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1 Notations and History

1.1 Notations

field of real numbers

C field of complex numbers

D(zp,R) | {z : |z — 20| < R} : open disk of radius R centered at zg
(

D(z9,R) | {z : |z — 20| < R} : closed disk of radius R centered at z
0D(z0,R) | {# : |z — 20| = R} : boundary of disk of radius R centered at zo
D D=D(0,1) ={z : |z| <1} : open unit disk

H(U) set of all holomorphic functions f : U — C where U C C is open
c(U) set, of all continuous functions f : U — C where U C C is any set
In(z) for real positive z: In(z) = [ %

log(2) complex logarithm

1.2 History

Pafnuty Chebyshev, 1821-1899, Russian

Bernhard Riemann, 1826-1866, German

Elwin Christoffel, 1829-1900, German

Hermann Amandus Schwarz, 1843-1921, German

Gosta Mittag—Leffler, 1846-1927, Swedish

Jacques Hadamard, 1865-1963, French

Charles—Jean de la Vallée Poussin, 1866-1962, from Belgium
Laurent Schwartz, 1915-2002, French



2 The Schwarz Lemma and Aut(D)

Summary: An aim of this chapter is to study the group of automorphisms of the open unit disk
D = D(0,1). An important tool is Schwarz Lemma.
We will show that the automorphism group Aut(DD) consists of all functions of the form

f(z) = ¢c(2) o Ra(z), z€D,
where R, (%) = az with |a| =1 is a rotation and

zZ—cC

Pe(2)

T

with |¢| < 1 is a special Mébius! transformation.

2.1 Schwarz Lemma

Let D = D(0, 1) denote the open unit disk. In the Schwarz Lemma one considers functions f € H(D)
with f(0) = 0 and f(D) C D. The Schwarz Lemma then says that the estimate |f(2)| < 1 for all
z € D can be sharpened.

We recall the maximum modulus theorem, which will be used in the proof of the Schwarz
Lemma.

Theorem 2.1 (Mazimum Modulus Theorem) Let U C C denote an open connected set and let
g € H(U). If there exists a point zo € U with

l9(2)[ <lg(z0)| forall zeU
then g(z) is constant in U. In other words, only constant holomorphic functions attain their maz-
imal value in an open connected set.
This follows from the open mapping theorem: A holomorphic function g(z) on an open, connected
set U maps open subsets of U to open sets, unless g(z) is constant.
Remark: The Schwarz Lemma is named after Hermann Amandus Schwarz, a German mathe-

matician, 1843-1921. His name also occurs in the Cauchy—Schwarz inequality.

Theorem 2.2 (Schwarz Lemma) Let f € H(D) satisfy
a) |f(2)| <1 for all z € Dy;

b) f(0) =0.
Then |f(2)| < |z| for all z € D and |f'(0)] < 1. In addition, if

|/ (20)| = |20
for some zp € D\ {0} orif |f/(0)] =1, then f is a rotation, i.e.,

f(z) =az

for some a € C with |a] = 1.

! August Ferdinand Mobius, 1790-1868, was a German mathematician and astronomer.



Proof: Set
[ f(»)/z  for 0<]|zl<1,
g(z)—{ 1'(0) for 2=0.
Since f(0) = 0 we have
f(z)= Zajzj for |z] <1
j=1

and obtain that g € H(D). Let 0 < ¢ < 1 and consider g in the closed disk D(0,1 —¢) C D. Since
|f(2)] <1 in D one obtains that

1
<— fo =1—c¢.
9()l < T for 4
By the maximum modulus theorem we conclude that

1
lg(2)] < 1 for |z|<1—-¢.

As € — 0 this yields that

lg(z)] <1 for |z|<1.

Therefore,

lf(2)| <|z| for |z|<1 and |f(0)<1.

Now assume that |f(z0)| = |20| for some zy € D, zy # 0, or assume that |f’(0)] = 1. Then,
using the definition of g, we have |g(z0)| = 1 or |g(0)| = 1. In both cases, the absolute value of g(z)
attains a maximum at a point in D, which implies that g(z) = « is constant and |a| = 1. Therefore,
fz)=az. ©

2.2 Biholomorphic Maps and Automorphisms

Terminology: A nonempty, open, connected subset (2 C C is called a region.

Let U and V be regions in C. A map f: U — V is called biholomorphic if f is 1 — 1 and onto
and f as well as f~! are holomorphic. It is sufficient to assume that f : U — V is holomorphic,

1 —1 and onto. Then f~! is automatically holomorphic, as we have proved in Math 561. We also
recall that f/(z) # 0 for all z € U if f is biholomorphic.

Definition: Let U be a region in C. If f : U — U is 1 — 1, onto, and holomorphic (thus
biholomorphic), then f is called an automorphism of U. The set of all automorphisms of U is
denoted by Aut(U). This set forms a group if the product of f,g € Aut(U) is defined as the
composition, f o g.

Example 1: According to Homework 6, Problem 1, Math 561, the set Aut(C) consists of all
functions f(z) of the form f(z) = az + b where a # 0. To prove this the Casorati-Weierstrass
theorem for essential singularities is useful.



2.3 The Automorphism Group of D

Let a,b,c¢,d € C with ad — bc # 0. A rational function of the form

az+b

1) = cz+d

is called a Mobius transformation. (If ad —bc = 0 then f(z) is constant.) A Mé&bius transformation

is also called a linear fractional transformation.

We first consider some special Mébius transformations. Let ¢ € C and |c| < 1. Set

de(2) = Z__C, zeD.

1—-cz
Clearly, ¢. € H(D) for |¢| < 1. Note that

¢c(2) =2z for ¢=0.
We prove:

Lemma 2.1 Let c € C,|c| < 1. The following holds:
a) |pc(2)] < 1 for all z € D.

b) dc(p—c(2)) =z for all z € D.
¢) e € Aut(D)

Proof: a ) Clearly, |¢.(z)| < 1 is equivalent to

1—écz>> |z — ¢,

which is equivalent to

(I-¢cx)(1—c2z)>(z—c)(z—¢),

which is equivalent to

L+ |2 > |2)* + | .

Since

0 < (1= ef) (A~ [2*) = 1+ |cPlo* = |2 — |l

the inequality (2.1) holds.

b) With
w—c z4+c
we have
z—i—_c —c
bolde(2) = [T
1+4cz

z4+c—c—z|c]?

14 ¢z —¢cz— |c|?

2(1—|e[?)
1—|ef?

= z.

(2.1)



c) Since ¢o(p_c(2)) = z for all z € D, we obtain that ¢, is onto and ¢_. is 1 — 1. Replacing ¢ by
—c shows that ¢ is a bijection of D. ¢

Another set of automorphisms of D are the rotations R, defined by

Ra(z) = az, ’Z’ <1,
for € C with |a| = 1. Clearly, R, € Aut(D) and

¢eo Ry € Aut(D) (2.2)
if |c|] < 1 and |a| = 1. The following theorem yields that every f € Aut(D) has the form (2.2).

Theorem 2.3 Let f € Aut(D) and let b= f(0). Then we have

f=¢-pboRa=Raoda (2.3)

for some o with |a] = 1.
In particular, if f € Aut(D) satisfies f(0) =0 then f is a rotation.

Proof: 1) First assume that f(0) = 0 and let ¢ = f~!. By Schwarz Lemma we conclude that
|7/(0)] <1 and |¢'(0)] < 1. From f(g(z)) = z for all z € D we have

and, in particular,

f0)g'(0)=1.
It follows that |f’(0)] = 1. Another application of Schwarz Lemma yields that f(z) = az with
|a| = 1. Equation (2.3) holds with b = 0.
2) Let b:= f(0) and consider h = ¢ o f. We have

B(0) = d(b) =0 .

By Part 1) of the proof we conclude that h = R, for some a with |a| = 1. Therefore, f = ¢p_p0 R,,.
In other words,

f(2) = ¢-p(@z) = ¢y 0 Ra(2) -
3) The equations

f(z) = ¢-p(az)
az+b

1+ baz
z + ba

o —
1+ baz
= a‘b*bd(z)

complete the proof of the theorem. ¢



2.4 The Schwarz—Pick Lemma

This section can be skipped.
The automorphisms ¢, of D, obtained for every ¢ € C with |c| < 1, allow to prove an extension
of the Schwarz lemma. Note that

z—c 1—|c|?

Pe(z) = ¢(2) = A=

1—¢z’

Theorem 2.4 (Schwarz—Pick) Let f : D — D, f € H(D). (It is neither assumed that f is 1 — 1
nor that f is onto nor that f(0) =0.)
1) For all a € D:

_ a 2
()] < L@ (2.4)

1—laf?

(If a = 0 and f(0) = 0 this reduces to the estimate |f'(0)] < 1 of the Schwarz lemma.)
2) If a1,a2 € D then

\f(az);f(m)l lag — a1 .
11— f(a1)f(az)| — 11 —araz|

Proof: 1) Let b = f(a) and set

F=¢pofop_q.
Then we have ¢_,(0) = a and

F0) = ¢(f(a))
= ¢u(b)
=0

The Schwarz lemma, is applicable to F' and implies that

F'(0) <1
Further, by the chain rule,

F'(0) = ¢,(b) f'(a)¢’_4(0) -

Here
¢ 4(0) =1~ |al?
and
/ _ 11— ‘b|2 _ 1
%) = e = T
Therefore,
1—laf
F'0)={f )

10



The estimate |F'(0)| < 1 yields that

1—[p?
1—la*

| (a)] <

This proves (2.4).
2) Let by = f(a1) and by = f(ag). Consider the function

F=¢pofod_q .
As above, we have F(0) = 0 and the Schwarz lemma yields that |F'(z)| < |z| for all z € D. Setting

w = ?bfal (Z), zZ = g, (U]) )

the estimate |F(z)| < |z| becomes

|95, (f ()] < |day (w)] -
Using the definition of ¢, this reads:

(wl*bl ‘< w*all
1 —byf(w)

If we use this estimate for w = ag we obtain (2.5). ¢

=11 —aw

2.5 Remarks

The formula

_ |b—ad]
1 —ab|’

defines the so-called pseudo-hyperbolic metric on D. (This is related to Poincaré geometry on D.)
The second part of the Schwarz—Pick Lemma then says that

d(a,b) a,beD,

d(f(a), f(b)) <d(a,b) forall a,beD

if fe HD),f:D — D. If f € Aut(D) then one can apply the estimate to f and f~! to obtain
that

d(f(a), f(b)) =d(a,b) forall a,beD. (2.6)
In fact, one can also prove a converse: If f € H(D), f : D — D, and if (2.6) holds, then f € Aut(D).

The introduction of Non—Euclidean geometries was historically very important. Recall: Euclid
of Alexandria (~ 365-300 B.C.) and his Parallel Postulate, the famous Fifth Postulate.

Immanuel Kant: The concept of Fuclidean space is by no means of empirical origin, but is an
inevitable necessity of thought. (Critique of Pure Reason, 1781)

Work of Carl Friedrich Gauss (1777-1855) and Janos Bolyai (1802-1860) on non-Euclidean
geometry made it clear that Kant’s position was wrong. One has to distinguish between geometry
as a mathematical subject and geometry of physical space, which is a subject of observation.
Newtonian physics assumes Euclidean space and a time variable independent of space. To create
the theory of general relativity, it was necessary to overcome the doctrine of Euclidean space.

The space D with the metric d(a,b) gives an example of Non—Euclidean geometry.

11



3 Linear Fractional Transformations and the Riemann Sphere

Summary: In complex variables, it is often useful to include the point co in the domain of definition
of a function and also as a possible value of a complex function. This leads to the introduction of
the Riemann sphere, C = C U {oo}.

The matrix

A:<CCL Z>€C2X2 with ad —bc #0 ,

determines the Mobius transformation

az+b .

¢A(Z):m’ ZGC,

which is biholomorphic on the Riemann sphere C. We will show that

$aB = ¢a 0 PB

if A,B € C?>*? are two nonsingular matrices. We will also show that any biholomorphic map
o : C — C is a Mébius transformation, i.e., ¢ = ¢4 for some nonsingular A € C2x2,

If 21,290,253 € C are three distinct points and w1, we, w3 € C are also distinct, then there exists
a unique Mobius transformation ¢4 with

pa(zj) =w; for j=1,2,3.

Another remarkable geometric property of Mobius transformations: They map any circle and any
straight line onto a circle or a straight line.
Special Mobius transformation play some role in applications. The Cayley transform

Z—1
z+1

F(z) =

maps the open upper half-plane

H={z=x+iy : y>0}
bijectively onto the open unit disk D = D(0,1). The boundary

OH={z=2z : z€R}
is mapped onto dD \ {1}. If one notes that F'(co) = 1 then one obtains the bijection

F : OHU {cc} — 9D .

3.1 The Riemann Sphere

It is often useful to compactify the complex plane C by formally adding the point co. We use the
notation

C=CuU{c0}.

One can turn C into a topological space by using an identification (this is nothing but a map which
is 1 — 1 and onto) with the unit sphere in R3,

12



S = {(w1,z0,23) €R® : x4 23 +23=1}.

This identification can be established as follows: Let N = (0,0,1) € S denote the north pole of S
and let

z=xz+iyeC.

Draw the straight line in R3 from N to (z,y,0). The line intersects the unit sphere S in a unique
point, which we call II(z), the stereographic projection of z to S. The map IT maps C bijectively
onto S\ {N}, i.e., the map

[T 5 S\
H'{z% I1(2)

is bijective. As |z| — oo, one obtains that II(z) — N on S. It is therefore natural to extend II as
a mapping from C to S by defining

(o) = N = (0,0,1) .

In this way, one obtains a bijection

m:C— 9.

The unit sphere S is a metric space if we use the Euclidean distance in R? as distance between
points in S. We know, then, what it means that a sequence ¢, € S converges to ¢ € S. We know
what the open and the closed sets in S are etc. Using the map II we transform the concept of
convergence etc. (or the metric) to C. If the point oo is not involved, these concepts agree with
the standard concepts in C, but they are now extended in a meaningful way to C. The space C is
called the one—point compactification of C, or the Riemann sphere.

We mention that one can also consider C as a complex manifold by introducing local coordinates
near the point co € C. If one has done this, then the notion of holomorphy of a function f : C-C
makes sense. In practice, to discuss holomorphy when oo is involved, one uses the mappings z — 1/z
and w — 1/w to map oo to zero.

Holomorphy of functions where oo is involved:

We distinguish between three cases:

1) f(w) is complex valued in a neighborhood of w = cc.

2) f(wg) = oo for some wy € C.

3) f(oc0) = o0.

Case 1) Let us first define what it means that a complex—valued function f(w) is holomorphic
at w = co. Let Q2 C C denote an open set with co € 2 and let f:Q — C denote a map. Since {2
is an open set there exists ¢ > 0 so that 1 € Q for 0 < |2| < e. Define

| f(Q/z) for 0<|zl<e,
F(z)_{ f(o0) for z2=0.

Then, by definition, the function f(w) is holomorphic at w = oo if and only if the function F'(2) is
holomorphic at z = 0. If F'(z) is holomorphic at z = 0 then

e .
z) = Zajzj for |z| <e
=0

13



and

Here ap = F(0) = f(00).
Example 1: Let

f(w):m for |w| >3, f(oo)=1.

We have

1z 1
C1/z4+3 143z
The function F(z) is holomorphic at z = 0. Thus, by definition, f(w) is holomorphic at w = occ.

F(2)

1
for O<|z|<§ and F(0) = f(oo)=1.

Case 2) Holomorphy of a function f(w) with f(wg) = oo for some wy € C: Let 2 C C denote

an open set and let wy € Q. Let
fw)yeC for weQ\{w}
and let f(wp) = co. Assume that f(w) is continuous at wg. Then, for 0 < |w — wp| < €, we have
f(w) # 0 and set
F(w):{ 1/f(w)  for 0<|w—wp| <e
0 for w=wy

If F(w) is holomorphic at wq then, by definition, f(w) is holomorphic at wy.

Example 2: Let

flw)=——= for weC\{3}, f(3)=o.
We have

Fw)y=w—-3 for weC\{3}, F(3)=0.

Clearly, the function F'(w) is holomorphic at wg = 3. Thus, by definition, f(w) is holomorphic at
wo = 3.

Case 3) Holomorphy of a function f(w) with f(co) = oo: Let © C C denote an open set with
oo € 2 and let
flw)yeC for weQ\{oc}, [floo)=0c0.
Assume that f(w) is continuous at w = co. Then, for % < |w| < oo, we have f(w) # 0 and set

1
P& =57

If F(z) is holomorphic at zp = 0 then, by definition, f(w) is holomorphic at w = co.

for 0<|z|<e, F(0)=0.

Example 3: Let

14



n
flw) = Zajwj where n>1, a,#0.
j=0

Thus f(w) is a non—constant polynomial. Since |f(w)| — oo as |w| — oo we set f(oco) = co. We
have

1
f(1/z) = g <an+an_1z+...+agz”) #0 for 0<|z|<e

and
ZTZ

F(z)= for 0<|z|<e, F(0)=0.
ap + ap—12 + ...+ agz"

The function F'(z) is holomorphic at z = 0. Thus, by definition, the polynomial f(w) is holomorphic
at w = oo if one sets f(00) = 0.
A simple example is

Flw) = w? 41 for weC
W)= 00 for w = 00

One obtains that

f(l/z):{212+1 for ze€C, 2#0

00 for z =
and
1 2 for 0<|z] <1
F = = 22+1
(2) f(1/z) { 0 for z=0

Clearly, F'(z) is holomorphic at z = 0, thus f(w) is holomorphic at w = oo.

3.2 Linear Fractional Transformations

A linear fractional transformation is also called a Modbius transformation.
Let

a b
= A
A (C d>, det(A) # 0,
denote a nonsingular matrix in C?>*2. Then A determines the linear fractional transformation

az+b
Pl =

(If one would allow det(A) = 0 then the transformation ¢4(z) would be constant, which is an
uninteresting transformation.) Note that A and gA,q # 0, determine the same transformation,
A = @qa.

It will be convenient to consider ¢4 as a bijection of C onto itself. Then one obtains that P is
an automorphism of C.

Case 1: ¢=0. In this case d # 0 and a # 0 and

ad —bc#0 . (3.1)

15



¢A(z):gz+g.

The transformation ¢4 : C — C is 1 — 1 and onto. As Zp — 00, We have ¢ A(zn) — 00. Therefore,
we set ¢ 4(00) = oo and obtain a continuous bijection of C. If one considers C as a one-dimensional
complex manifold, then this bijection is holomorphic.

Case 2: ¢ # 0. In this case, if z9 = —d/c, then ¢ 4(2p) is not defined as a complex number. If
Zn — 20 = —d/c then ¢ 4(z,) — co. This holds since

a(—dfe) + b= —%(ad —be) £0

Therefore, we set

pa(—d/c) =0 . (3.2)

In this way, ¢4 is continuously extended to zp = —d/c. Also, if z, — oo, then

da(zn) — ajc.

Therefore, we set

pa(oc0) =ajc. (3.3)

(Note: If z € C then (az + b)/(cz + d) # a/c.) If one uses the equations (3.2) and (3.3) then
¢4 : C — C is defined as a continuous map, which is holomorphic.

We claim that, with the additional definitions, (3.2) and (3.3), the map ¢4 : C — C is a bijection
and its inverse is ¢ 4—1. This claim follows from the following important lemma.

=(22) 5-(3 1)

denote nonsingular matrices in C?*2? and let C' denote their product,

Lemma 3.1 Let

C:AB:<aa+b7 aﬁ—I—bé)

ca+dy cB+do
Then we have

¢c = QA = A0 Pp .
Proof: In all cases where the point oo is not involved we have

az+ B
yz+6

oB(2) =

and
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aw+b
cw+d
alaz + B) + b(yz + 0)
c(az + B) +d(vz +6)
(aa + by)z + aB + bo
(ca+dy)z+cB+ do
= éc(?)

This proves that

¢aB(z) = dao ¢p(2)

when oo is not involved. By continuous extension, the equation

dpap(z) = paodp(z) foral zeC

follows. ¢

3.3 The Automorphisms of the Riemann Sphere

Let M denote the group of all Mobius transformations ¢4(z) where A € C2*2, det(A) # 0. With
GL(2,C) one denotes the group of all nonsingular matrices in C2%2. The previous lemma says that
the map

. { GL(2,C) M

—
A S da(2) (3.4)

is a group homomorphism. Clearly, ® is onto.

Lemma 3.2 We have

M = Aut(C) ,

thus every automorphism of C is a Mdbius transformation.

Proof: Let f € Aut(C). a) Assume first that f(co) = oo. In this case, the restriction of f to C is
an automorphism of C. We have shown in Math 561 that
f(z)=az+b, a#0.

In particular, f € M.
b) Let f(oo) =b,b € C. Consider the Mdbius transformation

1
z—b

¢(2) =

and define g = ¢ o f. Since ¢ is an automorphism of C and g(00) = 00, we have g € M and then
f=¢togeM. o

Thus we have shown that
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® { GL(2,C) — Aut(C) (3.5)

A — ¢A(2)

is a group epimorphism. (A homomorphism, which is onto, is called an epimorphism.)
By definition, the kernel ker(®) of the epimorphism ® defined in (3.5) consists of all matrices

A € GL(2,C) for which the Mobius transformation ¢4(2) is the unit element of the group Aut(C),
ie., A€ ker(®) if and only if p4(z) = =. X
By a simple result of group theory, one obtains that Aut(C) is isomorphic to the quotient group
GL(2,C)/ker(®) .
It is not difficult to show that ¢ 4(z) = z if and only if A = al for some a € C,a # 0. Thus,

ker(®) ={al : a€C, a#0}.
If one identifies two matrices A, B € GL(2,C) if and only if A = ¢B for some g € C, then one

obtains the group GL(2,C)/ker(®). This group is isomorphic to Aut(C).
With

SL(2,C) ={A € GL(2,C) : det(A) =1}
one denotes the special linear group of all complex 2 x 2 matrices with determinant 1. Then

By - { SL(2,C) — Aut(C) (3.6)

A — (;5A(Z)

is an epimorphism and

ker(®s) ={I,—I} .
Therefore, Aut(C) is isomorphic to

SL(2,C)/{I,~1} .

3.4 Mobius Transformation are Determined by Three Point—Values

In this section let

g1=1, ¢@=0, g=o00.

Theorem 3.1 Let z1, 29, 23 denote three distinct point in C and let w1, Wwa, w3 also denote three
distinct point in C. There exists a unique Mdbius transformation ¢(z) with

d(zj) =w; for j=1,2,3.
Proof: 1. Existence of ¢: Define

with k=223 (3.7)
Z—z3 Z1 — 22

S(z) =k

It is easy to check that
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thus

Similarly, define

and note that

thus

Therefore, if we define

then
d(zj) =w; for j7=1,2,3.

Uniqueness of ¢: a) Assume that

az+b

®(z) = cz+d

has the fixed points ¢; for j = 1,2, 3.
We will prove that ® = id, i.e., ®(z) = z. First, obtain that 0 = ®(0) = b/d, thus b = 0. From
az
cz+d
and ®(oo0) = oo obtain that a # 0 and ¢ = 0. Thus ®(z) = az/d. The equation

d(z) =

a
1=9(1) = -
m="4
yields that a = d, thus ®(z) = z.
b) Let f(z) denote a Mobius transformation with three distinct fixed points 21, 22, z3. We will
prove that f = id. Let S(z) denote the Mdbius transformation (3.7); thus (3.8) holds. We set
P(z)=SofoS(z2).

From f(z;) = z; and S(z;) = ¢; obtain that

®(q;) = So f(zj) =5(%5) =¢q; for j—1,2,3.

Our previous argument then implies that ® = id. Therefore, f = id.
c) Assume that the Mdbius transformations ¢1(z) and ¢2(z) both satisfy the condition
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Set

and obtain that

flzj) =1 (wj) =2 for j=1,2.3.
Our previous argument yields that f = id, thus ¢; = ¢o. This proves uniqueness of the Md&bius
transformation ¢ satisfying

d(zj) =w; for j=1,2,3.

3.5 A Remarkable Geometric Property of Linear Fractional Transformations

Let C denote a circle or a straight line in the z—plane. We claim that, if ¢ 4(z) is any linear fractional
transformation, then the image of C under the transformation

z—=da(z) =w

is a circle or a straight line in the w—plane.
If ¢ # 0 then

az+b
cz+d
a(z+d/c)+b—ad/c
c(z+d/c)
a b—ad/c
+7

c cz+d

Therefore, every Mobius transformation is a composition of transformations of the form

1
z—=az, z—z+p06, z——,
z

and since the statement is easily shown for transformations z — az and z — 2z + 3, we consider
the transformation z — 1/z,

Z=T4+1Yy > - =w=u-+10.
z

3.5.1 Analytical Description of Circles
The circle C = C(zp,7) centered at zp with radius » > 0 has the equation

|Z_ZO|2 :T2 )

or,
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z2Z—zzZg— 220+ A=0
with
A:ZOZ()—’I“2, ’I“QZZ(]ZQ—A.
One obtains:

Lemma 3.3 Let zg € C and let A € R. Then the equation
2Z—2Z20—zZz0+ A =0
describes a circle if and only if

2020 — A >0. (310)

Assuming (3.10) to hold, the circle is centered at zy and has radius r = \/zpZg — A. The circle
passes through the point z = 0 if and only if A = 0.

3.5.2 Circles under Reciprocation

Let C = C(z0,7) denote the circle centered at zg with radius r > 0. Set A = zpZo — 2.
Case 1: The circle does not pass through z = 0, thus A # 0. We apply the transformation

to the points of C. The points w € T'(C) satisfy

1 _
LB,y
ww w w
or,
1—wzy — wzg + Aww =0,
or,
_ 20 _zZo 1
—w——w—+—=0.
ww wA wA—I—A

The last equation has the form

with
20 1
=2 p—_
ey A
We have
. _ w% 1
Wowo — B = A2 A
= 72(2020 — A)
>
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Using the previous lemma, we obtain that 7'(C) is the circle centered at

20
wo = —
with radius
,
R=—
Al

Case 2: The circle passes through z =0, i.e., A = 0. We apply the transformation

1 20 20
7,—*—7:0,
ww w w
or,
1—wzyg —wzyg=0.
If

w=zx+1y, zo=a+1ib,

(with real x,y, a,b) then the above equation reads

1—(z—iy)(a—1ib) — (x+iy)(a+ib) =0,

or,

1—2az+2by=0.

We obtain that T'(C \ {0}) is a straight line. If we set T'(0) = oo, then T(C) is a straight line
together with w = oco.

Summary: If C is a circle passing through the origin z = 0 then the map z — 1/z maps C\ {0}
to a straight line and maps z = 0 to co.
3.5.3 Straight Lines under Reciprocation
Let a, 8,7 be real numbers, (a, ) # (0,0). Then the equation

ar+pPy+v=0
describes a straight line L.

Case 1: The line £ does not pass through z = 0, i.e., v # 0. We rewrite the above equation as

1—1—890—1—@3/:0,
g Y
or,

1—2ax+2by=0
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with

Loa=% =D

Y Y
We can also write the equation for £ as
1—(z—iy)(a—1b) — (x+iy)(a+ib) =0 .
Setting

Zoza-i-ib

we obtain that the equation for £ is

1—2z2g—2z20=0 with z=z+1y.

It is then clear that T'(L) consists of the points w with

or,

ww —wzg —wzg =0 .

Thus, T'(L£) is a circle, centered at zp, that passes through w = 0. The radius of the circle is r = |z,
of course.

Case 2: The line £ passes through z = 0, i.e., v = 0. We could proceed as above, but here it
is simpler to use the parametric description

z = tew, teR,
of L. The points of T'(L) are
L i
w= e for t#0.

If we set 1/0 = oo and 1/00 = 0 then we obtain that T'(L£) \ {oo} is another straight line through
the origin.

3.6 Example: The Cayley Transform in the Complex Plane

Consider the Mobius transforms

zZ—1 1 —
F(z)—z+i—q§A(z) where A_(l z> ,
and
1+ w )
G(w)—zl_w—qﬁB(w) where B_<—1 1> :

The map F is called the Cayley transform.
We have det(A) = 2i and
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1 i 1
Al =~ =B
2¢<—1 1> 2

We note that B is a scalar multiple of A~! and, therefore, G is the inverse of F if F and G are
considered as functions on C. Here we use the extensions

F(—i) =00, F(0)=1, G(l1)=00, G(c0)=—i.
Let
H={z=z+iy : y>0}
denote the open upper half-plane and recall that D denotes the open unit disk.

Lemma 3.4 The Cayley transform

zZ—1

Fz) = z+1

maps the open upper half-plane H onto the open unit disk . The map

4w
7
1—w

is its back transform. The boundary of H is the real line,

G(w) =

H={z=2z : zeR}.
The map F maps OH = R bijectively onto 0D \ {1}.

Proof: If z € H then the distance of z from ¢ is strictly smaller than the distance of z from —i.
Therefore, |F(z)| < 1 for z € H. Similarly, if z = z is real then |F(z)| = 1, and if z = z + iy
with y < 0 then |F(z)| > 1. Since F(c0) = 1 and F(—i) = oo and since F : C — C is a bijection,
it follows that F : H — D is a bijection. Since G inverts F as a function from C to C, the
transformation G also inverts F': H — ID. The behavior of F' and G on the boundaries of H and D
is then clear. ¢

Remark: Let H = H U 0H denote the closed upper half-plane. We have seen that F' maps H
bijectively onto D\ {1} and the inverse map is G. It is clear that one cannot obtain a continuous
bijection between H and D since D is compact and H is not compact. Any continuous image of D
is also compact.

However, if we use the topology of @, then H U {oo} is a compact compact subset of C and

F:HU{cc} =D

is an isomorphism between two compact sets.
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3.7 The Cayley Transform of a Matrix

We have shown that

zZ—1

FiC\{=i} 2 C\{1}, F()=2 = (-i+i)",
is 1-1 and onto with inverse
1
G:C\ {1} = C\ {—i}, G(w)zilfz .
We have also shown that
F(R)=0D\ {1} . (3.11)

Definition: Let A € C"*™ and assume that —i ¢ o0(A). Then

F(A) = (A—il)(A+il)™
is called the Cayley transform of A.
In analogy to (3.11) we have the following result:

Lemma 3.5 If A= A" then V := F(A) is a unitary matriz, i.e., V'V =1. Also, V = F(A) # I.
Proof: We have

V= (A—il) Y A+il) = (A+il)(A—il) !,
thus

VYV =(A+i)(A+il) =1
Suppose that

V=FA) =A-i)(A+i)" 1 =1.

Then one obtains that

A—il=A+1il,
a contradiction. ¢

Remark 1: On unitary matrices. For u,v € C" denote the Euclidean inner product by

(u,v)y = Zﬂjvj
j=1
and let

Jul = v/ (u, u)

denote the Euclidian norm. For any B € C™*™ it holds that
(Bu,v) = (u, B*v) .
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Therefore, if V' is unitary then

Vul? = (Vu, Vu) = (u, VVu) = u* .
One obtains that
|[Vu| = |u| forall weC”
if V is unitary. In particular, |V| = 1.
Remark 2: The Cayley transform
V=F(A) =(A—il)(A+il)™!

of an operator A plays a role in functional analysis. One can use it to transform even unbounded
Hermitian operators A to unitary operators V = F'(A). Unitary operators are obviously bounded,
and it is often easier to study them. Then the back transform

V=FA) - A=il+V)I-V)!

can give information about the unbounded Hermitian operator A. This is used to study spectral
theory of unbounded operators.
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4 The Riemann Mapping Theorem

Summary: If U C C is an open simply connected set and U # C, then there exists a biholomorphic
map f : U — D = D(0,1). If P € U is any point then one can require that f(P) = 0 and
f'(P) > 0. These conditions make the biholomorphic map f : U — D unique. This is Riemann’s
mapping theorem.

