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Abstract: We study a modification of the Black-Scholes equation allowing for 
uncertain volatility. The model leads to a partial differential equation with 
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1 Introduction 

The field of mathematical finance has gained significant attention since Black and 
Scholes (1973) published their Nobel Prize work in 1973. Using some simplifying 
economic assumptions, they derived a linear partial differential equation (PDE) of 
convection–diffusion type which can be applied to the pricing of options. The solution of 
the linear PDE can be obtained analytically. 

In this paper we are interested in a non-linear modification of the Black-Scholes 
equation where the volatility σ is not assumed to be constant, but is assumed to be a 

known function of vss Here v is the value of the option and s is the price of the underlying 

asset. A simple choice for σ = σ(vss), suggested for example in Wilmott (2000), is the 
discontinuous function 
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where σ+ and σ– are estimates for the maximal and minimal values of the volatility, 
respectively. Since, the resulting PDE becomes non-linear in its highest derivative, the 
mathematical theory of the equation is by no means trivial. In this paper we consider the 
case where the volatility σ is a smooth function of vss and present a basic existence and 
uniqueness result. 

The paper begins with a brief introduction to the classical Black-Scholes model in 
Section 2. Section 3 provides the derivation of the modified Black-Scholes equation. In 
Section 4, we sketch an existence and uniqueness proof for the Cauchy problem under 
periodic boundary conditions. These boundary conditions are not realistic and are used 
here, only to simplify the mathematical analysis of the non-linear PDE. In future work, 
we plan to extend our analysis and include more realistic boundary conditions. In the last 
section, we comment further on future research interests. 

2 Classical Black-Scholes model 

An option is an agreement that gives the holder a right, not an obligation, to buy from or 
sell to, the seller of the option a certain amount of an underlying asset at a specified price 
(the strike price) at a future time (the expiration date). Clearly, the value v of an option is 

a function of various parameters, written v(s, t; μ, σ; E, T; r). Here, s is the price of the 

underlying asset; t is the current time; μ is the drift of s; σ is the volatility of s; E is the 

strike price and T is the expiration date of the option; r is the risk-free interest rate. The 
assumptions leading to the classical BSM model are as follows: 

1 the risk-free interest rate r is a known constant for the life of the option 

2 the price s of the underlying asset follows a log-normal random walk and the drift μ 

and volatility σ are constants known in advance 

3 transaction costs associated with buying or selling the underlying asset are neglected 

4 there are no dividends paid from the underlying asset 

5 hedging can be done continuously 

6 the price of the underlying asset is divisible so that we can trade any fractional share 
of the asset 

7 we have an arbitrage-free market. 

Let π denote the value of a portfolio with long position in the option and short position in 

some quantity Δ of the underlying asset, 
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( )= ,v s t sπ −Δ  

By assumption, the price s of the underlying asset follows a log-normal random walk, 

= +ds sdt sdXμ σ  

where X is Brownian motion. 

As time changes from t to t + dt, the change in the value of the portfolio is due to the 
change in the value of the option and the change in the price of the underlying asset, 

= −d dv dsπ Δ  

By Ito’s formula, we have 

⎛ ⎞
= + +⎜ ⎟
⎝ ⎠

.t ss sdv v s v dt v dsσ2 21
2

 

Combining the last two equations yields 

( )⎛ ⎞
= + + −⎜ ⎟
⎝ ⎠

.t ss sd v s v dt v dsπ σ2 21
Δ

2
 

Using a delta hedging strategy, we choose Δ = vs and obtain 

⎛ ⎞
= +⎜ ⎟
⎝ ⎠

.t ssd v s v dtπ σ2 21
2

 

By the assumption of an arbitrage-free market, the change dπ equals the growth of π in a 
risk-free interest-bearing account, 

( )= = − .d r dt r v s dtπ π Δ  

Therefore, 

( ) ⎛ ⎞
− = +⎜ ⎟

⎝ ⎠
.t ssr v s dt v s v dtσ2 21

Δ
2

 

Substituting Δ = vs one arrives at the Black-Scholes equation, 

+ + − = ≤ ≤0 for 0t s ssv rsv s v rv t Tσ2 21
2

 (1) 

The equation is supplemented by an end-condition at the expiration time T, 

( )
( )
( )

( )

⎧ −
⎪⎪= −⎨
⎪ −⎪⎩

,0 for a call option;

, ,0 for a put option;

,0 for a binary call option;  is the Heaviside function.

max s E

v s T max E s

H s E H

 (2) 
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Denote the right–hand side in formula (2) by v0(s). 
If one uses the transformation 

( ) ( ) ( ) ( ) ( )−⎛ ⎞
= − = + − − =⎜ ⎟

⎝ ⎠
, , , ,

r T t
T t x ln s r T t w x e v s tτ σ τ21

2
 

the equation (1) transforms to the heat equation, 

= xxw wτ σ21
2

 

and the end-condition (2) transforms to the initial condition: 

( ) ( ) ( ) ( ) ( )= = = =, , .xw x v s T v s v e w x0 0 00  

The problem has the explicit solution 

( ) ( ) ( )
+ − −

−
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x y
w x e w y dy

σ τ
τ

πσ τ

2 2∞ 2
0∞ 2
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or 

( ) ( )

( )
( )
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3 Modified Black-Scholes model with variable volatility 

We can modify the assumptions leading to the Black-Scholes model in different ways 
regarding different parameters. Here, we focus on the constant volatility assumption. The 
volatility is not known in advance as a constant but is an uncertain stochastic variable. 
There are two traditional ways to measure volatility: implied or historical. 

