CORRECTED NOTES FOR SEPT. 5

Let $C([0,1], \mathbf{R})$ be the following, infinite-dimensional vector space:

 $C([0,1], \mathbf{R}) = \{ f : [0,1] \to \mathbf{R} \mid f \text{ is continuous} \}$

For any f and g in $C([0,1], \mathbf{R})$, we define

$$\langle f,g\rangle = \int_0^1 f(x)g(x)dx$$

This is an inner product, a fact that is easy enough to prove except for the axiom that only the zero vector (zero function) satisfies $\langle f, f \rangle = 0$.

Lemma 1. Suppose $f : [0,1] \to \mathbf{R}$ is continuous. If $\langle f, f \rangle = 0$ then f = 0. (I.e. $\forall x \in [0,1], f(x) = 0$.)

Proof. We'll prove the contrapositive.

Suppose f is continuous and $f \neq 0$. This means at some x_0 in [0, 1], $f(x_0) \neq 0$. We can assume $0 < x_0 < 1$ since a continuous function cannot be zero on (0, 1) and nonzero at 0 or 1.

The square of f is continuous and, and $f(x)^2 \ge 0$ for all x. Let $\delta = f(x_0)^2$ so that $\delta > 0$. The continuity of f^2 at x_0 tells us there exists some positive η such that

$$x_0 - \eta < x < x_0 + \eta \Rightarrow f(x_0)^2 - \delta/2 < f(x)^2 < f(x_0)^2 + \delta/2$$

We don't care about the upper bound on f(x). Let $\mu = f(x_0)^2 - \delta/2$. At this point, we've found x_0 , η and μ so that:

$$\begin{array}{rcl} \eta & > & 0 \\ \mu & > & 0 \\ x_0 - \eta < x < x_0 + \eta & \Rightarrow & f(x_0)^2 > \mu \end{array}$$

We can replace η with a smaller positive value and the above equations hold, and we do so if needed to get

$$0 < x_0 - \eta$$
 and $x_0 + \eta < 1$.

Date: September 7, 2003.

1

Using these facts, and the fact that $f(x)^2$ is always non-negative, we conclude

$$\langle f, f \rangle = = \int_0^1 f(x)^2 dx = \int_0^{x_0 - \eta} f(x)^2 dx + \int_{x_0 - \eta}^{x_0 + \eta} f(x)^2 dx + \int_{x_0 + \eta}^1 f(x)^2 dx \ge \int_0^{x_0 - \eta} 0 dx + \int_{x_0 - \eta}^{x_0 + \eta} \mu dx + \int_{x_0 + \eta}^1 0 dx = 0 + 2\eta\mu + 0 > 0$$