Our proof uses the Arzela—Ascoli theorem of real analysis, which leads to Montel’s theorem of
complex analysis.

4.1 Review of Aut(D)

Recall that D = D(0,1) denotes the open unit disk and recall that we know the group Aut(D):
First, if |¢| < 1 then the M&bius transformation

zZ—cC

_zzc 1

is an automorphism of D with inverse ¢_.. Second, if |a| = 1 then the rotation
Ry(z) =az, |z|<1,

is an automorphism of D with inverse Rs. Third, if f € Aut(D) is arbitrary and b = f(0) then

f=0¢-b0Ra
for some a with || = 1. In particular, if f € Aut(D) and f(0) = 0, then f is a rotation.

4.2 Statement and Outline of the Proof

The Riemann mapping theorem is the following remarkable result:

Theorem 4.1 Let U C C be open and simply connected and let U # C. Then there exists a
biholomorphic map f: U — D.

A sharper result, containing a uniqueness statement, is formulated in Theorem 4.2. If Theorem
4.1 is known, then we can prove Theorem 4.2 rather easily using our knowledge of Aut(D).

Theorem 4.2 Let U C C be open and simply connected and let U # C. Let P € U be any fixed
point in U. Then there exists a unique biholomorphic map f : U — D satisfying

f(Py=0, f(P)>0. (4.1)

Proof: Existence of f: By Theorem 4.1 there exists a biholomorphic F' : U — D. Set ¢ = F(P)
and recall that
z—c

¢C(z):1—éz’ zeD,

is an automorphism of D with ¢.(c) = 0. Set

g=¢coF .
Then g : U — D is biholomorphic and g(P) = ¢.(F(P)) = ¢c(c) = 0,¢'(P) # 0. Write
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¢ (P)=re" where >0 and yeR,

and set

a=e 7.

Define f = R, o g, thus

f(z) =ag(z), [f(2)=ad().
We have f(P) = ag(P) =0 and

f'(P)=ad(P)=aar=r>0.

The function

f=Ryop.0oF:U—-D
is biholomorphic and satisfies (4.1).

Uniqueness of f: Suppose that f; and fo satisfy the conditions of the theorem and set
h=fiofy'. Then h € Aut(D) and h(0) = 0. Tt follows that h is a rotation, h(z) = az,|a| = 1.

From

ho fo=fi, fi(P)=fo(P)=0,

we obtain that

(0)f3(P) = fi(P) .
Since f}(P) >0 and |a| = 1 it follows that A’'(0) = a = 1, yielding that f; = fa. ©

Outline of the Proof of Theorem 4.1:
a) Fix any point P € U and let the set F consist of all functions f : U — D that have the
following properties:

1) f e H(U);
2) fis1—1;
3) f(P)=0.

We will prove by an explicit construction that F is not empty.
b) If f € F then |f'(P)| > 0 since, by assumption, f is 1 — 1. Using Cauchy’s inequality, it is
easy to show that
s = sup{|f'(P)| : f e F} (42)

is finite.
c¢) Using Montel’s theorem (see Section 4.4) one obtains the existence of a function f € H(U)
with

fU)cD, f(P)=0, s=|[f(P).

The function f is constructed as the locally uniform limit of a sequence of functions in F.
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d) Using Hurwitz’s theorem, it follows that the function f obtained in c¢) is 1 — 1. Therefore,
f € F. In other words, the supremum defining the number s in (4.2) is in fact a maximum.

e) An argument using the automorphisms of D shows that f maps U onto D. If f would not
be onto, then one could construct a map g € F with |¢/(P)| > |f'(P)| = s, in contradiction to the
definition of s.

4.3 The Theorem of Arzela—Ascoli

The Theorem of Arzela—Ascoli is an important result of real analysis. Montel’s Theorem, which we
consider in the next section, is a complex version of the Theorem of Arzela—Ascoli.

Let 2 C R® be a compact set. With C'(2) we denote the linear space of all continuous functions
u:Q — R. Let

[uloe = max [u(x)

denote the maximum norm of u € C'(£2). We know that C(Q) with | - |« is a Banach space.
We will need the following version of the Arzela—Ascoli Theorem.

Theorem 4.3 Let Q be a compact subset of R®. Let u, € C() denote a sequence of functions
with the following two properties:
1) For every € > 0 there exists a § > 0 so that for all n € N:

‘un(m)_un(y” <e Zf ‘l’-y’ <57 ﬂj‘,yGQ .

(1t is important that & does not depend on n. This property is called equicontinuity of the sequence

2) There exists a constant C' > 0 with

[unloo < C forall neN.
This property is called uniform boundedness of the sequence u,,.
property q
Under these assumptions, there exists a subsequence uy,; and a function u € C(Q2) with

[Un; — Ulooc =0 as nj —o0.

Proof: 1. Using a diagonal sequence argument, we will show that the sequence u, has a subse-
quence uj;, which is a Cauchy sequence in the Banach space (C (Q),]- ]oo)

2. A set F. C Q is called an e—net for Q if for every y € Q there exists z € F, with |z — y| < e.
Since €2 is bounded, it is easy to show that for every € > 0 there exists a finite e—net for €). To see
this, cover the set  with finitely many boxes of diameter ¢ and, if a box has an intersection with
), choose one point in the intersection as an element in the e—net.

For every n € N let I/, denote a finite %fnet for ©2 and let

We enumerate the set F' by first listing the points in F, then the points in F /5, then the points
in Fy/3 ete:

F:{l‘l,l‘Q,...} .
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We will need the following property of F', which is more special than density of F'in : If § > 0 is
given, then there is a finite integer K = K (J) so that the points
zi,...,xx € F
form a d-net for . This is clear from the construction of F.
3. In the following, N1, Ny etc. denote infinite subsets of N. Since wu,(x1) is bounded, there
exists a set N; C N so that
un(x1), n €Ny,

is a convergent sequence of real numbers,

un(xl) — ay, n €Ny .

Since uy(x2),n € Ny, is bounded, there is Ny C N; so that

un(z2), n €Ny,

is a convergent sequence of real numbers,

Up(x2) = ag, n € Ny .

Repeat this construction inductively. For every k € N obtain a set N with

N, CN,_;C...CcNyCN
so that

un(xg), m€Ng,

is a convergent sequence of real numbers,

un () = ag, n € N .

We now use a diagonal sequence argument: Let

N = {ngk) < n;k) <...}

and consider the diagonal sequence

(k)

The diagonal sequence n;_":

N; n(ll) ngl) n:(gl)

Ny n§2) n(22) néQ)
N3 ng3) nég) ngS)

Ny @ cee eee e nff)
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4. We claim that

uj, (xy) = a, as jp — 00,

for every fixed x,, € F'. This is clear since the tail of the sequence

N<je<...<ju<juy1<...

is a subsequence of N,, and

up(xy) > a, as n—o0, neN,.
To summarize, we have shown that the sequence u;, (z,) (where j; < jg < j3 < ...) converges for
every x, € F as ji — oco. In particular, given any x, € F' and any € > 0 there exists N(z,,e) with
1
[, () — wj,(x,)] < 3¢ for k,1> N(x,,¢) .

So far, we have only used that the sequence of functions u,(z) is bounded for every x € Q.
5. We now show that the sequence of functions u;, (x) is a Cauchy sequence in C(Q2) w.r.t. |- |-
Let € > 0 be given. By assumption, there exists § = d(¢) > 0 (independent of n) with

1
|un(az)—un(y)|<§8 if [x—yl<d (z,y€).

In the following, 6 > 0 is chosen so that the above estimate holds. If y € Q and |y — z,| < § and
k,1 > N(z,,¢) then we have

g () —u (W) < gy () = wgy (@0)| + g, (20) = wgy (@0)] + ug, (20) — ugy (y)]
1 1 1
< Z - -
< 3 €+ 3 €+ 3 €
= €.
If € > 0 is given, then there are finitely many points x1,...,xx € F so that for every y € ) there

exists z, with 1 <v < K and |y — z,| < d. If we set

N(e) = max N(z,,¢)

1<v<K

then we have for k,l > N(e):

Hl;iX |ujk (y) — Uy, (y)’ <e.

This proves the theorem. ¢
Extension: It is clear that the theorem generalizes to sequences of functions f, : Q@ — R¥ for
any finite k.

4.4 Montel’s Theorem

Montel’s theorem is a result about families of functions f € H(U) which are uniformly bounded on
compact subsets of U.
We will use the following notation: If K C C is a compact set and g € C(K), then
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lg|xk = max{|g(2)| : z € K}

denotes the maximum norm of g.
We recall:

Theorem 4.4 (Morera) Let U C C denote an open set and let f € C(U). If

/Ff(z) dz =0

for every closed triangle I' in U then f is holomorphic on U.

Morera’s Theorem is often used as follows: Let f,, € H(U) and let f € C(U). If |f,, — flk — 0
as n — oo for every compact subset K of U, then f € H(U).

Theorem 4.5 (Montel) Let U C C denote an open set and let F denote a set of functions f €
H(U), i.e., F C H(U). Assume that for every compact subset K of U there exists a constant Ck
with

|If(2)| <Ck forall z€ K and  foral feF.

Then, if fn € F is a sequence, there exists a subsequence fn; and a function f € H(U) so that fy,
converges locally uniformly to f. (The limit function f may or may not belong to the set F.)

We will only need the following simpler version of the theorem.

Theorem 4.6 (Montel’s theorem for a sequence, simple version) Let U C C be an open set and
let f,, € H(U) be a bounded sequence, i.e., there exists a constant M with

|fn(2)] <M forall z€U and  forall neN.

Then there exists a function f € H(U) and a subsequence fn; of fn with fy,, — f locally uniformly
in U. This means: If K is any compact subset of U and if € > 0, then there exists an integer
J(K,e) with

max |fn,(2) — f(2)| <e for j=>J(K,e).
zeK

Essentially, Montel’s theorem follows from the Cauchy inequalities, Morera’s theorem and the
Arzela—Ascoli theorem. We now give a detailed proof. See Figure 4.1 for sets referred to in the
proof.

1. First, let K be any compact subset of U. We assume that U¢ = C\U is not empty. (If U = C
then every f, is constant and the claim follows directly from the Bolzano—Weierstrass Theorem.
The Bolzano—Weierstrass Theorem says that every bounded sequence in the finite dimensional space
R* has a convergent subsequence.)

Set

d := inf min |z — w|
zeUcweK

= min min |z —w]| .
zeUcweK
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Figure 4.1: Sets in the proof of Montel’s theorem

(Here the infimum equals the minimum since U¢ is closed, and large z € U€ play no role in
determining 6.) We have § > 0.
2. We want to show that the sequence f,, is equicontinuous on K. For z € C let

dist(z, K) = min |z — w| .
wek

Define

L={z€C : dist(z,K) <d/4} .
Clearly, K C L C U. If v € L then D(v,d/2) C U. By Cauchy’s inequality we have for all v € L:

/ M
|fa(v)] < 52 =G

If z,w € K and |z — w| < /4 then the line segment

yt)=tz+(1—-t)w, 0<t<1,
lies in L since |y(t) — w| < §/4. We then have for z,w € K with |z —w| < §/4:

fa(2) = fu(w) = fu(y(1)) = fu((0))
_ /f
= / fL(v(@) dt (z — w)

Therefore,

|fn(z)_fn(w)‘§01|z_w| for 37WEK if |Z_w|§

e

It is clear that this estimate implies equicontinuity of the sequence f, on K. Thus we can apply
the Arzela—Ascoli Theorem to the sequence f, on any compact subset K of U.
3. Given K C U as above, there exists a subsequence f,, and a function f € C(K) with

maxgek | fn; () — f(z)] = 0.
4. We now choose a sequence of compact sets K, in U as follows. For v =1,2,... let
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K, = {z eU : dist(z,U°) > 1/1/} N D(0,v) .

We may assume that K; is not empty. It is clear that

KicKyc...cU and U,K,=U.

(Let z € U and let ¢ := dist(z,U¢). There exists v € N with z € D(0,v) and € > 1/v; thus z € K,,.)
Furthermore, if K is any compact subset of U then there exists a sufficiently large v with

KCK,.

The sequence f,, has a subsequence f,,,n € Nj, which converges uniformly on K to some f € C(K7).
Then consider the sequence f,,n € Nj, on Ko D Kj. There exists a subsequence f,,n € Ny C Ny,
converging uniformly to some g € C(K3). However, g equals f on Kj, and we may denote g by
f. We repeat the argument and obtain: For every v there exists N, C N,_1 so that f,,n € N,
converges uniformly on K, to f € C(K,). Since

UK, =U
this process defines a continuous function f on U.
5. Let
N = {ngk),ngk),ngk), ...} where ngk) < ngk) < n:())k) <...
and let

je=n® k=123

In this way we obtain the subsequence

Fis k=1,23,...

of the sequence f,,. A tail of the sequence

fin k=1,2,3,...

is a subsequence of f,,n € N, for every fixed v. Therefore, for every fixed v, the subsequence f;,
converges uniformly on K, to f.

6. Finally, if K is an arbitrary compact subset of U then K C K, for some large v. Therefore,
fj, converges uniformly on K to f. The limit function f is holomorphic on U by Morera’s theorem.
o

4.5 Auxiliary Results on Logarithms and Square Roots

Lemma 4.1 Let U C C be open and simply connected; let f € H(U). If f(z) # 0 for all z € U
then there exists a function h € H(U) with

"E) = f(2), zeU.
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Proof: Motivation: Suppose that e?) = f(z). Then we have

f'(z) = W(2)f(2) ,

thus

W(z) = f(2)/f(2) .
This motivates to construct h(z) as a function with b’ = f/f.
Fix zg € U and let I', denote a curve in U from zg to z. Fix ¢ € C with

f(z0) = €°
and define

=c f'w) w, 2z
h(z) = +sz(w)d’ eU.

Then we have h/(z) = f'(z)/f(z) and e"*0) = e¢ = f(z). Consider the function

9(2) = f(2)e ") zeU .
We have

g(z0) =1

and

J(z) = F2)e® = fz)e O p(z)
= () - F ()
=0

It follows that g(z) = 1, proving the lemma. ©

Remark: Since ¢"?) = f(z) we may consider the function h(z) as a complex logarithm of f(z),

h(z) =log(f(2)) ,

where log(w) is any inverse of the exponential function defined on the range of f(z).

Lemma 4.2 Let U C C be open and simply connected; let f € H(U). If f(z) # 0 for all z € U
then there exists a function g € H(U) with

fz)=(g9(2))?, =z€U.

Proof: Using the previous lemma, we can write

and define
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D(b,r)

Figure 4.2: The disks D(4b,r) and the points +¢

4.6 Construction of a Map in F

Lemma 4.3 Let U C C be open and simply connected. Further, let U # C. Let P € U be arbitrary,
but fized. Then there exists f € H(U) with f(U) C D, f is 1-1, and f(P) = 0.

Proof: If U is bounded then f(z) can be taken as a function of the form f(z) = az +b. We treat
this simple case first in Case a. In Case b we treat the general case.

Case a) Let U be bounded. Choose R > 0 so that U C D(P, R) and set

fley =225

Clearly, fis 1 —1 and f(P) =0. Also, if z € U C D(P, R) then |z — P| < R, thus |f(2)| < 1. This
shows that f maps U into D.

Case b) Let U be an arbitrary open, simply connected subset of C, but U # C. Let Q € C\U
and define

p(2)=2-Q, z€U.
Then ¢ € H(U) is 1 — 1 and ¢(z) # 0 for all z € U. By Lemma 4.2 there exists h € H(U) with

R (2) = ¢(2), z€U.
We will show that there exists an open disk D(—b, ) which is contained in the complement of h(U):
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D(=b,7) C ((C\h(U)) :
Once this is done, the construction of f will be easy.

Claim: If ¢ € h(U),q # 0, then —q ¢ h(U).
Proof: Suppose that ¢ # 0,q € h(U), —q € h(U). There exists z1, 29 € U with

h(z1) =q, h(z)=-q z#2z.
Obtain that

¢(z1) = h*(21) = ¢° = h*(22) = ¢(22) ,
which contradicts that ¢ is 1-1.
Choose any b € h(U),b # 0. Since h(U) is open, there exists 0 < r < |b| with D(b,r) C h(U).
If g € D(b,r) then g € h(U),q # 0, thus —q ¢ h(U). If —q € D(—b,r) then g € D(b,r),q # 0, thus
—q ¢ h(U).

The above argument implies that

D(~b,7) C (c \ h(U)) .

In other words,

|h(z) +b] >r foral zeU.
Define

fi(z) = ) D) 2eU.

Then f1 € H{U) is 1 — 1 and |fi(z)| € 3 < 1. Set a:= f1(P) and recall that

w—a
fa(w) = 1—-aw

is an automorphisms of D with ¢,(a) = 0 . The function f = ¢, o f1 satisfies f(P) = 0. To
summarize, we have constructed a function f € H(U) which is 1 — 1 and satisfies f(U) C D and

f(P)=0. o

4.7 A Bound of |f/(P)| for all f € F

Let f € F,ie, f € HU),f(U) ¢ D,f(P) = 0, and f is one-to-one. There is r > 0 with
D(P,r) CU. Let y(t) = P+ re' for 0 <t < 27. We know that for z € D(P,r),

f(z) = 21m/ J(w) dw .
g

w—z

Differentiation yields that

oy L f(w)
f(z)_Zm'[Y(w—z)de'

For z = P one obtains the Cauchy inequality
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127 |f(P +rei)
el < o [T
1
< —-.
oo

Here we have used the bound |f(w)| < 1, which follows from f(U) C D.
We have shown:

Lemma 4.4 The number s defined by

s=sup{|f(P)| : feF}
satisfies 0 < s < % if D(P,r) C U.

4.8 Application of the Theorems of Montel and Hurwitz
There exists a sequence of functions f,, € F with

1
s>|fi(P)>s——, n=12,...
n

Since f,(U) C D the functions f, are uniformly bounded on U. By Montel’s theorem (simple
version), there exists a subsequence f,; and a function f € H(U) so that f,, converges locally
uniformly to f on U. In particular, f(P) = 0 and |f'(P)| = s. Also, |f(z)| < 1forall z € U. If
|f(2)| =1 for some z € U then f is constant, contradicting |f'(P)| = s > 0. Therefore, f(U) C D.
(Another argument showing that f(U) C D: The set f(U) is open unless f is constant.)

We now claim that f is 1 — 1. To prove this we will use Hurwitz Theorem:

Theorem 4.7 (Hurwitz) Let V. C C be open and connected. Let hj,h € H(V) and assume that
the sequence hj(z) converges locally uniformly to h(z) in V. If

hj(z) #0 forall z€V and forall j=1,2,...
then either h(z) =0 or

hz)#0 forall z€V .

Proof: We first recall that locally uniform convergence in V' of the sequence h;(z) to h(z) implies
locally uniform convergence in V' of h;(2) to h'(2).
Suppose that P € V is an isolated zero of h(z). There exists € > 0 so that

h(z) #0 for 0<|z—P|<e.
If ' denotes the boundary curve of the disk D(P,¢) then the positive integer
1w
2rt Jr h(z)
is the order of the zero P of h(z). On the other hand,

n:(z
1/ ]()dz:O forall j=1,2,...
2mi Jr hj(2)
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One obtains a contradiction as j — oco. ¢

Recall that f,,(z) denotes a sequence of 1-1 functions with

fn € H(U)a fn(U) C D, fn(P) =0

and

1
s> |fuP)zs—— n=12...
n

By Montel’s Theorem there exists a subsequence f,,; and f € H(U) so that f, converges locally
uniformly to f in U. One obtains that |f'(P)| = s > 0.
We claim that f is 1-1 on U. Suppose not. Then there exist two points z1, 20 € U with

f(z1) = f(22), =z1# 2.

Consider the sequence of functions

hj(2) = fn;(2) = fo;(22), 2 €V =U\{z}.
The functions h; € H(V') converge locally uniformly on V to f(z)— f(22). Also, the functions h;(z)
have no zero in V since they are 1-1 on U. By Hurwitz’s theorem, the limit function f(z) — f(z2)
either is identically zero on V' or has no zero in V. Since f(z) is not constant, we conclude that
f(2) — f(z2) has no zero in V, contradicting the assumption f(z1) = f(z2).
4.9 Proof That f is Onto

We have shown that there exists a function f € F with

s=1|f(P)|>|J(P)] forall geF, s>0. (4.3)
By definition of the set F we have

feHWU), fU)cD, fisoneto-one, f(P)=0.

We claim that if f € F satisfies (4.3) then f : U — D is onto. This claim then completes the
proof of the Riemann Mapping Theorem.
We will show:

Lemma 4.5 Let f € F and assume that f : U — D 4s not onto D. Then we can construct g € F
with

9" (P) > |f'(P)] -

Proof: With S : D — D we denote the squaring function, i.e., S(v) = v? v € D. Also, we recall
that for |c¢| < 1 the function
w—c

= 1
Belw) = 0 ful <1,

is an automorphism of D. Since f : U — D is not onto, we can choose

acD)\ f(U)
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and consider

¢(z) = ¢ao [f(z)
f(z) —a
1-af(z)’
Since a ¢ f(U) we have ¢(z) # 0 for all z € U. Also, ¢ € H(U) is 1 — 1 and ¢(U) C D. By Lemma
4.2 there exists a function ¢ € H(U) which is 1 — 1 and satisfies

zeU.

d(2) =9()P(z) =So(z) forall zeU, {U)CD.
Define

9(2) = dyp)(¥(2)), z€U.
Then g € H(U), gis 1 — 1, g(U) C D, and g(P) = 0. Therefore, g € F. Also, if we abbreviate
b= —(P), then g = ¢_y o), thus 1 = ¢ 0 g.

We have
f = (Zs—ao(b
= ¢—a050¢
= ¢q0Sogpoyg
We now set
h:=¢_4,0S50¢.

Then the above equation for f says that

We have h € H(D), h(D) C D, and

0= f(P)=h(g(P)) = h(0) .
By Schwarz Lemma, we conclude that

|n(0)] <1

unless h is a rotation, h = R,. Recall that h = ¢_, 0 .S o ¢p. If h would be a rotation, h = Rg,,
then the squaring function S would be an automorphism of D, which is obviously not the case. It
follows that |h/(0)| < 1. Since

we have

thus

[F'(P)l < 1d'(P)] -

This proves the lemma and completes the proof of Riemann’s Mapping Theorem. ©.
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Im 2

o 1D
O\<P - \yl e -

Figure 4.3: Biholomorphic mapping from upper half-plane onto unit disk

4.10 Examples of Biholomorphic Mappings

Recall that D denotes the open unit disk and H denotes the open upper half—plane.

Example 1: Let P = a + ib where a,b € R,b > 0; thus P is a point in H. Then P = a — ib is
the reflection of P w.r.t. the real axis. The function

z— P _
= — P
9(z)=——5 =#P,
maps H onto D, maps the real line onto D \ {1}, and maps C \ H onto C \ D. In particular, g
is a biholomorphic mapping from H onto D with g(P) = 0. If you want to find a biholomorphic

mapping f : H — D with f(P) =0 and f'(P) > 0 then set
f(z) = e’g(2)
and determine 0 so that f'(P) > 0.

Example 2: Let H denote an open half-plane in C. The boundary of H is a straight line,
L=0H. Let P € H and let @ € H¢ denote the reflection of P w.r.t. L. Then

z—P

A EHa
z—Q :

9(2) =

maps H biholomorphically onto D.
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5 An Introduction to Schwarz—Christoffel Formulas

Schwarz—Christoffel formulas give biholomorphic maps w = w(z) from the open upper half-plane
H onto regions enclosed by polygons. The maps w(z) can be extended continuously to the real axis,
i.e., to the boundary of H. The real axis (and the point z = 00) is then mapped to the polygon.

The maps w(z) are given in terms of integrals. Similar integrals also appear in the theory of
elliptic functions.

We treat an example of a Schwarz—Christoffel map, which is Example 8, p. 350, from [Hahn,
Epstein]. A more comprehensive treatment of Schwarz—Christoffel maps is given in [Hille] and in
[Stein, Sharkarchi].

A clear understanding of general power functions z — z® is helpful and will be reviewed first.

5.1 General Power Functions

Let

Uy=C\{z=1iy : y <0}

denote a slit plane. Precisely, Uy is the complex plane C with the negative imaginary axis, including
z = 0, removed. On Uy we define the logarithm logy(z) as a holomorphic function as follows: If
z € Up then there is a unique argument

3

argg(z) =60 with — g <0< 5

so that

5 = |z|ei0 _ eln|z\+i9 )

We then set

logy(z) =In|z|+10, zeUy,

and call logy(z) the principle branch of the logarithm on Up. This function log(z) is holomorphic
on Uy and extends the natural logarithm Inr = ff dx/x, defined for positive real numbers 7, to the
slit plane Uy.

General Powers on Uj. Let z € Uy and let a € C. We then set

i 3T
h —— <0< —. 1
where 5 <0< 5 (5.1)

If « is real and z is real and positive then the definition of 2% by (5.1) agrees with the usual
definition of z* in real analysis and z* > 0. For fixed a € R, the function z — 2* given in (5.1)
extends the real analysis function x — z%, defined for real positive x, to the slit plane Uy and this
function z — z® is holomorphic on Uy. We call the function given in (5.1) the principle branch of
the power function z% on Uj.

SO — o logg(2) e ln\z|eza9

Lemma 5.1 Let z € Uy and let « € R. Then we have
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Proof: From

2 = |2]e®® = el it
we obtain
20— eolnlz|giad
thus
[2%] = eolnlzl — |2]* .
o

The following simple examples show that one has to be careful when computing powers of

powf;Séince —1 = €™ we have
(~1)D = (M) e = =T
2) Therefore,
((_1)(—1)>2/3 (723 = 2l
3) On the other hand
(_1)72/3 — o—2mi/3
This shows that
(D)7 a2

We see that, in general,

Find the error:
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5.2 An Example of a Schwarz—Christoffel Map

The following example is Example 8, p. 350, from [Hahn, Epstein]. It gives a good introduction to
Schwarz—Christoffel formulas.
For real 8 let Lg denote the half-line

Lg={z=B+1iy : y<0}
and let

V:=C\{L1ULoUL:},

i.e., V is the plane C with three half-lines removed.
Consider the holomorphic function g : V' — C given by

Q(C) — 6271'7,'/3 . (C + 1)75/6 i <71/2 . (C o 1)72/3’ C cVv.

19(¢)]

Figure 5.1: [g(¢)| = [¢ + 1|75/6|¢| 721 — ¢| 7>/

Figure 5.1 shows a rough graph of the function

19(O)| = ¢+ 1|76 ¢ ¢ — 1723

for real values of (.

The domain of definition of g is the plane C with three half-lines removed. By removing the
three half-lines, we can use the principle branches of the power functions on Uy to evaluate the
factors of g(¢). It is then clear that g € H(V).

For the following, note that the domain V' is simply connected. If z € V' then let I', denote a
curve in V from 0 to z and set

w(z) = [ gfc)dc.
Since the integral does not depend on the choice of the curve I',, but only depends on z, we write

IS

(Curve-independence of the integral holds though the starting point of I',, the point zg = 0, lies
on the boundary of V, but does not lie inside V. Note, however, that the singularity ¢~1/2 of 9(¢)
at ¢ = 0 is integrable.) Note that the function w(z) is holomorphic on V' and continuous on
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Vu{-1,0,1}.
Here it is important that that the exponents

) 1 2
6’ 2’ 3
of the factors of g(¢) are all strictly larger than —1.

We will now discuss the function w(z) for z on the real axis. We note that the singularities of
the function g({) are integrable and that |g(¢)| decays like |¢|2 as |¢| — oo. Decay like the power
|¢|~2 occurs since

5 1 2
—+-+-=2. 5.2
6+2+3 (5:2)

Considering the arguments of the factors of g({), we have for real (:

2mi/3 for ¢>1

e
B 1 for 0<(<1
g(C) - ‘g(C)| e—7ri/2 - — for —1< C <0 (53)
e2mi/3 for (< -1
To obtain (5.3) for 0 < ¢ < 1 note that ( +1 >0 and ¢ > 0, but ¢ — 1 < 0. Therefore,
(—1=[C—1]e"™ and ((—1)"*F=|¢—1]e ™/,
For —1 < ¢ < 0 the equation (5.3) follows similarly. To obtain (5.3) for ¢ < —1 note that
_jemi/6 _ —mi(5+3) _ o2mi/3
since (see (5.2))
L5225
2 6 3
We now consider the straight lines I'g,...,T's on the real axis of the z—plane (see Figure 5.2) and
the image of I'; under the map z — w(z) = [; g(¢) d¢.
Im 2
Lo Iy Iy I's
T—1 0 T1 Rez

Figure 5.2: Path of integration for g(()

We start the consideration by determining w(z) for z € I'y. Note that g(z) = |g(2)| for z € T's.
When z moves from z = 0 to z = 1 along I', then the point w(z) moves from w(0) = 0 to the finite

positive value
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1
w(1) = /0 19(0)] d¢

along the positive real axis.
Next consider w(z) for z € I'; and note that g(z) = —i|g(2)| for z € I'y. We have

0 0
we) == [ 9©dc =i [ lo(@ld¢ for ~1<z<0.

Therefore, if z moves from z = 0 to z = —1 along the real axis, then w(z) moves from w(0) = 0 to
a finite value w(—1) up the imaginary axis.
Next consider z > 1. We have

w(z) = w(l) + / T (0 dC = w(1) 4 &2l / T19(0)] e

The point w(z) moves along the hypotenuse of the triangle in Figure 5.3. Note that 27/3 corre-
sponds to 120 degrees. Therefore, the angle of the triangle at w(1) is 60 degrees.

Since |g(¢)| decays like |¢|72 as { — oo, the point w(z) approaches a finite limit as z — oo
along the real axis:

oo = lim w(z) = w(1) + /3 / T lgO)1d¢ -

Z—00

Similarly, if z < —1, then

—1 -1
w(z) = w(~1) - / 9(C) d¢ = w(~1) — ¢7if3 / 19(0)]d¢ .

One obtains that w(z) moves along a direction parallel to the direction from 0 to —e?™/3 . Again,
as z — —oo along the real axis, the point w(z) approaches a finite limit:
. -1
0 i= lim w() = w(-1) = [ lg(]dc
Z——00 oo
To complete the picture, it is important to understand that
Ao = Qoo - (5.4)
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Re w

w(1)
Figure 5.3: w(z) = [ 9(¢) d¢

To show this, consider the curve from z = —R to z = R along the real axis completed by the
semi-circle z(f) = Re®®,0 < § < m. Denote this closed curve by Cr and denote the semicircle by
T'r.

By Cauchy’s theorem,

R
| s@dcs [ g0ic= [ gcyac—o.
-R g Cr

(To be completely correct, the straight line along the real axis should avoid the singularities
of g(¢) at ( = —1,0,1 and one should consider a corresponding curve Cr.. However, since the
singularities of g are integrable, one can let ¢ — 0 without difficulty.)

Since |g(¢)| < C|¢|~2 for large ||, the integral along the semicircle is bounded by C/R for large
R.

We have

Therefore,



It follows that

jw(R) —w(=R)| <C/R,

for large R. As R — oo we obtain that aee = a_ .
These considerations prove that the image of the real axis under the map

z
sovu() = [ gl0)de
0
is the triangle shown in Figure 5.3 where the point a,, = a_ is removed from the hypotenuse.

Another good example of a Schwarz—Christoffel map is

win) = [a—ev2g - | —1/2(1 _ =12 gp |
(2) /0<1 )12 dg /0(1+<> (1- )2

Here one should note that

1 dC

—14/1-¢2

5.3 General Schwarz—Christoffel Integrals

= arcsin(1l) — arcsin(—1) = 7 .

