HOMEWORK \#4

Problem 1. Let f and g be the functions from $\{0,1,2,3\}$ to $\{0,1,2,3\}$ defined by

$$
f(0)=1, \quad f(1)=0, \quad f(2)=3, \text { and } f(3)=2
$$

and

$$
g(0)=2, \quad g(1)=3, \quad g(2)=0, \text { and } g(3)=1 .
$$

Find the following functions, describing them in this way $(f(0)=*, \ldots)$.
(a)

$$
(f \circ g)^{-1}
$$

(b)

$$
\left(g^{-1} \circ f^{-1}\right)
$$

(c)

$$
\left(f^{-1} \circ g^{-1}\right)
$$

Problem 2. Let f and g be the functions from $\mathbb{R} \backslash\{0\}$ to $\mathbb{R} \backslash\{0\}$ defined by

$$
f(x)=2 x
$$

and

$$
g(x)=-x^{-1} .
$$

Find formulas for:
(a)

$$
(f \circ g)^{-1}(x)
$$

(b)

$$
\left(g^{-1} \circ f^{-1}\right)(x)
$$

(c)

$$
\left(f^{-1} \circ g^{-1}\right)(x)
$$

Problem 3. Suppose f and h are the following functions from $\{0,1,2,3\}$ to $\{0,1,2,3\}$:

$$
f=\{(0,1),(1,2),(2,3),(3,0)\}
$$

and

$$
h=\{(0,1),(1,1),(2,3),(3,2)\}
$$

(a) Find $h \circ f$, giving your answer in the form of a set of ordered pairs.
(b) Find all possible functions that g can possibly be if we require that

$$
g:\{0,1,2,3\} \rightarrow\{0,1,2,3\}
$$

and

$$
h \circ g=h \circ f .
$$

Problem 4. Find two different ordered triples of natural numbers

$$
(k, m, n) \neq(r, s, t)
$$

so that

$$
24^{k} 54^{m} 36^{n}=24^{r} 54^{s} 36^{t} .
$$

Problem 5. Find the greatest common divisors of each pair:
(a) 1000001,3000013
(b) $3^{23} \cdot 5^{34}, 3^{25} \cdot 5^{30}$
(c) 7423,6281 .

