
LU AND PLU FACTORIZATION

TERRY A. LORING

1. PRODUCTS OF ELEMENTARY MATRICES, REVISITED

In the posting “Expanding an Invertible to a Product of Elementary Ma-
trices” there was this matrix

A =





0 1 0

−8 8 1

2 −2 0





which we expressed as a product of elementary matrices as

A =





0 0 1

0 1 0

1 0 0









1 0 0

0 0 1

0 1 0









1 0 0

0 1 0

−4 0 1









2 0 0

0 1 0

0 0 1









1 −1 0

0 1 0

0 0 1



 .

Suppose we multiply together the first two as

P =





0 0 1

0 1 0

1 0 0









1 0 0

0 0 1

0 1 0



 =





0 1 0

0 0 1

1 0 0





and let L be the third matrix

L =





1 0 0

0 1 0

−4 0 1





and multiply the last two as

U =





2 0 0

0 1 0

0 0 1









1 −1 0

0 1 0

0 0 1



 =





2 −2 0

0 1 0

0 0 1



 .

We have this description of A :

A = PLU

or




0 1 0

−8 8 1

2 −2 0



 =





0 1 0

0 0 1

1 0 0









1 0 0

0 1 0

−4 0 1









2 −2 0

0 1 0

0 0 1





where

• P is a so-called permutation matrix
• L is lower triangular

1

2 TERRY A. LORING

• U is upper triangular

This is called an LU or PLU decomposition of A.
Lower and upper triangular matrices are computationally easier than

your typical invertible matrix. The matrix P is easy to deal with as well
since it is mostly full of zeros. It is called a permutation matrix because it
would equal the identity matrix if we could permute its rows.

In computer solutions of systems of equations, and elsewhere, it is easier
to deal with three easier matrices than one hard one. We will deal with
applications of this later, or not at all. For now, I want to show you how to
use row and column ops to create an LU factorization.

2. ELEMENTARY, BUT DIFFERENT

Let’s rework this example, but using different row operations. We still
will do the operations in this order: type II, type III ”clearing below,” type
II, them type III “clearing above.”





0 1 0

−8 8 1

2 −2 0





R1↔ R2

∼





−8 8 1

0 1 0

2 −2 0





R3← R3 + 1

4
R1

∼





−8 8 1

0 1 0

0 0 1

4





R1← −1

8
R1

∼





1 −1 −
1

8

0 1 0

0 0 1

4





R3← 4R3

∼





1 −1 −
1

8

0 1 0

0 0 1





R1← R1 + R2

∼





1 0 −
1

8

0 1 0

0 0 1





R1← R1 + 1

8
R3

∼





1 0 0

0 1 0

0 0 1





LU AND PLU FACTORIZATION 3

Now we look at the “undo” operations:

R1↔ R2 99K R1↔ R2

R3← R3 + 1

4
R1 99K R3← R3 − 1

4
R1

R1← −1

8
R1 99K R1← −8R1

R3← 4R3 99K R3← 1

4
R3

R1← R1 + R2 99K R1← R1−R2

R1← R1 + 1

8
R3 99K R1← R1 − 1

8
R3

and now the elementary matrices:

A =





0 1 0

1 0 0

0 0 1









1 0 0

0 1 0

−
1

4
0 1









−8 0 0

0 1 0

0 0 1









1 0 0

0 1 0

0 0 1

4









1 −1 0

0 1 0

0 0 1









1 0 −
1

8

0 1 0

0 0 1





Let us now multiply together in three parts:

P1 =





0 1 0

1 0 0

0 0 1



 ,

L1 =





1 0 0

0 1 0

−
1

4
0 1



 ,

U1 =





−8 0 0

0 1 0

0 0 1









1 0 0

0 1 0

0 0 1

4









1 −1 0

0 1 0

0 0 1









1 0 −
1

8

0 1 0

0 0 1





=





−8 0 0

0 1 0

0 0 1

4









1 −1 −
1

8

0 1 0

0 0 1





=





−8 8 1

0 1 0

0 0 1

4



 .

That is, we have found

A = P1L1U1

or




0 1 0

−8 8 1

2 −2 0



 =





0 1 0

1 0 0

0 0 1









1 0 0

0 1 0

−
1

4
0 1









−8 8 1

0 1 0

0 0 1

4



 .

3. ONCE MORE, USING MATLAB

In Matlab, the rather odd input

>> A = [2 1 0 1; 2 1 2 3; 0 0 1 2; -4 -1 0 -2];
>> [L,U,P] = lu(A)

gives the result

4 TERRY A. LORING

L =
1.0000 0 0 0

-0.5000 1.0000 0 0
-0.5000 1.0000 1.0000 0

0 0 -0.5000 1.0000
U =

-4.0000 -1.0000 0 -2.0000
0 0.5000 2.0000 2.0000
0 0 -2.0000 -2.0000
0 0 0 1.0000

P =
0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 0

A weird thing is that Matlab promises that

[L,U,P] = lu(A)

will set the three variables on the left in a way to ensure

A = P−1LU.

In this case, that did not matter since P = P−1.