Let n € N,n > 3, and let s; and ¢; denote real numbers for j = 1,2,...,n. Assume that

n
sj<1 for j=1,2,...,n and Zsj:2
j=1

and
1 <ta<...<tp,.
Set
V=C\{L,U...UL,} and V=V U{t1,...,t,}.
Consider

9g(Q) = (C—t1) " (C—t2) - (C—tp)™™ for CEV.
For constants K, A € C the function

w(z) =K Zg(()dC+A, zeV,

t1

is called a Schwarz—Christoffel integral. For simplicity, we will assume that K =1 and A = 0.
Consider

w(z):/zg(q)dg for zeR.

t1
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Set

Bj=w(t;) for j=1,2,...,n.

Clearly, By = 0. Under appropriate assumptions, the points Bi, Bs, ..., B, form the corners of a
polygon. The interior angle at B; is a; = (1 — s;). The sum of the interior angles is

Zaj =m(n—2)

since, by assumption, Y%, B; = 2.
Let
(<tj and k>j,
thus ¢ < tx. We have

(€= 1) = I¢ — tel 7%
Therefore, for t;_1 < ( < t;:

We have used that e?™ = 1 and 2?21 sj = 2, thus

2—(3j+5j+1+'--+3n):31"‘---5]'—1 .
Consider w(z) for t; < z < t. Using the equation

g(¢) = lg(Q)|e” Tt for t;_1 < (<t

for j = 2 we have

9(¢) = lg(Qle™ for t <(<ty.

Therefore,

w(z) = erist lg(Q)|d¢ for t1 <z <ty.
t1

For to < z < t3 we have

zW)zBﬁ/Z@@

to

= By+ ™) [ g(Q)]dC
to

Consider the line from B; to By and extend the line as a straight line. Also, consider the line
from By to Bs. The angle between the lines at B equals 7wse. If the points Bi, Be, Bs belong to a
polygon, then the interior angle at By is ap = m — mwso.
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The process can be continued. One obtains that, under appropriate assumptions, the points
By =0, By, Bs, ..., B, form the corners of an n-gone. The interior angle at B; is a; = (1 — s;).
The following arguments shown that the point B,, lies on the negative real axis, i.e., to the left

of the point B = 0.

Set

Since

we have

and

o= [ 90dc and a= [ gc)dc

t1 t1

9(¢) =1g(Q)| for (>t, and  for (<t

too = By +/t 19(C)] dC > By,

a_oozftoo 9Ol =~ [ lo(©ldc <.

—00

By the same arguments as in the example one obtains that a. = a_. It follows that

B, <=0 <0=58B.
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6 Meromorphic Functions with Prescribed Poles

6.1 Meromorphic Functions on C

Recall that a function f is called meromorphic on C if there is a finite or denumerable set D =
{b1,b2,...} C C so that

(a) f is holomorphic on C\ D;

(b) every point by, € D is a pole of f.

The set D is finite or denumerable and does not have an accumulation point in C. (Suppose
b is an accumulation point of D. If b € D then the point b is an accumulation point of poles and
cannot be a pole itself. If b € C\ D then f is holomorphic in b, and poles of f cannot accumulated
at b.)

If f has infinitely many poles by then we will order them so that

|b1] < |bo| < ... and |bg] >0 as k—oo. (6.1)

If f is meromorphic on C we write f € M(C).

Example 1: f(z) = L. It is easy to show that the pole set of f is the set Z of all integers j.

sin(mz)

Also, for the function h(z) = sin(mz) we have h'(j) = mcos(nj) = n(—1)7. This yields that

68(5111(17rz)722j> = (7:)] .

Example 2: Every rational function f(z) = p(z)/q(z) is meromorphic on C with finitely many
poles.

1/z

Example 3: The function f(z) = e'/* is not meromorphic since z = 0 is not a pole, but an

essential singularity.

Let f € M(C) and let by be a pole of f of order my. The Laurent expansion of f at by has the
form

o0

fz) = D ajp(z—b)

Jj=—myg
= Pu((z—br)"") +gr(2)
where

Pi(w) = Z o pw’

Jj=1

is a polynomial without constant term and gx € H(D(bg,71)). Here

h = dz’st(bk,D \ {bk}> .

The function

Pi((z=br)™"), z€C\{b},
is called the singular part of f(z) at bg.
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6.2 The Mittag—Leffler Theorem
Notation: If K C C is compact and f € C(K) then let

[flx = max{|f(2)| : z€ K} .

Definition: Let U C C be open and let fy € H(U). The series

> ful2) (6.2)

k=1
converges normally in U if for every compact set K C U the series

o0

> Il

k=1
converges.

Thus, normal convergence of a series (6.2) implies that the sequence of partial sums,

5n(2) = 3 fil2)
k=1

converges locally uniformly on U to a unique limit, f € H(U). As usual, the limit is denoted by

F2) =) ful2) .
k=1

Also, note that in case of normal convergence of (6.2), the series Y~ fi(z) converges absolutely
at every point z € U. This implies that the terms of the series can be reordered without changing
the value of the limit. In other words, the ordering of the terms fx(z) is not important.

We also recall that normal convergence of the series

1) = hu2)
k=1

in U implies normal convergence of

fl(z)=>_ fi(2)
k=1
in U.

Theorem 6.1 (Mittag—Leffler) Let by, ba,... denote an infinite sequence of distinct points in C
without accumulation point in C and set D = {by, by, ...}. Further, let Py(w) denote a sequence of
polynomials without constant terms, i.e., Px(0) = 0 for every k. Then there is a function f € M(C)
so that:

(a) the pole set of [ equals D;

(b) the singular part of f at by equals Py((z — by)™1).
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Remark: We cannot simply define

=Y Pl(z=b)™
=1

since, in general, the series does not converge. For example, let by = k and Px(w) = w. Then the
above series is

1
; 22—k
This series diverges for every z.

Proof of Theorem 6.1: We first assume that z = 0 is not an element of D. Then we may
assume 0 < |b1| < |bg| < ... and |by| — 00 as k — co. Let > 72, ¢x denote a convergent series of
positive numbers, ¢, > 0. For example, ¢, = 1/k2.

The function

z — Pk((z — bk)fl)

is singular only at z = bg. Thus we can write

Py((z —bg)” Za]kzj |z| < |bg| .

Let

n,
z) = Z a;rz’
J=0

where the integer nj is chosen so large that

e Pul(z =)™~ Qul2)| < e (6.3)
We claim that the series
1) =Y (Pl =)™ = @u(2)), z€ (C\D) =T,
k=1

converges normally in U and the limit f is a meromorphic function with the desired properties.
Set

fi(2) = Pu((z = ba)™") = Qi(2), z€C\{bs}.
Let K C U be any compact set. There exists R > 0 with

K C D(0,R) .

Since |b| — oo there exists a positive integer ko(R) with

|bk‘ > 2R for k > ko(R) .
If k£ > ko(R) then, by (6.3),
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| frlx < |fk|D(o,R) Sk -
Therefore,

o0

Z‘fk|1(<oo.

k=1

This proves normal convergence of the series

oo
f(z):= ka(z) in U.
k=1
We must show that the pole set of f is precisely D and that

Pr((z— b))
is the singular part of f at by. To this end, fix any R > 0. For z € U N D(0, R) we have

flz) = )+ Y fi2)

k=1 k>ko(R)
= f12)+ () .

Note that the decomposition f = f/ 4 f// depends on R. The first part, f/(z), is meromorphic
in C. In fact, f! is a rational function. In the disk D(0, R) the function f! has poles precisely at
those b which lie in D(0, R) and at each by the singular part of f! is P,((z — b)~!). The second
function, f7!(z), is holomorphic in D(0, R) because every function fi(z),k > ko(R), is holomorphic
in D(0,2R) and the series defining f!/ converges uniformly on D(0, R).

Since R > 0 was arbitrary, it is shown that f has the desired properties.

So far we have assumed that by £ 0. If by = 0 we just add the term

Pi(1/z)

to the constructed function.

Remark: An important technical point of the proof is that the decomposition, f = f/ + f1,
depends on R, and we consider it in D(0, R). In this way, for each finite R, one only considers
functions with finitely poles in D(0, R).

6.3 Example 4

As before, let D = {b1,bs,...} denote an infinite set in C without accumulation point in C. For
simplicity, let 0 < [by| < |ba| < ...

Assume that Pp(w) = w for all k, i.e., we want to construct a meromorphic functions with
simple poles and residue 1 at each bg. Assume that

1 1
%:M:m, Z};W<oo,

where the sum is taken over all by # 0.
For by, # 0 we expand Py((z — by)~!) about z = 0:
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P(z=b) ™) = =5 = = +0()
If we take
Qi(z) = _blk
we obtain
1
fulz) = —— b Qr(2)
1 1
R * b,
B z
(2= bp)by

If |z| < R and |bg| > 2R then we have

1
o= bl 2 Ikl = 121 > 3 I
and, therefore,

2R
> < —Fs .
|fk‘D(O,R) = |bk’2

It follows that the series

f(z):Z(Z_lbk—i—blk), 2€C\D=U, (6.4)
1

converges normally in U to a meromorphic function f(z). The function f(z) has a simple pole at
each by with residue 1; the function f(z) has no other poles. We also know that we can differentiate
(6.4) arbitrarily often term by term.

Now assume that we want to construct a meromorphic function f(z) with poles precisely at the
integers and residue 1 at each integer. According to the above, such a function is

f(z):%+z(zin+%>'

6.4 Example 5

Determine a meromorphic function f(z) with a simple pole at b, = vk for k = 1,2,... and
Res(f,z=1b;) = 1.
The singular part at by = Vk is

1
sk(z)zz_\/E.

Write s;,(z) as a power series centered at z = 0. For |z| < vk we have
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S TR T
1 A

We will use

and the meromorphic function

F2) =) fu(2) .
k=1

Let us prove that the above series converges normally in C \ D where D is the set of poles.
Fix any R > 0 and let |z| < R, Vk > 2R, thus

<

N =

S=

A simple result about the geometric sum:

Lemma 6.1 For |e| < § we have

1
Proof: We have
1 2 2
——=1+¢e+e¢ (1+£+€ +)
1—¢
thus

< 2le]? .

1 _E‘_ lel?
l1—¢ 1 —¢
<

In the following, let R > 0 and let |z| < R, vk > 2R, thus

IN

SI=
N | =

We use the Lemma with € = z/v/k to obtain that
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vk VE K VEIL-2/VE vk
1 2z2
S -
NI
2R?
<
- k3/2

Since the series Y -, k3—1/2 converges, the meromorphic function

has the required properties.
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7 Infinite Products

7.1 Infinite Products of Complex Numbers
Let g1, ¢qo,... denote a sequence of complex numbers. We want to define what it means that the
infinite product
172, g

converges and what the value of this product is if it converges. Naively, and in analogy to series,
one considers the sequence p,, of finite products,

pn =17 ¢; for n=12,...
and calls the infinite product convergent to p if p, — p. This leads to Definition 7.1 below. Most
authors define convergence of an infinite product more restrictively. Using the more restrictive
definition, the theorems about infinite products become simpler to formulate.

7.1.1 Two Definitions of Convergence

Let

q, J=12,...

denote a sequence of complex numbers. We form the finite products

Pn = H?:l qj
for n =1,2,... In correspondence with infinite series, we define:
Definition 7.1: The infinite product
172, g5

converges (in the simple sense) if the sequence of partial products p, converges as n — oo. If
P — P as n — oo then we write

172, gj =p (in the simple sense)
and call p the value of the infinite product.

This definition is used in [Stein, Sharkarchi].

If one of the factors g; in the infinite product is zero then, using the above definition, the infinite
product IT;q; always converges to zero (in the simple sense). Other authors prefer a more restrictive
definition of convergence for infinite products. The following definition is used by [Greene, Krantz]
and others.

Definition 7.2: The infinite product

HJQC:)1 qj

converges if the following holds:
1) At most finitely many of the q; are equal to zero.
2) If No > 0 is so large that q; # 0 for j > Ny then
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A T

exists and is non—zero. If these two conditions are met, then the value of the infinite product is the
number

N N
(1121 0,) - (im0 45) -

It is easy to show that the value of the product does not depend on the choice of Ny. Here we
assume that ¢; # 0 for j > Np.

The difference between the two definitions is not profound. Like most authors, we prefer here to
work with Definition 7.2. Then the formulation of many theorems becomes simpler. For example,
below we will consider products of holomorphic functions,

p(z) =152, (1+a4(2), a; € HU) .
Then, using Definition 7.2, the product p(z) is zero at some z = zy if and only if at least one factor
14 a;(z) is zero at z = 2.
7.1.2 Examples

Example 1: According to Definition 7.1, the infinite product
converges to zero (in the simple sense). According to Definition 7.2, this product diverges because
?:1 Jj=n!

does not converge to a finite limit as n — oc.

Example 2: According to Definition 7.1, the infinite product

o (LY
=1 \9
converges to zero (in the simple sense). According to Definition 7.2, this product diverges because

n

1\J
=1 <7) —+0 as mn— o0,

2
but no factor is zero.

Example 3: Let

Consider the infinite product

2 (-5) = (- 5) (- ) - 71

Here the partial products are
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pn = %(22—1)32(32—1)...%(712—1)
- %(1 3)(2-4)...((n = D)(n+1))
= ﬁ(n—l)'f(n—i—l)'
- 1n+1
T2 n

It follows that p, — % The infinite product (7.1) converges to %, using either definition.

Example 4: Let

.
g =1—-, j7=23,...
J

Consider the infinite product

Here the partial products are

= (-D0-D) ()

It follows that p, — 0. According to Definition 7.1, the infinite product (7.2) converges to zero, in
the simple sense. According to Definition 7.2, the infinite product diverges since p, — 0, but no

factor is zero.

Example 5: We claim that the infinite product

1

also diverges. We have

1
Pn = 7]'1:1 (1 + *_)

23
175
n+1

Since p, — 00 as n — oo the infinite product diverges.

Example 6: According to [Remmert, Classical Topics in Complex Function Theory], infinite

products first appeared in 1579 in the work of F. Vieta. He gave the formula
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2_\/T 1+1\/T Lo1fr o1
T V2 2 2V2 2 2\V2 2Va2 T

Let us understand the result. The infinite product can be written as

H;i2 4j
with
1
q2 = 5
and
1 1 )
qj+1 = §—|—§qj for j=2,3,...

Thus, the g; obey the recursion

1 1 . 1
q]2-+1:§+§qj for j>2 and q2:\/g:cos(7r/4).

Recall that

cos2a = cos®a —sina

2

= 2cos"a—1,

thus

9 1 1
cos“a = — + — cos2a .

2 2
With 5 = 2a we write this as
1 1
cos2§ =3 —1-5 cos 3
Since
1 2
=45 = cos(m/2%)
and
1 1 .
qf+1:§+§q]~ for j>2

it follows that

qj = cos(m/2), j=2,3,...

This formula for ¢; makes the determination of the infinite product manageable.
Recall that
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sin 2a = 2sina.cos «
thus

1 sin 2«
cosa = — — .
2 sin«

We then obtain that

) sin(r/277!
q; = cos(m/2) = % Slf(l(ﬁj?”)) ’

thus

1 sin(r/2) sin(r/22 sin(r/2n~!
e sin((7r//22)) ' singw§23; Sir(1(7/r/2”))
1 sin(m/2)
2n=1 gin(mw/2")
2 /2"
7 sin(m/27)

Since

it follows that the partial products

Pn=4q243 " (4n

converge to 2/m as n — oco. Using Definition 7.1 or 7.2, Vieta’s product converges to 2/7.

7.2 Infinite Products of Numbers: Convergence Theory

Recall the Cauchy convergence criterion for a sequence p, of complex numbers: The sequence p,
converges if and only if for every € > 0 there exists J = J(¢) € N so that

|pn —pm| <e for n>m>J(e) .
Lemma 7.1 (Cauchy Criterion) The infinite product

converges in the sense of Definition 7.2 if and only if for all € > 0 there exists J = J(¢) € N so
that

0y ,1q =1 <e for n>m>J(e). (7.4)
Proof: 1) Assume that (7.3) converges. There exists Jy € N so that ¢; # 0 for j > Jy. Set

pn =105 11q; for n>Jy.
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By assumption,

ppn—L as n—oo, L#O0.
For n > m > Jy we have

Pn

Pm
If g > 0 is given, then there exists K(g9) > Jp with

= szm—f—l‘]j .

lpn — L| <eo and |p,, — L|<ey for n>m > K(e) .
We may assume that 0 < eg < |L|/2.
Set
M =ppn—L and 7y, =pn—L
and obtain that

pn_L+77n_1 T — Mhm
rmo_ =14 ="
Pm L+77m L+77m
thus

Pm L]
if

e|L]

0<50§T and 0<e¢go<|L|/2.

This proves (7.4).
2) Conversely, assume that for all € > 0 there exists J(¢) € N so that (7.4) holds. First, let
Jo = J(1/2). Then the estimate (7.4) with e = 1/2 implies that g; # 0 for j > Jy. Set

pn=10_; +1q; for n>Jy.

We must show that the sequence p,, converges to a non—zero limit. We first show that the sequence
pp is bounded. We have

1
p—n—llgf for n>m>Jy.
Pm 2

Therefore,

1
|pn_pm| < §|pm‘ for n>m>Jy.

If we fix m = Jp + 1 we obtain that |p,| is bounded, |p,| < C for all n > Jp.
Let € > 0 be given and let

p—n—l’:‘ﬂyzquj—l <e for n>m>J()>Jy.
Pm

This estimate implies that
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|Pn — Pm| = ‘;)—n—l’]pm| <eC for n>m>J()>Jp.
m

Therefore, the sequence p,, converges, p, — L.

The estimate |p, — pm| < %]pm] proved above for m = Jy + 1 and all large n implies that
|L — pm| < 1 |pm|, thus L # 0 since py, # 0. ©

Using the notation of the above proof, we have

Dj+1

gj1 — 1| =
J pj

—1‘<5 for 7> J(e).
This proves the following:
Lemma 7.2 If
11721 95
converges, then
g —~1 as j—o0.

The previous lemma suggests to write the factors ¢; in an infinite product

H?iﬂlj

in the form
q; = 1+ a; .

If the infinite product II(1+ a;) converges, then a; — 0. The converse is not true, of course, as the
example

wa(-5) = (-9)0-5)-0-3)

shows.

We will use the following simple estimates for the real exponential function.

Lemma 7.3 We have

l+x<e® for >0 (7.5)

and

2 <14+ax for 0<x<2. (7.6)
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Proof: The second assertion follows from e < 3 and convexity of the exponential function. ¢

The following theorem relates the convergence of an infinite product to the absolute convergence
of a series.

Theorem 7.1 Let a; denote a sequence of complex numbers. Then Z]Oi1 la;j| < oo if and only if

o1 (1 + aj))

converges.

Proof: a) First assume that

oo
S::Z|aj| <00 .
j=1

Set

pn = U7 (1 + |ag)
and obtain that

Pp < elarlttlanl < 5 oo

Because of
1<p1<ps<...<pp<e®<o0 forall neN,
convergence
Pn—p, p=1,
follows.

b) Assume that

52, (1 + |agl)

converges. Since |aj| — 0 (by Lemma 7.2) we have

laj| <2 for j>J,

thus
€|aj|/2§1+|a]| fOI' j>J
Setting
S1= lim T35, (1+ |ay])
we obtain:
1 n
xp (5 Z |aj|> < Iy (T +faj]) <81 < o0
Jj=J+1
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for all n > J + 1. This yields the bound

n

Z laj| <2InS; <oo for n>J+1,
j=J+1

which implies convergence of the series ) |a;|. ©

It is less clear how to relate convergence of the series

D.a;

to convergence of the product

H(l + (Ij) .

However, convergence of the series ) |a;| does imply convergence of the product II(1 + a;). We
will formulate this as the next theorem.

Theorem 7.2 Let a; be a sequence of complex numbers. If Z;; laj| < oo then
71 (1+aj)
converges.
The proof uses the following lemma.
Lemma 7.4 Let aq,...,a, € C and set

Pn =101 (1+a;), ¢u=T0(1+]a]) .
Then the bound

‘pn - 1‘ <g,—1
holds.

Proof: We have

pn = (I4+a1)...(1+ay)
= 1+Zail"'a‘ir
where the sum is taken over all indices 41, ...,1, with

1<y <...<,, <n.

Therefore,

IN

‘pn_H

Z |ai1 <Gy,
qn — 1
This proves the lemma. ¢
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Proof of Theorem 7.2: By Theorem 7.1 the infinite product

21 (1 + ‘aj‘)

converges. Therefore, by the Cauchy criterion, Lemma 7.1, for all € > 0 there exists J(g) so that

(L4 la) =1 <= for n>m>J(e) .

We have

IN

(U ag) 1| < Iy (14 fag) =1

< €

forn >m > J(e). By the Cauchy criterion, Lemma 7.1, the infinite product 1152, (1+a;) converges.
o

7.3 Infinite Products of Functions

Looking carefully at the proofs of the previous section, one obtains uniformity of convergence of a
product of functions

II(1 + f;(2))

if the corresponding series ) | | f;(2)| converges uniformly. We formulate this result in the following
lemma.

Lemma 7.5 Let K C C denote a compact set and let f; : K — C denote a sequence of continuous
functions with

(o)
Z\fj\;(<oo where | f;|x := max|f;(2)| .
= zeK

Then the sequence of functions
pn(2) = (1 + f(2)), n=12...
converges uniformly on K.

Proof: Fix z € K and set

pa(z) = M (14 fi(2))
an(z) = I (1+1f5(2))
Qn = ?:1 (1+‘fj’K)

By Theorem 7.1, the sequence of numbers @,, converges.
We have, for n >m > 1:
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_ pn(2)
polz) —pm()] = |25 = 1[I ()]

< 1ga(=) = 4 (2)|

= Jam ([ (14 1£5(2))) — 1]

< QulIopma (L4 1) ~ 1
@n

= Qm\@”\

= ’Qn_Qm’

Therefore, if € > 0 is given, there exists N(g) with

IPn(2) = pm(2)| < |Qn — Qm| <e for n>m > N(e).
Here N(g) does not depend on the point z € K. This proves the lemma. ¢

The following result is the workhorse for convergence of infinite products of holomorphic func-
tions.

Theorem 7.3 (Main Theorem on Convergence of Infinite Products of Holomorphic Functions)
Assume that U is an open subset of C and let f; € H(U) denote a sequence of holomorphic
functions on U. Assume that the series Zjoil |fijlk converges for every compact subset K of U.
Then the following holds:

1) For every z € U the infinite product

2, (14 £5(2)) = F(2)

converges and defines a function F' € H(U).
2) The sequence of holomorphic functions

Fy(z) = Hle(l + fj(z)), 2eU,

converges locally uniformly in U to F(z).

3) For every zy € U the function F(z) has a zero at zy if and only if one of the factors
qj(2) = 1+ fj(2) has a zero at zy. Furthermore, the multiplicity of zy as a zero of F(z) is the finite
sum (over j) of the multiplicities of the zero zy of the factors q;(z).

4) If F(z) # 0 then

F'(2) = [fi(z)
F(z) 2

Ty fi(2)

Here the series converges locally uniformly in the set

J=1

Uy={z€U : F(z) #0} .

Proof: 1) and 2): The convergence of the infinite product for each fixed z € U follows from
Theorem 7.2. Fix zg € U and let K := D(z,¢) C U. Let |fj|x < 3 for j > J. For N > J write

Fy(2) = I (1+ f(2)) - IGL g (1 + f3(2)) =2 Fi(2) - G (2) - (7.7)
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Note that the function Gn(z) has no zero in K since |fj|x < % for j > J. The first finite
product, Fy(z), is a function in H(U). The sequence G y(z) converges uniformly on K to a function
G € C(K). This follows from the previous lemma. We then have G € H(D(zp,¢)). The sequence
Fx converges uniformly on K to F. It follows that F' € H(D(zp,¢)). Since zg € U was arbitrary,
we have shown that F' € H(U).

3) In the factorization (7.7) let N — oo to obtain that

F(z)=Fy(z)-G(z), =z¢€ D(z0,¢) .
Here G is holomorphic and nowhere zero in D(zp,e). This implies 3).

4) For a product of three holomorphic functions ¢;(2),

Q = q192q3

we have

Q' = Q14243 + 116543 + Q1425 -
Therefore, if Q(z) # 0, then

q;(2)
qj(2)

Q) <
Ao =

It is clear that this generalizes to any finite product and we have if F'(z) # 0:

Fi.(z N (z)
N(z) 3 1 +ij7(2) .

j=1
Letting N — oo we obtain that

F'(z) = [fi®)
N Z 1 +fj(2) .

It is not difficult to prove that the above series converges locally uniformly in Up. (Homework) o

J=1

Definition Let 2 C C be an open set and let f; € H(Q2) for j = 1,2,.... The infinite product

g1 (14 f5(2))

converges normally on € if

o0
Z|fj|K < o0
j=1

for every compact set K C €.
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7.4 Example: The Product Formula for the Sine Function

We recall: 2

)
Wcot(wz):i—k;ZsznQ, 2€C\Z. (7.8)
We want to use this to prove the product formula
1 sin(mz) = 21152, (1 — i), zeC. (7.9)
T n

Let

z
n(2) =—— N.
fn(2) - n e
If K is a compact subset of C then K C D(0, R) for some R > 0. We then have

R2
< —.
Since >~ n~? < 0o we obtain that Y |f.|x < oo and, by the previous theorem, convergence of the
infinite product II,,(1 + f,,(2)) follows. The function

2

P(z) = zII;2, (1 - %)

is entire and P(z) has a simple zero at each integer. Clearly, P(z) has no other zeros.
Also, for z € C\ Z,

If we set

then we also have, from calculus,
G'(2)
G(z)

The function P/G has a removable singularity at each integer. We have

=mcot(nz), z€C\Z.

(5= (%)

Therefore, P/G = ¢ = const. Considering
G(2)

=1 =lim
z—0 =z

lim P(z)

z—0 z

we conclude that ¢ = 1, i.e., P(z) = G(z). This proves the product formula (7.9).

2Using residue calculus for f7 ((:zt_(z)%) d¢, z € C\ Z, where 7, is a sequence of growing rectangles, we have shown
that 3777 W(Jlﬁ = 5n2(s- Lhen the formula (7.8) follows by integration.
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7.5 FEuler’s Constant

We define here Euler’s constant -y, also called the Euler—Mascheroni constant. It occurs frequently
when one discusses the I'-function. A numerical value is

v =0.57721566. ..

It is unknown whether v is rational or irrational.

Lemma 7.6 Forn=1,2,... let

1 1
VYo = l—i—i—l—...—i—ﬁ—ln(n)
1 1
Oop = 1—|—§—|—...—|—E—ln(n—|—1)

We claim that

On < 611—0—1 < Yn+1 < Yn -

The sequences vy, and 0, converge to the same limit vy, called Fuler’s constant.

Proof: We have

1
Yn+1 — Vn = m—i—ln(n)—ln(n—i—l)
1 n+l g
B n—l—l_/n -

For n < x <n+ 1 we have

1 1 1
i<7’
n+1 = n
thus
Ynt1 — Yo < 0.
Similarly,
1
Ont1 —0p = n+1+ln(n—|—1)—ln(n+2)
1 2 dy
a ”"’1_/n+1 ER

For n+1 < x <n+ 2 we have

< <
n+2 = n+1
thus

6n+1_5n>0~
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Also,

Y —0p=In(n+1)—In(n) =In <1—|—%) >0.

Since v, — 6, — 0 as n — oo, the lemma is proved. ¢

7.6 The Gauss Formula for I'(z) and Weierstrass’ Product Formula for 1/T'(2)
Recall that

I'(2) —/ t*“le7tdt for Rez>0.
0

/OOO:/01...+/100...::g(z)+h(z)

we obtain h € H(C) and use the series

Splitting the integral as

to obtain

!

=0 7
_ i(—l)] 1

- -
R

In this way we obtain a formula for the I'-function valid for

zeC\{0,-1,-2,...} = U ;

the formula is

= (=1)7 1 o0
I'(z) = Z ( ,') . +/ t*"le7tdt, zeU.
=0 7 Z+] 1

It is clear that I' € H(U). The function I" has a simple pole at each n € {0,—1,—2,...} and

—1)
Res(T', —j) = ( ,‘) for j=0,1,2,...
4!
We also recall the reflection formula
r )=
(2)I'(1—2) Sz’ 2e€C\Z,

which implies that I" has no zero. Therefore, the function




is entire. The function A(z) has a simple zero at each n € {0,—1,—2,...} and has no other zeros.
The zeros of A(z) clearly show up in the following product formula.

Theorem 7.4 (Weierstrass) We have

1 Z\ /4
0= o 142, s, -
where v 1s Fuler’s constant,
v = nh_)ng(} Yo = 057721 ...
with
1 1
’ynzl—i—i—i—...—i—g—ln(n) .

Convergence of the infinite product in (7.10): We have
e =1 - 5 +0i(2), Ini(2)] < C(R)j™2 for |z| <R.

We then have

2

z . z
1+<)e*'z/’:1——. + (2
( ; 7 i(2)

with

7;(2) < C(R)j ™% for [2|<R.

It is then clear that the infinite product in (7.10) converges uniformly for |z| < R, where R > 0 is
arbitrary. Therefore,

Qz) ==e"" -2 1152, (1—|—§>6_Z/j (7.11)

is an entire function. This function has a simple zero at each n € {0,—1,—2,...} and has no other
ZEros.

We want to prove that Q(z) = A(z). To do this, we will prove the equality for 0 < z = 2 < 1
and then apply the identity theorem.

Recall that ¢(x) = In (I'(z)),z > 0, satisfies ¢”(x) > 0 for > 0. (See Math 561.)

Lemma 7.7 Let ¢ : (0,00) — R be a C? function with ¢"(x) >0 for allz > 0. If0 <a<b<c
then we have

o) — 6la) _ dlc) — o(b)
b—a - c—b
and
¢(b) = o(a) _ o(c) = ¢(a)
b—a - c—a
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Proof: The first estimate follows from the mean value theorem. To prove the second estimate,
consider the function

h(s) = p— for s>a
Differentiation yields
I 1 / —
= (00 - 200

Then, using the mean value theorem, we find that h'(s) > 0 for s > a. ©
Application: We let ¢(z) = InT'(z),x > 0. Let n be an integer, n > 2, and let 0 < x < 1. We
have
O<n—1<n<nt+z<n+1
and obtain
Bn) — 6(n—1) _ d(n+) — d(n) _ d(n+1) - o(n)
n—(mn-1 — n+z-n ~ n+l-n

Multiply by 0 < 2 < 1 to obtain

ol (FFW) <In (M) < m(M) .

(n—1) [(n) I(n)
Therefore,
zln(n —1) <In (F(;L(:)x)) <zlnn,
thus
(n—1)7 < F(?(;:)x) e

This yields that

m—1)n-1)*<Tn+z)<(n—-1)n".

Using the functional equation I'(z + 1) = 2I'(z) we have

'n+z)=@+n-1)(z+n—-2) - (x+ 1)zl (x).
This yields the bounds
(n—1!(n—-1)" (n—1)In"
z(z4+1)...(z+n—-1) sT(@) < zz+1)...(z+n—-1)"

In the lower bound, we may replace n — 1 by n. Then we have

x x

nln

nln T+n
z(x+1)...(x+n) '

z(z+1)...(x+n) n

<TI'(z) <

Denote
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We have shown that

Equivalently,

We obtain for n — oo:

Lemma 7.8 Let 0 < z < 1. Then we have

T

nln
I'(z)= 1 .
(z) nl—>ngoa:(x—|—1)(:17—|—n)

Define, for z € C,

z2(z4+1)...(z+n)
nln?

- e—(lnn)z-z-(1+§)(1+g) <1+%>

S T (O Y (P

The above lemma implies that, for 0 < z < 1:

1
I'(z) = nl;rglo )

Also,

hn(z) = Q(2)
locally uniformly in C where Q(z) is defined in (7.11). Therefore,

1 N 1
hn(z) — Q(z)
locally uniformly in U. By (7.12) we obtain that

I'(z) = for 0<z<1.

