Homework 1, Math. 562
Prof. Jens Lorenz, Instructor

1) Let Γ denote the circle with parameterization $z(t) = 2e^{it}, 0 \leq t \leq 2\pi$, and let
\[
A = \begin{pmatrix} -1 & 2 \\ -4 & 5 \end{pmatrix}.
\]
a) Compute the projector
\[
P = \frac{1}{2\pi i} \int_{\Gamma} (zI - A)^{-1} dz.
\]
Integrate the four matrix elements $((zI - A)^{-1})_{jk}$ along Γ to compute P.
b) Determine the range of P and the nullspace of P.
c) Write P in the form
\[
P = T \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} T^{-1}.
\]
Determine the matrix T.

2) Let W be a vector space and let $P: W \to W$ be a projector, i.e., P is linear and $P^2 = P$. Set
\[
U = \text{range}(P), \quad V = \text{nullspace}(P).
\]
Prove that $W = U \oplus V$.

3) Let W be a vector space with subspaces U and V satisfying $W = U \oplus V$. Define $P : W \to W$ as follows:
If $w \in W$ and $w = u + v$ with $u \in U, v \in V$ then set $Pw = u$. Prove that P is a projector and
\[
U = \text{range}(P), \quad V = \text{nullspace}(P).
\]

4) Let
\[
A = \begin{pmatrix} -1 & 2 \\ -4 & 5 \end{pmatrix}
\]
denote the matrix of Problem 1. Compute a matrix B with $A = e^B$.

5) Let
\[
A = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}.
\]
Let Γ denote the circle with radius 1 centered at $z = 2$. Compute
\[
B = \frac{1}{2\pi i} \int_{\Gamma} \log z (zI - A)^{-1} dz.
\]
Check if the equation $A = e^B$ holds or not.