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Chapter 0

Introduction to R,
Rstudio, and ggplot

Contents
0.1 R building blocks . . . . . . . . . . . . . . . . . . . . . . . . 3

0.2 Plotting with ggplot2 . . . . . . . . . . . . . . . . . . . . . 10

0.2.1 Improving plots . . . . . . . . . . . . . . . . . . . . . . . . 17

0.3 Course Overview . . . . . . . . . . . . . . . . . . . . . . . . 23

0.1 R building blocks

R as calculator In the following sections, look at the commands and output

and understand how the command was interpretted to give the output.
#### Calculator

# Arithmetic

2 * 10

## [1] 20

1 + 2

## [1] 3

# Order of operations is preserved

1 + 5 * 10

## [1] 51
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4 Ch 0: Introduction to R, Rstudio, and ggplot

(1 + 5) * 10

## [1] 60

# Exponents use the ^ symbol

2^5

## [1] 32

9^(1/2)

## [1] 3

Vectors A vector is a set of numbers like a column of a spreadsheet. Below

these sets of numbers are not technically “vectors”, since they are not in a

row/column structure, though they are ordered and can be referred to by index.
#### Vectors

# Create a vector with the c (short for combine) function

c(1, 4, 6, 7)

## [1] 1 4 6 7

c(1:5, 10)

## [1] 1 2 3 4 5 10

# or use a function

# (seq is short for sequence)

seq(1, 10, by = 2)

## [1] 1 3 5 7 9

seq(0, 50, length = 11)

## [1] 0 5 10 15 20 25 30 35 40 45 50

seq(1, 50, length = 11)

## [1] 1.0 5.9 10.8 15.7 20.6 25.5 30.4 35.3 40.2 45.1 50.0

1:10 # short for seq(1, 10, by = 1), or just

## [1] 1 2 3 4 5 6 7 8 9 10

seq(1, 10)

## [1] 1 2 3 4 5 6 7 8 9 10

5:1

## [1] 5 4 3 2 1

# non-integer sequences

# (Note: the [1] at the beginning of lines indicates

# the index of the first value in that row)

seq(0, 100*pi, by = pi)

## [1] 0.000000 3.141593 6.283185 9.424778 12.566371

## [6] 15.707963 18.849556 21.991149 25.132741 28.274334

## [11] 31.415927 34.557519 37.699112 40.840704 43.982297
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0.1: R building blocks 5

## [16] 47.123890 50.265482 53.407075 56.548668 59.690260

## [21] 62.831853 65.973446 69.115038 72.256631 75.398224

## [26] 78.539816 81.681409 84.823002 87.964594 91.106187

## [31] 94.247780 97.389372 100.530965 103.672558 106.814150

## [36] 109.955743 113.097336 116.238928 119.380521 122.522113

## [41] 125.663706 128.805299 131.946891 135.088484 138.230077

## [46] 141.371669 144.513262 147.654855 150.796447 153.938040

## [51] 157.079633 160.221225 163.362818 166.504411 169.646003

## [56] 172.787596 175.929189 179.070781 182.212374 185.353967

## [61] 188.495559 191.637152 194.778745 197.920337 201.061930

## [66] 204.203522 207.345115 210.486708 213.628300 216.769893

## [71] 219.911486 223.053078 226.194671 229.336264 232.477856

## [76] 235.619449 238.761042 241.902634 245.044227 248.185820

## [81] 251.327412 254.469005 257.610598 260.752190 263.893783

## [86] 267.035376 270.176968 273.318561 276.460154 279.601746

## [91] 282.743339 285.884931 289.026524 292.168117 295.309709

## [96] 298.451302 301.592895 304.734487 307.876080 311.017673

## [101] 314.159265

Assign variables Assigning objects to varibles.
#### Assign variables

# Assign a vector to a variable with <-

a <- 1:5

a

## [1] 1 2 3 4 5

b <- seq(15, 3, length = 5)

b

## [1] 15 12 9 6 3

c <- a * b

c

## [1] 15 24 27 24 15

Basic functions There are lots of functions available in the base package.

Type ?base and click on Index at the bottom of the help page for a complete

list of functions. Other functions to look at are in the ?stats and ?datasets

packages.
#### Basic functions

# Lots of familiar functions work

a

## [1] 1 2 3 4 5

sum(a)
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6 Ch 0: Introduction to R, Rstudio, and ggplot

## [1] 15

prod(a)

## [1] 120

mean(a)

## [1] 3

sd(a)

## [1] 1.581139

var(a)

## [1] 2.5

min(a)

## [1] 1

median(a)

## [1] 3

max(a)

## [1] 5

range(a)

## [1] 1 5

Extracting subsets It will be an extremely important skill to understand
the structure of your variables and pull out the information you need from
them.
#### Extracting subsets

# Specify the indices you want in the square brackets []

a <- seq(0, 100, by = 10)

# blank = include all

a

## [1] 0 10 20 30 40 50 60 70 80 90 100

a[]

## [1] 0 10 20 30 40 50 60 70 80 90 100

# integer +=include, 0=include none, -=exclude

a[5]

## [1] 40

a[c(2, 4, 6, 8)]

## [1] 10 30 50 70

a[0]

## numeric(0)

a[-c(2, 4, 6, 8)]

## [1] 0 20 40 60 80 90 100
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0.1: R building blocks 7

a[c(1, 1, 1, 6, 6, 9)] # subsets can be bigger than the original set

## [1] 0 0 0 50 50 80

a[c(1,2)] <- c(333, 555) # update a subset

a

## [1] 333 555 20 30 40 50 60 70 80 90 100

Boolean: True/False Subsets can be selected based on which elements

meet specific conditions.
#### Boolean

a

## [1] 333 555 20 30 40 50 60 70 80 90 100

(a > 50) # TRUE/FALSE for each element

## [1] TRUE TRUE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE

which(a > 50) # which indicies are TRUE

## [1] 1 2 7 8 9 10 11

a[(a > 50)]

## [1] 333 555 60 70 80 90 100

!(a > 50) # ! negates (flips) TRUE/FALSE values

## [1] FALSE FALSE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE

a[!(a > 50)]

## [1] 20 30 40 50

Comparison functions All your favorite comparisons are available.
#### Comparison

# Here they are: < > <= >= != == %in%

a

## [1] 333 555 20 30 40 50 60 70 80 90 100

# equal to

a[(a == 50)]

## [1] 50

# equal to

a[(a == 55)]

## numeric(0)

# not equal to

a[(a != 50)]

## [1] 333 555 20 30 40 60 70 80 90 100
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8 Ch 0: Introduction to R, Rstudio, and ggplot

# greater than

a[(a > 50)]

## [1] 333 555 60 70 80 90 100

# less than

a[(a < 50)]

## [1] 20 30 40

# less than or equal to

a[(a <= 50)]

## [1] 20 30 40 50

# which values on left are in the vector on right

(c(10, 14, 40, 60, 99) %in% a)

## [1] FALSE FALSE TRUE TRUE FALSE

Boolean operators compare TRUE/FALSE values and return TRUE/-

FALSE values.
#### Boolean

# & and, | or, ! not

a

## [1] 333 555 20 30 40 50 60 70 80 90 100

a[(a >= 50) & (a <= 90)]

## [1] 50 60 70 80 90

a[(a < 50) | (a > 100)]

## [1] 333 555 20 30 40

a[(a < 50) | !(a > 100)]

## [1] 20 30 40 50 60 70 80 90 100

a[(a >= 50) & !(a <= 90)]

## [1] 333 555 100

Missing values The value NA (not available) means the value is missing.

Any calculation involving NA will return an NA by default.
#### Missing values

NA + 8

## [1] NA

3 * NA

## [1] NA

mean(c(1, 2, NA))
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0.1: R building blocks 9

## [1] NA

# Many functions have an na.rm argument (NA remove)

mean(c(NA, 1, 2), na.rm = TRUE)

## [1] 1.5

sum(c(NA, 1, 2))

## [1] NA

sum(c(NA, 1, 2), na.rm = TRUE)

## [1] 3

# Or you can remove them yourself

a <- c(NA, 1:5, NA)

a

## [1] NA 1 2 3 4 5 NA

is.na(a) # which values are missing?

## [1] TRUE FALSE FALSE FALSE FALSE FALSE TRUE

!is.na(a) # which values are NOT missing?

## [1] FALSE TRUE TRUE TRUE TRUE TRUE FALSE

a[!is.na(a)] # return those which are NOT missing

## [1] 1 2 3 4 5

a # note, this did not change the variable a

## [1] NA 1 2 3 4 5 NA

# To save the results of removing the NAs,

# assign to another variable or reassign to the original variable

# Warning: if you write over variable a then the original version is gone forever!

a <- a[!is.na(a)]

a

## [1] 1 2 3 4 5

Your turn!

ClickerQ s — Ch 0, R building blocks, Subset

ClickerQ s — Ch 0, R building blocks, T/F selection 1
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10 Ch 0: Introduction to R, Rstudio, and ggplot

ClickerQ s — Ch 0, R building blocks, T/F selection 2

How’d you do?

Outstanding Understanding the operations and how to put them together,

without skipping steps.

Good Understanding most of the small steps, missed a couple details.

Hang in there Understanding some of the concepts but all the symbols

make my eyes spin.

Reading and writing a new language takes work.

You’ll get better as you practice, practice, practice1.

Having a buddy to work with will help.

R command review This is a summary of the commands we’ve seen so

far.
#### Review

<-

+ - * / ^

c()

seq() # by=, length=

sum(), prod(), mean(), sd(), var(),

min(), median(), max(), range()

a[]

(a > 1), ==, !=, >, <, >=, <=, %in%

&, |, !

NA, mean(a, na.rm = TRUE), !is.na()

0.2 Plotting with ggplot2

There are three primary strategies for plotting in R. The first is base graphics,

using functions such as plot(), points(), and par(). A second is use of the

package lattice, which creates very nice graphics quickly, though can be more

difficult to create high-dimensional data displays. A third, and the one I will use

throughout this course, is using package ggplot2, which is an implementation

1What’s your Carnegie Hall that you’re working towards?
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of the “Grammar of Graphics”. While creating a very simple plot requires an

extra step or two, creating very complex displays are relatively straightforward

as you become comfortable with the syntax.

This section is intended as an introduction to ggplot() and some of its

capabilities (we will cover these plotting functions and others in detail in later

chapters). As a basic introduction, it requires a data.frame object as input (a

table where each row represents an observation or data point, and each column

can have a different data type), and then you define plot layers that stack on

top of each other, and each layer has visual/text elements that are mapped to

aesthetics (colors, size, opacity). In this way, a simple set of commands can be

combined to produce extremely informative displays.