I'z)=—— for z€U.
z

This proves the Weierstrass’ product formula for A(z) = 1/T'(2).
The following result is easy to show:
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Lemma 7.9 Let K C C be compact. Let ay,a € C(K) and assume that |a, — a|x — 0 as n — oo.
If a(z) # 0 for all z € K then

1 1

‘ —0 as n— .
a, alK

One obtains the following Gauss’ formula for I'(2):

Theorem 7.5 (Gauss) We have

nln
I'(z) = 1i
(2) ner00 2(z+1) -+ (z4+n)

with locally uniform convergence in U = C\ {0,—1,-2,...}.

7.6.1 A Formula for (I"/T")
Let U =C\ {0,—1,-2,...} and set

fa(z) = nlelnn)z 5o (2 +)7Y zeU.

By Gauss’ formula we have f,,(z) — I'(z) locally uniformly in U. We have

falz) _ nn — - 1
fn(Z)_l n ;}(z—i—j)
and
A 1u(2) NSy
& (2 j:O( +5)7°.
For n — oo obtain:
d T'(2)

(z+5)7%.

M

I
o

dz T(2) ‘

Recall that we have used the inequality ¢”(z) > 0 for 0 < z < co where ¢(z) = InT'(z). We now
have shown that

TR
¢(x)_;(x+j)2, 0<z<oo.

<

7.7 Entire Functions with Prescribed Zeros
If a1, ...,a, € C then the polynomial

p(z) = (a1 = z)(az — 2) -+ (an — 2)

vanishes precisely at ai,...,a,. Now let aj,as, ... denote an infinite sequence in C without accu-
mulation point in C, i.e., |a,| — co. We want to construct an entire function f(z) with f(z) =0 if
and only if z € {a1,as,...}. We allow repetitions in the a;. Then, if a number a appears ¢ times

76



among the a;, we want f(z) to have a zero precisely of order ¢ at a. We will show below how to
construct such a function f(z).

Remarks on Non—Uniqueness. If f(z) vanishes precisely at the a; (to the correct order)
then any function

— h(z) he H(C
9(2) = f(2)e"”,  he H(C),

has the same property. We show:
Lemma 7.10 Let a; be a sequence in C without accumulation point in C. Let f(z) and g(z) be

entire functions that vanish precisely at the a;. If a appears q times in the sequence, then let f(z)
and g(z) have a zero of order q at a. Under these assumptions, there exists h € H(C) with

Proof: The quotient

—M z ai,a
Q(z)—g(z), € C\{a1,aq2,...},

is bounded near every a;. By Riemann’s removability theorem, Q(z) extends to an entire function.
Also, Q(z) # 0 for all z. Therefore, Q(z) has the form Q(z) = e™*) where h(z) is entire. See
Lemma 4.1. ¢

7.7.1 Construction of f(z); Motivation

One might try to construct f(z) as the infinite product

(a1 — 2)(ag — z) ---
However, since |aj| — oo, this product never converges.
Somewhat smarter is the following: Let us assume that
ap=ay=...=a, =0 and a;#0 for j>m.

Then try the infinite product

zm(1— : )(1— c ) (7.13)
Am+1 Am+2
This works if
1
Y <.
—~ |a;|
Under this assumption the above infinite product defines an entire function with the desired prop-
erty.

For example, it suffices that

laj| > cjtte, j>T,

for some ¢ > 0 and € > 0. However, if
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jajl ~j or lajl~+/j,
then the infinite product (7.13) will typically not converge since > |z|/|a;| diverges if z # 0.
Weierstrass’ idea was to use extra factors in the infinite product (7.13), which ensure conver-
gence, but do not introduce additional zeros.

7.7.2 Weierstrass’ Canonical Factors

Let us assume a; # 0 for all j, for simplicity. Instead of the infinite product

<1_ail) (1_;;2> (7.14)

E(@%) E(@%) (7.15)

where E(z) is an entire function of the form

try

E(2) = (1 - 2)6(2) .
Here ¢(z) should be suitably chosen, with ¢(z) # 0 for all z. Then one obtains

B(2)E(Z) - (- 2R 2pE) o

The factors ¢(z/a;) should make the product converge without introducing new zeros. Note that,
as |a;j| — oo, the argument z/a; of ¢ converges to zero. Therefore, we want to construct ¢(z) with

(1—-2)p(z) ~1 for |z|<e

to enhance convergence of the product. However, if we would require (1 — 2)¢(z) = 1, then ¢(z)
would become singular at z = 1, and we do not obtain an entire function.

We want to construct ¢(z) so that

a) (1 —2)p(z) =14+ O(F) for 2 ~ 0;

b) ¢ is entire.

c) ¢(z) #0 for all z € C.

To ensure that ¢(z) never vanishes, let us construct ¢(z) in the form

d(z) = el
We then have the requirement, for small |z,
1
eh(z) _ <25(2) _ — + O(zk+1) ,

thus,

h(z) = log (1 !

—z

+ O(zk+1)> = —log(1l — z) + O(z"1) .

The second equation holds since log (ilz—i—e) = —log(1—2)4+0(e) for z ~ 0. Set r(z) = —log(1—=z).
Then we have r(0) = 0 and
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Therefore,

22 28

= —log(l —2) = .
r(2) og( 2) z+2+3+

This leads to the following requirement for h(z):

2'2 23
h(z):z+?+§+...+0(z’““).

Therefore, we set

22 23 k

z
hk(z)—z+5+§+...+?.

This leads to the following definition of the Weierstrass’ canonical factors.
Definition: For k =0, 1,... define Ex(z) by

2 k

Ey(z)=1-z, Ek(z):(l—z)exp(z—&—%—i—...—i—%) for k>1.

Clearly, Ey(z) vanishes only at z = 1 and has a simple zero at z = 1. Therefore, the function
z — Ej(z/a;) vanishes to first order at z = a; and vanishes nowhere else. We will show now that
the function 1 — Ej(z) vanishes to order £+ 1 at z = 0. In this sense, Ei(z) ~ 1 to order k + 1 at
z=0.

Lemma 7.11 There is a constant C > 0, independent of k and z, with

1= Ex()| < Clo|™* for 2] <

N | =

One can choose C = 2(e — 1).

Proof: In the following let |z| < 3. Let

2 k

hk(z)=z+%+...+% .
We have
Ep(z) = (1—2)exp(hi(2))
= exp <log(1 —z)+ hk(z)>
= ew
with
w =log(1l — z) + hi(z) .
Since
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J
log(1—2)=— =
=17
we have
g1 J
Therefore,
I D DS
j=k+1
1 1
< ’““(1 4= )
< || totgt
— 2|Z|kz+1 )
In particular, |w| < 1 for |2| < 3. Thus,
[1—Ep(z)] = [1—e"]

= ’w+w2/2!+w3/3!+...‘

< \w|(1+1/2!+1/3!+...)
= Julte—1)

< 2(6—1)|Z|k+1

<&

Remark: It will be useful below that the constant C in the previous lemma does not depend

on k. This is not completely obvious from the construction of FEj(z), which only yields that
1-— Ek(z) = O(Zk+1).

Theorem 7.6 Let a; denote a sequence of complex numbers with |aj| — oo as j — co. Assume
that

a1 =...=am =0<|am+1| < lams2] < ...

Then the infinite product

f(2) = 2" 1 Bj(2/a),  z€C,

defines an entire function f(z) which has zeros precisely at the a;. The multiplicity of a zero ay, of
f(z) equals the number of occurrences of a,, in the sequence a;.

Proof: Assume m = 0. Fix R > 0 and note that |a;| > 2R for j > jo(R). If |2| < R then
1 S
<g for j=jo(R).

‘z
aj
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Therefore, by Lemma 7.11,

|2

—~(+1)
o S €2

1 —Ej(z/aj)| < C

If one writes

Ej(z/a;) =1+ f;(2)
then

[oe)
> filoopo.r) < 20
=1

The claim now follows from Theorem 7.3. ¢
In the previous theorem, the index j of E; increases unboundedly. It is of interest to give a
condition under which this index can be chosen constant.

Theorem 7.7 Let a; denote a sequence of complex numbers with |a;| — oo as j — co. Assume
that

a1 =...=am =0<|am+1| < lams2] < ...
Also, assume that

o

1
— <0

i lagl®

for some s > 0. If k is an integer with s < k 4+ 1 then the infinite product

f(z) = zmH;Om+1Ek(z/aj), zeC,

defines an entire function f(z) which has zeros precisely at the a;. The multiplicity of a zero a of
f(2) equals the number of occurances of a in the sequence a;.

Proof: Assume m = 0. Fix R > 0 and note that |a;| > 2R for j > jo(R). If |2| < R then
‘* < 5 for j=>jo(R).

Therefore, by Lemma 7.11,

| |k+1 1
|1 — Ei(2/a;)| < C| ’k+1 < C(R, k:)‘ |k+1 .
The claim now follows from
S
j=m+1 ‘a |k+1

and Theorem 7.3. ¢
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7.8 Entire Functions with Prescribed Values

Let a; € C denote a sequence with a; # aj, for j # k and assume that |a;| — co as j — oco. Let
b; € C. We claim that there exists an entire function f(z) with

f(aj) = bj for j = 1,2, e

Using Weierstrass Theorem, there exists an entire function g(z) with

g(a;) =0 and ¢'(zj) #0 for j=1,2,...
We apply Mittag-Leffler’s Theorem where Pj(w) is the first degree polynomial

Pj(w) = ajw .

The constant a; € C will be determined. Let D = {a1,a9,...}. By Mittag-Leffler there exists
h € H(C\ D) with
ay ~

+ h(2)

z—aj

h(z) =
where h(z) is holomorphic at z = a;. Set f(z) = g(z)h(z). For z ~ a; obtain that

@y

1) = (9@ —ay) +0((z = a;))

= ¢(aj)e; + O(z — ay)

+ 0(1))

z—aj

If we choose

then we have f(a;) = b;.
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8 The Bernoulli Numbers and Applications
8.1 The Bernoulli Numbers
The function g(z) defined by
g(z) =z/(e*—1) for 0<|z|<2m, g¢(0)=1,
is holomorphic in D(0,27). We write its Taylor series as

oo B, )
g(z) = Z A |z| < 27, (8.1)
v=0 '

where the numbers B,, are, by definition, the Bernoulli numbers. Since

(2) .
z =
g 1+ 2z4+222+. ..
1

it follows that

1

BO - 1, B1 — —5 .

Lemma 8.1 The function

z

M) = g(2) + 2

is even. Consequently,

Proof: We must show that

ie.,

With a = e¢* we have

—2z z
g=2)—g(z) = o —
B (—1 1 )
SV
a
and
—a 1 _l—a_1
l—-a a—1 1—a
o

One can compute the Bernoulli numbers easily using a recursion. We claim:
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Lemma 8.2 Forn > 1 we have

v=0
Proof: We have, for 0 < |z| < 27
1 = eF—1 z
z e —1
- () ()
= ) —
= (n+1)! ~ v
o
- Z By 2TV
2o v+ 1)!
| —_ |
=\ viln+1—v)!
Since
n+1Y\  (n+1)
v vl(n+1-v)!

the lemma is proved. ©
Using Pascal’s triangle, we can compute the binomial coefficients. Then, using the previous
lemma and By = 1 we obtain:

For n =1: )

By+2B; =0, thus B = —5 .
For n = 2: 1

By+3B1+3By =0, thus By = 6"
For n = 3:
B0+4Bl+6B2—|—433:0, thus BgZO
For n = 4: 1
By+5B1 +10By +10B3 + 5By, =0, thus By = 30

Continuing this process, one obtains the following non—zero Bernoulli numbers:

1
Bs = El
By = —5%
e %691
By = ;ﬁ
Bl4 - 6



etc.

Remark: The sequence |Bs,| is unbounded since otherwise the series (8.1) would have a finite
radius of convergence. We will see below that (—1)**1By, > 0. Thus, the sign pattern observed
for By to B4 continuous.

8.2 The Taylor Series for zcot z in Terms of Bernoulli Numbers

Recall that

w > B
g(w)zew_1 :ZTI;MV'
v=0

We now express the Taylor series for z cot z about z = 0 in terms of Bernoulli numbers. Note that

1 . -
cosz = §(€ZZ+6 %)
: 1 iz —iz
sinz = —(e* —e™ ")
24
) 67,2 + €7ZZ
cotz = 1 ——
elZ — e_ZZ
14 e %2
2z
11— e—2iz + 26—21'2
= i :
1 — e—2iz

) 2
- Z<1+e%2—1)

Therefore,
o1 21z
cotz =1+ ; : 62227—1 5
thus
zeotz = iz + g(2iz)
o0
= iz+1—=(2iz) + Z T (2i2)"
v=2
(e, ¢] 4V
- 1 -1 v B 2v
* V;( ) oy B

We substitute 7z for z and summarize this:
Lemma 8.3 If B, denotes the sequence of the Bernoulli numbers, then we have for |z| < 1:

T 2v
((221/))! By, 2%V . (8.2)

mzeot(mz) =1+ Z(—l)”
v=1
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8.3 The Mittag—Leffler Expansion of 7z cot(nz)

One can derive the following Mittag—Leffler expansion (see, for example, [Hahn, Epstein, p. 214]).
One can also use residue calculus; see Math 561. Note that the function on the left side and the
function on the right side of the following formula both have a simple pole at each integer.

1 =1
7TCOt(7TZ) = ; +222m .
n=1

Therefore,

t =1-2 —_ .
7z cot(mz) ; 3

Here, for |z| < 1:

n? — 22 1—(2/n)?

Therefore,

mzeot(mrz) = 1-— 22 Z <%>2m (8.3)

n=1m=1

— 1—222(%>2m (8.4)

m=1n=1
0

= 1-2) ¢(2m)2*" (8.5)
m=1

8.4 The Values of ((2m)

Comparing the expressions (8.5) and (8.2), we obtain the following result about the values of the
Riemann (—function at even integers. This result was already known to Euler in 1734.

Theorem 8.1 Form=1,2,...:

=1 1 iy (2m)2m
¢(2m) = nZ::l —am = 5 (71) i m)! Bop, - (8.6)

Remark: Since, clearly, ((2m) > 0 we obtain that (—1)™"! By, > 0.
Examples:
For m =1 we have By = %, thus




For m = 2 we have By = —%, thus

For m = 3 we have Bg = 4—12, thus

For m = 4 one obtains

<(®) = 9a50 -

Remark: According to [Temme, p. 6], no nice formula for ¢(2m + 1) seems to be known if m

is an integer.

8.5 Sums of Powers and Bernoulli Numbers

It is not difficult to show the following formulae by induction in n:

S, e,
2) T g 2
j=1
n—1
1 1 1
2t = gntogntign
j=1
n—1
1 1 1
3 _ 1t o4 L 3 1 9
Z] =g Tty
7j=1
The formulae follow the pattern:
n—1
1 1
k_ - okl _Z k. R
j;] k+1" g TR

but it is not obvious how the general formula should read.
Define the sum

n—1
Sp(n—1) =>4
=0

where £ = 0,1,2,3,... and n = 1,2,3,.... We claim that, for every fixed integer k£ > 0, the sum

Sk(n — 1) is a polynomial

Dr(n)

of degree k + 1 in the variable n and that the coefficients of ®;(n) can be obtained in terms of

Bernoulli numbers. Precisely:
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Theorem 8.2 For every integer k > 0, let @1 denote the polynomial

1 - k+1 k+1—p
®r(n) = P Z i Bun :
n=0

Then we have
Sp(n—1) =®p(n) forall n=1,2,--- .

Remark: Writing out a few terms of ®;(n), the theorem says that

1 1 1 k+1 _
Sun=1) = gt =gt g (U5 ) Bt e B

Proof of Theorem: The trick is to write the finite geometric sum
Eo(w) =1+e% +e* 4 ... 4 e Dv

in two ways and then to compare coefficients. We have

n—1 )
E,(w) = el
§=0
n—1 oco .
B ) et
j=0 k=0
oo n—1
1
- S
k=0 j=0
21
= Z—'Sk(n— 1) w”
k=0
(Here we have used the convention 0° = 1.)
On the other hand, we have
e —1
Enlw) = e —1
B w e —1
oew—1 w
B,u e n)\+1 N
- (o) Eaem)
| |
u=o M A=0 (A+1)
_ i 3 By 1)k
N [(A+1)!
k=0 pt+r=k K-

Comparison yields that
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k!
Sen—1) = Y ——— Byn™!

k
_ 1 Z (k+1)! B pktl-n
plk+1—p)!

This proves the claim since

1

(k+1> (k+1)!
IS O
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9 The Riemann Zeta—Function

When discussing Riemann’s Zeta—Function, it is standard to use Riemann’s notation and use the
variable s = ¢ 4 it instead of z = z 4 1y.

9.1 Definition for Res > 1
Let s =0 +it. If 0 > 1 then the formula

)= n (9.1)
n=1

defines ((s). For every n = 1,2,... the function

s—n S = e—slnn

is entire. Therefore, for N = 1,2, ..., the finite sum

is an entire function. The sequence Sy (s) converges uniformly for

Res>1+6>1.
Thus, (9.1) defines a holomorphic function in the half-plane

Uy={s : Res>1}.
9.2 Simple Bounds of ((s) for s > 1
Let n be a positive integer and let s > 1. Then we have

(n+1)°<z°<n® for n<z<n+1.

Therefore,

S [Ty

1

n=1 n=1
This says that
1
C(S)—lﬁs_ISC(S) for s>1
In other words,
L <((s) < fi > 1 (9.2)
s =68 s_—7 for s . .

The lower bound ((s) > 1 for s > 1 is also obvious.
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9.3 Meromorphic Continuation of ((s) to Res >0
Let

Up={s : Res>0}.

We will show that ((s) can be continued as a holomorphic function defined in Uy \ {1}. Also, ((s)
has a simple pole at s = 1 with residue equal to 1. It turns out that ((s) — 1/(s — 1) is in fact
an entire function, but we will not show this here since our analytic continuation is only valid for
Res > 0.

Notation: For every x € R there exists a unique integer n with n < x < n+ 1. We then write

{a}=2—-—n, z=n+{z}=[2]+ {2}
and call {x} the fractional part and [z] = n the integer part of .

We use the function [z] to derive an integral representation for ((s). The following holds for all
seC:

in(n_s — (n+ 1)—8) - 12 +2(2—8 - 3—8) . +N(N‘5 — (N + 1)—5)

n=1

= 14+2°4+3°4+... 4+ N = NN+1)°

Here, for all s € C:

r=n+1
n’—Mm+1)° = —z°

r=n

n+1
= s/ x5 de
n

n+1

n(nfs —(n+ 1)75) = s/ [z]z ™ da .

n

Multiply by n to obtain that

Sum over n from n =1 to n = N to obtain:

WE

si/nﬂ[ﬂﬁ]x—s—l de = n(n‘s —(n+ 1)—3)

n=17" 1

3
Il

I
NE

n" — N(N+1)°

3
Il
_

Thus we have for all s € Cand all N =1,2,...:

N+1 N
3/ [z]z™5  de = Zfrfs —N(N+1)"°.
1 n=1
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In this equation we now assume Res > 1 and let N — oo. This yields the following integral
representation of the Zeta—function

s/ [z]z=5Ydex =((s) for Res>1.
1

If we replace the integer part of =, denoted by [z], by z itself, then we can evaluate the integral.

For Res > 0:
oo oo s
s/ x-x_s_ldx—s/ z % dr = .
1 1 8—1

Taking the difference between the last two equations and noting that = — [x] = {z} we have

s
s—1

o A e e ]

thus

o
((s) = i T~ s/ {z}2='dx for Res>1. (9.3)
§— 1
Here the function s/(s — 1) is holomorphic in C\ {1}. In (9.3), we have identified the singular
behavior of ((s) at s = 1.

Since {z} is bounded, the integral

H(s) = /1 S iole—da

defines a holomorphic function of s for Res > 0. We obtain that

5 -8 Ooxafsfla; .
S [ eyt (94)

is holomorphic in Up \ {1} and, by (9.3), agrees with ((s) for Res > 1. Thus, the holomorphic
extension of ((s) to Uy \ {1} exists and is given by

S

C(s) = 1 3/100{96}3351 dx

1 o0
= 8_1—1-1—3/1 {z}z~5 T dx

1
= F
TG

with

F(s)=1—s /1 St de (9.5)

We have shown:

Lemma 9.1 The function ((s) is meromorphic in Uy = {s : Res > 0}. It has a simple pole at
s = 1 with residue equal to 1. It has no other poles in Uy.
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For Res > 0,s # 1, we have the Laurent expansion centered at s = 1

(s) = 5 + D asls — 1)
§=0

where

o0

Zaj(s — 1Y =F(s) for Res>0.

j=0
The first term of the series is

apg = F(l) .
Therefore the value F'(1) is of some interest.
Lemma 9.2 Let F(s) be defined in (9.5). Then we have
F(1) =~

where v = limy, oo (Z?:l % —In n) is Euler’s constant.’

Proof: Below we will use that

iy 1 jz=n+1
n x T lz=n
n
= — 1
n+1 +
_ 1
 on+1

We have F(1) = 1 — limy_,00 Jy with

N n+1
= Z/ (x —n)z~2dx
n=1""
N+1 g, N n+l g0,
ol B X A
1 T n—1 n €z
Voo
= In(N+1)-—
(N +1) Zn+1
n=1
NJrl1
= In(N+1)— —
n
n=2
N+1

31t is not known if v is rational or irrational.
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Therefore,
Nt
F(1) = i ( Z _In(N 1):.
W= gim (YL -mwen) -,

N—oo

This proves for the Laurent expansion of ((s) centered at s = 1:

1 > :
g(s):m+7+zaj(s—1)ﬂ for 0<|s—1]<1.

J=1

9.3.1 A Second Proof of Meromorphic Continuation

For s € C set

If Res > 1 we can sum and obtain

[e%s) 00 . o 1
3ol =6 = [ a7 ==

thus

1
s—1

C(s) = + ) Ou(s) for Res>1.
n=1

We claim that

H(s) = dn(s)

n=1
is holomorphic for Re s > 0.
Let f(x) = z*, f'(x) = —sz~*~'. We have

)= [ ()~ 5@ o

Let s =0 +it,0 > 0. The lemma below gives us the estimate

[f(n) = f(@)] < max |f'(q)|lx —nl,

n<q<z
thus

!/
Bu(e) < max 17a)]

_ —o—1

= |5 ,hax lg= 7
E

na—i—l

IN
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Since

=1
an+1:C(U+1)<oo for >0
n=1

one obtains that H(s) is holomorphic for Res > 0.

Lemma 9.3 Let U C C be open. Let f € H(U) and let

Fi={z2(t)=a+tb—a) : 0<t<1}CU.

Then we have the estimate
|£(b) = f(a)] < max|f'(q)| |b—al .
qel
Proof: For 0 <t <1 let

¢(t) = fla+tb—a))
¢'(t) = fllat+tdb—a)(b—a)

We have
1
£0) = f(@) = 91~ 600) = [ o' (0)a
0
and the estimate follows. ¢

9.4 Analytic Continuation of ((s) to C\ {1}; the Trivial Zeros of ((s)
We claim that

oo ,.s—1
F(s)((s):/o a 1dx for Res>1.

This follows from the geometric sum formula

_x 0

1
€ :Ze_m for z>0

et —1 1—e*®
n=1

and

o 1 00
L(s)C(s) = Z s /0 et tdt  (let t = nx, dt = ndx)
n=1
= Z/ e sy
n=1"0

00 o0
= / e s dy
0 n=1
o

o) 1
= / * dx
0 Cx—l
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For Res > 1 we can write the equation as follows:

1 .735_1 e8] :L‘S_l
L(s)¢(s) = /0 dx —i—/l dx =: I (s) + I(s) .

et —1 e? —1
Here the second integral, I5(s), defines an entire function of s. To discuss the first integral, recall
that

o0
B
i g —T:cm, |z| <27,
— ml

er —1
m
where By, By, ... is the sequence of Bernoulli numbers.* For Res > 1 we have
! 1
/ "y = ——— m=0,1,...
0 m-+ s — 1

and one obtains that

1 s—1
Li(s) = / ’ dx
0

e? —1
oo 1
= iT ./ me’»SiQ daj
0 m. 0
o0
B 1
oy B LR
' s+m—1
m=0
For m =0,1,2,... the functions
1
s—(1—m)
have poles at the s—values
1,0,—1,-2,-3,...
However, since B,, =0 for m = 3,5,7,... the functions
B, 1
m! s—(1—m)
have poles at the s—values
1,0,—1,-3, -5,
Since
B 1
M < — for m>mg,
! 2m
it follows that
(e}
B, 1
Ii(s) = —_— — se C\{1,0,-1,-3,-5,...},
1(s) Zm! s—(1—m) W }
m=0
“Recall that B,, = 0 if m is odd and m > 3. Also, by Hadamard’s formula, limsup,, . |Bm/m!|*/™ = o+
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is an analytic function with simple poles at

1,0,-1,-3,-5,-7,-9,...

We have
C(5) = —— I(s) + —— Iy(s) for Res>1
s _F(s) 1(s Ts) o(s or es
and, since
1
A p—
(S) F(S)
is zero at the s—values
07 1a_27 3a
the term
- Ii(s) = A)T1(s)
F(S) 1 = 1{s

is an analytic function in C\ {1}. One obtains that

() = A(2)Li(s) + A(s)la(s), s€C\{1},

with
A(s) = ——. A(s) entire
s) = ()’ s) entir

> B, 1

Il(S) = Z Wm, S € C\{l,o,_l,—3, —5,}
m=0

00 IS_I

I(s) = / x_ldx, I5(s) entire .

1 (&

The function A(s)I3(s) is the product of two entire functions. The function A(s)I;(s) is analytic
in C\ {1} with a simple pole at s = 1. Recall that A(s) = 1/T'(s) has a simple zero at

s=0,-1,-2,-3,—4,...

and I;(s) has a simple pole at

s=1,0,—1,-3,-5...

Therefore

has a simple zero at

s=—2,—4,—6,...

These zeros are called the trivial zeros of the zeta—function.
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In the following table, poles; are the poles of the function

1
§— —————
s+m—1
and poless are the poles of the function
B
5 —"
s+m—1
Here 0 < m < 5.
m By, | polesy | polesy | zeros of ((s)
0 1 1 1
1| -1/2 | 0 0
2 | 1/6 | -1 -1
3 0 -2 no pole -2
4 |-1/30 -3 -3
5 0 -4 no pole -4
9.5 Euler’s Product Formula for ((s)
Let pj,j = 1,2,... denote the sequence of prime numbers, i.e.,
p1:27 p2:37 p3:57"’

Euler’s product formula for the (—functions says that

Let us first prove convergence of the infinite product.

¢(s)

Lemma 9.4 The infinite product

P(S) :H;.ill_i

o

== s

J

‘_5
J

for

Res>1.

for Res>1

converges and defines a holomorphic function for Res > 1.

Ulz{s

: Res > 1}.

Proof: Since p; > 2 we have

1
For |€’ < 5

with

we have

1

1—c¢

[R(e)] < 2Je]

for
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1
< .
-2

The function P(s) has no zero in

=14+e(l4+e4e*4...)=1+R(e)



Therefore, if Res =147 > 1, then

1
1 —s _1+fj(s)
J
with
2 2
| fi(s)] < < 9

Using Theorem 7.3, we obtain convergence of the infinite product

1
P(s) = (;ill—pfs for Res>1,
J

the function P(s) is holomorphic for Res > 1 and

P(s)#0 for Res>1.

An intuitive, but somewhat imprecise argument for the equation

1
C(S) = H;.il ﬁ for Res>1

is the following: We have

—14+p % +p 2+, ..
1_pj—8 p] p]

and

1 1
1—-p;° 1—p5°

= (1 m ) (T )

k k
— Z (pll .. .pJJ>
where the sum is taken over all J = 1,2, ... and nonnegative integers k1, ...,k . By the Fundamen-

tal Theorem of Arithmetic, every n = 1,2,... has a unique representation as a product of prime
powers,

—S

k k
n = pll . pJ‘]
and, therefore, the above sum equals
o
ans =((s), Res>1.
n=1

The argument is not rigorous since we multiplied infinitely many series somewhat carelessly.
We now give a rigorous argument and fix

JKeN, s>1.
We have, for every j =1,2,...
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1
1—p;*

= 1+p;°+p; 7 +...

K
> ) pite.
k=0

Taking the finite product over j = 1,...,J yields that

K
1
J J —ks
M= = szl(ij )
J k=0
k —S
_ Y ()
0<k, <K
Sy e
neS(J,K)

Here S(J, K) is the set of all positive integers n of the form

n:p’fl---pljf with 0<k, <K for v=1,...

Since the above product is finite, we can let K — oo and obtain that

H}]:1 L _ Z n-°

1—p;°

where S(J) consists of all positive integers n of the form

nzp’flu‘pl}" with &k, € {0,1,...} for v=1,...

If 1 <n < J then n € S(J). Therefore,

ansg n*<((s), s>1.
()

n=1 nes
Taking the limit as J — oo and recalling that

we have shown that

[e.e] 1 . —S
HjZlif‘s: E n :C(S), s>1.
1—p:.
Since P(s) and ((s) are holomorphic for Res > 1 we have shown:

Theorem 9.1 For all s € C with Res > 1 we have

1 oo
H‘(])Oill_ s :Zn_szg(s) .
pj n=1

The function ((s) is zero—free for Res > 1.
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9.6 The Sum Z% and the Prime Number Theorem

Theorem 9.2 (Euler) If p1,pa, ... denotes the sequence of primes, then

Proof: Suppose that

Then let s > 1 and recall that

2
— =1+ fj(s) with 0< fj(s) <2p;° < —.
1 —p; Dj

Therefore, for any finite J,

1 2
. < 1l (1+ 7)
=19 _ pj—s J=1 D)
< H;leeQ/Pj
1 1
= exp (2(* + *))
b1 b
< ek

In this estimate we can let J — oo and obtain that

C(s) <e* for s>1.
However, we know that

1
s—1

and obtain a contradiction as s — 1+. ©

<({(s) for s>1

It is clear that p; >> j for all large j. One can ask how fast, in comparison with j, the sequence
pj grows as j — 00. As a consequence of the previous theorem, the following Corollary says that
pj cannot grow as fast as gjiteife > 0.

Corollary: If e > 0 then numbers cc > 0 and J € N with

cej' Tt <p; for j>J

do not exist.
Proof: Otherwise one would obtain

Ce— < =
12 jl+s

in contradiction to the previous theorem. ¢

for 7>J,

Instead of comparing p; with j17¢, it is common to introduce the function
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m(x)=4{p; : pj <z}, T>1,

and to compare the growth of m(z) with the growth of x as © — co. Here m(x) is the number of
primes < x.

Roughly speaking, Theorem 9.2 says that the sequence p; of primes grows rather slowly, slower
than the sequence

it =12,
for any € > 0 since
PIPERS
j1+e
=17

Since the sequence p; grows only ’a little’ faster than the sequence j (there are 'many’ primes), the
function 7 (z) goes to infinity only ’a little’ slower than x. Thus, one expects that
m(x)
x
goes to zero as x — 00, but only quite slowly. In fact, one can prove that
()

1
~— as T — 00 .
x Inx

Precisely:
Theorem 9.3 (The Prime Number Theorem)

lim In(z)m(x)
T—00 T

=1.

9.7 Auxiliary Results about Fourier Transformation: Poisson’s Summation For-
mula

Remarks: Laurent Schwartz (1915-2002, French) introduced the Schwartz space S = S(R™,C)
and its dual S’. The dual S’ is the space of tempered distributions. We will only use the Fourier
transform on the space S = S(R,C).

Results in this section will be used to prove a functional equation for the 6—function in the next
section. The functional equation for the 6—function will be used to prove the functional equation
for ((s) in Section 9.9.

The Schwartz space S(R) consists of all C*°— functions f : R — C for which all derivatives
decay rapidly. More precisely, for all £ = 0,1,2,... and all j = 0,1,2,... there exists a constant
Cji so that

|f®)(2)2?| < Cjp, forall zeR.

