CORRECTED NOTES FOR SEPT. 5

Let $C([0,1], \mathbf{R})$ be the following, infinite-dimensional vector space:

$$
C([0,1], \mathbf{R})=\{f:[0,1] \rightarrow \mathbf{R} \mid f \text { is continuous }\}
$$

For any f and g in $C([0,1], \mathbf{R})$, we define

$$
\langle f, g\rangle=\int_{0}^{1} f(x) g(x) d x
$$

This is an inner product, a fact that is easy enough to prove except for the axiom that only the zero vector (zero function) satisfies $\langle f, f\rangle=0$.

Lemma 1. Suppose $f:[0,1] \rightarrow \mathbf{R}$ is continuous. If $\langle f, f\rangle=0$ then $f=0$. (I.e. $\forall x \in[0,1], f(x)=0$.)

Proof. We'll prove the contrapositive.
Suppose f is continuous and $f \neq 0$. This means at some x_{0} in $[0,1]$, $f\left(x_{0}\right) \neq 0$. We can assume $0<x_{0}<1$ since a continuous function cannot be zero on $(0,1)$ and nonzero at 0 or 1 .

The square of f is continuous and, and $f(x)^{2} \geq 0$ for all x. Let $\delta=f\left(x_{0}\right)^{2}$ so that $\delta>0$. The continuity of f^{2} at x_{0} tells us there exists some positive η such that

$$
x_{0}-\eta<x<x_{0}+\eta \Rightarrow f\left(x_{0}\right)^{2}-\delta / 2<f(x)^{2}<f\left(x_{0}\right)^{2}+\delta / 2
$$

We don't care about the upper bound on $f(x)$. Let $\mu=f\left(x_{0}\right)^{2}-\delta / 2$.
At this point, we've found x_{0}, η and μ so that:

$$
\begin{aligned}
\eta & >0 \\
\mu & >0 \\
x_{0}-\eta<x<x_{0}+\eta & \Rightarrow f\left(x_{0}\right)^{2}>\mu
\end{aligned}
$$

We can replace η with a smaller positive value and the above equations hold, and we do so if needed to get

$$
0<x_{0}-\eta \text { and } x_{0}+\eta<1
$$

Date: September 7, 2003.

Using these facts, and the fact that $f(x)^{2}$ is always non-negative, we conclude

$$
\begin{aligned}
& \langle f, f\rangle= \\
= & \int_{0}^{1} f(x)^{2} d x \\
= & \int_{0}^{x_{0}-\eta} f(x)^{2} d x+\int_{x_{0}-\eta}^{x_{0}+\eta} f(x)^{2} d x+\int_{x_{0}+\eta}^{1} f(x)^{2} d x \\
\geq & \int_{0}^{x_{0}-\eta} 0 d x+\int_{x_{0}-\eta}^{x_{0}+\eta} \mu d x+\int_{x_{0}+\eta}^{1} 0 d x \\
= & 0+2 \eta \mu+0 \\
> & 0
\end{aligned}
$$