In the example that follows, we consider a dataset mpg consisting of fuel

economy data from 1999 and 2008 for 38 popular models of car.
#### Installing

# only needed once after installing or upgrading R

install.packages("ggplot2")

#### Library

# each time you start R

# load package ggplot2 for its functions and datasets

library(ggplot2)

# ggplot2 includes a dataset "mpg"

# ? gives help on a function or dataset

?mpg

Let’s get a look at the dataset we’re using.
#### mpg dataset

# head() lists the first several rows of a data.frame

head(mpg)

## # A tibble: 6 x 11

## manufacturer model displ year cyl trans drv cty hwy

## <chr> <chr> <dbl> <int> <int> <chr> <chr> <int> <int>

## 1 audi a4 1.8 1999 4 auto(l5) f 18 29

## 2 audi a4 1.8 1999 4 manual(m5) f 21 29

## 3 audi a4 2.0 2008 4 manual(m6) f 20 31

## 4 audi a4 2.0 2008 4 auto(av) f 21 30

## 5 audi a4 2.8 1999 6 auto(l5) f 16 26

## 6 audi a4 2.8 1999 6 manual(m5) f 18 26

## # ... with 2 more variables: fl <chr>, class <chr>

# str() gives the structure of the object

UNM, Stat 427/527 ADA1



12 Ch 0: Introduction to R, Rstudio, and ggplot

str(mpg)

## Classes 'tbl_df', 'tbl' and 'data.frame': 234 obs. of 11 variables:

## $ manufacturer: chr "audi" "audi" "audi" "audi" ...

## $ model : chr "a4" "a4" "a4" "a4" ...

## $ displ : num 1.8 1.8 2 2 2.8 2.8 3.1 1.8 1.8 2 ...

## $ year : int 1999 1999 2008 2008 1999 1999 2008 1999 1999 2008 ...

## $ cyl : int 4 4 4 4 6 6 6 4 4 4 ...

## $ trans : chr "auto(l5)" "manual(m5)" "manual(m6)" "auto(av)" ...

## $ drv : chr "f" "f" "f" "f" ...

## $ cty : int 18 21 20 21 16 18 18 18 16 20 ...

## $ hwy : int 29 29 31 30 26 26 27 26 25 28 ...

## $ fl : chr "p" "p" "p" "p" ...

## $ class : chr "compact" "compact" "compact" "compact" ...

# summary() gives frequeny tables for categorical variables

# and mean and five-number summaries for continuous variables

summary(mpg)

## manufacturer model displ year

## Length:234 Length:234 Min. :1.600 Min. :1999

## Class :character Class :character 1st Qu.:2.400 1st Qu.:1999

## Mode :character Mode :character Median :3.300 Median :2004

## Mean :3.472 Mean :2004

## 3rd Qu.:4.600 3rd Qu.:2008

## Max. :7.000 Max. :2008

## cyl trans drv

## Min. :4.000 Length:234 Length:234

## 1st Qu.:4.000 Class :character Class :character

## Median :6.000 Mode :character Mode :character

## Mean :5.889

## 3rd Qu.:8.000

## Max. :8.000

## cty hwy fl

## Min. : 9.00 Min. :12.00 Length:234

## 1st Qu.:14.00 1st Qu.:18.00 Class :character

## Median :17.00 Median :24.00 Mode :character

## Mean :16.86 Mean :23.44

## 3rd Qu.:19.00 3rd Qu.:27.00

## Max. :35.00 Max. :44.00

## class

## Length:234

## Class :character

## Mode :character

##

##

##

#### ggplot_mpg_displ_hwy

# specify the dataset and variables

p <- ggplot(mpg, aes(x = displ, y = hwy))

Prof. Erik B. Erhardt
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p <- p + geom_point() # add a plot layer with points

print(p)

●●

●

●

●●

●

●

●

●

●

●● ●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●●

●

●

●

● ●

●

●

●●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

● ●

●●

●

●

● ●

●

●

●●

●

●

●

●

●

●● ●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●● ●●

●

●

●

●

●

●

●

●●●

●

●

●● ●

20

30

40

2 3 4 5 6 7

displ

hw
y

Geoms, aesthetics, and facets are three concepts we’ll see in this section.

Geom: is the “type” of plot

Aesthetics: shape, colour, size, alpha

Faceting: “small multiples” displaying different subsets

Help is available. Try searching for examples, too.

� had.co.nz/ggplot2

� had.co.nz/ggplot2/geom_point.html

When certain aesthetics are defined, an appropriate legend is chosen and

displayed automatically.
#### ggplot_mpg_displ_hwy_colour_class

p <- ggplot(mpg, aes(x = displ, y = hwy))

p <- p + geom_point(aes(colour = class))

print(p)
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I encourage you to experiment with aesthetics!

1. Assign variables to aesthetics colour, size, and shape.

2. What’s the difference between discrete or continuous variables?

3. What happens when you combine multiple aesthetics?

The behavior of the aesthetics is predictable and customizable.

Aesthetic Discrete Continuous

colour Rainbow of colors Gradient from red to blue

size Discrete size steps Linear mapping between radius and value

shape Different shape for each Shouldn’t work

Let’s see a couple examples.
#### ggplot_mpg_displ_hwy_colour_class_size_cyl_shape_drv

p <- ggplot(mpg, aes(x = displ, y = hwy))

p <- p + geom_point(aes(colour = class, size = cyl, shape = drv))

print(p)
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#### ggplot_mpg_displ_hwy_colour_class_size_cyl_shape_drv_alpha

p <- ggplot(mpg, aes(x = displ, y = hwy))

p <- p + geom_point(aes(colour = class, size = cyl, shape = drv)

, alpha = 1/4) # alpha is the opacity

print(p)
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Faceting A small multiple2 (sometimes called faceting, trellis chart, lattice

chart, grid chart, or panel chart) is a series or grid of small similar graphics or

charts, allowing them to be easily compared.

� Typically, small multiples will display different subsets of the data.

� Useful strategy for exploring conditional relationships, especially for large

data.

Experiment with faceting of different types. What relationships would you

like to see?
#### ggplot_mpg_displ_hwy_facet

# start by creating a basic scatterplot

p <- ggplot(mpg, aes(x = displ, y = hwy))

p <- p + geom_point()

## two methods

# facet_grid(rows ~ cols) for 2D grid, "." for no split.

# facet_wrap(~ var) for 1D ribbon wrapped into 2D.

# examples of subsetting the scatterplot in facets

p1 <- p + facet_grid(. ~ cyl) # columns are cyl categories

p2 <- p + facet_grid(drv ~ .) # rows are drv categories

p3 <- p + facet_grid(drv ~ cyl) # both

p4 <- p + facet_wrap(~ class) # wrap plots by class category

# plot all four in one arrangement

library(gridExtra)

grid.arrange(grobs = list(p1, p2, p3, p4), ncol = 2, top="Facet examples")

2According to Edward Tufte (Envisioning Information, p. 67): “At the heart of quantitative reasoning
is a single question: Compared to what? Small multiple designs, multivariate and data bountiful, answer
directly by visually enforcing comparisons of changes, of the differences among objects, of the scope of
alternatives. For a wide range of problems in data presentation, small multiples are the best design
solution.”
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Facet examples

0.2.1 Improving plots

How can this plot be improved?
#### ggplot_mpg_cty_hwy

p <- ggplot(mpg, aes(x = cty, y = hwy))

p <- p + geom_point()

print(p)
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Problem: points lie on top of each other, so it’s impossible to tell how many

observations each point represents.

A solution: Jitter the points to reveal the individual points and reduce the

opacity to 1/2 to indicate when points overlap.
#### ggplot_mpg_cty_hwy_jitter

p <- ggplot(mpg, aes(x = cty, y = hwy))

p <- p + geom_point(position = "jitter", alpha = 1/2)

print(p)
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How can this plot be improved?
#### ggplot_mpg_class_hwy

p <- ggplot(mpg, aes(x = class, y = hwy))

p <- p + geom_point()

print(p)
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Problem: The classes are in alphabetical order, which is somewhat arbitrary.

A solution: Reorder the class variable by the mean hwy for a meaningful

ordering. Get help with ?reorder to understand how this works.
#### ggplot_mpg_reorder_class_hwy

p <- ggplot(mpg, aes(x = reorder(class, hwy), y = hwy))

p <- p + geom_point()

print(p)
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. . . add jitter
#### ggplot_mpg_reorder_class_hwy_jitter

p <- ggplot(mpg, aes(x = reorder(class, hwy), y = hwy))

p <- p + geom_point(position = "jitter")

print(p)
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. . . a little less jitter
#### ggplot_mpg_reorder_class_hwy_jitter_less
p <- ggplot(mpg, aes(x = reorder(class, hwy), y = hwy))
p <- p + geom_jitter(position = position_jitter(width = 0.1))
print(p)
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. . . or replace with boxplots
#### ggplot_mpg_reorder_class_hwy_boxplot

p <- ggplot(mpg, aes(x = reorder(class, hwy), y = hwy))

p <- p + geom_boxplot()

print(p)
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. . . or jitter those points with reduced-opacity boxplots on top
#### ggplot_mpg_reorder_class_hwy_jitter_boxplot

p <- ggplot(mpg, aes(x = reorder(class, hwy), y = hwy))

p <- p + geom_jitter(position = position_jitter(width = 0.1))

p <- p + geom_boxplot(alpha = 0.5)

print(p)
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. . . even better with the boxplots with jittered points on top
#### ggplot_mpg_reorder_class_hwy_boxplot_jitter

p <- ggplot(mpg, aes(x = reorder(class, hwy), y = hwy))

p <- p + geom_boxplot(alpha = 0.5)

p <- p + geom_jitter(position = position_jitter(width = 0.1))

print(p)

UNM, Stat 427/527 ADA1



22 Ch 0: Introduction to R, Rstudio, and ggplot

● ●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●

●
●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●●

●●
●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●● ●

●

●

●

●

●

●

●

●● ●

●

●

●●●

20

30

40

pickup suv minivan 2seater midsize subcompact compact

reorder(class, hwy)

hw
y

. . . and can easily reorder by median() instead of mean() (mean is the default)
#### ggplot_mpg_reorder_class_hwy_boxplot_jitter_median

p <- ggplot(mpg, aes(x = reorder(class, hwy, FUN = median), y = hwy))

p <- p + geom_boxplot(alpha = 0.5)

p <- p + geom_jitter(position = position_jitter(width = 0.1))

print(p)
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One-minute paper:

Muddy Any “muddy” points — anything that doesn’t make sense yet?

Thumbs up Anything you really enjoyed or feel excited about?
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0.3 Course Overview

See ADA2 Chapter 1 notes for a brief overview of all we’ll cover in this semester

of ADA1.
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Chapter 1

Summarizing and
Displaying Data

Contents
1.1 Random variables . . . . . . . . . . . . . . . . . . . . . . . 27

1.2 Numerical summaries . . . . . . . . . . . . . . . . . . . . . 28

1.3 Graphical summaries for one quantitative sample . . . . 33

1.3.1 Dotplots . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.3.2 Histogram . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.3.3 Stem-and-leaf plot . . . . . . . . . . . . . . . . . . . . . . 37

1.3.4 Boxplot or box-and-whiskers plot . . . . . . . . . . . . . . 39

1.4 Interpretation of Graphical Displays for Numerical Data 43

1.5 Interpretations for examples . . . . . . . . . . . . . . . . . 58

## Warning in file(filename, "r", encoding = encoding): cannot

open file ’ADA1 12 RFunctions.R’: No such file or directory

## Error in file(filename, "r", encoding = encoding): cannot

open the connection
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1.1: Random variables 27

Learning objectives

After completing this topic, you should be able to:

use R’s functions to get help and numerically summarize data.

apply R’s base graphics and ggplot to visually summarize data in several

ways.

explain what each plotting option does.

describe the characteristics of a data distribution.

Achieving these goals contributes to mastery in these course learning outcomes:

1. organize knowledge.

6. summarize data visually, numerically, and descriptively.

8. use statistical software.

1.1 Random variables

A random variable is a variable whose value is subject to variations due

to chance. Random variables fall into two broad categories: qualitative and

quantitative.

Qualitative data includes categorical outcomes:

Nominal Outcome is one of several categories.

Ex: Blood group, hair color.

Ordinal Outcome is one of several ordered categories.

Ex: Likert data such as (strongly agree, agree, neutral, disagree, strongly

disagree).

Quantitative data includes numeric outcomes:

Discrete Outcome is one of a fixed set of numerical values.

Ex: Number of children.

Continuous Outcome is any numerical value.

Ex: Birthweight.