4. PLU WITHOUT ELEMENTARY MATRICES.

In practice, one does not this list of elementary matrices. One can get
directly the PLU factorization.

The new idea is that one can take an equation like

A = BC

and do a row operation on C and a balancing column operation on B to get

A = B1C1.

This is because

BC = BE−1EC

whenever E is an elementary matrix. For example

BC = B

[

1 −β

0 1

] [

1 β

0 1

]

C

tells us that if we do the row operation

R1← R1 + βR2

on the right factor we can offset this with the column operation

C2← C2− βC2.

LU AND PLU FACTORIZATION 5

The offsets are as follows:

on left factor on right factor
1

α
Cj ← Cj 1

α
Rj ← Rj

Cj ↔ Ck Rj ↔ Rk

Ck ← Ck − βCj Rj ← Rj + βRk

We can start with the silly equality

A = IIA

and proceed to make the last factor upper triangular, the middle lower tri-
angular and the left a permutation matrix. “nop” stands for “no operation.”
Each step involves two adjacent factors and leaves the other alone

For example:





1 0 4

0 0 1

3 2 13



 =





1 0 0

0 1 0

0 0 1









1 0 0

0 1 0

0 0 1









1 0 4

0 0 1

3 2 13





nop & C3← C3 + 3C1 & R3← R3− 3R1





1 0 4

0 0 1

3 2 13



 =





1 0 0

0 1 0

0 0 1









1 0 0

0 1 0

3 0 1









1 0 4

0 0 1

0 2 1





nop & C2↔ C3 & R2↔ R3





1 0 4

0 0 1

3 2 13



 =





1 0 0

0 1 0

0 0 1









1 0 0

0 0 1

3 1 0









1 0 4

0 2 1

0 0 1





C2↔ C3 & R2↔ R3 & nop





1 0 4

0 0 1

3 2 13



 =





1 0 0

0 0 1

0 1 0









1 0 0

3 1 0

0 0 1









1 0 4

0 2 1

0 0 1





6 TERRY A. LORING

5. A 4-BY-4 PLU EXAMPLE

Now let’s do a 4-by-4 factoring into PLU form.








2 1 0 1

2 1 2 3

0 0 1 2

−4 −1 0 −2









=









1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

















1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

















2 1 0 1

2 1 2 3

0 0 1 2

−4 −1 0 −2









nop & C1← C1 + C2 & R2← R2−R1

nop & C1← C1− 2C4 & R4← R4 + 2R1









2 1 0 1

2 1 2 3

0 0 1 2

−4 −1 0 −2









=









1 0 0 0

0 1 0 1

0 0 1 0

0 0 0 0

















1 0 0 0

1 1 0 0

0 0 1 0

−2 0 0 1

















2 1 0 1

0 0 2 2

0 0 1 2

0 1 0 0









nop & C2↔ C4 & R2↔ R4









2 1 0 1

2 1 2 3

0 0 1 2

−4 −1 0 −2









=









1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

















1 0 0 0

1 0 0 1

0 0 1 0

−2 1 0 0

















2 1 0 1

0 1 0 0

0 0 1 2

0 0 2 2









C2↔ C4 & R2↔ R4 & nop









2 1 0 1

2 1 2 3

0 0 1 2

−4 −1 0 −2









=









1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

















1 0 0 0

−2 1 0 0

0 0 1 0

1 0 0 1

















2 1 0 1

0 1 0 0

0 0 1 2

0 0 2 2









nop & C3← C3 + 2C4&R4← R4− 2R3









2 1 0 1

2 1 2 3

0 0 1 2

−4 −1 0 −2









=









1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

















1 0 0 0

−2 1 0 0

0 0 1 0

1 0 2 1

















2 1 0 1

0 1 0 0

0 0 1 2

0 0 0 −2









The Matlab session

>> A = [2 1 0 1; 2 1 2 3; 0 0 1 2; -4 -1 0 -2];
>> [L,U,P] = lu(A);
>> P = inv(P);
>> P
P =

0 0 1 0

LU AND PLU FACTORIZATION 7

0 1 0 0
0 0 0 1
1 0 0 0

>> L
L =

1.0000 0 0 0
-0.5000 1.0000 0 0
-0.5000 1.0000 1.0000 0

0 0 -0.5000 1.0000
>> U
U =

-4.0000 -1.0000 0 -2.0000
0 0.5000 2.0000 2.0000
0 0 -2.0000 -2.0000
0 0 0 1.0000

shows another of the possible PLU factorization of this is








2 1 0 1

2 1 2 3

0 0 1 2

−4 −1 0 −2









=









0 0 1 0

0 1 0 0

0 0 0 1

1 0 0 0

















1 0 0 0

−
1

2
1 0 0

−
1

2
1 1 0

0 0 −
1

2
1

















−4 −1 0 1

0 1

2
2 2

0 0 −2 −2

0 0 0 1









I prefer the one we found by hand, as we eschewed fractions.

UNIVERSITY OF NEW MEXICO

URL: www.math.unm.edu/~loring

	1. Products of Elementary matrices, revisited
	2. Elementary, but Different
	3. Once more, using Matlab
	4. PLU without Elementary Matrices.
	5. A 4-by-4 PLU example