For f € S(R) the Fourier transform is

fe) = /_ f@)e € 4z, £ R

The Fourier inversion formula holds:
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:/Oo fe)em e de, zeR.

Let f € S(R). The function

= i flx+n), zeR,

n=—oo

is called the periodization of the function f(x). Clearly, Fi(x 4+ 1) = Fi(z). It is not difficult to
prove that F; € C.
Another way to obtain a 1-periodic function from f(z) is to consider

Z f 2mnm reR.

n=—oo

The following lemma says that Fj(x) = Fy(z).

Lemma 9.5 For all f € S(R) we have

Z fle+n) Z f(n)e?™n = Fy(x), z€R. (9.6)
n=—0oo n=-—oo
Proof: For all m € Z:
1 .
/ Fl(x)e—%rmﬂ de = Z / f x -+ n) —2mimx dr (letx +n =y, use that emen _ 1)
0 n=—oo
— Z / —27rimy dy

n=—oo

= [ ey
f(m)

For the function Fy(z) we have

e}

1 1
/ Fz(x)e—%rimr der = Z f(n)/ e27ria:(n—m) dx
0

0

Therefore,

1
(Fl(x) - Fg(x))e_mm”” dr =0 forall meZ.
0

This implies that Fi(z) = F(z). ©
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If one sets x = 0 in formula (9.6) one obtains Poisson’s Summation Formula for f € S(R):
St =Y fm) (9.7)

. . . . 2 . .
Fourier Transform of a Gaussian: Consider the Gaussian f(z) = e™™" with Fourier trans-

form

o0

f(e) = / T2 gy e R

We have

where (by Fubini)

= e 1dq
0
= 1
Therefore, f(0) = J = 1.
Also, using integration by parts,
¢ = / e_mz(—27ri:c)e_2m§x dz
_ Z/OO %<677T:172)6727Tl§{17 dr
= —2mgf(6)

Thus, the function f(¢) solves the initial values problem

A~

f'(&) = —2mf(e), fo)=1.
Since the Gaussian h(§) = e~ solves the same initial value problem and since the solution of the
initial value problem is unique, it follows that

f&)=em.

Thus, the Gaussian f(z) = e~™ has the Fourier transform f(¢) = e~ ™.
Let t > 0 be fixed and consider the Gaussian
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We have
f(g) — / e—wtx26—27ri§x dr (let \/ZFIL’ _ y)
1 o0 _ 2 —27i
- e ™ e M(f/\/i)ydy
Al
= L e

Vit

Therefore, for ¢t > 0 the Gaussian f(z) = e~™*" has the Fourier transform

f(6) = \}% N (9.8)

9.8 A Functional Equation for the Theta—Function

Remarks: The Jacobi theta— function

oo
@(Z, 7_) — Z eiﬂnzre%rinz

n=—oo

is defined for z € C and 7 in the upper half-plane. The function is 1-periodic in z and plays a role
in the theory of elliptic functions. If z =0 and 7 = it,¢ > 0, one obtains

o0

0(0,it) = Y e ™.

n=—00
This function is also called a theta—function.
For ¢ > 0 we define the (special) theta—function by

[e.9]

o) = > et

n=—oo

If ¢ > 0 is fixed and
flz)y=eT™t 2eR,
then

Pe) — L w2t

Note that the Gaussian f(z) is an element of the Schwartz space S(R). Poisson’s summation
formula applied to the function f(z) = e~™"t (for fixed ¢ > 0) yields that
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thus

0(t) = ;%9(1#) for t>0.

Equation (9.9) is called the functional equation for the theta—function.
For the application to the Zeta—Function we will need the following modification: Set

o
2
:Ze*m“ for uw>0.

Then we have

Ou) = 2q(u)+1
o) = 39<u>—§
- 5 f 01 /u) —
- 2f <2q(1/u)+1)

Therefore,

() =
RV 2Vu
9.9 The Functional Equation for the Zeta—Function

In the formula

s dl
I‘(S/?)_/ e~tes/ n for s>0
0
use the linear substitution

t=mnu

to obtain that

7r_5/2F(s/2)n_5 :/ e~ U us/Qd—u .
0 u

Then summation over n yields for s > 1:

720 (s/2)((s) = /0 " gy

» .

Write the integral as

1 du o0 du
Int(s) = /Oq<u> o2 4 / gyl "

=: Inti(s) + Int?( )
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q(l/u)+——§ for u>0.

(9.9)
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and then use equation (9.10) in Inti(s) to obtain that

0200 L [ (e e
Intl(s):/ u'’® q(l/u);—{—i / (us —u'’ )du =: Ints(s) + Intys(s) .
0 0

The last integral equals

1 1
Inty(s) = —— — =
nta(s) s—1 s
In Int3(s) use the substitution
1 du dv
u = -, _— = — —
v v

to obtain that

Intg(s):/ v(l—s)/2q(v)@
1

v

To summarize, one obtains that for s > 1:

72T (s/2)C(s) = LI % + /100 (u(lf‘s)/2 + u3/2>q(u) du . (9.11)

s—1 u

Both sides of the above equation determine holomorphic functions in C\ {0, 1}. Therefore, equation
(9.11) holds for all s € C\ {0,1}. It is also obvious that the right-hand side of equation (9.11)
remains unchanged if one replaces s by 1 — s, i.e.,

rhs(1 —s) =rhs(s) .
This proves that the function

h(s) = m*/T(s/2)¢(s)

satisfies
h(l1 —s)=h(s), seC\{0,1}.

9.10 The Order of Growth of (s)
Set

£(s) = %s(s ~1)h(s) = %s(s )20 (s/2)C(s) for seC.

The function £(s) is entire and satisfies
E(s)=¢&(1—s) for seC.
We will prove that £(s) has the growth order 1.

An implication is the following: Set



If s = % +wthen1—5s= % — w and one obtains that

Therefore, if

oo
g(w) = Zgnwn
n=0
then g, = 0 if n is odd. Thus,

g(w) = go + gow? + gaw* + ...
Set

G(v) = go + gov + gav* + ...
thus

In other words,

Gv) =g(w) if v=uw?.

Since g(w) has growth order one, an estimate of the form

lg(w)| < AP forall weC

holds for all € > 0. If v = w? then one obtains that

IG(v)| = |g(w)| < AeBIwI™ = BRI+

This implies that the function G(v) has the growth order % By Hadamard’s Theorem, the entire
function G(v) has infinitely many zeros. Therefore, g(w) has infinitely many zeros and &(s) has
infinitely many zeros. We also know that £(s) has no zero s with Res > 1 or Res < 0. It follows
that £(s) has infinitely many zeros s with 0 < Res < 1. Every zero of £(s) is also a zero of {(s). It
follows that ((s) has infinitely many zeros in the critical strip 0 < Res < 1.

It remains to prove:

Theorem 9.4 The entire function
1
§(s) = 5 s(s - Dr/?T(s/2)¢(s) for seC
has growth order 1.

Proof: a) We first show that the order of growth of {(s) cannot be less than 1. Suppose that
£(z) < AeP® for zeR, z>ux.
This yields that

1
¢(x)
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Since ((x) > 1 one obtains that

[(z) < A’ for > (9.12)

for some 8 > 0. However, by Stirling’s formula,

MNzx+1)= (g)x V2rx <1 + O(l/m)) as T — 00 .
This implies that

Fxz+1) > (§>x for x>ux,
e

thus

¥ <eT'(x+1)=e"2l(x) for x>z .

If the estimate (9.12) would hold then one would obtain that

¥ < e’ for x> a9

for some v > 0. This would yield

zlnxe <~vx for x>uxo,

a contradiction.
b) We have

() =o(s—3) = Xm(s-3)"

We will prove in part c) that go,, > 0 for alln =0,1,.. ..
Let’s assume that g9, > 0 for all n. In the following, let

1
se€C and R:’S_i‘ .
We will assume that sqg > 0 and Ry > 0 are sufficiently large. We have

112n

00
Zg2n s — 5
n=0

= Zg2nR2n
n=0
= g(R)

- d3+)

1€(s)]

IN

The last equation holds since £(q) = g(q — %) for all ¢ € C.
If R > 1 then § + R < 2R and
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1
&(5+ R)

£(2R)

= R(2R-1)n ED(R)¢(2R)
I'(R+1)

"~
—
w0
=
IN

IN

IN

for R > Ry. Using Stirling’s formula,

T(R+1) = (g)Rx/ﬁ(l + 0(1/3)) as R — oo
one obtains that
|€(s)] <T(R+1)<RER for R>Ry.
Since R = |s — 1| one obtains that
R< |8|+%§2‘8‘ for |[s|>1.
Therefore,

1€(s)| < (2]s])2 = @D 2l for 5| > s

For all € > 0 there exists B. > 0 so that

21n(2|s|) |s| < Bels|'** for |[s| > s .
Together with part a) of the proof, it follows that the growth order of £(s) equals 1.

¢) It remains to prove that go, > 0 for n = 0,1,2,... We first prove two auxiliary results about
the function

o0

q(t) = Ze_”jzt, t>0.
j=1
Lemma 9.6 We have

S +a()+44(1) =0 (9.13)

and

% <t3/2q’(t)) >0 for t>1. (9.14)

Proof: 1) Differentiating the functional equation

2(t) +1=t"1/2 <2q(1/t) + 1)

one obtains
2¢/(t) = —% 32 (2q(1/t) + 1) +2t7 2 (1/t) (—t72) .
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Evaluation at ¢ = 1 yields that

24/(1) = —%<2q(1) + 1) —24(1) .

Equation (9.13) follows.
2) We have

o
q(t)=—m) sl ™"
j=1

and
%(tmq’(tﬁ = —W;fjt(t?’/?e—”ft)

. :2,1/2 ) 3 —mj?t
= ﬂ'th <7T] t—§)e
j=1

Since m > 3/2 and t > 1 is assumed it follows that (9.14) holds. ¢

We continue the proof of Theorem 9.4, part c).
Recall formula (9.11):

Since

R T
1
2

one obtains the following equation for {(s) =

E(s) = 5 — 5 51— 9) /Oo alt) (#1409 g
1

For t > 1 set

Ti(t) = Q(t)(ts/2_1+t(1_s)/2—1>
, +5/2 1(1-5)/2

L6 = 4O 5+ 1=97)
/2 4(1-s)/2

) = a0+ Toa)

(The functions T}(t) also depend on s, of course.) The product rule of differentiation shows that

S T(0) = Talt) + T
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thus

Ty(t) = T(t) - Tut) -

Since ¢(t) decays exponentially as t — oo one obtains that

/IOOTl(t)dtz —q(l)(§+ 133) —/100T2(t)dy.

Since
1 2 2
*3(1_5)<;+?> =1—-s5+s=1
and
1 15/2 t(1=s)/2
—s(1l—s5)(—= 1 5/2 (1—5)/2
s 8)<s/2 - s)/2) (1= 8)t%" st
one obtains that
(s) = 1l (1—- )/OOT(t)dt
S - 2 2 S S ) 1
1 1 oo
= - +q(l)+5s(1 —s)/ () dt
2 2 1
— 1 > / o 8/2 (1_5)/2
= S+q)+ [ d)((Q—s)t7" +st dt
2 1
= % +4q(1) +/ q’(t)t3/2<(1 — )t St—5/2—1> dt
1

Set

Bit) = (q@?) (1=t g s/

By(t) = (% (t3/2q'(t))) (_ op(s=1)/2 _ 2t‘5/2>

By(t) = (£2¢(0)) (- 2002 - o2

It is clear that B = By + Bs, thus

Therefore,

Here
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£(s) = —/ By(t) dt = 2/ B(t) (t<s—1)/2 + t—s/2) dt (9.15)
1 1
with
3/2 1
w(t) = g (1740
Set
Int 1
Y= (S‘ 5)
We have
1
= I — (577)/2
y = (Int) (s 2)/2 ln( )
thus
eV —16=3)/2 and eV =t (5-3)/2
Since

((5=1)/2 _ 4=1/4 t(s—%)/Q — Y4y and /2 — VA t—(s—%)/Q — 4y

we obtain that
tsmD/2 g yms/2 = 1A (ey + e*y)
= ot /4 Z . (an)

n)!
1 1\ 2n
—-1/4 2
=2 Z22 wanyt ) " (s-3)

Using this series in formula (9.15) yields that

© 1\ 2n
9= 0 (s- )
n=0

an

with

4 > —1/4 2n
o = g /1 B(1)e (I )" dt

where

D(t) = Z<t3/2/())>0 for 1<t<oo.

The positivity of ®(¢) for t > 1 has been proved in Lemma 9.6.
Since go, > 0 for all n = 1,2, ... the proof of Theorem 9.4 is complete. ¢
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10 Analytic Continuation

10.1 Analytic Continuation Using the Cauchy Riemann Equations

Discussion of the 2m—periodic Cauchy problem for the Cauchy—Riemann equations. It is ill-posed.

10.2 Exponential Decay of Fourier Coefficients and the Strip of Analyticity
10.3 The Schwarz Reflection Principle

10.4 Examples for Analytic Continuation

10.5 Riemann Surfaces: Intuitive Approach

10.6 Riemann Surfaces: Germs, Sheafs, and Fibers
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11 Fourier Series

11.1 History

Marc—Antoine Parseval, French, 1755-1836
Jean—Baptiste Joseph Fourier, French, 1768-1830
Peter Gustav Lejeune Dirichlet, German, 1805-1859
Karl Theodor Wilhelm Weierstrass, German, 1815-1897
Paul Du Bois—Reymond, German, 1831-1889
Ernesto Cesaro, Italian, 1859-1906

René-Louis Baire, French, 1874-1932

Lepot Fejér, Hungarian, 1880-1959

Henri Léon Lebesgue, French, 1875-1941

Hugo Steinhaus, Polish, 1887-1972

Stefan Banach, Polish, 1892-1945

11.2 Convergence Results: Overview

Let X denote the linear space of all continuous functions f : [0,1] — C with f(0) = f(1). (Some of
the results that we discuss hold for more general functions than functions in X.)
For f,g € X we use the Lo—inner product,

1
= f dzr |
(F.9)1, Af@M@x
the Lo norm,

Iflle, = (£, D12

and the maximum norm,

Floo = max | f(2)]
The sequence of functions
or(x) = *™* ke,

is orthonormal in X, i.e.,

(05 k)L = ik -
Let f € X be given by a series,

@)= anula) .
k

If the series converges uniformly for 0 < z < 1, then one obtains that

ar = (Pks f)Ls -
This motivates the definition of the Fourier coefficients: If f € L1(0,1) then set
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f(k) = (or, 1oy keEZ.

The series

> fk)ér(x)
P

is called the Fourier series of f. Basic questions are: Under what assumptions on f does the Fourier
series converge? In which sense does it converge (e.g., pointwise, or uniformly, or in Ly—norm)? If

the series converges, does it converge to f7
With

Spf(z) = Zf(k)qbk(a:) for 0<xz<1 and n=0,1,2,...
k=—n

we denote the n—th partial sum of the Fourier series of f.
A reasonable question is: Given f € X, is it true that

Spf(x) — f(z) as n— oo

for all z € [0,1]7 In 1873, Du Bois—Raymond proved that the answer is No, in general. It is
difficult to construct an explicit example. However, using the Principle of Uniform Boundedness of
functional analysis, one can show rather easily that a function f € X ezists for which the sequence
of numbers S, f(0) is unbounded.

Let f € X. The sequence of arithmetic means,

7l () = —= Y S (a)
k=0

can be shown to converge uniformly to f. These means are the so—called Cesaro means of the
partial sums S, f(x).

Theorem 11.1 Let f € X. Then we have

lf —onfloo—=>0 as n—oo.

We will prove this important result below.
Let T, = span{¢r: —n <k <n} and let

T =UnTn .

The functions in 7 are called trigonometric polynomials.
Using Theorem 11.1 it is easy to prove:

Theorem 11.2 (Weierstrass) The space T of trigonometric polynomials is dense in X with respect
to | |so-

From Weierstrass’ theorem it follows rather easily that the Fourier series S, f converges to f
w.rt. |||z,

Theorem 11.3 Let f € X (or, more generally, let f € L2(0,1)). Then we have

|f —Snfll, >0 as n—oo.
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11.3 The Dirichlet Kernel
Let f € X. We have

and

Suf(z) = Y fk)etmHe

k=—n
n

= /0 1( > ) f(y) dy
1

k=—n
=/, Dy (x —y)f(y)dy

where

n
Dn(t)= Y ¥ teR, (11.1)

k=—n

is called the Dirichlet kernel.

Lemma 11.1 The Dirichlet kernel (11.1) has the following properties:

1.

D, € C®(R) ;
2

Da(t) = Dt +1) ;
3. 1
/ D,(t)dt=1;

0

4 in(r(2n + 1)t)
Da(t) = sin(7rt) ;

5.

1
4
Ln::/ |Dp(t)|dt = — Inn+O(1) as n—o0.
0 s

Proof: We prove 4. using the geometric sum formula. Let ¢ = €2™ # 1, thus t € R\ Z. We have
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2n+1

i
AT

Figure 11.1: Dirichlet Kernel

2n
Du(t) = ¢ "> ¢
=0

_ . q2n+1 -1

q q—1

n+1/2 _ q7n71/2
G2 — ¢ 12
sin(m(2n + 1)t)

sin(7t)

q

Property 5 will be shown below in Lemma 11.4. ¢
Note that, because of Property 4,

Dy(t)~2n+1 for t~0.

A plot of Dy(t) shows that Dy(t),—2 <t < i, is concentrated near t = 0 for large n. Together
with Property 3, this makes it plausible that

1
Suf(e) = [ Dule =) ) dy ~ f(a)
for large n. In fact, convergence S, f(z) — f(x) holds under suitable assumptions on f. However,

the oscillatory nature of D,,(t) makes a convergence analysis as n — oo difficult. In fact, in Section
11.9 we will use Property 5 to show existence of a function f € X for which S, f(0) diverges.

11.4 The Fejér Kernel
Let f € X. We have

1
onf(z) = /0 Folz — ) (y) dy

where F),(t) is the Fejér kernel:
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B = S D).
=0

n+1 P

The following result shows that F),(t) > 0. This crucial inequality will allow us to prove Theorem
11.1.

Lemma 11.2 We have

1 sin?(m(n+ 1)t) '

F,(t) =
n(t) n+1 sin?(7t)
Proof: Using the formula
sin(m(2k + 1)t
Dy(e) — (2 + 1)
sin(7t)
we must show that
.2
sin®(7(n + 1)t)
T2k + 1)t) = ——————= 11.2
Z sin(m(2k + 1)¢) = sin(7rt) (11.2)
We will prove this equation using again the geometric sum formula. Let
r=e™ and ¢q=r?=¢*",
We have
27/ Sln('ﬂ-(2]€ + ].)t) — 6i7r(2k+1)t _ 6—i7T(2k+1)t
r
— gt
r
Therefore,

n+1_1 1 —n—l_l
QZZSIH 2k+1)t) = rd 1 —fq_l . ( recall that g = r?)
q- rogl-
_ qn+1_1_q—n1 1
r—r1 r—i—rp

Here the numerator is (recall that r = e™):

2
N = (5 =) = (20)sin® (n(n + 1))
and we obtain

sin?(7(n + 1)t)
r—r-1 )

Zsm (2k +1)t) =2i -
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Figure 11.2: Fejér Kernel

Since

r—r~1 = 2isin(nt)

the equation (11.2) follows and the lemma is proved. ¢

11.5 Convergence of ¢, f in Maximum Norm

Let f € X. We extend f as a 1-periodic continuous function defined for all x € R.
Below we will use that

/an(t)dtzl.
0

Furthermore, if 0 < § < %, then we have

sin(nt) > >0 for (5§t§%.
Therefore,
Pt) < —— L gor s<t<t (11.3)
T 4162 or - -2 '
We have
1
ri@) = [ Fue-nfedy
1
— [ Bt
0
1/2
- [T Rwie-na
~1/2
and



First fix an arbitrary (small) 6 > 0. We have

|f (@) — onf(2)]

IN

/ Ea(0)]f(x) = f(z — )| dt +/ E,(0)]f(z) = f(z —1)| dt
lt|<é

s<lt<1/2

IN

1/2

M5+4|f|oo/ F,(t)dt (11.4)
1)

with

Ms = max{|f(z) — f(zx —t)] : z R, [t|<d}.

Note that Ms — 0 as § — 0 since f is uniformly continuous. The integral in (11.4) is bounded by
1/(6%(n+1)). If € > 0 is given, we can find § > 0 with M; < £/2 and then have

1/2
4]f]oo/ Bo(t) dt <
)

This proves Theorem 11.1. ¢

for n>N(e).

DN ™

11.6 Weierstrass’ Approximation Theorem for Trigonometric Polynomials

Since o, f € T, it is clear that Theorem 11.2 follows from Theorem 11.1.

11.7 Convergence of S, f in L,
Let f € X. Recall that

Suf(a) = 3 f(k)exmits

k=—n
denotes the n—th partial sum of the Fourier series of f. It is clear that S, f € T,. The following
result says that S, f is the unique best approximation to f in 7, w.r.t. the Ly—norm.

Theorem 11.4 Let f € X. If g € T, is arbitrary and g # S, f, then we have

”f - SanLz < Hf _9||L2 .
Proof: We have

0= (™" f—S,f)p, for |j|<n.

Therefore,

0= (h,f—Suf)r, forall heT,.
If h € T, is arbitrary, h # 0, then

If = Saf —hl7, = IIf = SuflZ, + kI3,
> |If = Saf|?

which proves the theorem. ¢
To prove Theorem 11.3 for f € L9(0,1) we will need the following result:
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Lemma 11.3 a) The space X is dense in La(0,1) with respect to the Ly-norm.
b) If g € Ly(0,1) is arbitrary, then ||Sng|lL, < |9z,

Proof: a) Step functions are dense in Lo (integration theory). Then, every step function can be
approximated in Lo—norm by an element in X by ‘rounding the corners’ and enforcing periodicity.
b) Let g € L(0, 1) be arbitrary. By construction of S, g we have

(¢j,9— Sng)r, =0 for [j|<n.

This says that the approximation error, 7, := g — Snhg, is orthogonal to the space of trigonometric
polynomials of degree < n, i.e., to 7. In particular, n, = g — S, g is orthogonal to S, g. Therefore,

Hg“%z = (g - Sng + Sng7g - Sng + Sng)L2
= (nn + Snga N + Sng)L2

o
Proof of Theorem 11.3: First let f € X. By Theorem 11.1, given any € > 0, thereis g € T
with

‘f_g’oo <eg.
If g € Ty then we have for all n > N:

”f_Snf”LQ < Hf_gHLz < |f_g|00 <e.

This proves that || f — S, f|l, = 0asn — oo if f € X.
Second, let f € L2(0,1). Given € > 0 there is f¢ € X with

1f = fllr, <e.
We have

1 = Snflle < = Fllze + 15 = SufollLo + 190 f° = SufllL, -

The last term is

[Sn(f* = e, <M= fll, <e.
It follows that

If = Snfllz, <2e+ 1 = Snf°llL, -
Therefore, if n > N(¢),

”f - Snf”L2 < 3e.
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11.8 The Lebesgue Constant of the Dirichlet Kernel
Recall that

sin(7(2n + 1)t)

D,(t) =
n(t) sin(7t)
denotes the Dirichlet kernel.
Lemma 11.4 There is a constant ¢ > 0 with
1/2
L, = / | Dy (t)| dt > clnn .
~1/2

More precisely,

4
Ly,=—Inn+0(1) .
™

The number L, is called the Lebesgue constant of the Dirichlet kernel D, (t).
Proof: 1) For 0 <t < & we have

0 < sin(rt) = 7t(1 + O(t?)) ,
thus

L _Laiow).

sin 7t - Tt

This yields that

1 1
E— <
P m—k(’)(l) for 0<t<

N

2) We have

1/2
L, = 2/ 1D (t)| dt
0

™

_ 2/1/2 |Sin(7rt(2tn +1))] dt + O(1) (set t(2n+1) = s)
0

2 n+% 1. .
= / —|sin(ws)|ds + O(1)
0 S

s

) n—l k41 1
= Z/ ;]sin(ws)|ds—|—(’)(1)
k

™
k=0

2 ! “ 1
= 7T/o \Sln(ﬁs)]kzls+kds+(9(l)

For 0 <s<1andk>1 we have

—_
+

oy

Va)

_l_

™

IA

=
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thus

nn + ( L ) !
nn —— —Inn) = e
— 1+k P 1+ k
n—1 1
<
st k
n—1 1
= 2
k=1
Inmn + (n_l L )
= n —_ —
n L —n
k=1
This yields that there exists a constant C' > 0 so that °
n—1 1
Inn—-C< <lnn+C.
s+ k
k=1
Since
1
2
/ sin(ms) ds = —
0 i
the claim,
4
L,=—hn+0(1),
s
follows. ©

11.8.1 The Lebesgue Constant as Norm of a Functional

As above, let X denote the linear space of all continuous functions f : [0,1] — C with f(0) = f(1).
On X we use the maximum norm, |- |o. Then (X, |- |x) is a Banach space. Define the linear
functional A4, : X — C by

1
A = 5.50) = [ Du sy
One defines the norm of A,, by

HAnH :Sup{‘Anf’ » feX, ‘f|oo = 1} :

It is not difficult to show that A4, : X — C is a bounded linear functional with norm || A4, || = L.
In fact, the estimate ||A,|| < L, is easy to show. To see that it is sharp, set ©

h(y) = sgn(Dn(y))

°Recall that v, =1+ 1 +...++ —Inn —y=0.57721...
SHere sgn denotes the sign—function, sgn(z) = 1 for = > 0, sgn(z) = —1 for z < 0, and sgn(0) = 0.
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and let h. € X denote a smooth approximation * of h with |h.|s = 1. We then have for ¢ — 0:

1 1
Anh. — /0 Du(y)he(y) dy — /0 Du(y)|dy = Ly, -

The main point is that, by the previous lemma, we obtain that

|An|| > 00 as n—oo.

11.9 Divergence of the Fourier Series of a Continuous Function at a Point

In 1873, du Bois—Raymond constructed a continuous function whose Fourier series diverges at a
point.

We use the Uniform—Boundedness Principle of functional analysis. The corresponding theorem
is also called the Banach—Steinhaus Theorem or the Resonance Principle. Its proof uses the Baire
category theorem of topology. The proof of Baire’s category theorem uses the axiom of choice.
This indicates that the proof is not constructive.

First recall some simple concepts from functional analysis. If X, Y are normed spaces, then a
linear operator

T:X->Y

is called bounded if there exists a constant C' > 0 with

ITflly <Clfllx forall feX. (11.5)

If T: X — Y is a bounded linear operator, then its operator norm is defined by

IT| = min{C >0 : (11.5) holds}
= sup{||Tz|y : z€X, [z]x =1}

The linear space L(X,Y) of all bounded linear operators from X to Y, together with the
operator norm, is a normed space.
The Uniform-Boundedness Principle is the following remarkable result:

Theorem 11.5 Let X be a Banach space and Y be a normed space. Let T C L(X,Y), i.e., T is
a set of bounded linear operators T : X — Y. Assume that for every f € X there is a constant Cy
with

\Tflly <Cy¢ forall TeT .

Then there exists a constant C' with
1T <C forall TeT.

The following is a reformulation:

"The functions h.(y) must satisfy fol |h(y) — he(y)|dy — 0 as ¢ — 0. One can choose h.(y) as a continuous,
piecewise linear function.
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Theorem 11.6 Let X be a Banach space and Y be a normed space. Let T C L(X,Y).
Assume that

sup{||T|| : TeT}=00. (11.6)
Then there exists f € X so that

sup{||[Tflly : TeT}=o00. (11.7)

This reformulation is called Resonance Principle. Roughly, if (11.6) holds, then there exists
f € X which resonates with the family 7 of operators, and (11.7) holds.
Application: Let (X, |- |s) denote the Banach space of all continuous functions

f:[0,1] = C

with f(0) = f(1) equipped with the maximum norm. Let Y = C with [|z]ly = |2|. Forn=1,2,...
let

A, X —>C
be defined by

1
Anf = Suf(0) = /0 Du(y)f(y)dy, feX .

As stated above, the operator norm of A,, is L, and L, — oo by Lemma 11.4.
We apply the resonance principle to the family

7—::{An . n/::1,2,“.}.

Since ||A,|| — oo as n — oo the resonance principle implies existence of a function f € X for which

Anf = Snf(())

is unbounded.
Clearly, this implies that the sequence

Suf(x) = 3 F(k)exmite

k=—n

does not converge for x = 0. The Fourier series

Z fﬂ(k)e%rikx

k=—o00

diverges for x = 0.
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11.10 Isomorphy of L,(0,1) and I,

So far, we have shown that

lf —onfloo =0 as n—oo for feX

and

lf—Snfll, =0 as n—oo for fe& Ly(0,1). (11.8)

Also, if f € Ly(0,1), then the construction of S, f shows that the approximation error

f_Snf

is orthogonal to 7T,,. Therefore,

IF1Z, = If = SufllT, + ISufl* for fe L2(0,1).

Since

ISnfllz, = > 1f (k)

k=—n

one obtains Parseval’s relation:

IF1Z, = > 1f R (11.9)

k=—o00

Definition: Let Iy denote the linear space of all sequences

a = (ak)kEZ> ag € C )

with

Z\a;ﬁ < 00 .
k

For a,b € ly define the la inner product by

(a, b)l2 = Zakbk .
k

As usual, the corresponding norm is defined by
2
lally, = (a,a), -

It is not difficult to show:

Theorem 11.7 The sequence space lo with the above inner product is complete, i.e., it is a Hilbert
space.
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Theorem 11.8 The mapping F : Ly(0,1) — Iy defined by

F(f) = (f(k))rez, [ € L2(0,1),

1s a Hilbert space isomorphism.

Proof: Parseval’s relation (11.9) shows that F' maps L2(0,1) into I and is norm preserving. The
linearity of F' is clear. Since ||F'f||;, = ||f]|z, it is also clear that F' is one-to—one. To prove that F
is onto, let a € I3 be given and define

n

flz) = axdp(z) .

k=—n

Then f, is a Cauchy sequence in Ly(0, 1), thus there exists f € Ly(0,1) with

I\f = foll, =0 as n—oo.

We have

(k> flr, = T}EEQ(d’kafn)Lg =ay .

Therefore, F' f = a, showing that F' is onto.
It remains to prove that F preserves the inner product:

(Ff, Fg), = (f,9)L. - (11.10)

The polarization equality,

A(f.9) = If + 9> = IIf —gl® +illif + gll* —dllif — glI*

which is valid in any inner product space over C, shows that one can express the inner product in
terms of the norm. Therefore, (11.10) follows from (11.9). ¢

11.11 Convergence of S, f in Maximum Norm

Lemma 11.5 Let f : R — C, f(x+ 1) = f(x). If f € C" then

f(k)| < Colk|™, keZ, k#0,

with
1
¢ =) [ 15w do
0
Consequently,
lf = Snfloo =0 as n— oo
if r > 2.

128



Proof: Through integration by parts one finds that

Fk) = oo

Applying this result r times and noting that

(f)(k) for keZ, k+#0.

1
(FOY (k) = /0 2k £0) ()

the estimate of |f(k)| follows. Therefore, if r > 2, we have for n > m > N(e):

m<|k|<n
It follows that S, f is a Cauchy sequence in (X, |- |« ), and there exists g € X with |g — Sy f|eo — 0.
This implies ||g — Sp f||z, — 0. We have shown that || f — S, f||z, = 0, and conclude that g = f. ©
One can relax the assumption f € C? slightly.

Theorem 11.9 Let f:R — C, f(z +1) = f(x), f € C'. Then the Fourier sums

Suf(a) = 3 F(k)exmits

k=—n

converge uniformly to f(x),

If = Snfloo =0 as n—oo.