It may not always be perfectly clear which type data belong to, and may

sometimes be classified based on the question being asked of the data. Distinc-

tion between nominal and ordinal variables can be subjective. For example,

UNM, Stat 427/527 ADA1
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for vertebral fracture types: (Wedge, Concavity, Biconcavity, Crush), one could

argue that a crush is worse than a biconcavity which is worse than a concav-

ity . . . , but this is not self-evident. Distinction between ordinal and discrete

variables can be subjective. For example, cancer staging (I, II, III, IV) sounds

discrete, but better treated as ordinal because the “distance” between stages

may be hard to define and unlikely to be equal. Continuous variables generally

measured to a fixed level of precision, which makes them discrete. This “dis-

creteness” of continuous variables is not a problem, providing there are enough

levels.

ClickerQ s — Random variables

1.2 Numerical summaries

Suppose we have a collection of n individuals, and we measure each individ-

ual’s response on one quantitative characteristic, say height, weight, or systolic

blood pressure. For notational simplicity, the collected measurements are de-

noted by Y1, Y2, . . . , Yn, where n is the sample size. The order in which the

measurements are assigned to the place-holders (Y1, Y2, . . . , Yn) is irrelevant.

Among the numerical summary measures we’re interested in are the sample

mean Ȳ and the sample standard deviation s. The sample mean is a

measure of central location, or a measure of a “typical value” for the data

set. The standard deviation is a measure of spread in the data set. These

summary statistics should be familiar to you. Let us consider a simple example

to refresh your memory on how to compute them.

Suppose we have a sample of n = 8 children with weights (in pounds): 5,
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9, 12, 30, 14, 18, 32, 40. Then

Ȳ =

∑
i Yi
n

=
Y1 + Y2 + · · · + Yn

n

=
5 + 9 + 12 + 30 + 14 + 18 + 32 + 40

8
=

160

8
= 20.

#### Numerical summaries

#### mean

y <- c(5, 9, 12, 30, 14, 18, 32, 40)

mean(y)

## [1] 20

The sample standard deviation is the square root of the sample variance

s2 =

∑
i(Yi − Ȳ )2

n− 1
=

(Y1 − Ȳ )2 + (Y2 − Ȳ )2 + · · · + (Yk − Ȳ )2

n− 1

=
(5− 20)2 + (9− 20)2 + · · · + (40− 20)2

7
= 156.3,

s =
√
s2 = 12.5.

#### variance

var(y)

## [1] 156.2857

sd(y)

## [1] 12.50143

Summary statistics have well-defined units of measurement, for example,

Ȳ = 20 lb, s2 = 156.3 lb2, and s = 12.5 lb. The standard deviation is often

used instead of s2 as a measure of spread because s is measured in the same

units as the data.

Remark If the divisor for s2 was n instead of n− 1, then the variance would

be the average squared deviation observations are from the center of the data

as measured by the mean.
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The following graphs should help you to see some physical meaning of the

sample mean and variance. If the data values were placed on a “massless”

ruler, the balance point would be the mean (20). The variance is basically the

“average” (remember n − 1 instead of n) of the total areas of all the squares

obtained when squares are formed by joining each value to the mean. In both

cases think about the implication of unusual values (outliers). What happens

to the balance point if the 40 were a 400 instead of a 40? What happens to the

squares?

The sample median M is an alternative measure of central location.

The measure of spread reported along with M is the interquartile range,

IQR = Q3−Q1, where Q1 and Q3 are the first and third quartiles of the data

set, respectively. To calculate the median and interquartile range, order the

data from lowest to highest values, all repeated values included. The ordered

weights are

5 9 12 14 18 30 32 40.
#### sorting

sort(y)

## [1] 5 9 12 14 18 30 32 40

The median M is the value located at the half-way point of the ordered string.

There is an even number of observations, soM is defined to be half-way between

the two middle values, 14 and 18. That is, M = 0.5(14 + 18) = 16 lb. To get

the quartiles, break the data into the lower half: 5 9 12 14, and the upper half:

18 30 32 and 40. Then

Q1 = first quartile = median of lower half of data = 0.5(9+12)=10.5 lb,
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and

Q3 = third quartile = median of upper half of data = 0.5(30+32) = 31 lb.

The interquartile range is

IQR = Q3 −Q1 = 31− 10.5 = 20.5 lb.

#### quartiles

median(y)

## [1] 16

fivenum(y)

## [1] 5.0 10.5 16.0 31.0 40.0

# The quantile() function can be useful, but doesn't calculate Q1 and Q3

# as defined above, regardless of the 9 types of calculations for them!

# summary() is a combination of mean() and quantile(y, c(0, 0.25, 0.5, 0.75, 1))

summary(y)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 5.00 11.25 16.00 20.00 30.50 40.00

# IQR

fivenum(y)[c(2,4)]

## [1] 10.5 31.0

fivenum(y)[4] - fivenum(y)[2]

## [1] 20.5

diff(fivenum(y)[c(2,4)])

## [1] 20.5

The quartiles, with M being the second quartile, break the data set roughly

into fourths. The first quartile is also called the 25th percentile, whereas the

median and third quartiles are the 50th and 75th percentiles, respectively. The

IQR is the range for the middle half of the data.

Suppose we omit the largest observation from the weight data:

5 9 12 14 18 30 32.
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How do M and IQR change? With an odd number of observations, there is a
unique middle observation in the ordered string which is M . Here M = 14 lb.
It is unclear which half the median should fall into, so M is placed into both
the lower and upper halves of the data. The lower half is 5 9 12 14, and the
upper half is 14 18 30 32. With this convention, Q1 = 0.5(9 + 12) = 10.5 and
Q3 = 0.5(18 + 30) = 24, giving IQR = 24− 10.5 = 13.5 (lb).
#### remove largest

# remove the largest observation by removing the last of the sorted values

y2 <- sort(y)[-length(y)]

y2

## [1] 5 9 12 14 18 30 32

median(y2)

## [1] 14

fivenum(y2)

## [1] 5.0 10.5 14.0 24.0 32.0

diff(fivenum(y2)[c(2,4)])

## [1] 13.5

If you look at the data set with all eight observations, there actually are many

numbers that split the data set in half, so the median is not uniquely defined1,

although “everybody” agrees to use the average of the two middle values. With

quartiles there is the same ambiguity but no such universal agreement on what

to do about it, however, so R will give slightly different values for Q1 and

Q3 when using summary() and some other commands than we just calculated,

and other packages will report even different values. This has no practical

implication (all the values are “correct”) but it can appear confusing.

Example The data given below are the head breadths in mm for a sample

of 18 modern Englishmen, with numerical summaries generated by R.
#### Englishmen

hb <- c(141, 148, 132, 138, 154, 142, 150, 146, 155

, 158, 150, 140, 147, 148, 144, 150, 149, 145)

# see sorted values

1The technical definition of the median for an even set of values includes the entire range between the
two center values. Thus, selecting any single value in this center range is convenient and the center of this
center range is one sensible choice for the median, M .
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sort(hb)

## [1] 132 138 140 141 142 144 145 146 147 148 148 149 150 150 150 154

## [17] 155 158

# number of observations is the length of the vector (when no missing values)

length(hb)

## [1] 18

# default quartiles

summary(hb)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 132.0 142.5 147.5 146.5 150.0 158.0

# standard quartiles

fivenum(hb)

## [1] 132.0 142.0 147.5 150.0 158.0

# range() gives the min and max values

range(hb)

## [1] 132 158

# the range of the data is the (max - min), calculated using diff()

diff(range(hb))

## [1] 26

mean(hb)

## [1] 146.5

# standard deviation

sd(hb)

## [1] 6.382421

# standard error of the mean

se <- sd(hb)/sqrt(length(hb))

Note that se is the standard error of the sample mean, SEȲ = s/
√
n, and

is a measure of the precision of the sample mean Ȳ .

ClickerQ s — Numerical summaries
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1.3 Graphical summaries for one quantita-
tive sample

There are four graphical summaries of primary interest: the dotplot, the

histogram, the stem-and-leaf display, and the boxplot. There are many

more possible, but these will often be useful. The plots can be customized.

Make liberal use of the help for learning how to customize them. Plots can also

be generated along with many statistical analyses, a point that we will return

to repeatedly.

1.3.1 Dotplots

The dotplot breaks the range of data into many small-equal width intervals,

and counts the number of observations in each interval. The interval count is

superimposed on the number line at the interval midpoint as a series of dots,

usually one for each observation. In the head breadth data, the intervals are

centered at integer values, so the display gives the number of observations at

each distinct observed head breadth.

A dotplot of the head breadth data is given below. Of the examples below,

the R base graphics stripchart() with method="stack" resembles the traditional

dotplot.
#### stripchart-ggplot

# stripchart (dotplot) using R base graphics

# 3 rows, 1 column

par(mfrow=c(3,1))

stripchart(hb, main="Modern Englishman", xlab="head breadth (mm)")

stripchart(hb, method="stack", cex=2

, main="larger points (cex=2), method is stack")

stripchart(hb, method="jitter", cex=2, frame.plot=FALSE

, main="no frame, method is jitter")

# dotplot using ggplot

library(ggplot2)

# first put hb vector into a data.frame

hb_df <- data.frame(hb)

p1 <- ggplot(hb_df, aes(x = hb))

p1 <- p1 + geom_dotplot(binwidth = 2)
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p1 <- p1 + labs(title = "Modern Englishman head breadth")

p1 <- p1 + xlab("head breadth (mm)")

p2 <- ggplot(hb_df, aes(x = hb))

p2 <- p2 + geom_dotplot(binwidth = 2, stackdir = "center")

p2 <- p2 + labs(title = "Modern Englishman head breadth, stackdir=center")

p2 <- p2 + xlab("head breadth (mm)")

p3 <- ggplot(hb_df, aes(x = hb))

p3 <- p3 + geom_dotplot(binwidth = 2, stackdir = "centerwhole")

p3 <- p3 + labs(title = "Modern Englishman head breadth, stackdir=centerwhole")

p3 <- p3 + xlab("head breadth (mm)")

library(gridExtra)

grid.arrange(grobs = list(p1, p2, p3), ncol=1)
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1.3.2 Histogram

The histogram and stem-and-leaf displays are similar, breaking the range

of data into a smaller number of equal-width intervals. This produces graphical

information about the observed distribution by highlighting where data values

cluster. The histogram can use arbitrary intervals, whereas the intervals for the

stem-and-leaf display use the base 10 number system. There is more arbitrari-

ness to histograms than to stem-and-leaf displays, so histograms can sometimes

be regarded a bit suspiciously.
#### hist

# histogram using R base graphics

# par() gives graphical options

# mfrow = "multifigure by row" with 1 row and 3 columns

par(mfrow=c(1,3))

# main is the title, xlab is x-axis label (ylab also available)

hist(hb, main="Modern Englishman", xlab="head breadth (mm)")

# breaks are how many bins-1 to use

hist(hb, breaks = 15, main="Histogram, 15 breaks")

# freq=FALSE changes the vertical axis to density,

# so the total area of the bars is now equal to 1

hist(hb, breaks = 8, freq = FALSE, main="Histogram, density")

# histogram using ggplot

library(ggplot2)

# first put hb vector into a data.frame

hb_df <- data.frame(hb)

p1 <- ggplot(hb_df, aes(x = hb))

# always specify a binwidth for the histogram (default is range/30)

# try several binwidths

p1 <- p1 + geom_histogram(binwidth = 5)

p1 <- p1 + geom_rug()

p1 <- p1 + labs(title = "Modern Englishman head breadth")

p2 <- ggplot(hb_df, aes(x = hb))

# always specify a binwidth for the histogram (default is range/30)

# try several binwidths

p2 <- p2 + geom_histogram(binwidth = 2)

p2 <- p2 + geom_rug()

p2 <- p2 + labs(title = "Modern Englishman head breadth")

library(gridExtra)

grid.arrange(grobs = list(p1, p2), nrow=1)
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R allows you to modify the graphical display. For example, with the his-

togram you might wish to use different midpoints or interval widths. I will let

you explore the possibilities.

