HOMEWORK #4

Problem 1. Let f and g be the functions from $\{0, 1, 2, 3\}$ to $\{0, 1, 2, 3\}$ defined by

$$f(0) = 1$$
, $f(1) = 0$, $f(2) = 3$, and $f(3) = 2$

and

$$(0) = 2$$
, $g(1) = 3$, $g(2) = 0$, and $g(3) = 1$.

Find the following functions, describing them in this way (f(0) = *, ...).

(a) ($f \circ g$)⁻¹ (b) ($g^{-1} \circ f^{-1}$) (c) ($f^{-1} \circ g^{-1}$)

g

Problem 2. Let f and g be the functions from $\mathbb{R} \setminus \{0\}$ to $\mathbb{R} \setminus \{0\}$ defined by

f(x) = 2x and $g(x) = -x^{-1}.$

Find formulas for:

(a) $(f\circ g)^{-1}(x)$ (b)

- (c) $(g^{-1} \circ f^{-1})(x)$
- $\left(f^{-1} \circ g^{-1}\right)(x)$

Problem 3. Suppose f and h are the following functions from
$$\{0, 1, 2, 3\}$$
 to $\{0, 1, 2, 3\}$:

$$f = \{(0,1), (1,2), (2,3), (3,0)\}$$

and

 $h = \{(0,1), (1,1), (2,3), (3,2)\}$

- (a) Find $h \circ f$, giving your answer in the form of a set of ordered pairs.
- (b) Find all possible functions that *g* can possibly be if we require that

 $g: \{0, 1, 2, 3\} \to \{0, 1, 2, 3\}$

and

 $h \circ g = h \circ f.$

Problem 4. Find two different ordered triples of natural numbers

 $(k,m,n) \neq (r,s,t)$

so that

$$24^k 54^m 36^n = 24^r 54^s 36^t.$$

Problem 5. Find the greatest common divisors of each pair:

- (a) 1000001, 3000013
- (b) $3^{23} \cdot 5^{34}, 3^{25} \cdot 5^{30}$
- (c) 7423, 6281.