Proof: From

and

YU ®E=1f17,
k=—oc0

we conclude that

S RPIFRP =@ < oo
k=—00

Using the Cauchy—Schwarz inequality,

m<|k|<n
1 A
=Y LM
m<\k\<n| |
1 \12
< — 2
< (X |I<:]2) @
m<|k|<n

As in the proof of the previous lemma, it follows that S, f is a Cauchy sequence in (X, |- |~ ), and
the claim follows. ¢
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11.12 Smoothness of f(z) and Decay of f(k)
Let f:R—C, f(z)= f(z+1),f €C. Since
17, =D 1 k)P
k
we know that

f(k) =0 as |kl = oo .

We want to show that the smoothness of f is related to the decay rate of f (k).
Smoothness implies decay:

Lemma 11.6 Letr € {1,2,...}. Let f € C""Y(R) have period one, and assume that D" f = f() €
Ly. Then we have

’f(k)| < CrlkI™" for k#0
with

1
C, = (27r)T/0 D" f(z)| da .

Proof: This follows through integration by parts,

A 1 .
f(k‘) — /0 6—271'2163:]0(33) dax

1

1
—2mikx
- Df(z)d

ok /0 € f(z)dz

1 ! —27ik.
— e mD?" d
(27?1'14:)’"/0 ¢ J(w)dx

Decay implies smoothness:

Lemma 11.7 Let r € {0,1,2,...}. Let f : R — C have period one and let f € L1(0,1). Assume
that there exists A > 0,9 > 0 with

1F(B)| < Alk|~0T149) forall k40 .
Then f € C".

Proof: We assume that the above estimate holds for 7 = 1 and must show that f € C'. We have

Suf(z) = 3 f(k)exmite

k=—n
(Snf)/(g;) = En: QWik:f(k)eQM‘kx
k=—n
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For n > m:

(S f) = (Smf) oo < 20 > |KIIf(R)]
m<|k|<n
< 214 ) |kTOF)
m<|k|<n
< ¢

for n > m > N(e). Therefore, there exists g € X with

lg— (Snf)|oc =0 as n—oo.

Also,

lf —Snfloo =0 as n—o0.

Let n — oo in the equation

(Suf) () — (Suf)(0) = /0 "(Suf) (w) dy

to obtain that

It follows that f € C' and f’ = g. The proof for other values of r is similar. ©

11.13 Exponential Decay of f (k) and Analyticity of f

For a > 0 let S, denote the horizontal strip of width 2a along the real axis:
Sa={z=z+iy : z€R, |yl <a}.

Lemma 11.8 Let f € H(S,), f(z) = f(z+1). Then, for any 0 < B < «, there is a constant
Cg = Cs(f) with

(k)] < Cﬁe_%lklﬂ forall keZ.
Proof: For definiteness, let k£ < 0. Consider the rectangle

[ +Te+T34+Ty

where

Iy 2(z) =z, 0<z<1,
Iy 2(y) =144y, 0<y<p,
—I'3 2(r)=z+i8, 0<z<1,
—Iy 2(y) =iy, 0<y<p.



Let

We then have

and, by Cauchy’s theorem,

The periodicity of f also implies that

/FQg(z)dsz/mg(z)dz:O.

Consequently,

f(k) = / ors

We have justified to move the integration path I'y upwards by . If z € I's then z = 2 + i8 and
—2mikz = —2mikx + 27k, thus

le™2mikz| = 27k — o =27IKIB for k<0 .
It follows that
|f (k)| < Cpe2rMP
with
Cp = max |f(z +if)|

If kK > 0 we can argue similarly, moving the path of integration down by S. ©

The previous lemma says that the Fourier coefficients f (k) of a periodic function f(z) decay
exponentially as |k| — oo if f(z) can be continued analytically into a strip along the real axis. The
following lemma shows a converse.

Lemma 11.9 Let v > 0 and let a = (ax) € l2 denote a sequence with
lag] < Ce™2™* 7 for all ke Z .

Then there exists a unique function f € H(Sy) with f(z) = f(z +1) and

f(k)=ar, keZ.
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Proof: Set

ful) = 3 e

k=—n

Fix any g with 0 < 8 < «. Let z = x 4 iy where |y| < 5 < v and obtain that
‘627m'kz‘ < 6271'\]{:\6
Therefore,

lag|[e?™*| < Ce 2 HIO=8)  where y—pB>0.

If K C S, is any compact set, then K C 5/3 for some B with 0 < 8 < ~, and the above estimate
implies that the series

§ :ak62m’kz
k

converges normally in S, to an analytic function f € H(S,). It is clear that f (k) = ax and that f
is unique. ©

11.14 Divergence of S, f(0): Explicit Construction of f € X

The following is close to [Koerner].
We show existence of a function f € X for which

Snf(0)
is unbounded. Recall that
1/2
Snf(y) = Dy (y — ) f(x) dz
—1/2
thus
1/2 1/2
Spf(0) = D,(—x)f(x)dx = Dy (z)f(x)dzx .
-1/2 -1/2
Here

sin(m(2n + 1)z)

Dn(z) = sin(mx)

is the Dirichlet kernel. We have shown that the Lebesgue constants diverge,

1/2
Ln:/ |Dy(z)|dz — o0 as n— oo .
~1/2

Let
hn(z) = sgn Dy (x) .
We then have
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Sphp(0) =L, 00 as n— oo .

The piecewise constant function h,, is not continuous, but we can approximate h,, by a piecewise
linear function g, € X so that

1/2 1
/ (@) — ga(@) dz < -~ and |galoo = 1.
~1/2 Ly,

One finds that
Sngn(0) > L, —1, for n>N.

Since the trigonometric polynomials are dense in (X, ||~ ), there exists f, € T with |gn— fnloo < L%L
One then finds that

Dividing by 2, we obtain a trigonometric polynomial % fn with

1 1 1

Since L, — 0o as n — oo, the following lemma is proved:
Lemma 11.10 Given any constant A > 0 there exists H € T and N € N with
SyH(0)> A, |H|lx<1.

The remaining part of the proof may be called piling up of bad functions. Take A = A;, = 22F
for k =1,2,... By the previous lemma we obtain sequences Hy € T and n(k) € N with

S Hi(0) > 2%, |Hyloo < 1.

Since Hy(x) is a trigonometric polynomial, there exists ¢(k) € N so that

Hy@)= 3 By()ermis (11.11)
li1<q(k)
and we may assume that
q(k +1) > q(k) > n(k) .
Set

k
p(k) = (2q(j) + 1)

j=1
and define the trigonometric polynomials
n .
fulw) =D 27 FH(2)e?™ W7 o =1,2,... (11.12)
k=1
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The factor 27% makes the sequence f,(x) a Cauchy sequence with the respect to | - |s0; the factor
e?mP(k)T makes every frequency of Hy i (x)e?™P++17 larger than every frequency of Hy(z)e2mP(k)7,
See below.

If n > m then

n
‘fn - fm’oo S Z 2_k S 2—m .

k=m-+1

This shows that f,, is a Cauchy sequence in X. Since (X, |- | ) is complete there exists f € X with

|f_fn|oo—>0-

We will show that the sequence .S, f(0) is unbounded.
Convergence |f — fnloo — 0 implies that

fulr) = f(r) as n—oo forall reZ.

The main point of the construction is the following: The integers p(k) are so large that the terms
in the sum (11.12) have no common frequencies. This makes the following analysis possible.
Substituting the right—hand side of (11.11) for H(z) into (11.12) yields that

fn(l') _ 22716 Z ﬁk(]) e27ri(]0(k)+j):z: )

k=1 l71<q(k)

Set

Qr(z) = > Hy(j)em ke
l71<q(k)

Note that the largest frequency of Qp(z) is

2r (p(k) + q(k) )

and the smallest frequency of Qg41(z) is

2 (p(k‘ F1) — gk + 1)) .
Since p(k + 1) = p(k) +2q(k + 1) + 1 and ¢(k + 1) > ¢q(k) we have

p(k+1)—qk+1) = p(k)+qk+1)+1

This shows that any two of the functions @;(x),l =1,2,... have no common frequency.
We obtain

Fap(E) +§) =27"H,(j) if n>k and |j|<q(k) and 1<k<n.
Letting n — oo we obtain that

flo(k) +5) =27FH(j) if |j| < q(k) .
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If | € Z is not of the form | = p(k) + j for some j with |j| < (k) and some k € N, then fu) =0
for all n and f(I) = 0.
Now consider

Sptky+n(e) L (0) = Spiy—n(e)-1.F0) = D fp(k) + 4)
l7]<n(k)
= 27" Y Hi())
l71<n(k)

= 27k5n(k)Hk(0)
(In the second equation we have used that n(k) < g(k).) We now recall the estimate

Sy Hi(0) > 2%
to obtain that

[Sp(k) (k) S (0) = Spiiy—nry-1f(0)] > 25, k=1,2,...
This implies that the sequence S,,f(0) is unbounded.

11.15 Fourier Series and the Dirichlet Problem for Laplace’s Equation on the
Unit Disk

The Poisson kernel P,(«) is the Abel sum of

1 ika
o 2
k=—0o0
In other words,
1 o0 oo
— io\k —io\k
Pr(a)—%kz_:o(re ) —|—;(T€ )¥ for 0<r<1.
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12 Fourier Transformation

12.1 Motivation: Application to PDEs
Example 1: Consider the PDE

ut + auy =0

for a function u(x,t) where a € R. Give an initial condition

u(z,0) =% reR.

The initial function

ek = cos(kx) + isin(kx)
is a wave with wavenumber k (assumed to be real). Roughly, the wave e’** has |k| waves in the
interval 0 < 2 < 27 and the wavelength is 27/|k|. To obtain a solution of the PDE u; + au, = 0
with initial condition u(z,0) = e try the ansatz
u(z,t) = a(t)e® .

One obtains that
d(t)+iaka(t) =0, «(0)=1,
thus

Oé(t) _ e—iakt’ u(m,t) _ eik(z—at) ]

k

The solution u(z,t) describes that the initial wave e’** moves undistorted at speed a. If a > 0 the

wave moves to the right, if ¢ < 0 it moves to the left.

Example 2: Consider the heat equation

Up = Uy for z€R, t>0,

with initial condition

u(z,0) =e**  reR.

The ansatz

leads to

with solution

a(t) = e Ft

The solution of the PDE u; = g, with initial condition u(z,0) = €™ is
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u(z,t) = e Kteike

We note that the amplitude decays exponentially as t increases if k # 0. The smaller the wavelength
of the initial function u(x,0) = €*** the larger is |k| and the more rapid is the decay in time of the
solution u(x,t). We expect, therefore, that the solution of the heat equation will become smooth
if we start with rough initial data u(z,0) = f(z).

Example 3: Consider the linearized Korteweg—de Vries equation

Up = Uppe Tor z€R, t>0,

with initial condition
u(z,0) =e** reR.
The ansatz
u(z,t) = a(t)er”
leads to
o (t) = —ikPa(t), a(0)=1,
with solution

at) = et

The solution of the PDE u; = g4, with initial condition u(z,0) = e is

u(x,t) = eik(@—k2t)

We note that the amplitude «(t) satisfies |a(t)| = 1, thus there is neither decay nor growth. Here
the wave speed is k2, i.e., the wave speed depends on the wave length of the initial function e***,
We have the effect of dispersion.

Example 4: Consider the free-space Schrodinger equation

U = iUz, for z€R, t>0,

with initial condition

u(z,0) =e**  reR.

The ansatz

u(z,t) = a(t)er™

leads to

with solution



The solution of the PDE u; = iu,, with initial condition u(z,0) = ¢* is

u(x,t) _ eik(xfkt) )

We note that the amplitude «(t) satisfies |a(t)| = 1, thus there is neither decay nor growth. Here
the wave speed is k, i.e., the wave speed depends on the wave length of the initial function e**,
We have the effect of dispersion.

More General Equation: Consider the constant—coefficient equation

m
ut:LuEZaiju for z€R, t>0,
§=0

where

ajE(C, ngax.

Given an initial condition

u(z,0) = et reR,

the ansatz '
u(z,t) = a(t)e”
leads to
o (t) = L(ik)a(t), a(0)=1,
where

L(ik) = a;(ik)’
§=0
is the so—called symbol of L. The solution of the amplitude equation is

a(t) — 6L(ik)t
and the solution of the PDE u; = Lu with initial condition u(z,0) = e is
u(x,t) _ eﬁ(z’k)teilm )

So far we have only considered the initial condition u(z,0) = e**. If one wants to solve the

initial value problem

ur = Lu, u(z,0)= f(x),

with more general functions f(x) then one may try to write f(z) as a superposition of the simple
waves e’**. The tool is the Fourier transform.
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12.2 The Fourier Transform of an L;—Function

For f € Ly = Li1(R,C) one defines its Fourier transform by

fO = [ s mtan cer. (12.1)

(We follow the conventions in [Stein, Shakarchi]. Other forms, like

A~

_ 1= it
MP@JJW dz, €€R,

are also used.)

Remark: The condition f € L; is necessary if one wants to use the standard meaning of
the integral in (12.1). However, using the notions of distribution theory, one can define a Fourier
transform for functions and distributions that are not in Lj.

Lemma 12.1 If f € L then f is uniformly continuous.
Proof: Let ¢ > 0 be given. We must show existence of 4 > 0 so that [{; — &| < § implies

1f(&) - f(&) <e
Since f € L; there exists R > 0 with

/rmmg
|z|>R

This can be shown by a cut—off argument and Lebesgue’s dominated convergence theorem. We
have

=] ™

v@#MS/ F(@)]]e2mio6 — 2mines) gy
|z|>R
_|_/ ‘f(a?) |6727T’L'.’E£1 . 67271-im§2| dr
|z|<R
< S.94 1f ||, max |e~2m _ g=2winta)
4 2|<R

Here

£z, =/Oo |f ()| dz .

—00

The maximum in the above formula equals

M = max |1 — e_Qmmf| where =& —& .
lz|<R

Since the function

g(z.€) = |1 — 2%

is uniformly continuous on the set

lz| <R, ¢ <1
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and since

g(z,0) =0,

there exists § > 0 so that

g(z, &) <€ for ¢ <é, |z|<R.
Choosing

1
”fHL1

e =

CTNY)

we obtain | f(&1) — f(&)] < e for |€ — & < 6. ©

What can be said about the decay of | f (&)| as |§] — oo? Through integration by parts one
obtains:

Lemma 12.2 Let f € C’é, i.e., fis a C' function with compact support. Then

~ 1 y
FE < gy 17 €£0.

Proof: We have

~
—
n
SN—
Il

/00 (}”(55)6727”"75£ dx

—00
1

—2mi€

1

= f@) 2mi&

. =00
6—2m$§ +
T=—00

o0
/ f’(:v)e_%m”£ dx

—00
The boundary term equals zero since f(z) has compact support. The estimate follows. ¢
12.3 The Riemann—Lebesgue Lemma
The following result is known as the Riemann—Lebesgue Lemma:
Lemma 12.3 If f € Ly then |f(£)| = 0 as |€] = oc.

To prove the Riemann—Lebesgue Lemma, we need the following auxiliary result:

Lemma 12.4 The set C§° of all C*° functions with compact support is dense in (L1,| - ||L,)-

Proof: Let f € L and let € > 0 be given. Choose R > 0 so large that

/ f(z)|dz < = .
>R 2

We apply a cut—off to the function f and set

_ [ @) |z <R
9("’3)—{ 0 |2|>R

We then have ||f — g||z, < § and g has compact support.

141



We now mollify g. This process is as follows: Choose a C'*° function ® : R — R with

O(y) >0 for —1<y<l, @@y)=0 for |yl>1

and

/Ooq)(y)dyzl.

—00

Note that

1
/ g@(y/a)dyzl for €>0

and the function y — ®(y/e) is supported in |y| < e. Define
1
gex) = [ —®((z—y)/e)g(y)dy .

It is not difficult to prove that g. € C§° and ||g — gc||, = 0ase = 0. ¢

Proof of Riemann—Lebesgue Lemma: Let f € L and let € > 0 be given. By Lemma 12.4
there exists f. € C§° so that

€
||f_fEHL1 < 5 :
This implies that

A

FQ - F©l <5 for ceR.
Since (by Lemma 12.2)

rﬁ@ﬂs%mr§¢o

we obtain the estimate

A C.
FOI <5+ <e for g2 R,

Example 1: Let

lz| > 1

f(:v):{(l) z <1

We have

o = [ e

~1
—2mix€ |jx=1

—2mi€ ¢ [z=-1

sin(27§)
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Since

R
/ |£(€)]dé =00 as R— oo
0

we conclude that f ¢ Ly. The example shows that, in general, the assumption f € Ly does not
imply f € L.

12.4 The Fourier Transform on the Schwartz Space S
A function f: R — C is called rapidly decreasing if

=" f(z)], zeR,

is bounded for all n € N. The Schwartz space S = S(R, C) consists of all f € C*°(R,C) for which
all derivatives f(k) (x),k=0,1,2,... are rapidly decreasing.
For f € S the Fourier transform

:/ f(x)e ™ dy, €€R,
is well-defined.

Theorem 12.1 a) If f € S then fes.
b) If f € S then

(£)°(€) = 2mig f(&) -
c) If f €S then —2mixf(x) €S and

(N'©) = (- 2mizf(@)) () -

Proof: We know that f € C and f is bounded. Further, f’ € S and, through integration by parts,
Yy

O = [ rwerti
— /_ h f(x)(2mig)e 28 dy

= 2migf(€)

This shows that £f(€) is bounded and b) holds. By further differentiations, we obtain that |£7 f(€)]
is bounded for every n.
We now show that f € C' and

()(©) =34(€) with g(a) = —2mizf(x) .
To this end, let £ € R be fixed and let h be a real number, h # 0. Consider

Qn = f@+m £©) =4
/ f(z *2’”‘”5( e~ mizh _ —l—27m'x) dz .
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We must show that for any ¢ > 0 there is iy > 0 so that |Qp| < e for 0 < |h| < ho.
Set

1 .
B(h,z) = E(e_%wh —1)+2miz for z€R and h#0.
We have

e 2mh — 1 _9onizh + O($2h2) for |zh| <1.

Therefore,
|B(h,z)| < C|ha?| for |hz|<1.
Also, for all h # 0 and all x € R

2
|B(h,z)| < T +27|z| < Clz| if |zh|>1.

One obtains that
|B(h,z)| < Cl|z| forall z€R and h#0.
Therefore,

Qnl <C If(w)||$|d:v+/ [f(@)[|B(h, x)| da .

|z]>R |z|<R
Choose R > 0 so that
€
¢ @edr <
|z|>R
<

Then choose hg > 0 so that hoR < 1 and obtain that |zh| <1 for 0 < |h| < hg and |z| < R, thus
|B(h,z)| < C|hx?|. Therefore,

/ ’f(x)HB(h,x)]da;gC]hygi
|z|<R 2

if [h| is small enough. This proves that |Qp| < € if [h] is small enough. This proof of c) is complete.
With the same arguments as above, it follows that [£"(f)'(§)[ is bounded for every n. The

argument can be repeated for every derivative of f(§), and the theorem is proved. o

12.5 The Fourier Inversion Formula on the Schwartz Space: Preparations

The following is an important definite integral:

J::/ e dr =1 .

—0o0

Lemma 12.5

Proof: Using Fubini’s theorem and transformation to polar coordinates, we have
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J? = /00 /OO e*”(x2+y2)dacdy
27T/ re”™" dr
0
= / e Pdp
0

= 1.

We next show that the Fourier transform of a Gaussian is a Gaussian:
Lemma 12.6 The Fourier transform of
fla)=eT
18
f@ =em.

Proof: Set

F) = / e~ g 2mITE g

—0o0

We then have F'(0) = 1 and, using integration by parts,

F'(¢) = /6_”2(—27rix)e_2m”€dm

— Z-/C;i(e—mﬁ)e—%rixg dx
= —27m{F(§)
Thus we have shown that the function f(£) = F(€) satisfies
F() = ~2n€F(0), F(0)=1.

Unique solubility of this initial value problem proves that

fOy =Fe)=e.
o
By linear scalings (2/v/§ = y) one obtains:

Lemma 12.7 For § > 0 let

Then we have
K5:G5 and G5:K5.

145



Further properties of the family of functions Ks(z) are:

Lemma 12.8 a)
/ Ks(x)de =1, 0>0.
b) If n > 0 is fized, then

Ks(x)de -0 as 6—0.
|z|=n

oo
/ |z|Ks(x)de —0 as 6 —0.

d) If f €S then
/_00 f(z)Ks(x)de — f(0) as 0 —0.

Proof: a) follows from

/_OO K(x) do = G5(0) = 1.

Using the substitution z/v/d = y we have

/ Ks(z)dx = 1/ e @V gy
n n

and b) follows. To show ¢) we compute

/OOO zKs(x)dx = \}3 000 ze ™@/V0? gy
= V5 e ™ dy
0
Finally,
| r@kste) s = 1)+ [ (1) - 10) Ksta)do

Here |f(z) — f(0)| < C|z|, and the claim follows from c). ©

We next prove the following multiplication rule:

Theorem 12.2 a) If f,g € S then fg € S. Therefore, fg € S.
b) If f,g € S then

/ Z f@)(e) dz = [ Z Fw)aly) dy

146



Proof: If f,g € S then Leibniz’ rule yields fg € S. Furthermore, using Fubini’s theorem,

[ twawar = [T [T s@ate iy
= [T [ s@awemsanay
= /Zf(y)g(y)dy

This proves the multiplication rule. ¢

12.6 The Fourier Inversion Formula on the Schwartz Space

Any function f € S can be written as a Fourier integral. The formula (12.2) is called the Fourier
representation of f(z) or the Fourier inversion formula.

Theorem 12.3 If f € § then we have
fla) = / FEe et de, zeR. (12.2)
Proof: First, since the Fourier transform of Gs(¢) is Ks(z), we have for any ¢ > 0:

/Oo f(ﬂ?)\}g T = / T f©e e ac (12.3)

In this equation we take the limit 6 — 0 and obtain

£(0) = / e de (12.4)

This proves the Fourier inversion formula for x = 0. Next, fix x and set

Fy)=flx+y), yeR.
We have

[e.9]

F(¢ = fx +y)e 2™ dy

—

88

— f(z)ef%rizée%rixf dz

= e
Using (12.4) with f replaced by F' yields
f(z) = F(0)

This proves the inversion formula. ¢
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12.7 Operators

We summarize the results by defining the following operators from § into itself:

(FF)(E) / f(@)e2mi7E g

/ 9(6)e>7¢ de

(Sh)(x) = f(-=)
(Bf)(z) = [f(=)

The Fourier Inversion Theorem says that

GF =1ids .

Since

G=FS=SF

one obtains that

FG = F(SF) = (FS)F =GF = ids .

The operators

F:8§—8 and G:8§— S

are linear, one—to—one and onto. We also note that

G=BFB.
Since SS = BB = ids one obtains that

FF=S5, Fl=ids.

The following result is Plancherel’s formula. It is a;so called Parseval’s formula.

Theorem 12.4 For f,g € S define the Ly inner product by

(f,9)L, = /_Oo f(x)g(z)dx .

Then we have

(fs9)0a = (f, )1, -

Proof: Define

¢ =GBf = BFf .

Then, using the multiplication formula,
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(£, 9, = /fgdw

Corollary: For all f € S we have

1A= 171 (12.5)

12.8 Elementary Theory of Tempered Distributions
On the Schwartz space S one defines a convergence concept as follows: If g, € S then g, - 0in S
means that for all j, k € N we have

sup [t7g®) () = 0 as n— oo .
x

If gn,9 € S then g, — ¢ in &S means that ¢ — g, — 0 in §. This convergence concept is very
restrictive.

A linear functional ¢ : & — C is called continuous if g, — 0 in S implies that ¢(g,) — 0 in
C. Since the convergence concept in S is very restrictive, the continuity requirement of a linear
functional is very mild.

The linear space of all continuous linear functionals on § is called the dual space of S, denote
by &’. Every element of S’ is called a tempered distribution.

Notation: If ¢ € 8’ and g € S we often write

¢(9) = (& 9)s's

to denote the value of ¢ at g. This notation emphasizes the linearity of the expression ¢(g) in ¢
and in g.

12.8.1 Ordinary Functions as Tempered Distributions

If f € Ly 0. satisfies an estimate

[f(@)] < Kla|® for |z > Ky, (12.6)

for some constants K, Ky and k, then f determines the tempered distribution ¢ defined by

or(g) = /OO f(x)g(z)dx, geS.

We also denote the expression by

149



(fa g)S/S

and identify ¢, with f. In particular, since every f € S satisfies an estimate (12.6), we obtain the
inclusion S C §'.

12.9 The Fourier Transform on &’: An Example Using Complex Variables
For f,g € S we have

| Fpwewas= [ f@)Fo @ s

Therefore, if ¢ € S’ we define F¢ € S’ by

(Fo,9)s:s = (¢, Fg)sis forall geS.

We want to show by an example how the theory of complex variables is used in determining
the Fourier transform of the distribution (determined by)

2

fx)=eT™%  zecR,

where s € R, s # 0, is fixed. Note that f € Lo, so f € 8. However, f ¢ Ly, so the Fourier
transform of f cannot be obtained directly by evaluating the Fourier integral formula.
Recall the definitions

1
Ge(z) = €—7rz2a’ K (§) = % e_wgz/g

where x and £ are real and where € > 0. The functions G, and K. belong to § and we have

G.=K. in S
for every £ > 0. Formally setting ¢ = is suggests that the Fourier transform of f(x) is
1 2/
F = e—ﬂf /is
€)==
in the sense of distributions. Here /z is obtained by analytically continuing the function /g, > 0,
to C\ (—o0,0].

Note that f and F both belong to L, thus f and F both belong to §’. We claim that F(f) = F
in &’. This means that we have for all g € S:

> —TTo1S 1 * —T 1S
/ e g(:c)dx—\/fs/ e ™ i (¢) de

To show this, fix g € S and introduce the functions

for Rez > 0,2z # 0. Then we know that
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L(e)=R(e) for £>0.

Furthermore, L(z) and R(z) are analytic functions in the open right half-plane

H, ={z : Rez>0}.

Therefore, L(z) = R(z) in H,. Now fix s € R, s # 0. The point zp = is is a boundary point of the
half-plane H,. We claim that

lim  L(z) = L(i
i, Liz) = L{is)

and a similar relation hold for R(z). To see this, let z € H, and let € > 0 be given. For sufficiently
large xg we have

o0
L(is) — L(z)] < / e o~ () dr
—00
< 9 / 9(a)| dz + / e T ()] d
>0 le|<zo
< e+ |4l max e e
|z|<zo

This estimate shows that |L(is) — L(2)| < 2¢ if 2 € H, is sufficiently close to is. Since a similar
result holds for R(z) and since L(z) = R(z) for z € H,., the claim f = F follows.

12.10 Decay of the Fourier Transform of f and Analyticity of f
12.11 The Paley—Wiener Theorem

Application to the finite speed of propagation for the wave equation and the Klein—-Gordon equation.

12.12 The Laplace Transform and Its Inversion

Relation between the Laplace and the Fourier transform:
Let f:]0,00) — C denote a continuous function satisfying the estimate

fit)| < Ce™, t>0,

for some C' > 0 and real «. For complex s with Re s > « the Laplace transform of f is

(Lf)(s) = /0 Tyt de

Using certain conventions, the Fourier transform of a function g : R — C is

(F9)(y) = /Oo e~ Wgt)dt, yeR.

—0o0

Denote the Heaviside function by H(¢) and let s = x 4 iy. We have
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IO +in) = [ HOf@e el
= (FEHO®™) W)

—xt

Assuming the Fourier inversion formula to be valid for the function t — H(t)f(t)e”*" one obtains

that

@50 = 5o [ ML)+ i)y
This yields

HOSO =52 [ ML) o+ i) dy

In terms of a line integral one obtains that

HOI(t) = —— [ e(Lf)(s)ds

- 2mi Jp,

Here T';, is the straight line parameterized by

s=zx4+1y, —oco<y<oo.

For applications, it is important that the function (£f)(s) is often analytic in a region larger than
the half-plane Re s > « and that the curve I', may be deformed in the region of analyticity.
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13 Growth and Zeros of Entire Functions

If p(z) is a polynomial of degree n then p(z) has n zeros and |p(z)| grows like |z|" as |z| = oo.
Thus, the number of zeros of p(z) is related to the growth of |p(z)| as |z| — oc.

This chapter deals with generalizations to entire functions f(z). It relates the zeros a; of f(2)
to growth estimates of |f(z)| as |z] — oo: If | f(2)| satisfies some growth estimate as |z| — oo, then
the number of zeros,

n(r) := number of {aj €C : f(a;) =0, |a;| < ’I“}

cannot grow too fast as r — oco. See Theorem 13.2.

13.1 Jensen’s Formula

Theorem 13.1 Let D = D(0,R+¢) and let f € H(D). Assume that

f(0)#£0 and f(2)#0 for |z|=R.

Let ai,...,an denote the zeros of f with 0 < |aj| < R, repeated by their multiplicity. Then the
following formula holds:

= (lagly Lo »
I |f(0)) =Y In (Tf) +5 /O In |f(Re't)| dt . (13.1)
j=1

Formula (13.1) is called Jensen’s formula. Note that In(|a;|/R) is negative since 0 < |a;| < R.
If the function f(z) has many zeros a; with 0 < |a;| < R then the sum term in Jensen’s formula is
negative with large absolute value. Equation (13.1) then implies that |f(z)| will be large for some
z on the circle z = Re®. Roughly, the existence of many zeros a; of f(z) implies some growth
of |f(2)| as |z| = R gets large. Conversely, growth estimates of |f(z)| as |z| — oo imply growth
estimates of n(r) as r — oc.

Before proving the formula, we recall Cauchy’s integral formula: If f € D(zp, R+ €) then

f(z0) = 1 (2) dz .

- 27mi Jrz— 2

Here I' has the parameterization
2(t) =20+ Re, 0<t<2m.

Using that dz = Rie® dt we can also write the formula for f(zp) in mean-value form:

2
f(z0) = % ; f(z0 + Re) dt .

Here we have used that
dz = Rie" dt = (2 — z)idt ,
thus

dz

G
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If u: D — R is harmonic, then wu is the real-part of a function f € H(D). Therefore,

1 2 )
u(zp) = Py /0 u(zo + Re') dt . (13.2)

Lemma 13.1 Let a € C,|a|] < 1. Then we have

2 )
/ In|e" —aldt=0.
0

Proof: Set f(z) = 1 — za. Then f has no zero in D(0,1+¢) =: D if ¢ > 0 is small. We have
f(2z) = e?) for some ¢ € H(D). Therefore, |f(z)| = eR¢?() and

u(z) :=In[f(z)] = Re ¢(z)

is harmonic in D. Also, u(0) = In|f(0)| = In1 = 0. Formula (13.2) with R = 1 and ug = 0 yields
that

0=u(0) = L /%u(eit) dt = L /% In|l — ae®|dt
27 /o 27 /o ’
thus o
0= /0 In |1 — ae|dt . (13.3)

(Note that (13.3) is the special case of (13.1) obtained for R =1, f(z) = 1 — az.)
In (13.3) substitute ¢ = —s to obtain that

—27 )
0 = —/ In|l—ae *®|ds
0
0 .
= / In|1—ae *¥|ds
—2m

2 )
= / In|l —ae *¥|ds .
0

In the last equation we have used 27—periodicity of the function which is integrated. Note that

11— ae ™| = e (e’ —a)| = |e" — al .
This proves the lemma. ¢

Proof of Theorem 13.1: a) Assume first that f has no zero a; with |a;| < R. Then we can
write

f(z) = e¢(z), ¢ € H(D) .