1.3.3 Stem-and-leaf plot

A stem-and-leaf plot is a character display histogram defining intervals for a

grouped frequency distribution using the base 10 number system. Intervals are

generated by selecting an appropriate number of lead digits for the data values

to be the stem. The remaining digits comprise the leaf. It is useful for small

samples.

Character plots use typewriter characters to make graphs, and can be con-

venient for some simple displays, but require use of fixed fonts (like Courier)

when copied to a word processing program or they get distorted.

The display almost looks upside down, since larger numbers are on the

bottom rather than the top. It is done this way so that if rotated 90 degrees

counter-clockwise it is a histogram.

The default stem-and-leaf display for the head breadth data is given below.

The two columns give the stems and leaves. The data have three digits. The

first two comprise the stem. The last digit is the leaf. Thus, a head breadth

of 154 has a stem of 15 and leaf of 4. The possible stems are 13, 14, and 15,

whereas the possible leaves are the integers from 0 to 9. In the first plot, each

stem occurs once, while in the second each stem occurs twice. In the second
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instance, the first (top) occurrence of a stem value only holds leaves 0 through

4. The second occurrence holds leaves 5 through 9. The display is generated

by placing the leaf value for each observation on the appropriate stem line.

For example, the top 14 stem holds data values between 140 and 144.99. The

stems on this line in the display tell us that four observations fall in this range:

140, 141, 142 and 144. Note that this stem-and-leaf display is an elaborate

histogram with intervals of width 5. An advantage of the stem-and-leaf display

over the histogram is that the original data values can essentially be recovered

from the display.
#### stem-and-leaf

# stem-and-leaf plot

stem(hb)

##

## The decimal point is 1 digit(s) to the right of the |

##

## 13 | 28

## 14 | 0124567889

## 15 | 000458

# scale=2 makes plot roughly twice as wide

stem(hb, scale=2)

##

## The decimal point is 1 digit(s) to the right of the |

##

## 13 | 2

## 13 | 8

## 14 | 0124

## 14 | 567889

## 15 | 0004

## 15 | 58

# scale=5 makes plot roughly five times as wide

stem(hb, scale=5)

##

## The decimal point is at the |

##

## 132 | 0

## 134 |

## 136 |

## 138 | 0

## 140 | 00

## 142 | 0

## 144 | 00

## 146 | 00
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## 148 | 000

## 150 | 000

## 152 |

## 154 | 00

## 156 |

## 158 | 0

The data values are always truncated so that a leaf has one digit. The leaf

unit (location of the decimal point) tells us the degree of round-off. This will

become clearer in the next example.

Of the three displays, which is the most informative? I think the middle

option is best to see the clustering and shape of distributions of numbers.

ClickerQ s — Stem-and-leaf plot

1.3.4 Boxplot or box-and-whiskers plot

The boxplot breaks up the range of data values into regions about the center

of the data, measured by the median. The boxplot highlights outliers and

provides a visual means to assess “normality”. The following help entry

outlines the construction of the boxplot, given the placement of data values on

the axis.
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The endpoints of the box are placed at the locations of the first and third

quartiles. The location of the median is identified by the line in the box. The

whiskers extend to the data points closest to but not on or outside the outlier

fences, which are 1.5IQR from the quartiles. Outliers are any values on or

outside the outlier fences.

The boxplot for the head breadth data is given below. There are a lot

of options that allow you to clutter the boxplot with additional information.

Just use the default settings. We want to see the relative location of data (the

median line), have an idea of the spread of data (IQR, the length of the box),

see the shape of the data (relative distances of components from each other –

to be covered later), and identify outliers (if present). The default boxplot has

all these components.

Note that the boxplots below are horizontal to better fit on the page. The

horizontal=TRUE and coord_flip() commands do this.
#### boxplot

fivenum(hb)

## [1] 132.0 142.0 147.5 150.0 158.0

# boxplot using R base graphics
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par(mfrow=c(1,1))

boxplot(hb, horizontal=TRUE

, main="Modern Englishman", xlab="head breadth (mm)")

# boxplot using ggplot

library(ggplot2)

# first put hb vector into a data.frame

hb_df <- data.frame(hb)

p <- ggplot(hb_df, aes(x = "hb", y = hb))

p <- p + geom_boxplot()

p <- p + coord_flip()

p <- p + labs(title = "Modern Englishman head breadth")

print(p)
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Modern Englishman

head breadth (mm)

hb

140 150

hb

x

Modern Englishman head breadth

ClickerQ s — Boxplots

Improvements to the boxplot

As a quick aside, a violin plot is a combination of a boxplot and a kernel density

plot. They can be created using the vioplot() function from vioplot package.
#### vioplot

# vioplot using R base graphics

# 3 rows, 1 column

par(mfrow=c(3,1))

# histogram

hist(hb, freq = FALSE

, main="Histogram with kernel density plot, Modern Englishman")

# Histogram overlaid with kernel density curve

points(density(hb), type = "l")

# rug of points under histogram

rug(hb)

# violin plot
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library(vioplot)

## Loading required package: sm

## Package ’sm’, version 2.2-5.4: type help(sm) for summary information

vioplot(hb, horizontal=TRUE, col="gray")

title("Violin plot, Modern Englishman")

# boxplot

boxplot(hb, horizontal=TRUE

, main="Boxplot, Modern Englishman", xlab="head breadth (mm)")

Histogram with kernel density plot, Modern Englishman

hb
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Example: income The data below are incomes in $1000 units for a sample

of 12 retired couples. Numerical and graphical summaries are given. There are

two stem-and-leaf displays provided. The first is the default display.
#### Income examples

income <- c(7, 1110, 7, 5, 8, 12, 0, 5, 2, 2, 46, 7)

# sort in decreasing order

income <- sort(income, decreasing = TRUE)

income

## [1] 1110 46 12 8 7 7 7 5 5 2 2 0

summary(income)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.00 4.25 7.00 100.92 9.00 1110.00

# stem-and-leaf plot

stem(income)
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##

## The decimal point is 3 digit(s) to the right of the |

##

## 0 | 00000000000

## 0 |

## 1 | 1

Because the two large outliers, I trimmed them to get a sense of the shape
of the distribution where most of the observations are.
#### remove largest

# remove two largest values (the first two)

income2 <- income[-c(1,2)]

income2

## [1] 12 8 7 7 7 5 5 2 2 0

summary(income2)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.00 2.75 6.00 5.50 7.00 12.00

# stem-and-leaf plot

stem(income2)

##

## The decimal point is 1 digit(s) to the right of the |

##

## 0 | 022

## 0 | 557778

## 1 | 2

# scale=2 makes plot roughly twice as wide

stem(income2, scale=2)

##

## The decimal point is at the |

##

## 0 | 0

## 2 | 00

## 4 | 00

## 6 | 000

## 8 | 0

## 10 |

## 12 | 0

Boxplots with full data, then incrementally removing the two largest outliers.

#### income-boxplot

# boxplot using R base graphics

# 1 row, 3 columns

par(mfrow=c(1,3))

boxplot(income, main="Income")

boxplot(income[-1], main="(remove largest)")

boxplot(income2, main="(remove 2 largest)")
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1.4 Interpretation of Graphical Displays for
Numerical Data

In many studies, the data are viewed as a subset or sample from a larger

collection of observations or individuals under study, called the population.

A primary goal of many statistical analyses is to generalize the information in

the sample to infer something about the population. For this generalization

to be possible, the sample must reflect the basic patterns of the population.

There are several ways to collect data to ensure that the sample reflects the

basic properties of the population, but the simplest approach, by far, is to

take a random or “representative” sample from the population. A random

sample has the property that every possible sample of a given size has the

same chance of being the sample (eventually) selected (though we often do this

only once). Random sampling eliminates any systematic biases associated with

the selected observations, so the information in the sample should accurately

reflect features of the population. The process of sampling introduces random

variation or random errors associated with summaries. Statistical tools are used

to calibrate the size of the errors.

Whether we are looking at a histogram (or stem-and-leaf, or dotplot) from

a sample, or are conceptualizing the histogram generated by the population

data, we can imagine approximating the “envelope” around the display with a
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smooth curve. The smooth curve that approximates the population histogram

is called the population frequency curve or population probability

density function or population distribution2. Statistical methods for

inference about a population usually make assumptions about the shape of the

population frequency curve. A common assumption is that the population has

a normal frequency curve. In practice, the observed data are used to assess

the reasonableness of this assumption. In particular, a sample display should

resemble a population display, provided the collected data are a random or rep-

resentative sample from the population. Several common shapes for frequency

distributions are given below, along with the statistical terms used to describe

them.

Unimodal, symmetric, bell-shaped, and no outliers The first dis-

play is unimodal (one peak), symmetric, and bell-shaped with no out-

liers. This is the prototypical normal curve. The boxplot (laid on its side for

this display) shows strong evidence of symmetry: the median is about halfway

between the first and third quartiles, and the tail lengths are roughly equal. The

boxplot is calibrated in such a way that 7 of every 1000 observations are outliers

(more than 1.5(Q3−Q1) from the quartiles) in samples from a population with

a normal frequency curve. Only 2 out of every 1 million observations are ex-

treme outliers (more than 3(Q3−Q1) from the quartiles). We do not have any

outliers here out of 250 observations, but we certainly could have some without

indicating nonnormality. If a sample of 30 observations contains 4 outliers, two

of which are extreme, would it be reasonable to assume the population from

which the data were collected has a normal frequency curve? Probably not.
#### Unimodal, symmetric, bell-shaped, and no outliers (Normal distribution)

## base graphics

# sample from normal distribution

x1 <- rnorm(250, mean = 100, sd = 15)

par(mfrow=c(3,1))

# Histogram overlaid with kernel density curve

2“Distribution function” often refers to the “cumulative distribution function”, which is a different (but
one-to-one related) function than what I mean here.
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hist(x1, freq = FALSE, breaks = 20)

points(density(x1), type = "l")

rug(x1)

# violin plot

library(vioplot)

vioplot(x1, horizontal=TRUE, col="gray")

# boxplot

boxplot(x1, horizontal=TRUE)

## ggplot

# Histogram overlaid with kernel density curve

x1_df <- data.frame(x1)

p1 <- ggplot(x1_df, aes(x = x1))

# Histogram with density instead of count on y-axis

p1 <- p1 + geom_histogram(aes(y=..density..))

p1 <- p1 + geom_density(alpha=0.1, fill="white")

p1 <- p1 + geom_rug()

# violin plot

p2 <- ggplot(x1_df, aes(x = "x1", y = x1))

p2 <- p2 + geom_violin(fill = "gray50")

p2 <- p2 + geom_boxplot(width = 0.2, alpha = 3/4)

p2 <- p2 + coord_flip()

# boxplot

p3 <- ggplot(x1_df, aes(x = "x1", y = x1))

p3 <- p3 + geom_boxplot()

p3 <- p3 + coord_flip()

library(gridExtra)

grid.arrange(grobs = list(p1, p2, p3), ncol=1)

## ‘stat bin()‘ using ‘bins = 30‘. Pick better value with ‘binwidth‘.
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#### Central statistical moments

# moments package for 3rd and 4th moments: skewness() and kurtosis()

library(moments)

summary(x1)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 58.28 91.84 101.75 102.37 112.23 142.80

sd(x1)

