1(z) = u1(g(z)) is harmonic in V .

Proof: Fix z0 ∈ V . We must show that ∆v1(z0) = 0. We have g(z0) ∈ U and there is r > 0 with

D = D(g(z0), r) ⊂ U .

Since u1 is harmonic in D it has a harmonic conjugate u2 in D. Then the function u = u1 + iu2 is
holomorphic in D. It follows that the function v(z) = u(g(z)) is holomorphic in a neighborhood of
z0. Since v1 is the real part of v, we conclude that v1 is harmonic in a neighborhood of z0. �
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21 Abel’s Continuity Theorem

Outline: The function

f(z) = log(1 + z), |z| < 1 ,

has the derivative

f ′(z) =
1

1 + z
=

∞∑
j=0

(−1)jzj for |z| < 1

and the power series representation

f(z) = log(1 + z) =

∞∑
j=0

(−1)j

j + 1
zj+1

holds for |z| < 1. What happens for z = 1? Does the equation

log(1 + 1) = ln 2 =

∞∑
j=0

(−1)j

j + 1
(21.1)

hold? The answer is yes. Convergence of the above series holds since the series is alternating and
the terms pj = 1

j+1 converge to zero monotonically. The equation (21.1) then follows from Abel’s
Continuity Theorem and the continuity of the function f(z) = log(1 + z) at z = 1.

21.1 Alternating Series and Examples

Theorem 21.1 (Convergence of Alternating Series) Let pj ∈ R with pj ≥ pj+1 > 0 for all j =
0, 1, 2, . . . and pj → 0 as j →∞. Then the alternating series

∞∑
j=0

(−1)jpj

converges.

Proof: Set

Sn :=
n∑
j=0

(−1)jpj = p0 − p1 + p2 − . . .+ (−1)npn .

We have

S2n = p0 − p1 + . . .+ p2n

S2n+1 = S2n − p2n+1

thus

S2n+1 < S2n for n = 0, 1, 2, . . .

Also,
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S2n+2 = S2n − p2n+1 + p2n+2 ≤ S2n

S2n+3 = S2n+1 + p2n+2 − p2n+3 ≥ S2n+1

Therefore,

S2n+1 ≤ S2n+3 < S2n+2 ≤ S2n for all n .

Convergence

S2n → S+, S2n+1 → S−

follows. Since

−p2n+1 = S2n+1 − S2n → 0

one obtains that S+ = S− =: S and

Sn =
n∑
j=0

(−1)jpj → S as n→∞ .

�
Example 1: Let f(x) = ln(1 + x) for x > −1. We have for −1 < x < 1:

f ′(x) =
1

1 + x
=

∞∑
j=0

(−1)jxj

f(x) =
∞∑
j=0

(−1)j

j + 1
xj+1

Therefore,

log(1 + z) =

∞∑
j=0

(−1)j

j + 1
zj+1 for |z| < 1 .

By Theorem 21.1 the series

∞∑
j=0

(−1)j

j + 1
xj+1

converges for x = 1. By Abel’s Continuity Theorem (Theorem 21.2) and continuity of the function
ln(1 + x) at x = 1 it follows that

∞∑
j=0

(−1)j

j + 1
= 1− 1

2
+

1

3
− . . . = ln 2 .

Example 2: Let f(x) = arctanx for x ∈ R. We have for −1 < x < 1:
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f(x) = arctanx

f ′(x) =
1

1 + x2
=
∞∑
j=0

(−1)jx2j

f(x) =
∞∑
j=0

(−1)j

2j + 1
x2j+1

Therefore,

arctan z =
∞∑
j=0

(−1)j

2j + 1
z2j+1 for |z| < 1 .

(Note that the radius of convergence of the above series cannot be larger than 1 since the function
f ′(z) = 1

1+z2
is singular at z = i.)

By Theorem 21.1 the series

∞∑
j=0

(−1)j

2j + 1
x2j+1

converges for x = 1. By Abel’s Continuity Theorem and continuity of the function f(x) = arctanx
at x = 1 it follows that

∞∑
j=0

(−1)j

2j + 1
= arctan 1 .