The function

u(z) := In[f(2)| = Re ¢(2)
is harmonic in D. Formula (13.2) with zp = 0 yields that
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1 2w )
lfO)] = 5= [ s de
This proves formula (13.1) if f(2) has no zero a; with |a;| < R.

b) Fix w € C with 0 < |w| < R and consider the function f(z) = z — w. Then formula (13.1)
claims that

_ |w] 1 it
In|w| =1In <§> + o In|Re” —w|dt . (13.4)

Set a = w/R. Then we have

In|Re” —w| =R +In|e" —al .
Lemma 13.1 yields that

2m )
/ In|e" —aldt=0.
0

Formula (13.4) follows. This shows that (13.1) holds for a function of the form f(z) = z — w with
0< |w| < R.

¢) Assume that two functions fi(z) and fa(z) satisfy the assumptions of the theorem and assume
that the formula (13.1) holds for f; and fo. Then the product f(z) = fi(2)f2(2) also satisfies the
assumptions of the theorem and formula (13.1) holds for f.

d) Let f € H(D) denote any function satisfying the assumptions of the theorem. We can write

f(2) = 9(2)(z —a1)(z —a) ... (z — an)
where g € H(D) has no zeros in D. Using a), b), and c¢), the formula (13.1) follows for the function
f(z). 0

13.2 The Order of Growth of an Entire Function

Definition: Let f denote an entire function. One says that f has finite growth order if there exist
positive constants A, B, p so that

1F(2)] < AP forall zeC. (13.5)

If f is an entire function of finite growth order, then one defines its order of growth, denoted by
po = po(f), as the infimum of all positive numbers p for which the estimate (13.5) holds for some
constants A = A, and B = B,,.

Examples:

1. Every polynomial has order of growth py = 0.

2. The function f(z) = e* has order of growth py = 1.

3. The function f(z) = cos z has order of growth py = 1.
4. Recall that

o0 w2j
cosw = —1) —
jz::O( ) (25)!



and define

f(Z) = COS\/; = JZO(_]')j (2])‘

It is then clear that

The order of growth of f is pg = %
5. One can show that

< AePlEMEL for |z > 1.
IT(2)]

The function 1/T'(z) has order of growth pg = 1.
[Stein, Sharkarchi], p. 165
(The estimate should also follow from the infinite product representation.)
6. It can be shown that the function (s — 1){(s) has order of growth py = 1.
[Stein, Sharkarchi|, p. 202

13.3 Zeros and Growth Estimates of Entire Functions

Let f denote an entire functions which has a sequence of zeros a;. We order the zeros a; so that

‘aﬂ § ]a2| S

Each zero is listed according to its multiplicity. For 0 < r < oo let n(r) denote the number of zeros
a; with |aj| < r. Clearly, n(r) is a piecewise constant function which increases. We will show that
a growth estimate for |f(z)| implies a growth estimate for n(r) as r — oco.

Theorem 13.2 Assume that the entire function f(z) satisfies the growth estimate

|f(2)| < AP for all zeC (13.6)

with positive constants A, B, p. Then there exist positive constants C and rqg so that
n(r) <Cr? for r>rg. (13.7)

Proof: a) Using the Heaviside function

we have

and can write



For each fixed r the sum is finite.

b) Assume first that f(0) # 0 and f(z) # 0 for |z| = R. Let aq,...,an denote the zeros of f(z)
with 0 < |a;| < R. We can write

R dr N R dr
Anmr=:;éﬂwwwr
N

R q
B Z/laﬂ:

j=1
N

= > In(R/la))

jle
= = In(lajl/R) .
j=1

Here the zeros ay,...,ay are the zeros of f with 0 < |a;| < R. Using Theorem 13.1 we obtain the
following result:
Lemma 13.2 As above, let f(z) denote an entire function and assume that

f(0)#0 and f(z)#0 for |z|=R. (13.8)

Then we have

R dr 1 2m i
Anmz%ﬁhwmﬂwmmw

r

c) We continue the proof of Theorem 13.2 and let f(z) denote an entire function with
(13.8) satisfying the growth estimate (13.6).
We let R = 27 and have

In A+ BRF

Cir? for r>rg.

In|f(Re")| <
<

The equation of the previous lemma yields that (with R = 2r):

Furthermore,

n(r)n2

A I
— =
¥y =
E\ %\
= %
S by



for r > rg.

This proves the estimate(13.7) as long as f satisfies (13.8) for R = 2r. If f(z) has a zero q;
with |a;j| = R = 2r, we simply choose 0 < € < 1 so that f(z) has no zero on the circle with radius
2r + 2¢. We then have

n(r) <n(r+e) < Co(r+¢)? < Csr? for r>rg.

d) Assume that f has a zero of order m at z = 0. We set F(z) = f(z)/z™. The entire function
F(z) satisfies the same growth estimate as f does. Since n¢(r) = np(r)+m the claim n¢(r) < Cr?
for r > rq follows. ¢

Theorem 13.3 Let f € H(C) satisfy the growth estimate of the previous theorem and let a; denote
the non—zero zeros of f. If s > p then we have

Z la;| ™% < o0 .

J

Proof: For any positive integer [ the number of zeros a; of f with

2[ < |aj| < 2l+1

is less than or equal to n(2*1). Therefore, for any large I,

Z |aj|—s < 2—ls n(2l+1)
2l<|a | <2041
< C 2—15 2(l+1)p
< O 9—l(s—p)

(In the first estimate we have used that 2! < |a;| implies |a;| =% < 27%.)
Since 2~ (572 < 1 the geometric series

Sl s,
l

converges, and the claim follows. ¢

13.4 Hadamard’s Factorization Theorem

Let f denote an entire function with growth order py and let k := [pg] denote the integer part of
po. We choose s and p so that

E=lpo] <po<p<s<k+1.

Then f satisfies a growth estimate

1F(2)] < AP forall zeC.

We assume that the zeros a; of f(z) form a sequence; we order the zeros so that

a1 =...=apn =0 <l|amy1| < lamya| <0
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As above, n(r) denotes the number of zeros a; with |a;| < r. We know from Theorems 13.2 and
13.3 that n(r) < Cr? for large r and

o
> ol <0 (13.9)
j=m+1
Recall the Weierstrass’ canonical factors,
2 k
Ex(w) = (1—w)exp(w+%+...+%) :
Convergence of the series
oo
> el < o0 (13.10)
j=m+1
implies that the product
F(z) = 2" 12, B (ai) (13.11)
J

defines an entire function, which has precisely the same zeros as f(z). Consequently, one can write
the given function f(z) in the form

f(z) = #PF(z)
where g(z) is an entire function.
Hadamard’s Factorization Theorem (for an entire function with infinitely many zeros) is the

following remarkable result. It gives information about the function g(z).

Theorem 13.4 Let f(z) denote an entire function with growth order py and let k = [po] denote
the integer part of py. Assume that f(z) has a sequence of zeros aj with

a1 =...=am =0<|ams1] < lams2] < ...
Then f(z) has the form

f(z) = 9@ 2R LB (ai) (13.12)
j
where g(z) is a polynomial of degree < k. The function g(z) is unique, except that one can add a

constant 2mil,l € Z, to g(z).

An idea of the proof is to turn the growth estimate of |f(z)| into an estimate of Reg(z).
This requires to show lower bounds for the product |F(z)| (see (13.11)) and is rather technical.
Once these lower bounds are derived, the following lemma will complete the proof of Hadamard’s
Factorization Theorem.

Lemma 13.3 Let g(z) denote an entire function. Let k € {0,1,...} and let k < s < k + 1.
Assume that there exists a constant C > 0 and a sequence of positive numbers r, with r, — 00 so
that Re g(z) satisfies the following upper bound:

Reg(z) <Cr) if |z|=r, v=12... (13.13)

Under these assumptions, the function g(z) is a polynomial of degree < k.
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Proof: First fix any r > 0 and any integer n > 0. With I', we denote the circle with parameteri-
zation z = reit, 0<t<2m Let

o
9(z) =D gn2"
n=0
We obtain that
g(z) _ In
ont1 =...F ? +

thus

(We have used the substitution z = re®, dz/z = idt.)
This shows that

2m
2w gr’ = / glreVe ™ dt for n=0,1,2,... (13.14)
0

Also, by Cauchy’s theorem,

d
/Q(Z)Z"Z:O for n>1,
z

thus
2T ) )
/ g(re)e™ dt =0 for n>1,
0
thus
2 ) )
/ glreMe ™™ dt =0 for n>1.
0
Therefore, if we set u(z) = Reg(z) = %(g(z) + g(z)), then we obtain that
2T ) )
TGnr" —/ u(re®e ™ dt for n>1.
0

Furthermore, setting n = 0 in (13.14) and taking real-parts yields that

2w
2mRego = / u(re™) dt .
0

Using that

27 )
/ e gt =0 for n>1
0

we have, for n > 1,
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1 2 ) )
Tgn = — u(re™)e™" dt
™ Jo
1 2m ) )
= — (u(relt)—C’rs>e*mt dt

rh 0

Here the term in ( . > is < 0 for r = r,, by assumption. Taking absolute values and using (13.13)
we obtain that

1 271 )
Tlgn] < — (C’rs - u(relt)> dt
rn 0
= 2rCr® " = 2w (Regg)r "

Now recall the assumption s < k41 and assume that n > k+1, thus s—n < 0. Lettingr =r, — o0
in the above estimate yields that g, = 0 for n > k. This proves the lemma. ©

13.5 Entire Functions of Non—Integer Order of Growth

The previous lemma has the following important implication.

Theorem 13.5 Let f(z) denote an entire function with order of growth po. If py is not an integer,
then f has infinitely many zeros.

Proof: Suppose that f(z) has only finitely many zeros ai,...,ay. We may assume that N > 1
and let

p(z)=(2—a1)...(z —an)

and write

f(z) = ()

where ¢(z) is an entire function. (If f(z) has no zero, then take p(z) =1.) If k < pg < s < k+1
with integer k then f(z) satisfies the estimate

1F(2)] < AePFP forall zeC.
Since |p(z)| > 1 for all large |z| we obtain that

eReg(z) ’eg(z)’
< AeBlEP

if |z| = r is large. This yields that

Reg(z) < Cr® for |z|=r

if r is large. The previous lemma then yields that g(z) is a polynomial, and the representation
f(z) = e9®)p(z) implies the order of growth of f(z) to be an integer. This contradiction proves the
theorem. ¢
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13.6 Proof of Hadamard’s Factorization Theorem
Recall the Weierstrass’ canonical factors
k

Ep(z) = (1= 2)e™)  where hy(z) = 2 + % +...+ % :

The main technical lemma for proving Hadamard’s Factorization Theorem is the following lower
bound for the product

E(z) = H;’;lEk<i) . (13.15)

a;

Lemma 13.4 Let 0 < k < p < s < k+ 1 where k is an integer. Let a; denote a sequence of
complex numbers with

0 < lai| < |ag]...

and assume that n(r) < Cr? for r > ro, where n(r) is the number of a; with |aj| < r. Consider the
entire function E(z) defined in (13.15). There exists a constant ¢ > 0, independent of z, and there
exists a sequence r, of positive radii with r, — 0o so that

|E(z)| > e dif |zl =1y, v=1,2,...
For later reference, we recall that the assumption n(r) < Cr? implies that
oo
Z|aj|_5<oo for s>p.
j=1

Before we prove the main lemma, Lemma 13.4, we show two simple auxiliary results for the
Weierstrass function Eg(z).

Lemma 13.5 For small |z| we have

—2|z|F 1 if ’2‘ <1

|Ex(2)| > e <3

Proof: We have Ej(z) = € with

w = log(l—2)+ hg(z)
ktl k2

- —(ﬁjtmqu...)

This yields the bound |w| < 2[z[*1 if [2| < 3. Therefore,

|Bi(2)] = |e¥] = eRev > e7lol > o202

If |z| is bounded away from zero, we have the following lower bound for |Ey(z)|:

Lemma 13.6 There exists a constant ¢ = ¢ > 0 with

1
B(2)| = 1=zl e if o] = 5
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Proof: The definition of Ej(z) yields that

B(2)] = [1— [l
> |1_Z|e*|hk(Z)|
Here ) i
1
|hi(2)] < z+%+...+% <cplzlfif 2l > 5 -
o

The estimate of the next lemma is central for the proof of the main lemma, Lemma 13.4.
Lemma 13.7 Under the assumptions of Lemma 13.4, define the following union of open discs:
—k—1
Q= U, D(a, |y )
There exist positive constants ¢ and R so that
|E(z)| > e if |2/>R and zeC\Q.

Proof: a) Write |E(z)| = P, P, with

Py =1jq;|<g)z)

Ek(Z/aﬂ) and - Py = g, >2)z

Ei(z/a;)|
We first estimate P5 from below: If |a;| > 2|z| then, by Lemma 13.5,

|Ex(z/az)] > e 2/edl"

Therefore,

k
P> e 2R with Q= Z la;| 7k
la;|>2]2|

Since |z|7! > 2|a;|7! we have
—k— — —k— — —k—
Jag [T = Jag [~ Jag [T < a7 la T

Here we have used that s — k — 1 < 0. This yields the upper bound

Q < [T eyl
J
< Cl|z|s—k—1 )
The lower bound
Py > e—clzl?
follows.
b) Next consider the finite product
Pr =1, <o) Ek(z/aj)‘ :

163



Since |z/a;| > & we can apply Lemma 13.6 and obtain that

|Ex(z/a;)| > ‘1 — i’ e~clz/ail"
a;

Therefore,
P > P3Py
with
z
&Zﬂngl—*‘
a;
and

k
_ —clz/a;
Py = Tljg < e~/

c¢) To estimate Py from below we write

Py = e—clzl* @
with
—k
Q1= Z |
laj|<2|z
Since
—k - —k - —k
;|7 = laj|~* a; "™ < Clai[~* |2
we have

Q1 < CLlF) a7 = CulF .
J
This shows that

_ s
Py > el , ¢ =cCq.

d) It remains to estimate

z
%Zﬂwﬂml—f‘
aj
from below. Here it is important that z does not lie in any of the discs D(aj, |a;|7*71), i.e.,
laj — 2| > |a;|7F "
One obtains that
’ _i _ |CLj—Z‘ > |aj|—k;—2
aj |,

and
—k—2
Py > 1114, 1<22| lag] .
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Therefore,

InPy>—(k+2) Y Inla].

|aj|<2|z|

Finally,

> Infa;| < n(2]z]) In(2]z))
laj|<2||
< Ol 2l
< Gz

for all sufficiently large |z|. The lower bound

InPy > —clz]®, ¢>0,

follows and the inequality

Py > e—clzl®

is shown.
e) To summarize, we have for |z| > R,z € C\

|E(z)] = PP (part a)
Py >ecl#l (part a)
P > PP (part b)
Py > e el (part d)
Py > e el (part ¢)

where ¢ > 0 is a constant. This implies that

‘ s

|B(z)| > e
The lemma is proved. ¢

Recall that

O<|a1§|a2]§...

and k < p < k+ 1. Consequently,

o
Z\aj\_k_l <00 .
j=1

Also, recall the definition

Q=U3, D(aj, ]aj]_k_1> .
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Lemma 13.8 Under the above assumptions, there exists a sequence of positive radii r1,r2, . .. with
r, — 00 so that none of the circles

|z| =ry,, v=12...

intersects the union of discs Q.

Proof: Choose J so large that

> 1
k-1 =
j=
The set
Q5= Uj;ll D<CL]', |aj|_k_1>

is bounded and we choose an integer n so large that Q; C D(0,n).
We claim that the interval

n<r<n+1

contains a number r so that the circle |z| = r does not intersect the set Q. In fact, for any r > n,
the circle |z| = r does not intersect Q; since Q; C D(0,r) and it remains to show that we can
choose 7 in the interval n < r <n + 1 so that the circle |z| = r does not intersect the union

—k—1
U;’iJD<aj,]aj] ) .
To see this, consider the closed interval
—k— —k— .
1 = [lasl = lal ™" oy + Jay Y] =
of length

length(I;) = 2|a;|7F~1 .
We have

Z length(1;) <

izJ

(S

Therefore, there exists a number r in the interval n < r < n 4+ 1 which does not lie in the union
Uj>1;.

It is then clear that the circle |z| = r does not intersect 2.

This proves Lemma 13.8. The main technical lemma, Lemma 13.4, follows as a consequence of
Lemma 13.7 and Lemma 13.8.

We summarize:

Theorem 13.6 (Hadamard) Let f(z) denote an entire function of finite order of growth py and
let k = [po] denote the integer part of py. Assume that f is not identically zero.

Case 1: f(z) has only finitely many zeros. Then f(z) has the form
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f(z) =@ p(2)
where p(z) and g(z) are polynomials. The polynomial g(z) has degree k. The order of growth of
f(2) equals k = pg.

Case 2: f(z) has infinitely many zeros a; with

a1 =...=am =0<|ams1] < lams2] < ...
Then f(z) has the form
f(z) = e 22, Br(2/aj)

where g(z) is a polynomial of degree < k.
In particular, Case 1 cannot occur unless the order of growth of f(z) is an integer. If the order
of growth of f(z) is not an integer, then f(z) has infinitely many zeros.

The next result follows from Hadamard’s Theorem:

Theorem 13.7 Let f(z) denote an entire function of finite order of growth po. If f(z) is not
constant then either f(C) = C or there exists a unique a € C so that

f(C)=C\{a}.
Proof: Suppose that there exist a1, as € C with a1 # a9 so that the equations

f(z)=a1 and f(2) =

both have no solution. Then the equation

f(z) —a1 =2 — g

has no solution and

f(z)—a1 #0 forall zeC.
There exists a polynomial g(z) (of degree k with k = [pg]) so that
f(2) —ap = eI |
Set as — a1 =: q. We have
q=lqle =€’ with B =In|q| +it.
Since the equation
f(z)—a1=az—a1=¢q
has no solution z € C, the equation
e9(2) — B

has no solution z € C, thus g(z) — 3 # 0 for all z € C. Since g(z) is a polynomial, one obtains that
g(z) is constant. This contradicts the assumption that f(z) is not constant. ¢
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Remark: Picard’s little theorem says that

f(C)=C or f(C)=C\{a}

for some a € C holds for every entire function f(z), unless f(z) is constant. Thus, the assumption
that f(z) has finite growth order is not needed to obtain the result of the Theorem 13.7.
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14 The Prime Number Theorem

For 1 < x < oo let 7(x) denote the number of primes p less than or equal to . The Prime Number
Theorem states that

i @) _
If one defines a remainder R(x) by
m(e) = o= (1+ R())
= Inx v

then R(xz) — 0 as x — co. Sharp estimates of the remainder are related to the zeros of the Riemann
(—function in the critical strip 0 < Res < 1.
14.1 Functions

The following functions will be used:
If n <x <n+1, where n is an integer, then let
r=n+{z}=[z] + {z}
where [z] is the integer part and {z} is the fractional part of the real number z.

Von Mangoldt function A : N — [0, c0):

| Inp if n=p™, p prime, meN
A(n) = { 0 otherwise

gcooo\]cncnusww»—l‘:
o
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m(x) = number of primes <z

Yy) = Y An)

1<n<y

= Z Inp (Chebyshev’s ¢ — function)

P <y

- Iny
I ikl
p<y
v(y) = Z A(n)H(y —n) (with Heaviside function)

1<n<y

= ) A(m)H(y—n)

n>1

Here we use the Heaviside function

An auxiliary integral:
Lemma 14.1 Let I'. denote the straight line with parameterization

Ie : s(t)=c+it, —oco<t<oo.

For ¢ > 0 we have

1 a® _ 0 for 0<a<l1
2mi Jp, s(s+1) 11— for a>1

Proof: See [Stein, Sharkarchi], Chapter 7, Lemma 2.4. Homework.
We will show below that

() = iA(n)n_s for Res>1.

(s) =

(This follows from the product formula ((s) = IT,(1 — p~*)~1. )
Multiply the above equation by

1 zst!
i m where x >1
to obtain:
1 xs+l C/(S) o 0o (x/n)s
TMS(S—I—l) <_ {(s)) _2771-1'”:1 (n)s(s—l—l) : (14.1)

Now let ¢ > 1 and integrate the equation along I'.. We will justify below that we may interchange
summation and integration. We have, by the previous lemma with a = z/n:
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1/ (x/n)* ds — 0 for 1<z <n
2mi Jr, s(s+1)

Therefore, equation (14.1) yields that

AR (s n
% ch(s—{—l)(_i‘((s)))ds_glj Z A(n)(l—;).

In the following we will use that

r xT—n for r>n
/1H(y—n)dy={ 0 -

for r<n

The integrated Chebyshev function and its integral representation:

bi(x) = /jwy)dy
- ZA<n>/1 H(y — n)dy

n>1

= > An)(z-n)

1<n<zx

=z Z A(n)(l—%)

1<n<z

Riemann’s (—function:

((s) = > n*
n=1
= Hp€p<1—p_s>7, Res>1

d > .
— - log((s) = ;Am)n

s—1 xs—1
h(s) = 7 *°T(s/2)¢(s)

C(s) = ! +1s/oo{x}dx, Res >0
1

14.2 Reduction to Asymptotics of ¢ (z)

Let g : [1,00) — R denote a function. We will use the following notation:

liminf g(z) = lim (inf g(y)) :

T—00 T—00 \y>x

Similarly,
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limsup g(z) = li_>m (sup g(y)) .

T—00 o0 Ny>x

The following is easy to show: If

liminfg(z) > A and limsupg(z) <A

T—00

T—r00
then
xlgrolo glx)y=A.
Write
(r) = ——(1+R())
T " Inz

(x) = a(l+r(r))

di(e) = S14+ri)

Theorem 14.1 a) If r(x) — 0 as x — oo then R(x) — 0 as x — oo.
b) If ri(xz) = 0 as x — oo then r(x) — 0 as x — oo.

Proof: Part al) lower bound for

For > 1 we have

p<z
Inx
< —1
< ) np °F
p<z
= Zlnx
p<z
= 7(z)lnz
Therefore,
vl@) m@)e e a1
T T
Therefore, if
M —1 as x—
T
then
i nf T T
T—00 €T



Part a2) upper bound for

m(x)Inz
T
Fix 0 < a < 1. Note that if z > 1 and z% < p then Inz® < Inp. We have

@) = 3 [ mp

Y4 Y4 \Y4
M 2t P
—_ — =
] B
’g\ =
2

Therefore,
Y(z) + ar(z®)Inz > ar(x)Inz
and
() +a7r(afa)lnx aw(x) Inx
x x x

Since 0 < o < 1 it is clear that

thus
M1
W(m)nw—ﬂ) as T — 00 .
T
Therefore, if
M%l as x — o0
T

then

1
1> alimsup M
T—00

Since 0 < a < 1 was arbitrary, we obtain that
1
1 > limsup M .
T—00
The upper and lower bounds imply that
m(x)Inz

lim —— =
T—00 T
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Part b) We claim that if

Y1 ()
x?/2

—1 as x— o
then

Mal as T — 0o .
T

The proof essentially only uses that the function ¢ (z) increases monotonically.
Let 8 > 1. We have

Bx
ve) < g [ vy

1

= M<¢1(53«") - ¢1(x)>

Therefore,

T 1 T T
wi)gﬁl(iﬁggﬁg_wé)).

As © — oo we obtain that

limn sup 1/12::) < i1<52 1) _ B+1

Since > 1 was arbitrary we obtain that

lim sup
T—00 x

Similarly, fix 0 < o < 1 and obtain that

T L
1

= U—ae (wl (z) — ¢1(0495)>

Therefore,

Y(z) 1 /ii(x) Y1 ()
x = l—a( ;2 o (;x)Q ) '

As © — oo we obtain that

2
liminfw(x)z 1 11—« :1+a'
T—00 x l1—« 2 2
Since o < 1 was arbitrary we obtain that
liminf Y& > 1

T—00 T
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14.3 Integral Representation of vy (x)

For ¢ € R let I'. denote the vertical line with parameterization
Fe: s(t)=c+it, —oco<t<oo.
Theorem 14.2 For ¢ > 1 and x > 1 the function 11 (x) has the integral representation
1 l,erl CI s
¢1($):./ (— ())ds.
27i Jp, s(s+1) ¢(s)

The proof is based on auxiliary results given below.

Remark: Set

x5t (s
Fla,s) = s(s+1) <_ i((s))> ’

i.e., F(x,s) is the integrand in the above representation of 11 (z). We know that

((s) = 5 +hs), ()= —(s = 1) 2+ W)

where h(s) is holomorphic near s = 1. Therefore,

Res(C(s),s = 1) =1.
It follows that

.%2

Res(F(x,s),s = 1) =3 -

The claim is that this term gives the asymptotic behavior of 1 (z) to leading order. If C. denotes
the circle of radius € centered at s = 1, then we have

1 x2
— | F(z,s)ds ="
ori Je, (z,5) ds = 5

14.4 Auxiliary Results

Lemma 14.2 Forc > 0 and a > 0 we have

1/ Y =
2mi Jre s(s+1)

Lemma 14.3 For |e| < 1 we have
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Proof: Set

fe)=—log(l—¢) for |e|/<1.
Then f(0) =0 and

The claim follows by integration. ¢

Lemma 14.4 For Res > 1 we have

o)
) — 2 Ao

Proof: From the previous lemma,

o0

1 .
—log(l—a):g —el for Jg|<1.
=17

Also, for Res > 1:

where

if n=p

if p is not a prime power

O =

|

Therefore,

o

log ((s) = Z cpe”Smn

n=1

and differentiation yields that

o= g ol

oo
= —E cpn flnn .
n=1
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If n = p’ then

cplnn = jln(}ﬂ) =lnp=A(n).

If n is not a prime power, then
cpnlnn=0=A(n) .

This proves the formula

(),
() — 2 A

14.5 The (—Function has no Zero on the Line s =1+t

Let
s=o+it, o>1, telR.
We have
((s) = M(L—p~)~"
log¢(s) = —Y log(l—p*)
p
o0
1 _
= 2250
=
o0
= e
n=1
where
% if n=p
C, =
" 0 if p is not a prime power
We have
n—s _ n—an—it
— nfaefit Inn
= n? < cos(tlnn) — isin(t1n n))
thus
Ren™® =n"7cos(tlnn) .
Therefore,
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Re log((s) = Z cpn” 7 cos(tinn) .
n=1
From

C(s) = elo8¢l)

we obtain that

C(s)] = Re s )

and
In [¢(s)] = Re log ¢(s) = Y _eon 7 cos(tlnn) .
n=1
Now consider
In |[¢3(0) ¢ (o + it)¢ (o + 2it)’ = 3In[C(0)| +4ln|¢(o +it)| + In |¢(o + 2it)|

o0
= Z cpn”? (3 + 4 cos(tlnn) + cos(2tIn n))
n=1

The term in brackets turns out to be non—negative:
We know that

cos(2a) = cos?(a) — sin?(a) = 2cos?(a) — 1

thus

3+ 4cos(a) +cos(2a) = 2(1+ 2cos(a) + cos?(a))
2(1 + cos(a))?

and obtain that
In (43(0)44(0 Fit)C(o + m)] >0.
This yields the lower bound

’g?’(o—)g‘*(a Fit)C(o + Qit)‘ >1. (14.2)

for all

c>1 and teR.

Now suppose that

C(1+it) =0

for some real ¢ # 0. Then consider the function
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f(o) = | (o) o +it)C(o +2it)| for 1<o<2.

We obtain for some constant C' > 0 the estimates

|C(o+it)] < C(o—1) (since ¢(1+it) =0)
(o +2it)] < C
IC(o)] < 2(c—1)"1 (since ¢(s) has a first order pole at s = 1)

for 1 < o < 2. The constant C' > 0 may depend on ¢, but is independent of 1 < ¢ < 2.
Therefore,

f@O)<Klo-1)3c-1D'=K(oc—1) for 1<oc<2.

This estimate contradicts the lower bound which was established in (14.2). The contradiction shows
that the (—function has no zero on the line

s=1+41dt, teR.
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14.6 Growth Estimates for

C5)/C(5)

Let s = 0 + it where ¢ and ¢ are real.
To prove the PNT one needs a growth estimate for the function

(0 +it) /(o + i)

for 1 <o <2 as |t| = 0.
We will prove:

Theorem 14.3 For all € > 0 there exists a constant C(e) > 0 with

¢'(o +it)
((o +1it)

]gC(a)mf for 1<0<?2 and |t|>2.

The theorem follows from three Lemmas. We first prove a growth estimate for |((s)|. Using
Cauchy’s inequality it implies a growth estimate for |(’(s)|. Using the inequality (14.2) and the
estimates for |((s)| and |¢'(s)| we then prove a lower bound for |((s)| as |t| — oo. The upper bound
for |¢’(s)] and the lower bound for |(s)| then imply the upper bound for |¢’(s)/¢(s)| stated in the
theorem.

14.6.1 Growth Estimates for |((s)|

Lemma 14.5 Let 0 < g < 1. For all € > 0 there exists a constant C(e) > 0 so that
|C(o +it)| < Ce)[t]*° for 0<o9g<o<3 and [t|>1. (14.3)
Proof: We may assume that 0 < ¢ < gg, thus
O<ni=1—0p4+e<1.

a) We use the formula

1
((s)= =7 +H(s) for Res>0, s#1, (14.4)
where
H(s) = Z&n(s) for Res >0
n=1
with

b) We have |s — 1] > |t| > 1, thus

1 1
<—<1 for |t]>1.
s = 1] J¢]

c) First estimate of |J,(s)|: We have s = o + it with ¢ > 0 and claim that
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|05 ()] < 2 (14.5)

nO’

Since n = ™" we have n=% = e~ (@+it)Inn 454

—S| — e—olnn —nC

In

Also, for £ > n we have

|27 =277 <n"7.

Therefore,

n+1 2
16,(5)] g/ (|n—sy + |x_s|) dr < —. (14.6)

d) Second estimate of |0, (s)|: We have s = 0 + it with o > 0 and claim that

5]
[0n(8)] < T (14.7)
For the function f(z) = x=% we have f'(x) = —sz~*~! for x > 0. Therefore,
n+1
|0n(s)] = / (nfs - w*‘g) dx’
nn+1
= [ (100~ 16a)) aa]
< max{]f'(q)\ :n<g< n—i—l}
_ sl
T plto
e) Let 0 < e <oy <1andlet o > 0p. We have
2 2
On, < —< — 14.8
ul) < 2 < 2 (145)
and
5] 5]
Since

O0<n=1—-09+c<1

we obtain that

u = [oa)]" o)
Is| \7 /2 \1=7
= (nl"“’O) (n”o)
2|s|"
nlte -’
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Here we have used that

(I+oo)n+oo(l—n)=n+oo=1+c¢.
Therefore,

2

’(571(8)’ < oive |8|1*oo+€ )

Using the equation

()= 2 + 3 bals)
n=1

one obtains that

C(s)] S 1+2¢(1+e)[s['770F*
for 0 < o9 <o <3and|t| > 1. If |o| <3 and [t| > 1 then |s|> < 9+|¢t|> < 10[t|?, thus |s| < /10 [¢].
The estimate (14.3) follows. ©
14.6.2 Growth Estimates for |('(s)|

Lemma 14.6 For all ¢ > 0 there exists a constant C(g) > 0 so that
I('(o+it)| < Ce)|t]° for 1<oc<2 and |t|>2. (14.10)

Proof: We will use the previous lemma and a Cauchy estimate for (/(s). Let s = o + it with
1 <o <2and |t| > 2. Let ' denote the circle of radius € centered at s. We have

('(s) = ! o) 5 dz

2mi Jr (z—s)

Therefore,
y 1
[C(s)l < - max{[¢(2)] = z€T}.
In the previous lemma, choose og = 1 — ¢, thus

1l—0g+e=2¢.
Obtain that

IC(2)] < C(e) (|t| + 5)26 for zel

if € > 0 is small. The estimate

(el < 0@ (I +e) " < 1 ol

for 1 <o <2 and [t| > 2 follows. ¢
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14.6.3 Lower Bounds for |((s)|

Lemma 14.7 For all € > 0 there exists a constant K(g) > 0 so that
IC(o+it)| > K(e)|t|° for 1<o<2, |t|>2. (14.11)

Proof: Let’s first recall estimates that we have shown above:

G(o)¢Ho +it)(o +2it)| >1 for o>1, teR. (14.12)
IC(o+it)| < CEf for 1<o<2, [t|>1. (14.13)
I'(o+it) S Ce)|t|F for 1<0<2, |t|>2. (14.14)
1
0< ——=<((0) < for 1<o<2. (14.15)
o—1 o —
From (14.15) obtain that
]. 3 -3
Slo—1°< (g(a)) for 1<o<2. (14.16)
Then (14.12) yields that
‘c( + 'lt)‘4 >ty ! for 1<o<2, |f>1 (14.17)
o+ — (o — A —— T o , >1. .
-8 |C(0 + 2it)] - -
The estimate
IC(0 +2it)| < CEfF for 1<o<2, |t|>1 (14.18)
yields that
L >l o 1<o<2, 21 (14.19)
T . .
Ceran = o =T ER NS
Therefore, from (14.17) one obtains that
‘g(a + it)‘ > Ki(e) (0 — 134t/ for 1<o<2, [t|>1. (14.20)

Let 1 <o <& <2 and let [t| > 2. Use the bound (14.14) for |¢’(s)| to obtain that

‘g(& +it) — (o + it)‘ < Ky()(6 — o) [t < Ka()(6 — 1)t . (14.21)
Set

- ()
= \2Ky(e)/
This choice of A.) will be explained below. Since K (¢) is a (small) constant in a lower bound and
Ks(e) is a (large) constant in an upper bound, one may assume that

(14.22)

0< A <1.
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In the following, let
s=o+it where 1<o<2 and |[t|>2.