## [1] 15.29373

skewness(x1)

## [1] 0.01891139

kurtosis(x1)

## [1] 2.780282

stem(x1)

##

## The decimal point is 1 digit(s) to the right of the |

##

## 5 | 8

## 6 | 14

## 6 |

## 7 | 014

## 7 | 5577788999

## 8 | 1112233334444

## 8 | 555566666677777788888899999

## 9 | 011122222222333333444

## 9 | 555566666777777788888888899999999

## 10 | 0000000111111122223333334444444

## 10 | 5555566666667777777888889999999
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## 11 | 0000000111222222233444444444

## 11 | 5556677889

## 12 | 000011111223333444

## 12 | 556677778899

## 13 | 00033344

## 13 | 7

## 14 | 3

Unimodal, symmetric, heavy-tailed The boxplot is better at highlight-

ing outliers than are other displays. The histogram and stem-and-leaf displays

below appear to have the same basic shape as a normal curve (unimodal, sym-

metric). However, the boxplot shows that we have a dozen outliers in a sample

of 250 observations. We would only expect about two outliers in 250 observa-

tions when sampling from a population with a normal frequency curve. The

frequency curve is best described as unimodal, symmetric, and heavy-tailed.
#### Unimodal, symmetric, heavy-tailed

# sample from normal distribution

x2.temp <- rnorm(250, mean = 0, sd = 1)

x2 <- sign(x2.temp)*x2.temp^2 * 15 + 100

par(mfrow=c(3,1))

# Histogram overlaid with kernel density curve

hist(x2, freq = FALSE, breaks = 20)

points(density(x2), type = "l")

rug(x2)

# violin plot

library(vioplot)

vioplot(x2, horizontal=TRUE, col="gray")

# boxplot

boxplot(x2, horizontal=TRUE)

# Histogram overlaid with kernel density curve

x2_df <- data.frame(x2)

p1 <- ggplot(x2_df, aes(x = x2))

# Histogram with density instead of count on y-axis

p1 <- p1 + geom_histogram(aes(y=..density..))

p1 <- p1 + geom_density(alpha=0.1, fill="white")

p1 <- p1 + geom_rug()

# violin plot
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p2 <- ggplot(x2_df, aes(x = "x2", y = x2))

p2 <- p2 + geom_violin(fill = "gray50")

p2 <- p2 + geom_boxplot(width = 0.2, alpha = 3/4)

p2 <- p2 + coord_flip()

# boxplot

p3 <- ggplot(x2_df, aes(x = "x2", y = x2))

p3 <- p3 + geom_boxplot()

p3 <- p3 + coord_flip()

library(gridExtra)

grid.arrange(grobs = list(p1, p2, p3), ncol=1)

## ‘stat bin()‘ using ‘bins = 30‘. Pick better value with ‘binwidth‘.
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summary(x2)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## -100.72 92.42 99.84 98.47 105.54 196.16

sd(x2)

## [1] 31.12554

skewness(x2)

## [1] -1.58673

kurtosis(x2)

## [1] 14.19473

stem(x2)

##

## The decimal point is 1 digit(s) to the right of the |
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##

## -10 | 1

## -8 |

## -6 | 6

## -4 |

## -2 |

## -0 |

## 0 | 3612

## 2 | 12

## 4 | 312348

## 6 | 1124880111224456679

## 8 | 00011223445555556667788011111233333444455555555666666677777777778888+4

## 10 | 00000000000000000000000000000111111111111111112222222233344444444555+21

## 12 | 155667889991236789

## 14 | 58126

## 16 | 23790

## 18 | 1746

Symmetric, (uniform,) short-tailed Not all symmetric distributions

are mound-shaped, as the display below suggests. The boxplot shows symme-

try, but the tails of the distribution are shorter (lighter) than in the normal

distribution. Note that the distance between quartiles is roughly constant here.
#### Symmetric, (uniform,) short-tailed

# sample from uniform distribution

x3 <- runif(250, min = 50, max = 150)

par(mfrow=c(3,1))

# Histogram overlaid with kernel density curve

hist(x3, freq = FALSE, breaks = 20)

points(density(x3), type = "l")

rug(x3)

# violin plot

library(vioplot)

vioplot(x3, horizontal=TRUE, col="gray")

# boxplot

boxplot(x3, horizontal=TRUE)

# Histogram overlaid with kernel density curve

x3_df <- data.frame(x3)

p1 <- ggplot(x3_df, aes(x = x3))

# Histogram with density instead of count on y-axis

p1 <- p1 + geom_histogram(aes(y=..density..))
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p1 <- p1 + geom_density(alpha=0.1, fill="white")

p1 <- p1 + geom_rug()

# violin plot

p2 <- ggplot(x3_df, aes(x = "x3", y = x3))

p2 <- p2 + geom_violin(fill = "gray50")

p2 <- p2 + geom_boxplot(width = 0.2, alpha = 3/4)

p2 <- p2 + coord_flip()

# boxplot

p3 <- ggplot(x3_df, aes(x = "x3", y = x3))

p3 <- p3 + geom_boxplot()

p3 <- p3 + coord_flip()

library(gridExtra)

grid.arrange(grobs = list(p1, p2, p3), ncol=1)

## ‘stat bin()‘ using ‘bins = 30‘. Pick better value with ‘binwidth‘.

Histogram of x3
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summary(x3)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 50.61 75.29 101.14 101.06 127.40 149.46

sd(x3)

## [1] 28.90485

skewness(x3)

## [1] 0.0001547997

kurtosis(x3)

## [1] 1.783274
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stem(x3)

##

## The decimal point is 1 digit(s) to the right of the |

##

## 5 | 12234444

## 5 | 555577778889999

## 6 | 0111223334

## 6 | 556678899

## 7 | 0000011111122334444

## 7 | 5567778899

## 8 | 0111112234444

## 8 | 5556666799999

## 9 | 0001112233

## 9 | 55667778999

## 10 | 00000111223334444

## 10 | 5555566777889

## 11 | 001123344444

## 11 | 55577888899999

## 12 | 001122444

## 12 | 5677778999

## 13 | 000011222333344

## 13 | 556667788889

## 14 | 01111222344444

## 14 | 5566666677788999

The mean and median are identical in a population with a (exact) symmetric

frequency curve. The histogram and stem-and-leaf displays for a sample selected

from a symmetric population will tend to be fairly symmetric. Further, the

sample means and medians will likely be close.

Unimodal, skewed right The distribution below is unimodal, and asym-

metric or skewed. The distribution is said to be skewed to the right, or

upper end, because the right tail is much longer than the left tail. The boxplot

also shows the skewness – the region between the minimum observation and the

median contains half the data in less than 1/5 the range of values. In addition,

the upper tail contains several outliers.
#### Unimodal, skewed right

# sample from exponential distribution

x4 <- rexp(250, rate = 1)

par(mfrow=c(3,1))

# Histogram overlaid with kernel density curve
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hist(x4, freq = FALSE, breaks = 20)

points(density(x4), type = "l")

rug(x4)

# violin plot

library(vioplot)

vioplot(x4, horizontal=TRUE, col="gray")

# boxplot

boxplot(x4, horizontal=TRUE)

# Histogram overlaid with kernel density curve

x4_df <- data.frame(x4)

p1 <- ggplot(x4_df, aes(x = x4))

# Histogram with density instead of count on y-axis

p1 <- p1 + geom_histogram(aes(y=..density..))

p1 <- p1 + geom_density(alpha=0.1, fill="white")

p1 <- p1 + geom_rug()

# violin plot

p2 <- ggplot(x4_df, aes(x = "x4", y = x4))

p2 <- p2 + geom_violin(fill = "gray50")

p2 <- p2 + geom_boxplot(width = 0.2, alpha = 3/4)

p2 <- p2 + coord_flip()

# boxplot

p3 <- ggplot(x4_df, aes(x = "x4", y = x4))

p3 <- p3 + geom_boxplot()

p3 <- p3 + coord_flip()

library(gridExtra)

grid.arrange(grobs = list(p1, p2, p3), ncol=1)

## ‘stat bin()‘ using ‘bins = 30‘. Pick better value with ‘binwidth‘.
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Histogram of x4
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summary(x4)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.003949 0.261104 0.611573 0.914406 1.211395 9.769742

sd(x4)

## [1] 1.001675

skewness(x4)

## [1] 3.538039

kurtosis(x4)

## [1] 26.81341

stem(x4)

##

## The decimal point is at the |

##

## 0 | 00000000001111111111111111111111122222222222222222222222222333333333+15

## 0 | 55555555555555555555566666666666666777777777777778888888889999999999

## 1 | 000000111111111112222333333444

## 1 | 5555555566666777788999

## 2 | 0000123333444

## 2 | 5556677799

## 3 | 122

## 3 | 68

## 4 | 00

## 4 |

## 5 |

## 5 |

## 6 |

## 6 |
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## 7 |

## 7 |

## 8 |

## 8 |

## 9 |

## 9 | 8

Unimodal, skewed left The distribution below is unimodal and skewed

to the left. The two examples show that extremely skewed distributions often

contain outliers in the longer tail of the distribution.
#### Unimodal, skewed left

# sample from uniform distribution

x5 <- 15 - rexp(250, rate = 0.5)

par(mfrow=c(3,1))

# Histogram overlaid with kernel density curve

hist(x5, freq = FALSE, breaks = 20)

points(density(x5), type = "l")

rug(x5)

# violin plot

library(vioplot)

vioplot(x5, horizontal=TRUE, col="gray")

# boxplot

boxplot(x5, horizontal=TRUE)

# Histogram overlaid with kernel density curve

x5_df <- data.frame(x5)

p1 <- ggplot(x5_df, aes(x = x5))

# Histogram with density instead of count on y-axis

p1 <- p1 + geom_histogram(aes(y=..density..))

p1 <- p1 + geom_density(alpha=0.1, fill="white")

p1 <- p1 + geom_rug()

# violin plot

p2 <- ggplot(x5_df, aes(x = "x5", y = x5))

p2 <- p2 + geom_violin(fill = "gray50")

p2 <- p2 + geom_boxplot(width = 0.2, alpha = 3/4)

p2 <- p2 + coord_flip()

# boxplot

p3 <- ggplot(x5_df, aes(x = "x5", y = x5))

p3 <- p3 + geom_boxplot()
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p3 <- p3 + coord_flip()

library(gridExtra)

grid.arrange(grobs = list(p1, p2, p3), ncol=1)

## ‘stat bin()‘ using ‘bins = 30‘. Pick better value with ‘binwidth‘.

Histogram of x5
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summary(x5)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 4.224 12.409 13.806 13.203 14.518 14.994

sd(x5)

## [1] 1.862082

skewness(x5)

## [1] -1.995207

kurtosis(x5)

## [1] 8.082068

stem(x5)

##

## The decimal point is at the |

##

## 4 | 2

## 5 | 5678

## 6 |

## 7 | 9

## 8 | 2569

## 9 | 4488

## 10 | 11334566678
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## 11 | 001124456677778899

## 12 | 0001111223334444444444455666667788889999

## 13 | 0000001111222222333344555666666667777778888889999999

## 14 | 00000000001111111111122222223333333333444444555555555555666667777777+26

## 15 | 000000000

Bimodal (multi-modal) Not all distributions are unimodal. The distribu-

tion below has two modes or peaks, and is said to be bimodal. Distributions

with three or more peaks are called multi-modal.
#### Bimodal (multi-modal)

# sample from uniform distribution

x6 <- c(rnorm(150, mean = 100, sd = 15), rnorm(150, mean = 150, sd = 15))

par(mfrow=c(3,1))