Since tan(π/4) = 1 we have arctan 1 = π/4, thus

∞∑
j=0

(−1)j

2j + 1
= 1− 1

3
+

1

5
− . . . =

π

4
.

21.2 Abel’s Theorem

Theorem 21.2 (Abel’s Continuity Theorem) Assume that the power series

f(z) =

∞∑
j=0

ajz
j

has the radius of convergence R > 0, defining the function f ∈ H(D(0, R)). Also assume that the
series

∞∑
j=0

ajz
j
0

converges for some z0 with |z0| = R. Set

f(z0) =
∞∑
j=0

ajz
j
0 .
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Let A,B ∈ D(0, R) denote two distinct points and let ∆ denote the closed triangle with vertices
A,B, z0.

Abel’s continuity theorem states that

f ∈ C(∆) .

Proof: Using simple transformations, it is not difficult to show that it suffices to prove the theorem
under the following special assumptions:

R = 1, z0 = 1, f(1) = 0 .

Also, for the points A,B defining ∆ we may assume that

A = a+ ib, B = a− ib, 0 < a, b < 1, a2 + b2 < 1 .

For δ > 0 set

∆δ =
{
z ∈ ∆ : 0 < |1− z| < δ

}
.

We will prove that for every ε > 0 there exists δ > 0 with

|f(z)| < ε for all z ∈ ∆δ .

It then follows that f ∈ C(∆).
Set

sν = a0 + a1 + . . .+ aν ,

thus

a0 = s0, aj = sj − sj−1 for j = 1, 2, . . .

Recall that, by assumption, sν → 0 = f(1) as ν →∞. First let z ∈ D(0, 1) be arbitrary. We have

n∑
j=0

ajz
j = s0 + (s1 − s0)z + (s2 − s1)z2 + . . .+ (sn − sn−1)zn

= s0(1− z) + s1(z − z2) + . . .+ sn−1(zn−1 − zn) + snz
n

= (1− z)
(
s0 + s1z + . . .+ sn−1z

n−1
)

+ snz
n

Therefore,

f(z) = (1− z)
∞∑
j=0

sjz
j , |z| < 1 .

Let η > 0 be arbitrary. (Below we will make a proper choice for η.) Choose N = N(η) so that

|sj | <
η

2
for j > N .

The existence of N = N(η) follows from the assumption that
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0 = f(1)

=
∞∑
n=0

an

= lim
j→∞

j∑
n=0

an

= lim
j→∞

sj

Using that |sj | < η/2 for j > N one obtains the following estimates for |z| < 1:

|f(z)| ≤ |1− z|
N∑
j=0

|sjzj |+
η

2
|1− z|

∞∑
j=N+1

|z|j

≤ |1− z|M(η) +
η

2

|1− z|
1− |z|

where

M(η) =

N(η)∑
j=0

|sj | .

So far we have only used the estimate |z| < 1 for z.
If z ∈ ∆δ then |1− z| < δ and we obtain the estimate

|f(z)| ≤ δM(η) +
η

2

|1− z|
1− |z| . (21.2)

It remains to bound the quotient

Q(z) =
|1− z|
1− |z| for z ∈ ∆δ .

Auxiliary Estimate: Let 0 < α0 < π
2 denote the angle at the point z0 = 1 between the

straight line from 1 to 0 and the straight line from 1 to A = a+ bi.
Let z ∈ ∆, z 6= 1, and denote the angle at 1 between the straight line from 1 to 0 and the

straight line from 1 to z by α. We have

|α| ≤ α0, cosα ≥ cosα0 =: c0 > 0 .

Consider the triangle with vertices 0, 1 and z. Setting

r = |1− z|, d = d(r) = |z|
we have by the cosine theorem of trigonometry

d2 = 1 + r2 − 2r cosα .

We will show the bound
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|1− z|
1− |z| =

r

1− d(r)
≤ C for z ∈ ∆ (21.3)

for some constant C > 0. We have

d(r) =
√

1 + r2 − 2rc where c = cosα ≥ c0 > 0 .