Case 1:
o—1> At| ™5

(In Case 1 s = o + it is not too close to I'y.)

Case 2:
0<o—1<Alt]™

(In Case 2 s = o + it gets very close to I'; for large |¢|.)
First consider Case 1. Obtain that

(0_ _ 1)3/4 > A§/4 |t|7155/4 )
The estimate (14.20) yields that
[Clo +it)] > K () A3 |14 (14.23)

in Case 1.
Second, consider Case 2. Since

0<o—-1<A]lt|™* <1

there exists ¢ with

1<o<d<2 and 5—1:A€]t|_5g.

For § = ¢ + it we have Case 1 and obtain from (14.23) that

‘g(& + z't)‘ > Ky (e) A3/ |t~ (14.24)

Using this lower bound and using (14.21) one obtains that

IC(o +it)] > [C(6+1it)| — Ka(e)(a — 1|t
1t~ (Kl (£)A3/4 — Kg(s)AE)

AV

If

Ki(e)A%* = 2Ky (e) AL
then

A= (3

This is the choice for A. in (14.22). With this definition of A, one obtains that

Ki(e) A2 — Ky(e)Ae = Ko (e) A
and the above lower bound for |((o + it)| yields that
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(o +it)] > Ka(e) Acft| ™
in Case 2. Together with the Case 1 estimate (14.23) one obtains that

)g(a n z‘t)) > Ky(e) [t (14.25)

where K3(¢) > 0. This completes the proof of Lemma 14.7. ¢
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14.7 Proof of the Prime Number Theorem

Recall:
by) = 3 Am)
1<n<y
— Y AmH(y - n)
n>1
and

= > Am)-n)

1<n<zx
We have shown that

72

wl(x)N? as T — o0
implies the PNT.
The equation
/ o
_¢s) = ZA(n)n*s for Res>1 (14.26)

follows from the product formula

1

C(s) = le s for Res>1.

Multiply the equation (14.26) by

1 T

— T >1, Res>1
2mi s(s+1) o re €

to obtain that

1 a5t () 7 — (z/n)?
%3(3—1—1)(_((3))_% A(n)s(s—i—l)'

Integrate along the straight line I'y and use Lemma 14.1 to obtain that

(14.27)

oo

1 25 +1 <_C,(S))ds _ ZA(n)(m—n)

210 Jp, s(s + 1)

n=1

= Pi(z)

Set
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x5t (s
Flz,s) = s(s+1) ( B <é((s))> ’

We know that the function ((s) has a simple pole at s = 1. Therefore,

72
Res(F(x,s),s = 1) =3 -
This is a good reason for
72
wl(ﬂﬁ)fv? as T — 00 .

We will use the following growth estimate: There exists a constant C' > 0 so that
/
’ﬂj <CIMY? for s=o+it, 1<o<2 |t|>2.
¢(s)
For 1 < ¢ < 2 let T, denote the half-line with parameterization

fcz s=c+1it where 2<t<oo.
Using the estimate (14.28) one obtains that the integral

ﬁc F(z,s)ds

is well defined. This follows from the bound

2o+l
|F(x, s)|<C 2 for s=o+it, t>2

and

(o)
/ 32 gt = (—2~ /)|
2

Using (14.28) one also obtains the following:

2
2 V2T

(14.28)

Lemma 14.8 Let 7 > 2 and let v, denote the horizontal straight line with parameterization

Yr: Ss=oc+it where 1<o<2.

Then we have
’/F(m,s)ds’—>0 as T — 00 .
YT

Proof: We have

2o+l
|F(x, s)|<C 2 =Kt for s=oc+itt>1>2

and

’/ F(:U,s)ds‘gKT_3/2—>0 as T — 00 .

T
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For T > 2 let

Yr = T + Yor + V3T + YaT + V57

where 7,7 is the straight line with parameterization:

"r s=1+1it, —-oco<t<-T
YT s=1+4+1i, T<t<oo
Y37t s=2+1i, -T<t<T
Yor s=oc—1I, 1<o0<2
Yar : s=2—o0c+1T, 1<0<2

Using the previous lemma, it is not difficult to show that
F(x,s)ds = F(x,s)ds for T>2.
I T

For T'> 2 and small § > 0 consider the rectangle R(7T,0) with corners

1—6—4T, 2—iT, 2+4T, 1—5+iT.

Since

C1+4dt)#0 for 0<|[t|<T
and since ((s) has a pole at s = 1 one obtains: For every T' > 2 there exists § = 6(T") > 0 so that

((s) #0 for se R(T,6), s#1. (14.29)

In the following, we fix § = 6(7") > 0 so that (14.29) holds. Let OR(T,J) denote the boundary
curve of R(T,¢), positively oriented.
We obtain that

1 x?
— F = Res( F =1)=—.
2 Jomcrs (z,s) es< (x,8),s ) 5

Let C = C(T, d) denote the curve consisting of five straight lines,

C=C1+Co+C3+Cs4+C5

where

Ci=mr and Cs5= 7

and

Cs s=1—-6+1it, -T<t<T
Cy s=1—0c—iT, 0<o<§
Cs s=1—-64+0+iT, 0<o<9
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Obtain that

F(m,s)ds—/F(w,s)ds:/ F(x,s)ds .
I'r c OR(T5)

Here the last integral equals 273 - % Therefore,

P(z) = —+ — /F(x, s)ds (14.30)
C
and we have to estimate

1

T2

/F(a:,s)ds as T — 00 .
C

Here C = C(T, ).
We must estimate essentially three terms:

1
terms(z,T) = o /CF(:v,s)ds
5
1
termg(x,T,6) = — /F(ﬁ,s)ds
T Cs
termy(x,T,9) = = /F(x,s)ds
Ca

Estimate of terms(z,T):

We have
‘ F(:):,s)ds‘ < / |F(z,s)|ds
Cs T
< C'a:Q/ 732 gt
T
= 20932/\/T
thus

1
term5(93,T):$2‘/ F(:c,s)ds‘ < K/VT.
Cs

Estimate of termg(x,T,0):
Recall that

s(ll—i—s) (—C/(S))‘ for s=oc+it.

There exists a constant C'(T',0) so that

|F(x,5)] = 2"

‘3(113)(— CC/((;))‘ < C(T,8) for se€CyUC3UCy .

For s € C3 we have s =1 — § + it, thus
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|21 = 2270 for seCy.
Therefore,
1 -5
— ’ F(z,s) ds’ <z °2TC(T\,$) .
x
Cs3
Obtain:

K(T, )

termg(x,T,9) < o

Estimate of termy(x,T,0):
For seCy wehave s=1—-90+ 041,00 <o <4, thus

|$1+3| — 1,2—5 o __ 1,2—5ecrlnx

xr g
and
§
’/ F(z,s) ds‘ < C(T,(S)x2_5/ e’ o
Cy 0
Here
) —
/ oz g iealn:c o=0
0 Inx o=0
1.5
< -
~ Inzx
Therefore,
1 C(T,§
2’/ F(:L‘,s)ds‘g (T ),
x4l Je, Inx
i.e.,

C(T, )

t T, §) <
ermy(x,T,0) < 02

Obtain that

2 2 VT g Inz
If € > 0 is given, choose T" > 0 so that
K <
— <e.
VT ~
Then choose 6 = §(T") so that (14.29) holds. Obtain that
1
¢1(2x) — 5‘ <2 for x>z,
x

if z. is sufficiently large.
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This proves that

)

Y1(x) ~
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15 The Mertens Function and the Riemann Hypothesis

History
August Ferdinand Mo&bius, 1790-1868, German
Franz Mertens, 1840-1927, Polish

The Mobius function:

1 if n=1

0 if n contains a quadratic prime factor

The Mertens function M : N — Z is

M(j) = p(n) .
The Mertens conjecture was that |M(j)| < /7 for all j > 1.
A property of the Moébius function:
Lemma 15.1 The following holds:

N )1 for n=1
ZM(‘])_{O for n>1
Jln
Proof: The formula is obvious for n = 1. Let

n=pi*...pF, k>1,

with distinct primes p; and exponents a; > 1.
Let j|n. If j =1 then

One obtains that

1 if n > 1is a product of an even number of distinct primes
if n > 1 is a product of an odd number of distinct primes

D ouli) = p()+p(pr) + o+ plor) + p(pip2) + -+ ppr-apr) + -+ p(pr -

Jln

= (1-1)*
=0

This proves the lemma. ¢

Let a; and by denote two bounded sequences of complex numbers. Set

f(s):i—s and g(s):i—s for Res>1.
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The functions f(s) and g(s) are holomorphic for Res > 1.
We have

8

with

Apply this to the functions

Since

one obtains that

f(s)C(s)=1 for Res>1.
This proves that

—:ZM(‘Z) for Res>1.
1 J

Assume that there exists a constant C > 0 so that

IM(j)| <Cy/j forall jeN.

We claim that the formula

_ i #(J)

=

defines a holomorphic function for Re s > %
We set M(0) = 0 and have

(i) = M(j) = M(j—1) for j=1,2,...
We also set

M(z)=M(n) for n<z<n+1.
We have, formally,
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=1 7
_ iM(J)_iM(J—I)
= 7 =3
_ iM(])*i M(j)
= 7 mUrL
= 1 1
— M) (=
z; (])(]S (J+1)s>
]7
Note that
- ,
/] ST S_ldl':—l'_sj+1:— 1 ia
j j (G+1)s s
thus
o0 ) j+1 o % Mz
f(s):sZM(j)/ e lde =5 1 :ES(H) dx
j=1 J

If |IM(x)| < Cy/x for x > 1 then

‘/ M(x)dx‘SC/ dml < oo for O':RGS>1.
st 1 2%t 2

If the estimate |M(z)] < Cy/z holds, then the formal calculations can be justified and the
formula

CE
j=1

defines a holomorphic functions for Re s > % By analytic continuation, the formula

f(s)C(s) =1

holds for Re s > %,s # 1. One obtains that ((s) # 0 for Res > %,s # 1.

Instead of assuming the bound |M(z)| < Cy/x the following is sufficient: For all € > 0 there
exists C. > 0 so that

|M(z)] < C.x2™ for z>1.

This condition is equivalent to the Riemann hypothesis.

Set
M
m(m) = 22

Mertens conjecture was that |m(n)| <1 for n > 1.

for n=1,2,...
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According to Wikipedia, the estimate

|m(n)] <0.6 for 1<mn <10

has been checked numerically. No value of n > 1 is known with |m(n)| > 1. However, in 2016 it
has been proved that

limsup |m(n)| > 1.8 .

n—oo
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PDEs

16 Complex Variables and PDEs

16.1 2D Irrotational Euler Flows

The Euler equations for 2D incompressible flows read

Ut + UlUg + VUy + Py

Ut + Uy +0vy +py =

Uy + Uy
Here the vector

(u(x,y,t),v(x,y,t)) € R?

is the velocity and p(x,y,t) is the pressure. The equation u; + v, = 0 is the incompressibility
condition. The corresponding 3D velocity field

(u,v,0)
has the vorticity

w = curl(u,v,0)
= V x (u,v,0)
= (0,0,v; —uy)

A velocity field is called irrotational if its vorticity is zero. For 2D incompressible, irrotational flows
one obtains the conditions

Uy +0y =0, vz —uy, =0

which can also be written as

Uy = —Vy, Uy = —(—Vz) .

These are the Cauchy—Riemann equations for the pair

(u, —v) .

Lemma 16.1 Let U C C denote an open set and let f € H(U). Define u,v:U — R by

flz +iy) = u(z,y) —iv(z,y)

and set

ple.y) = —5 (#() + 2@y

Then
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(u,v,p)

is an irrotational solution of the stationary incompressible Fuler equations.

Proof: We know that (u, —v) satisfy the Cauchy—Riemann equations, thus

Uy +0y =0, vz —uy=0.

Also,
L. 2
(5(u + v ))x = Uy + VU
UlUg + VUy
= Pz

and, similarly,

1
<7(u2 + 112))y = Uy + vUy

= uvy + oy

Remark: For the constructed solution (u,v,p) we have

1
§<u2+vz>+p:0.

Roughly, this implies that the pressure is low (negative, large in absolute value) where flow speed is
high and, conversely, the pressure is high (negative, small in absolute value) where the flow speed
is low. This is a simple form of Bernoulli’s law relating the pressure to the flow speed.

The Velocity Field has a Potential Let F' € H(U) and let F’ = f. As above, define u and
v by

Define ¢ and v by

F(z +1iy) = ¢(x,y) +iYp(z,y) .

We have
u—iwv = f
F/
= ¢r + “ﬁx
= (z)x - i(by
thus
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u=¢; and v=¢y, .

This says that the function ¢(z,y) is a potential of the velocity field

(ul@.y). v(w.y) = Vo(a,y) -

Flow Lines From the Cauchy—Riemann equations

¢x = %, ¢y = —ww

one obtains that

bed)x + ﬁbywy =0.
If ' is a line described by

Y(x,y) = const
and if P = (x,y) € ', then the vector

(val(P),0y(P))
is orthogonal to the tangent to I" at P. At P = (z,y) we have

0 = ¢x¢m + stwy
= uthz + vy

which implies that the velocity vector

(u(P).v(P))

is tangent to I' at P. In other words, the lines

Y(x,y) = const
are flow lines.

Example 1: F(z) =z=x+ 1y
We have

and

The velocity field is

(ul@.y). v(@.9)) = (1,0)

is a uniform flow in the direction of the z—axis. The pressure is constant. The value of the constant
is irrelevant since only p, and p, occur in the Euler equations.
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Example 2: F(z) = az = (a1 + ia2)(x + iy)
We have

f(z)=a=a1+iaa =u—1iv.

The velocity vector

<U(x,y),v(w,y)> = (a1, —az)

is constant in space. The velocity field describes a uniform flow.

Example 3: F(z) = % (flow around a corner in the first quadrant)

Here
fla)=z=a+iy,
thus
u=z, vV=-—y
We have
N2
F(z)= (@ +iy) = (22 —9®) +izy .
2 2
Therefore,
Uz, y) =y .
The flow lines are hyperbolas
c
y=—
x

On the y—axis the velocity is

(u(O,y),U(O,y)) = _(an) )

i.e., the flow is parallel to the y—axis.
On the zx—axis the velocity is

(u(z,0),v(x,0)) = (x,0)

i.e., the flow is parallel to the x—axis.
The first quadrant is

U=0Q1 ={(z,y) : 0<z,y <oo}.

On the boundary of U the velocity is tangent to the boundary. This is the usual boundary condition

for Euler flow.
Example 4: F(z) = z+ 1 (low around a cylinder)
We have
T — 1y

F(z)=a+iy+ ——2
(2) G Ay
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thus

W(x,y) =y — —

2242
The stream lines are given by the equation
Y — A c = const
z? + y? '
If we take ¢ = 0 we see that the circle
224y =1

and the y—axis are flow lines. We can interpret the flow as a flow around the unit—circle. We have

1 222
u = =1+ —
¢a; 562 + y2 (562 + y2)2
and
2xy
v = ¢y — —7($2 + y2)2

This yields that

u(z,y) -1 and o(z,y) =0
for |z| + |y| — oc.

Remarks: The Navier—Stokes equations for 2D incompressible flows read

U + Uy +VUy + D = VAu
Ve + Uy + 00y +py = VAV
Uy +vy = 0

where v > 0 is the kinematic viscosity of the fluid. If u and v are constructed as above, then

Au=Av =0,
thus

(u,v,p)

is a solution of the stationary Navier—Stokes equations. However, for the Navier—Stokes equations
one typically requires the boundary condition

u=v=20

on every wall of the domain. For the Euler equations one only requires that (u,v) is tangential
to the wall. The solutions of the Euler equations which we have constructed will not satisfy the
boundary conditions © = v = 0 at a wall unless the solution is trivial.

In regions away from walls the Euler equations may still be useful since often one has that
0 < v << 1. The viscosity terms are important, however, in boundary layers near walls.
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16.2 Laplace Equation
We will to derive the Poisson kernel for the Dirichlet problem for Laplace equation in the unit disc.

Dirichlet Problem: Let D = D(0, 1) denote the unit disc with boundary curve I' = 9D. Let
g : I' = R denote a continuous function. Find

u:D —R with ueC*D)nC(D)

so that
Ayu=0 in D, u=g on I.

16.2.1 Derivation of the Poisson Kernel via Complex Variables

Let f € H(D(0,1+ ¢€)). By Cauchy’s integral formula:

f(z) = ! /Ff(o d¢ for zeD.

T omi (—=z

For z € D,z # 0, define the reflected (w.r.t. I") point

Since |z1| > 1 we have that

_ 1 /()
=5 rC—ZldC for ze€eD.

Subtracting this equation from the equation for f(z) we obtain

_ 1 ¢ ¢ dg
1@ =5 [ (s o) 0% (16.1)
for 0 < |z| < 1.
We have for 0 < |z| <1 and ( € T":
¢ ¢ ¢
(-2 ¢-—=1 (-2 (-«
_ ¢ z
N C—Z_E—E
ke
¢ — 2
_ 1P
=
The kernel
.2
K(z,C):217T|1C_‘j2 where (€I and zeD (16.2)

is called the Poisson kernel for the unit disc D. If f € H(D(0,1 + ¢)) then we have
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£(2) :/FK(z,g)f(g)‘?g for zeD. (16.3)

]

(In (16.1) we had to exclude z = 0 since z; is undefined for z = 0. However, both sides of (16.1)
extend continuously to z = 0 and one obtains the validity of (16.3) also for z = 0.)

Properties of K(z,():
1. K(z,{) >0for z€ D, €.
2.

/K(z,C)dC =1 for zeD
r i¢
(Take f =1 1in (16.3).)
3. The function z — K(z,() is harmonic in D for every ¢ € T.
This follows since the function

is holomorphic and the function

1
z2———, 2€ D\ {0},
z1

¢ —
is the complex conjugate of a holomorphic function. Therefore,
1 1
z — Re ( — )
(—z (—=

is harmonic in D \ {0}, and this function extends smoothly to z = 0.

Other notation: In formula (16.2) let

z=re? and C=e".

One obtains that

K(z,¢) = K(re”,e?)
1 1-r?
21 et — reif|?

Here

le?® —re2 = (cosd —rcosh)? + (sin¢g — rsinf)?
1 — 2rcos(¢ — ) + 2

One defines

1 1—r?
P = — .
(r @) 21 1 — 2rcosa + 12

The kernel P(r, ) is also called the Poisson kernel for the unit disc.

202



‘We have

K(re? e?) = P(r,¢ —0) .

Formula (16.3) becomes

2
f(re) = / P(r,¢ —0)f(e)dp for 0<r<1.
0
This result suggests the following:

Theorem 16.1 The solution of the Dirichlet problem is

u(ret?) = /27r P(r,¢ — 0)g(e®)dp for 0<r<1 (16.4)
0

and
u(reie) = g(eie) for r=1.

Proof: Since the Poisson kernel K(z,() is a harmonic function of z € D for every fixed ( € T
it follows that u(z) is harmonic in D. The difficulty is to prove that u attains its boundary values
continuously.

Fix (o = €% e I'. We must prove that

lim__u(z) = 9(Co) -

z—C0,2€D

Using the notation

C = €i¢7 CO = 67;90
we have for all z € D:
¢

u)=9@) = [ K000 o) T
2

= | K (o) — (™)) do

Let € > 0 be given. There exists §; > 0 so that

l9(c) = g(e™)| < 5 for |6 — o] <20 .
Therefore,
£ .
)~ 9@l < 42l [ K(ne®)do.
|¢—0o|>241
Let

z=re? and |0—6| <4 .

We must bound
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K(z, ei¢) = K(reie, ei¢)
for

| — bo| =267 .
Note that

]qb - 90| > 251 and |0 - (90| < 51
implies that

|p— 0] > 61 .
We have
K(Z, ei¢) _ K(T@ie,ei(’b)
B 1 1—r2
orr |ei¢ _ T€i9|2
Here
€ —re® P = | —r* with |o| =|¢ — 0] =4 .

Set

c1:=sind; >0 .

Then we have that

e’ — 7| = (cosa — )% +sin®a > ¢ .

This estimate yields the bound

11—

K(z,€e%) = K(re, e) < &2

for

|¢—90‘2251, ’0—90’§(51, 0<r<l1.

Therefore, there exists do > 0 so that

2/g]oc / K(z, ) do <
|p—

>
=
| ™

if

’9—00’§51 and 1—-6<r<l1.

We have proved the limit relation

li -
HCIOI};EDU(Z) 9(¢o) »
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which, together with the continuity of g, implies that u € C(D). o
Remark: In the circle D(0, R) of radius R > 0 the solution formula (16.4) is replaced by

i@) _ 2 R? —r? (
o R?+1r2—2rRcos(¢—0) g

ey dp for 0<r<R. (16.5)

u(re

16.2.2 Derivation of the Poisson Kernel via Separation of Variables
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rearrangement

17 Rearrangement of Series

17.1 Rearrangement of Absolutely Convergent Series

Theorem 17.1 Assume

o0

Z|aj| < 00

=1
and let

iaj = A.
j=1

If B : N — N 1is bijective then

D aggy =A.
j=1

Proof: For £ > 0 let v, € N be chosen so that

D agl <e. (17.1)
J>ve
We then have
‘Zaj—A‘ <e. (17.2)
j=1
Set
F.:= 7! ({1, 2,... ,ya}) :
clearly,
B(F:) ={1,2,...,v:} .
Set

ne ;= max F .

We then have for all n > n.:

F.c{1,2,...,n.} c{1,2,....n},
thus

B(Fa):{1,2,...,1/5}CB({l,Q,...,n}) .

For all n > n. obtain the following:
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) > asg) — A‘ = | D wmwm-A+ ) aﬁ(v)‘
Jj=1 veF: ve{l,2,..,n}\Fe
< Y -4+ X lasw)
VEFE VGN\FE
= Z a; — A‘ laj]
J>ve
< 26

by (17.1) and (17.2). ©

17.2 Interchanging Double Sums
Let ay; € C for kl = (k,1) € N x N. Assume

ZZ|akl|:3S<OO-

k=11=1
Then, for all K, L € N:

K L

L K
> lawl :ZZ lar| < S < o0 .

=1 k=1 k=1
This implies that for all L € N:

L oo
ZZ|CL;€1| §S<OO,
=1 k=1

and

=1

\akl\§S<oo.

T

~

With a similar argument one obtains that S < S, thus
o o oo oo
DD lawl =3 lawl -
k=1 I=1 =1 k=1

The following result about interchanging double sums is more difficult to prove:
Theorem 17.2 Assume that

oo o
ZZMM <.

k=1 1=1
Then

SHIIED 3 S8
=1 =1

k=1 k=1
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Proof: For K,L € N set

K L
AK, L) =) an
k=1 1=1
L K
B(K,L) =YY au

N
Il
-
=~
Il
-

These are finite sums, and it is clear that
A(K,L)=B(K,L) forall K,LeN.
The proof of the theorem will be based on the following lemma.

Lemma 17.1 Assume that

k=1 1=1
and set
o o
A= E E Akl
k=1 =1

Then, for all € > 0, there exists K., L. € N with
|[A—AK,L)|<e for K>K. L>L..

Proof: Set

S = Z!akz\, ZSk =5.
=1 =1

There exists K, with

> Sp<e, (17.3)
k>K.
thus
S 3 aul= > Se<e. (17.4)
k’>Ke l:1 k?>K5
Since

0
Z |akl| < 0
=1

for all k& € N there exists L(k,e) € N with
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g
> lawl < 7 (17.5)

Set
L. :=  ax L(k,¢)

where K is determined so that (17.3) holds.
In the following, let K > K. and L > L.. We have:

11=1 k>K 1=1
K L K =

DL LD IP I
k=1 1=1 k=11>L k>K =1

Thus,

=

|A— A(K,L)| Z akl| + Y k] - (17.6)

—1 k>K =1

The second term on the right-hand side is < € by (17 4). For the first term on the right—hand side
of (17.6) we have, using (17.5):

izmm = §Z|akl’+ Z Z|akl|

k=11>L k=11>L K:.<k<KI>L
K. c
<D Et S
k=1 k>K.
< eﬁ + €
- 6

This proves the lemma. ¢

We can complete the proof of Theorem 17.2. Recall that for all finite K, L we have

K K L
BK,L)=>_ Y au=>_ Y au=AKL).

We set

As in Lemma 17.1, it follows that
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|B—B(K,L)|<e

if K and L are sufficiently large. Therefore, since B(K, L) = A(K, L), the equation B = A follows.
This completes the proof of Theorem 17.2. ¢

17.3 Rearrangement of a Double Series

Theorem 17.3 Let ay, € C for kl = (k,1) € N x N and assume that

ZZ lag] < oo . (17.7)
k=1 I=1
Let
A= Z Z Qg
k=1 1=1
and let B: N — N x N be bijective. Then
Z ag(j) = A
j=1

Proof: For K,L € N let

R(K,L)={kl=(k,)) ENxN : 1<k<K and 1<I<L},

thus R(K, L) denotes the sets of all points in N x N which lie in the rectangle [1, K] x [1, L].
Let € > 0 be given. Because of (17.7) there exist K., L. € N so that

> aul<e (17.8)
kleENxN\R.
where
R. = R(K., L.) .
We then have
( S ap - A‘ <e. (17.9)
kl€R.
Set
Fz—: = B_I(Rs)
and let

ne = max Fy .

For n > n. we have

F.c{1,2,...,n.} C{1,2,...,n},
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thus

R.

) i ag(j) — A‘
j=1

by (17.8) and (17.9). ©

— B(F.) C 5({1,2,...,n}) .

For all n > n. obtain the following:

IN

IN

D

ve{l,2,...n}\Fe

Zaﬁ(w—AF > lase)

> apu) A+

veF,

ap(v)

veF; veN\F:
> akl—A‘Jr > lawl
kleR. kIENXN\Re

2e
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18 Supplements
18.1 The Function |sin z|?
Recall that
. 1 _
sinhy = i(ey —e ).

Thus, if y is real and large in absolute value, then sinh y is exponentially large in absolute value.
Lemma 18.1 For z =z + iy:

|sinz|? = sin?xz 4+ sinh?y

|cosz|*> = cos’z+sinh?y

The lemma implies that |sin(z;y)| and |cos(z 4 iy)| are exponentially large as a function of y if |y
is large.

Proof: Let
s=sinx, c=CcosT.
We have
sinz = 1 (e —e™%)
2
1 . .
_ Z (emefy o efzxey>
1
= 5 ((c +is)e ¥ — (c— is)ey>
1
= — <C(€_y —e¥) +is(e™V + ey)>
24
Therefore,
1
|sinz|? = 1 (02(69 —e )2 + 5% (e¥ + 6_9)2)
1
= 3 ((1 —5%)(e¥ —eY)? 4 s%(e¥ + e_y)2)

2
= sinh?y + SZ ((ezy +24 e W) — (¥ -2+ e_zy)>
= sinh?y +sin’x

The proof for | cos z|? is similar. o
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18.2 Find the Error

Let n denote any integer. Where is the error in the following:
eQm'n —

= €
61+27Tzn

€1+27rzn

e =

_ (el+27rin> 142min

e1—|—47r7Ln—47rn2
_ 2
= ee 47n

Therefore,

1= e—47rn

18.3 The Functions sin and arcsin

Let

H={w=u+iww : ueRv>0}
denote the open upper half-—plane.
Let .S denote the strip

S={z=z+1iy : —g<x<g,y>0}

in the open upper half-plane H. We claim that the map

z —sinz

from S to H is 1-1 and onto.
We have

sin z = Z(e”—e %) :—§<zezz+@) .

Claim 1: Let R denote the open semi—circle

R={w=u+iv : |w <1, v>0}.
Then the map
z — ie”

from S to R is 1-1 and onto.
Proof: If z =z + iy € S then

2 T,y

with
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T
—oco < e ¥ <, —§<x<

b 3

One obtains that the map

z — e

maps S 1-1 and onto a semi—circle of radius 1 in the right—half plane. Multiplying by ¢, one obtains
the semi—circle R as the image of S under the map z — ie*®.

Claim 2: Changing notation, we let R denote the open semi—circle

R={z=z+1iy : |z] <1, y>0}

and consider the map

1
z—z+ - =:9(2)
z

on R. We claim that

g:R— —H
is 1-1 and onto.

Proof: For z = re'® € R we have

1
z=r(c+is), —-=—(c—1is)
z r

with
c=cos¢, s=singp>0.
One obtains that
1 1 ) 1
w.—z—i—; = (r—i—;)c—i—z(r—;)s .

It follows that

Imw < 0.

thus w € —H.
We must show: For all w € —H there exists a unique z € R with g(z) = w.
The equation

is equivalent to

The solutions



are distinct unless

w>=4, w=42.

Thus, for all w € —H the two solutions z1 2 of the quadratic are distinct. We have

z1izo=1, z1+ 2 =w

and may assume that

|Zl| S 1 S ‘22| .

Write

21:7“€i¢ with 0<r<1, 0<¢p<27m.

Suppose that » = 1. Then zp = e~ and

Z14+ 29 =2cosp € R .
This contradicts that

ntzm=we-—H.

Therefore,
z1=re? with 0<r<1, 0<¢<2r.
From
1 ) 1, .
w=2z+2=(+-)cosg+i(r——)sing
r r
and
Imw <0
it follows that
sing >0,
thus
O<op<m.
We have shown that
z1 = re' € R

which proves Claim 2.

Recall that

. Loy, 1)
sin 2z = 2(26 —1—2,61.2 .

The map
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z — e’
from S to R is 1-1 and onto. The map
1
w—w+ —
w
from R to —H is 1-1 and onto. Multiplying by —% we obtain that the map

z —sinz

from R to H is 1-1 and onto. The inverse map from H onto R is arcsin.
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19 Graphs

Im 2z

n+iR

n—iR

Figure 19.1: Contour
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Im 2z

CR,T \
. n+iR

ir
FmR

\\
// .Mz

Figure 19.2: Contour

Im 2z
YR 1R
V4R 2R
0 Re z
V3R
—iR
Figure 19.3: Contour
Im 2z
—R+ i€ V3R R+ i€
MR V2R
-R 0 V1R R Rez

Figure 19.4: Contour
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Im 2z

1R

—iR

Figure 19.5: Strip {z : z=2x+4+iy,—R <y < R}

219