# Histogram overlaid with kernel density curve

hist(x6, freq = FALSE, breaks = 20)

points(density(x6), type = "l")

rug(x6)

# violin plot

library(vioplot)

vioplot(x6, horizontal=TRUE, col="gray")

# boxplot

boxplot(x6, horizontal=TRUE)

# Histogram overlaid with kernel density curve

x6_df <- data.frame(x6)

p1 <- ggplot(x6_df, aes(x = x6))

# Histogram with density instead of count on y-axis

p1 <- p1 + geom_histogram(aes(y=..density..))

p1 <- p1 + geom_density(alpha=0.1, fill="white")

p1 <- p1 + geom_rug()

# violin plot

p2 <- ggplot(x6_df, aes(x = "x6", y = x6))

p2 <- p2 + geom_violin(fill = "gray50")

p2 <- p2 + geom_boxplot(width = 0.2, alpha = 3/4)

p2 <- p2 + coord_flip()

# boxplot

p3 <- ggplot(x6_df, aes(x = "x6", y = x6))

p3 <- p3 + geom_boxplot()

p3 <- p3 + coord_flip()
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library(gridExtra)

grid.arrange(grobs = list(p1, p2, p3), ncol=1)

## ‘stat bin()‘ using ‘bins = 30‘. Pick better value with ‘binwidth‘.

Histogram of x6
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summary(x6)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 61.82 98.93 124.16 124.38 147.72 187.29

sd(x6)

## [1] 28.39398

skewness(x6)

## [1] 0.009062991

kurtosis(x6)

## [1] 1.89301

stem(x6)

##

## The decimal point is 1 digit(s) to the right of the |

##

## 6 | 28

## 7 | 045667778999

## 8 | 022233446666778888999999

## 9 | 0000012222333333344666667778888888999999

## 10 | 00112344455556666777788899999999

## 11 | 000011222222333344444566788999

## 12 | 00012233445555666666899

## 13 | 11122344556666677778999

## 14 | 00011111111112224444555556677777777788888899999
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## 15 | 0001111222223344446677778889999

## 16 | 011122222333334445567778

## 17 | 014444577

## 18 | 127

The boxplot and histogram or stem-and-leaf display (or dotplot) are used

together to describe the distribution. The boxplot does not provide infor-

mation about modality – it only tells you about skewness and the presence of

outliers.

As noted earlier, many statistical methods assume the population frequency

curve is normal. Small deviations from normality usually do not dramatically

influence the operating characteristics of these methods. We worry most when

the deviations from normality are severe, such as extreme skewness or heavy

tails containing multiple outliers.

ClickerQ s — Graphical summaries

1.5 Interpretations for examples

The head breadth sample is slightly skewed to the left, unimodal, and has no

outliers. The distribution does not deviate substantially from normality. The

various measures of central location (Ȳ = 146.5, M = 147.5) are close, which

is common with fairly symmetric distributions containing no outliers.

The income sample is extremely skewed to the right due to the presence of

two extreme outliers at 46 and 1110. A normality assumption here is unrealistic.

It is important to recognize the influence that outliers can have on the values

of Ȳ and s. The median and interquartile range are more robust (less sensitive)

to the presence of outliers. For the income data Ȳ = 100.9 and s = 318, whereas

M = 7 and IQR = 8.3. If we omit the two outliers, then Ȳ = 5.5 and s = 3.8,

whereas M = 6 and IQR = 5.25.

The mean and median often have similar values in data sets without outliers,

so it does not matter much which one is used as the “typical value”. This issue
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is important, however, in data sets with extreme outliers. In such instances,

the median is often more reasonable. For example, is Ȳ = 100.9 a reasonable

measure for a typical income in this sample, given that the second largest income

is only 46?

R Discussion I have included basic pointers on how to use R in these notes.

I find that copying an R code example from the internet, then modifying the

code to apply to my data is a productive strategy. When you’re first learning,

“pretty good” is often “good enough”, especially when it comes to plots (in other

words, spending 20 minutes vs 2 hours on a plot is fine). I will demonstrate

most of what you need and I will be happy to answer questions. You will learn

a lot more by using and experimenting with R than by watching.
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## Warning in file(filename, "r", encoding = encoding): cannot

open file ’ADA1 12 RFunctions.R’: No such file or directory

## Error in file(filename, "r", encoding = encoding): cannot

open the connection

Learning objectives

After completing this topic, you should be able to:

select graphical displays that meaningfully communicate properties of a

sample.

assess the assumptions of the one-sample t-test visually.

decide whether the mean of a population is different from a hypothesized

value.

recommend action based on a hypothesis test.

Achieving these goals contributes to mastery in these course learning outcomes:

1. organize knowledge.

5. define parameters of interest and hypotheses in words and notation.

6. summarize data visually, numerically, and descriptively.

8. use statistical software.

12. make evidence-based decisions.

2.1 Inference for a population mean

Suppose that you have identified a population of interest where individuals are

measured on a single quantitative characteristic, say, weight, height or IQ. You

select a random or representative sample from the population with the goal

of estimating the (unknown) population mean value, identified by µ. You

cannot see much of the population, but you would like to know what is typical

in the population (µ). The only information you can see is that in the sample.

This is a standard problem in statistical inference, and the first inferential

problem that we will tackle. For notational convenience, identify the measure-
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ments on the sample as Y1, Y2, . . . , Yn, where n is the sample size. Given the

data, our best guess, or estimate, of µ is the sample mean: Ȳ =
∑

i Yi
n =

Y1+Y2+···+Yn
n .

Population
Huge set of values
Can see very little

Sample

Mean µ
Standard Deviation σ

µ and σ unknown

Y1, Y2, …, Yn

Inference

There are two main methods that are used for inferences on µ: confidence

intervals (CI) and hypothesis tests. The standard CI and test procedures

are based on the sample mean and the sample standard deviation, denoted by

s.

ClickerQ s — Inference for a population mean, 2

2.1.1 Standard error, LLN, and CLT

The standard error (SE) is the standard deviation of the sampling dis-

tribution of a statistic.

The sampling distribution of a statistic is the distribution of that statis-

tic, considered as a random variable, when derived from a random sample of

size n.
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The standard error of the mean (SEM) is the standard deviation of

the sample-mean’s estimate of a population mean. (It can also be viewed as the

standard deviation of the error in the sample mean relative to the true mean,

since the sample mean is an unbiased estimator.) SEM is usually estimated

by the sample estimate of the population standard deviation (sample standard

deviation) divided by the square root of the sample size (assuming statistical

independence of the values in the sample):

SEȲ = s/
√
n

where s is the sample standard deviation (i.e., the sample-based estimate of the

standard deviation of the population), and n is the size (number of observations)

of the sample.

In probability theory, the law of large numbers (LLN) is a theorem

that describes the result of performing the same experiment a large number of

times. According to the law, the average of the results obtained from a large

number of trials (the sample mean, Ȳ ) should be close to the expected value

(the population mean, µ), and will tend to become closer as more trials are

performed.

In probability theory, the central limit theorem (CLT) states that,

given certain conditions, the mean of a sufficiently large number of independent

random variables, each with finite mean and variance, will be approximately

normally distributed1.

As a joint illustration of these concepts, consider drawing random variables

following a Uniform(0,1) distribution, that is, any value in the interval [0, 1]

is equally likely. By definition, the mean of this distribution is µ = 1/2 and

the variance is σ2 = 1/12 (so the standard deviation is σ =
√

1/12 = 0.289).

Therefore, if we draw a sample of size n, then the standard error of the mean

will be σ/
√
n, and as n gets larger the distribution of the mean will increasingly

follow a normal distribution. We illustrate this by drawing N = 10000 samples

1The central limit theorem has a number of variants. In its common form, the random variables must
be identically distributed. In variants, convergence of the mean to the normal distribution also occurs for
non-identical distributions, given that they comply with certain conditions.
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of size n and plot those N means, computing the expected and observed SEM

and how well the histogram of sampled means follows a normal distribution,

Notice, indeed, that even with samples as small as 2 and 6 that the properties

of the SEM and the distribution are as predicted.
#### Illustration of Central Limit Theorem, Uniform distribution

# demo.clt.unif(N, n)

# draws N samples of size n from Uniform(0,1)

# and plots the N means with a normal distribution overlay

demo.clt.unif <- function(N, n) {
# draw sample in a matrix with N columns and n rows

sam <- matrix(runif(N*n, 0, 1), ncol=N);

# calculate the mean of each column

sam.mean <- colMeans(sam)

# the sd of the mean is the SEM

sam.se <- sd(sam.mean)

# calculate the true SEM given the sample size n

true.se <- sqrt((1/12)/n)

# draw a histogram of the means

hist(sam.mean, freq = FALSE, breaks = 25

, main = paste("True SEM =", round(true.se, 4)

, ", Est SEM = ", round( sam.se, 4))

, xlab = paste("n =", n))

# overlay a density curve for the sample means

points(density(sam.mean), type = "l")

# overlay a normal distribution, bold and red

x <- seq(0, 1, length = 1000)

points(x, dnorm(x, mean = 0.5, sd = true.se), type = "l", lwd = 2, col = "red")

# place a rug of points under the plot

rug(sam.mean)

}

par(mfrow=c(2,2));

demo.clt.unif(10000, 1);

demo.clt.unif(10000, 2);

demo.clt.unif(10000, 6);

demo.clt.unif(10000, 12);
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True SEM = 0.2887 , Est SEM =  0.2893

n = 1
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In a more extreme example, we draw samples from an Exponential(1) dis-

tribution (µ = 1 and σ = 1), which is strongly skewed to the right. Notice that

the normality promised by the CLT requires larger samples sizes, about n ≥ 30,

than for the previous Uniform(0,1) example, which required about n ≥ 6.
#### Illustration of Central Limit Theorem, Exponential distribution

# demo.clt.exp(N, n) draws N samples of size n from Exponential(1)

# and plots the N means with a normal distribution overlay

demo.clt.exp <- function(N, n) {
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# draw sample in a matrix with N columns and n rows

sam <- matrix(rexp(N*n, 1), ncol=N);

# calculate the mean of each column

sam.mean <- colMeans(sam)

# the sd of the mean is the SEM

sam.se <- sd(sam.mean)

# calculate the true SEM given the sample size n

true.se <- sqrt(1/n)

# draw a histogram of the means

hist(sam.mean, freq = FALSE, breaks = 25

, main = paste("True SEM =", round(true.se, 4), ", Est SEM = ", round(sam.se, 4))

, xlab = paste("n =", n))

# overlay a density curve for the sample means

points(density(sam.mean), type = "l")

# overlay a normal distribution, bold and red

x <- seq(0, 5, length = 1000)

points(x, dnorm(x, mean = 1, sd = true.se), type = "l", lwd = 2, col = "red")

# place a rug of points under the plot

rug(sam.mean)

}

par(mfrow=c(2,2));

demo.clt.exp(10000, 1);

demo.clt.exp(10000, 6);

demo.clt.exp(10000, 30);

demo.clt.exp(10000, 100);
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True SEM = 1 , Est SEM =  1.006
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Note well that the further the population distribution is from being nor-

mal, the larger the sample size is required to be for the sampling distribution

of the sample mean to be normal. If the population distribution is normal,

what’s the minimum sample size for the sampling distribution of the mean to

be normal?
For more examples, try:
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#### More examples for Central Limit Theorem can be illustrated with this code

# install.packages("TeachingDemos")

library(TeachingDemos)

# look at examples at bottom of the help page

?clt.examp

2.1.2 z-score

Given a distribution with mean x̄ and standard deviation s, a location-scale

transformation known as a z-score will shift the distribution to have mean 0

and scale the spread to have standard deviation 1:

z =
x− x̄
s

.

