## HOMEWORK \#1

Problem 1. Show that the following pairs of sets are not equal, by exhibiting an element of one that is not an element of the other.
(a)

$$
\begin{gathered}
A=\{1,2\} \\
B=\{1,\{1,2\}\}
\end{gathered}
$$

(b)

$$
\begin{aligned}
C & =\mathcal{P}(\{1,2\}) \\
D & =\{\{1\},\{2\}\}
\end{aligned}
$$

(c)

$$
\begin{aligned}
& E=\{1,2\} \times\{2,3\} \\
& F=\{3,2\} \times\{2,1\}
\end{aligned}
$$

(d) In this example, $n$ is restricted to being an integer.

$$
\begin{aligned}
& G=\{2 n+2 \mid 0 \leq n \leq 200\} \\
& H=\{2 n-2 \mid 0 \leq n \leq 200\}
\end{aligned}
$$

Problem 2. Let

$$
\begin{aligned}
& A=\{1,2,4\} \\
& B=\{1,2,5\}
\end{aligned}
$$

List the elements of the following sets, without repeating any elements:
(a)

$$
\{\{m, n\} \mid m \in A \text { and } n \in B\}
$$

(b)

$$
\{(m, n) \mid m \in A \text { and } n \in B\}
$$

Problem 3. Show that if $A$ is not the empty set, and if

$$
A \times B=A \times C
$$

then

$$
B=C .
$$

Problem 4. For each set $S$ described below find $|S|$, the number of elements in $S$, and $\max (S)$, (the largest number in $S$ :
(a) $\{-10,2,3\}$;
(b) $\left\{x \in \mathbb{Z} \mid x^{2}<\pi\right\}$.

Problem 5. Calculate the following sets:
(a)

$$
\{2,4,6\} \cap\left\{n \in \mathbb{Z} \mid n^{3}+n^{2}-n=11\right\}
$$

(b)

$$
\left(\left\{n^{2} \mid n \in \mathbb{Z}\right\} \cup(\{2,4,6\} \cap \mathbb{N})\right) \cup \mathbb{Z}
$$