The bound (21.3) is equivalent to (with d = d(r)):

r ≤ C − Cd
Cd ≤ C − r

C2(1 + r2 − 2cr) ≤ C2 − 2Cr + r2

C2r2 + 2Cr ≤ r2 + 2crC2

Clearly, since r > 0, the last estimate is equivalent to

C2r + 2C ≤ r + 2cC2 . (21.4)

We may restrict r to the interval

0 < r ≤ c0 = cosα0 .

Since c = cosα ≥ cosα0 = c0 the estimate (21.4) holds if

C2c0 + 2C ≤ 2c0C
2 .

Equivalently,

2C ≤ c0C
2 ,

i.e.,

C ≥ 2

c0
.

Thus we have proved the bound

Q(z) =
|1− z|
1− |z| ≤

2

c0
with c0 = cosα0 > 0

for all

z ∈ ∆ with |1− z| = r ≤ c0 .

Using the estimate (21.2) we have shown: If η > 0 and 0 < δ ≤ c0 are chosen, then the following
bound holds:

|f(z)| ≤ δM(η) +
η

2
· 2

c0
for z ∈ ∆δ .

If ε > 0 is given, then choose η > 0 so that η/c0 < ε/2. Then choose 0 < δ ≤ c0 so that
δM(η) < ε/2. Obtain that

|f(z)| < ε for z ∈ ∆δ .

This complete the proof of Abel’s theorem. �
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22 Quals

Jan. 2022, problem 4
Let f ∈ H(C \ {0}. Assume that

f(n) = (−1)n for n = 1, 2, . . .

Prove that infz 6=0 |f(z)| = 0.
Proof: Let

f(z) =
∞∑

j=−∞
ajz

j for z 6= 0

denote the Laurent series of f(z).
a) Assume that f(z) has an essential singularity at z = 0. By Casorati–Weierstrass we have

infz 6=0 |f(z)| = 0.
b) Assume that

g(z) = f(1/z), z 6= 0 ,

has an essential singularity at z = 0. Again, by Casorati–Weierstrass we have infz 6=0 |f(z)| = 0.
c) If neither a) nor b) apply then

f(z) =
K∑
j=J

ajz
j , aK 6= 0 ,

where J and K are finite.
If K > 0 then |f(z)| → ∞ as |z| → ∞. If K = 0 then f(z) → aK as |z| → ∞. If K < 0 then

f(z)→ 0 as |z| → ∞. In all three cases the assumption

f(n) = (−1)n for n = 1, 2, . . .

is violated.
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23 Supplements

23.1 Euler’s Solution of the Basel Problem (1734)

,
Consider the function

f(z) =
sin z

z
= 1− z2

6
+
z4

5!
. . . .

The zeros of f are the numbers

±πj for j = 1, 2, . . .

Therefore,

f(z) =
(

1− z

π

)(
1 +

z

π

)(
1− z

2π

)(
1 +

z

2π

)
. . .

=
(

1− z2

π2

)(
1− z2

22π2

)
. . .

= 1− z2

π2

(
1 +

1

22
+

1

32
. . .
)

+O(z4)

One obtains that

−1

6
= − 1

π2

(
1 +

1

22
+

1

32
. . .
)
,

thus

1 +
1

22
+

1

32
. . . =

π2

6
.

Infinite products were considered about 100 years later by Weierstrass.

23.2 Application of 1/ζ(2)

Let m,n ∈ N be random numbers. We claim that

probability
(
g.c.d.(m,n) = 1

)
=

1

ζ(2)
=

6

π2
.

The product formula for the zeta–functions yields that

1

ζ(s)
= Πp

(
1− 1

ps

)
for Re s > 1 ,

thus

1

ζ(2)
= Πp

(
1− 1

p2

)
.

If n ∈ N is a random numer and p is prime then the probability that p divides n equals 1
p . If

m,n ∈ N are random then the probability that p divides both, m and n, equals 1
p2

.
The probability that p does not divide both numbers, m and n, equals
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1− 1

p2
.

If p and q are distinct prime numbers then the probability that neither p nor q divides both number,
m and n, equals (

1− 1

p2

)
·
(

1− 1

q2

)
.

It follows that

probability
(
g.c.d.(m,n) = 1

)
= Πp

(
1− 1

p2

)
=

1

ζ(2)
=

6

π2
.
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