Below, the original variable x has a normal distribution with mean 100 and

standard deviation 15, Normal(100, 152), and z has a Normal(0, 1) distribution.
# sample from normal distribution

df <- data.frame(x = rnorm(100, mean = 100, sd = 15))

df$z <- scale(df$x) # by default, this performs a z-score transformation

summary(df)

## x z.V1

## Min. : 39.64 Min. :-3.446123

## 1st Qu.: 90.99 1st Qu.:-0.485300

## Median :100.00 Median : 0.033925

## Mean : 99.41 Mean : 0.000000

## 3rd Qu.:110.72 3rd Qu.: 0.652006

## Max. :132.70 Max. : 1.919736

## ggplot

library(ggplot2)

p1 <- ggplot(df, aes(x = x))

# Histogram with density instead of count on y-axis

p1 <- p1 + geom_histogram(aes(y=..density..))

p1 <- p1 + geom_density(alpha=0.1, fill="white")

p1 <- p1 + geom_rug()

p1 <- p1 + labs(title = "X ~ Normal(100, 15)")

p2 <- ggplot(df, aes(x = z))

# Histogram with density instead of count on y-axis

p2 <- p2 + geom_histogram(aes(y=..density..))

p2 <- p2 + geom_density(alpha=0.1, fill="white")

UNM, Stat 427/527 ADA1



70 Ch 2: Estimation in One-Sample Problems

p2 <- p2 + geom_rug()

p2 <- p2 + labs(title = "Z ~ Normal(0, 1)")

library(gridExtra)

grid.arrange(grobs = list(p1, p2), ncol=1)

## ‘stat bin()‘ using ‘bins = 30‘. Pick better value with ‘binwidth‘.

## ‘stat bin()‘ using ‘bins = 30‘. Pick better value with ‘binwidth‘.
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2.1.3 t-distribution

The Student’s t-distribution is a family of continuous probability distribu-

tions that arises when estimating the mean of a normally distributed population

in situations where the sample size is small and population standard devi-

ation is unknown. The t-distribution is symmetric and bell-shaped, like the

normal distribution, but has heavier tails, meaning that it is more prone to pro-

ducing values that fall far from its mean. Effectively, the t-distribution is wider

than the normal distribution because in addition to estimating the mean µ with

Ȳ , we also have to estimate σ2 with s2, so there’s some additional uncertainty.

The degrees-of-freedom (df) parameter of the t-distribution is the sample size

n minus the number of variance parameters estimated. Thus, df = n− 1 when

we have one sample and df = n−2 when we have two samples. As n increases,
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the t-distribution becomes close to the normal distribution, and when n = ∞
the distributions are equivalent.
#### Normal vs t-distributions with a range of degrees-of-freedom

x <- seq(-8, 8, length = 1000)

par(mfrow=c(1,1))

plot(x, dnorm(x), type = "l", lwd = 2, col = "red"

, main = "Normal (red) vs t-dist with df=1, 2, 6, 12, 30, 100")

points(x, dt(x, 1), type = "l")

points(x, dt(x, 2), type = "l")

points(x, dt(x, 6), type = "l")

points(x, dt(x, 12), type = "l")

points(x, dt(x, 30), type = "l")

points(x, dt(x,100), type = "l")
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2.2 CI for µ

Statistical inference provides methods for drawing conclusions about a pop-

ulation from sample data. In this chapter, we want to make a claim about

population mean µ given sample statistics Ȳ and s.

A CI for µ is a range of plausible values for the unknown population mean

µ, based on the observed data, of the form “Best Guess ± Reasonable Error of

the Guess”. To compute a CI for µ:

1. Define the population parameter, “Let µ = mean [characteristic] for

population of interest”.

2. Specify the confidence coefficient, which is a number between 0 and

100%, in the form 100(1 − α)%. Solve for α. (For example, 95% has

α = 0.05.)

3. Compute the t-critical value: tcrit = t0.5α such that the area under the

t-curve (df = n− 1) to the right of tcrit is 0.5α. See appendix or internet

for a t-table.

4. Report the CI in the form Ȳ ± tcritSEȲ or as an interval (L,U). The

desired CI has lower and upper endpoints given by L = Ȳ − tcritSEȲ

and U = Ȳ + tcritSEȲ , respectively, where SEȲ = s/
√
n is the standard

error of the sample mean.

5. Assess method assumptions (see below).

In practice, the confidence coefficient is large, say 95% or 99%, which corre-

spond to α = 0.05 and 0.01, respectively. The value of α expressed as a percent

is known as the error rate of the CI.

The CI is determined once the confidence coefficient is specified and the data

are collected. Prior to collecting the data, the interval is unknown and is viewed

as random because it will depend on the actual sample selected. Different

samples give different CIs. The “confidence” in, say, the 95% CI (which has

a 5% error rate) can be interpreted as follows. If you repeatedly sample the

population and construct 95% CIs for µ, then 95% of the intervals will

contain µ, whereas 5% will not. The interval you construct from your data

will either cover µ, or it will not.
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The length of the CI

U − L = 2tcritSEȲ

depends on the accuracy of our estimate Ȳ of µ, as measured by the standard

error of Ȳ , SEȲ = s/
√
n. Less precise estimates of µ lead to wider intervals

for a given level of confidence.

An example with 100 CIs Consider drawing a sample of 25 observations

from a normally distributed population with mean 10 and sd 2. Calculate the

95% t-CI. Now do that 100 times. The plot belows reflects the variability of

that process. We expect 95 of the 100 CIs to contain the true population mean

of 10, that is, on average 5 times out of 100 we draw the incorrect inference

that the population mean is in an interval when it does not contain the true

value of 10.
#### Illustration of Confidence Intervals (consistent with their interpretation)

library(TeachingDemos)

ci.examp(mean.sim = 10, sd = 2, n = 25

, reps = 100, conf.level = 0.95, method = "t")
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2.2.1 Assumptions for procedures

I described the classical CI. The procedure is based on the assumptions that

the data are a random sample from the population of interest, and that the

population frequency curve is normal. The population frequency curve

can be viewed as a “smoothed histogram” created from the population data.

The normality assumption can never be completely verified without having

the entire population data. You can assess the reasonableness of this assumption

using a stem-and-leaf display or a boxplot of the sample data. The stem-and-

leaf display from the data should resemble a normal curve.

In fact, the assumptions are slightly looser than this, the population fre-

quency curve can be anything provided the sample size is large enough that

it’s reasonable to assume that the sampling distribution of the mean is

normal.

Assessing assumptions using the bootstrap

We will cover the bootstrap at the end of this course, but a brief introduction

here can help us check model assumptions. Recall in Section 2.1.1 the sampling

distribution examples. Assume the sample is representative of the population.

Let’s use our sample as a proxy for the population and repeatedly draw samples

(with replacement) of size n and calculate the mean, then plot the bootstrap

sampling distribution of means. If this bootstrap sampling distribution strongly

deviates from normal, then that’s evidence from the data that inference using

the t-distribution is not appropriate. Otherwise, if roughly normal, then the

t-distribution may be sensible.
#### Visual comparison of whether sampling distribution is close to Normal via Bootstrap

# a function to compare the bootstrap sampling distribution with

# a normal distribution with mean and SEM estimated from the data

bs.one.samp.dist <- function(dat, N = 1e4) {
n <- length(dat);

# resample from data

sam <- matrix(sample(dat, size = N * n, replace = TRUE), ncol=N);

# draw a histogram of the means

sam.mean <- colMeans(sam);

# save par() settings
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old.par <- par(no.readonly = TRUE)

# make smaller margins

par(mfrow=c(2,1), mar=c(3,2,2,1), oma=c(1,1,1,1))

# Histogram overlaid with kernel density curve

hist(dat, freq = FALSE, breaks = 6

, main = "Plot of data with smoothed density curve")

points(density(dat), type = "l")

rug(dat)

hist(sam.mean, freq = FALSE, breaks = 25

, main = "Bootstrap sampling distribution of the mean"

, xlab = paste("Data: n =", n

, ", mean =", signif(mean(dat), digits = 5)

, ", se =", signif(sd(dat)/sqrt(n)), digits = 5))

# overlay a density curve for the sample means

points(density(sam.mean), type = "l")

# overlay a normal distribution, bold and red

x <- seq(min(sam.mean), max(sam.mean), length = 1000)

points(x, dnorm(x, mean = mean(dat), sd = sd(dat)/sqrt(n))

, type = "l", lwd = 2, col = "red")

# place a rug of points under the plot

rug(sam.mean)

# restore par() settings

par(old.par)

}

# example data, skewed --- try others datasets to develop your intuition

x <- rgamma(10, shape = .5, scale = 20)

bs.one.samp.dist(x)
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Plot of data with smoothed density curve

dat

D
en

si
ty

0 2 4 6 8 10 12

0.
00

0.
05

0.
10

0.
15

0.
20

Bootstrap sampling distribution of the mean

Data: n = 10 , mean = 4.1358 , se = 1.27835 5

D
en

si
ty

0 2 4 6 8

0.
00

0.
10

0.
20

0.
30

Example: Age at First Heart Transplant Let us go through a hand-

calculation of a CI, using R to generate summary data. I’ll show you later how

to generate the CI in R.

We are interested in the mean age at first heart transplant for a population

of patients.
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1. Define the population parameter

Let µ = mean age at the time of first heart transplant for population of

patients.

2. Calculate summary statistics from sample

The ages (in years) at first transplant for a sample of 11 heart transplant

patients are as follows:

54, 42, 51, 54, 49, 56, 33, 58, 54, 64, 49.

Summaries for the data are: n = 11, Ȳ = 51.27, and s = 8.26 so that

SEȲ = 8.26/
√

11 = 2.4904. The degrees of freedom are df = 11− 1 = 10.

3. Specify confidence level, find critical value, calculate limits

Let us calculate a 95% CI for µ. For a 95% CI α = 0.05, so we need to

find tcrit = t0.025, which is 2.228. Now tcritSEȲ = 2.228 × 2.4904 = 5.55.

The lower limit on the CI is L = 51.27 − 5.55 = 45.72. The upper limit is

U = 51.27 + 5.55 = 56.82.

4. Summarize in words For example, I am 95% confident that the

population mean age at first transplant is 51.3± 5.55, that is, between 45.7

and 56.8 years (rounding off to 1 decimal place).

5. Check assumptions We will see this in several pages, sampling

distribution is reasonably normal.

2.2.2 The effect of α on a two-sided CI

A two-sided 100(1−α)% CI for µ is given by Ȳ ± tcritSEȲ . The CI is centered

at Ȳ and has length 2tcritSEȲ . The confidence coefficient 100(1 − α)% is

increased by decreasing α, which increases tcrit. That is, increasing the

confidence coefficient makes the CI wider. This is sensible: to increase your

confidence that the interval captures µ you must pinpoint µ with less precision

by making the CI wider. For example, a 95% CI is wider than a 90% CI.

ClickerQ s — CI, quickie
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2.3 Hypothesis Testing for µ

A hypothesis test is used to make a decision about a population parameter.

Suppose you are interested in checking whether the population mean µ is

equal to some prespecified value, say µ0. This question can be formulated as

a two-sided hypothesis test, where you are trying to decide which of two con-

tradictory claims or hypotheses about µ is more reasonable given the observed

data. The null hypothesis, or the hypothesis under test, is H0 : µ = µ0,

whereas the alternative hypothesis is HA : µ 6= µ0.

I will explore the ideas behind hypothesis testing later. At this point, I focus

on the mechanics behind the test. The steps in carrying out the test are:

1. Set up the null and alternative hypotheses in words and notation.

In words: “The population mean for [what is being studied] is different

from [value of µ0].” (Note that the statement in words is in terms of the

alternative hypothesis.)