Another possibility is to assume a known range for the volatility σ: 

− +σ σ σ0 < ≤ ≤  

where σ+ and σ– are (estimates for) the maximal and minimal values of σ. We then have 
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which motivates to define the discontinuous function 
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As outlined in the previous section, under delta hedging, Δ = vs we have 

⎛ ⎞
= +⎜ ⎟
⎝ ⎠

.t ssd v s v dtπ σ2 21
2

 

Assume the minimum return on the portfolio with volatility σ varying over the range  

σ– ≤ σ ≤ σ+ equals the risk-free return .r dtπ  We then obtain 

( ) ( )⎛ ⎞
+ = = −⎜ ⎟

⎝ ⎠
t d ss ss sv v s v dt r dt r v sv dtσ π2 21

2
 

with σd(vss) given by (3). One obtains the non-linear PDE 

( )+ + − =t s d ss ssv rsv v s v rvσ2 21
0

2
 (4) 

In this case, because of the variability of σ = σd(vss), the transformation 

( ) ( )⎛ ⎞
= + − −⎜ ⎟

⎝ ⎠
x ln s r T tσ21

2
 

applied in previous section is not useful since it depends via σ on the solution v. Instead, 
we apply the much simpler transformation 

( ) ( )= − = =, , , ,rT t x s u x e v s tττ τ  

leading to 

( )
( ) ( )

= +

=

,

             , , .

d xx xx xu u x u rxu x

u x v s T

τ σ2 21
> 0

2

0
 (5) 

4 Existence and uniqueness analysis 

The essential mathematical difficulty of (4) lies in the non-linear term ( ) .d xx xxu uσ2  To 

address this essential difficulty, we consider an equation of the form 

( )=t xx xxu G u u  (6) 

where G : R → (0, ∞) is a given smooth positive function. 
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The function σd in (4) is not smooth, of course, but we can approximate σd  by a 
smooth function like 

( ) ( ) ( )+ − + − ⎛ ⎞
= + − − ⎜ ⎟

⎝ ⎠
tanh ,xx xxu uε ε

ε
σ σ σ σ σ

1 1 1
> 0

2 2
 

Figure 1 The graphs of σd (left) and σε (right) for σ+ = 0.3, σ– = 0.2 and ε = 0.3 (see online 
version for colours) 
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Differentiate equation (6) twice with respect to x and set w = uxx to obtain 

( ) ( )′= +t xx xw h w w h w w2  (7) 

where ( ) ( ) ( )′= + .h w G w G w w  It will be convenient to consider the slightly more 

general equation 

( ) ( ) ( ) ( )= + =, , , ,t xx xw h w w g w w w x f x0  (8) 

where h(w), g(w, wx) and f(x) are C∞ functions of their arguments. To concentrate on the 
essential mathematical difficulty, the non-linear volatility coefficient, we assume the 
initial function f(x) to be 1-periodic; we then seek a solution w(x, t), of (8) which is  

1-periodic in x. Other boundary conditions will be considered in future work. 

Theorem 4.1 Consider the 1-periodic initial value problem (8) under the above 
assumptions. In addition, assume that h(w) ≥ k > 0 for all real w and 

that h and g and all their derivatives are bounded functions. Then there 

is a unique C∞ solution  w(x, t) which is 1-periodic in x. The solutions 

exists for 0 ≤ t < ∞. 
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Remark: If h or g or their derivatives are unbounded, one can use a cut-off argument and 

replace h or g by functions %h  or %g  which satisfy the conditions of the theorem. For the 
original problem, one then obtains a result which is local in time. 

To prove the existence part of the theorem, we define a sequence of functions wn(x, t) 
via the iteration 

( ) ( ) ( ) ( )+ + += + = = K, , , ,n n n n n n
t xx xw h w w g w w w x f x n1 1 1 0 0,1,2,  (9) 

starting with w0(x, t) ≡ f(x). Since the problem (9) is linear parabolic, there is no 
difficulty in establishing existence, uniqueness and smoothness of the functions  
wn(x, t) ≡ wn(x + 1, t) for 0 ≤ t < ∞. 

It can then be shown and this is the main mathematical difficulty, that the functions  
wn(x, t) are ‘uniformly’ smooth in any finite time interval. More precisely, for any fixed  

0 < T < ∞, all derivatives are bounded independently of the iteration index n: 

( ) ( )
+

supmax max , , ,
p q

n
p qx t Tn

w x t C p q T
x t0≤ ≤

∂
≤ <∞.

∂ ∂
 

General arguments as detailed in Kreiss and Lorenz (1989), for example, then show 
convergence of the sequence wn(x, t), along with all derivatives, to a smooth solution  

w(x, t) of the problem (8). 

To show uniqueness of a solution, let ψ(x, t) denote the difference of two solutions. 
An energy estimate then yields 

( ) ( ) ( )⋅ = ⋅2 2, , ,tL LL

d
t C t

dt
ψ ψ ψ ψ2

2 21
≤

2
 

and the initial condition ( ) ≡,xψ 0 0  implies ≡ψ 0.  

5 Future research 

In future work we plan to extend the analysis in various directions: 

1 More general boundary conditions than 1-periodicity will be considered. 

2 The case of a non-smooth volatility coefficient G(μxx) is of interest in applications, 

such as the jump function σd(μxx). One can treat the jump function σd as the limit of 

smooth functions σε but the limit process for the corresponding solutions is  
non-trivial. 
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3 The case of a non-smooth volatility σd(μxx) can also be treated as a free boundary 

value problem where lines (x(t), t) with μxx (x(t), t) = 0 will be determined as free 
boundaries. 
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