In notation: H0 : µ = µ0 versus HA : µ 6= µ0 (where µ0 is specified by

the context of the problem).

2. Choose the size or significance level of the test, denoted by α. In

practice, α is set to a small value, say, 0.01 or 0.05, but theoretically can

be any value between 0 and 1.

3. Compute the test statistic

ts =
Ȳ − µ0

SEȲ

,

where SEȲ = s/
√
n is the standard error.

Note: I sometimes call the test statistic tobs to emphasize that the com-

puted value depends on the observed data.

4. Compute the critical value tcrit = t0.5α (or p-value from the test statis-

tic) in the direction of the alternative hypothesis from the t-distribution

table with degrees of freedom df = n− 1.

5. State the conclusion in terms of the problem.

Reject H0 in favor of HA (i.e., decide that H0 is false, based on the data)
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if |ts| > tcrit or p-value < α, that is, reject if ts < −tcrit or if ts > tcrit.

Otherwise, Fail to reject H0.

(Note: We DO NOT accept H0 — more on this later.)

6. Check assumptions of the test, when possible (could do earlier to save

yourself some effort if they are not met).

The process is represented graphically below. The area under the t-probability

curve outside ±tcrit is the size of the test, α. One-half α is the area in each tail.

You reject H0 in favor of HA only if the test statistic is outside ±tcrit.

    0   
tcrit− tcrit

Reject H0Reject H0

1 − α α
2

α
2

2.3.1 P-values

The p-value, or observed significance level for the test, provides a mea-

sure of plausibility for H0. Smaller values of the p-value imply that H0 is less

plausible. To compute the p-value for a two-sided test, you

1. Compute the test statistic ts as above.

2. Evaluate the area under the t-probability curve (with df = n−1) outside

±|ts|.
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    0   ts− ts

p−value
2

p−value
2

The p-value is the total shaded area, or twice the area in either tail. A use-

ful interpretation of the p-value is that it is the chance of obtaining data

favoring HA by this much or more if H0 actually is true. Another interpre-

tation is that

the p-value is the probability of observing a sample mean at

least as extreme as the one observed assuming µ0 from H0 is

the true population mean.

If the p-value is small then the sample we obtained is pretty unusual to have

obtained if H0 is true — but we actually got the sample, so probably it is not

very unusual, so we would conclude H0 is false (it would not be unusual if HA

is true).

Most, if not all, statistical packages summarize hypothesis tests with a p-

value, rather than a decision (i.e., reject or not reject at a given α level). You

can make a decision to reject or not reject H0 for a size α test based on the

p-value as follows — reject H0 if the p-value is less than α. This decision is

identical to that obtained following the formal rejection procedure given earlier.

The reason for this is that the p-value can be interpreted as the smallest value

you can set the size of the test and still reject H0 given the observed data.
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There are a lot of terms to keep straight here. α and tcrit are constants

we choose (actually, one determines the other so we really only choose one,

usually α) to set how rigorous evidence against H0 needs to be. ts and the

p-value (again, one determines the other) are random variables because they

are calculated from the random sample. They are the evidence against H0.

2.3.2 Assumptions for procedures

I described the classical t-test, which assumes that the data are a random sample

from the population and that the population frequency curve is normal. These

are the same assumptions as for the CI.

Example: Age at First Transplant (Revisited) The ages (in years)

at first transplant for a sample of 11 heart transplant patients are as follows:

54, 42, 51, 54, 49, 56, 33, 58, 54, 64, 49. Summaries for these data are: n = 11,

Ȳ = 51.27, s = 8.26 and SEȲ = 2.4904. Test the hypothesis that the mean

age at first transplant is 50. Use α = 0.05.

As in the earlier analysis, define

µ = mean age at time of first transplant for population of patients.

We are interested in testing H0 : µ = 50 against HA : µ 6= 50, so µ0 = 50.

The degrees of freedom are df = 11 − 1 = 10. The critical value for a 5%

test is tcrit = t0.025 = 2.228. (Note α/2 = 0.05/2 = 0.025). The same critical

value was used with the 95% CI.

For the test,

ts =
Ȳ − µ0

SEȲ

=
51.27− 50

2.4904
= 0.51.

Since tcrit = 2.228, we do not reject H0 using a 5% test. Notice the placement

of ts relative to tcrit in the picture below. Equivalently, the p-value for the test

is 0.62, thus we fail to reject H0 because 0.62 > 0.05 = α. The results of

the hypothesis test should not be surprising, since the CI tells you that 50 is a

plausible value for the population mean age at transplant. Note: All you can
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say is that the data could have come from a distribution with a mean of 50 —

this is not convincing evidence that µ actually is 50.

    0   
2.228−2.228

Reject H0Reject H0

.95
.025.025

0.51

ts in middle of distribution, so do not reject H0

    0   
.51−.51

Total shaded area is the p−value, .62

Example: Age at First Transplant R output for the heart transplant

problem is given below. Let us look at the output and find all of the summaries

we computed. Also, look at the graphical summaries to assess whether the

t-test and CI are reasonable here.
#### Example: Age at First Transplant

# enter data as a vector

age <- c(54, 42, 51, 54, 49, 56, 33, 58, 54, 64, 49)

The age data is unimodal, skewed left, no extreme outliers.
par(mfrow=c(2,1))

# Histogram overlaid with kernel density curve

hist(age, freq = FALSE, breaks = 6)

points(density(age), type = "l")

rug(age)

# violin plot

library(vioplot)

vioplot(age, horizontal=TRUE, col="gray")
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Histogram of age
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# stem-and-leaf plot

stem(age, scale=2)

##

## The decimal point is 1 digit(s) to the right of the |

##

## 3 | 3

## 3 |

## 4 | 2

## 4 | 99

## 5 | 1444

## 5 | 68

## 6 | 4

# t.crit

qt(1 - 0.05/2, df = length(age) - 1)

## [1] 2.228139

# look at help for t.test

?t.test

# defaults include: alternative = "two.sided", conf.level = 0.95

t.summary <- t.test(age, mu = 50)

t.summary

##

## One Sample t-test

##

## data: age

## t = 0.51107, df = 10, p-value = 0.6204

## alternative hypothesis: true mean is not equal to 50

## 95 percent confidence interval:

## 45.72397 56.82149
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## sample estimates:

## mean of x

## 51.27273

summary(age)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 33.00 49.00 54.00 51.27 55.00 64.00

The assumption of normality of the sampling distribution appears reason-
ablly close, using the bootstrap discussed earlier. Therefore, the results for the
t-test above can be trusted.
bs.one.samp.dist(age)

Plot of data with smoothed density curve

dat

D
en

si
ty

30 35 40 45 50 55 60 65

0.
00

0.
04

Bootstrap sampling distribution of the mean

Data: n = 11 , mean = 51.273 , se = 2.49031 5

D
en

si
ty

40 45 50 55 60

0.
00

0.
05

0.
10

0.
15

Aside: To print the shaded region for the p-value, you can use the result of
t.test() with the function t.dist.pval() defined here.
# Function to plot t-distribution with shaded p-value

t.dist.pval <- function(t.summary) {
par(mfrow=c(1,1))

lim.extreme <- max(4, abs(t.summary$statistic) + 0.5)

lim.lower <- -lim.extreme;

lim.upper <- lim.extreme;

x.curve <- seq(lim.lower, lim.upper, length=200)

y.curve <- dt(x.curve, df = t.summary$parameter)

plot(x.curve, y.curve, type = "n"

, ylab = paste("t-dist( df =", signif(t.summary$parameter, 3), ")")

, xlab = paste("t-stat =", signif(t.summary$statistic, 5)

, ", Shaded area is p-value =", signif(t.summary$p.value, 5)))

if ((t.summary$alternative == "less")

| (t.summary$alternative == "two.sided")) {
x.pval.l <- seq(lim.lower, -abs(t.summary$statistic), length=200)
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y.pval.l <- dt(x.pval.l, df = t.summary$parameter)

polygon(c(lim.lower, x.pval.l, -abs(t.summary$statistic))

, c(0, y.pval.l, 0), col="gray")

}
if ((t.summary$alternative == "greater")

| (t.summary$alternative == "two.sided")) {
x.pval.u <- seq(abs(t.summary$statistic), lim.upper, length=200)

y.pval.u <- dt(x.pval.u, df = t.summary$parameter)

polygon(c(abs(t.summary$statistic), x.pval.u, lim.upper)

, c(0, y.pval.u, 0), col="gray")

}
points(x.curve, y.curve, type = "l", lwd = 2, col = "black")

}

# for the age example

t.dist.pval(t.summary)
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Aside: Note that the t.summary object returned from t.test() includes a
number of quantities that might be useful for additional calculations.
names(t.summary)

## [1] "statistic" "parameter" "p.value" "conf.int"
## [5] "estimate" "null.value" "alternative" "method"
## [9] "data.name"

t.summary$statistic

## t
## 0.5110715

t.summary$parameter

## df
## 10

t.summary$p.value

## [1] 0.6203942

t.summary$conf.int
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## [1] 45.72397 56.82149
## attr(,"conf.level")
## [1] 0.95

t.summary$estimate

## mean of x
## 51.27273

t.summary$null.value

## mean
## 50

t.summary$alternative

## [1] "two.sided"

t.summary$method

## [1] "One Sample t-test"

t.summary$data.name

## [1] "age"

Example: Meteorites One theory of the formation of the solar system

states that all solar system meteorites have the same evolutionary history and

thus have the same cooling rates. By a delicate analysis based on measure-

ments of phosphide crystal widths and phosphide-nickel content, the cooling

rates, in degrees Celsius per million years, were determined for samples taken

from meteorites named in the accompanying table after the places they were

found. The Walker2 County (Alabama, US), Uwet3 (Cross River, Nigeria), and

Tocopilla4 (Antofagasta, Chile) meteorite cooling rate data are below.

Suppose that a hypothesis of solar evolution predicted a mean cooling rate of

µ = 0.54 degrees per million years for the Tocopilla meteorite. Do the observed

cooling rates support this hypothesis? Test at the 5% level. The boxplot and

stem-and-leaf display (given below) show good symmetry. The assumption of

a normal distribution of observations basic to the t-test appears to be realistic.

Meteorite Cooling rates

Walker County 0.69 0.23 0.10 0.03 0.56 0.10 0.01 0.02 0.04 0.22

Uwet 0.21 0.25 0.16 0.23 0.47 1.20 0.29 1.10 0.16

Tocopilla 5.60 2.70 6.20 2.90 1.50 4.00 4.30 3.00 3.60 2.40 6.70 3.80

Let

2http://www.lpi.usra.edu/meteor/metbull.php?code=24204
3http://www.lpi.usra.edu/meteor/metbull.php?code=24138
4http://www.lpi.usra.edu/meteor/metbull.php?code=17001
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µ = mean cooling rate over all pieces of the Tocopilla meteorite.

To answer the question of interest, we consider the test of H0 : µ = 0.54 against

HA : µ 6= 0.54. Let us go carry out the test, compute the p-value, and calculate

a 95% CI for µ. The sample summaries are n = 12, Ȳ = 3.892, s = 1.583.

The standard error is SEȲ = s/
√
n = 0.457.

R output for this problem is given below. For a 5% test (i.e., α = 0.05), you

would reject H0 in favor of HA because the p-value ≤ 0.05. The data strongly

suggest that µ 6= 0.54. The 95% CI says that you are 95% confident that the

population mean cooling rate for the Tocopilla meteorite is between 2.89 and

4.90 degrees per million years. Note that the CI gives us a means to assess how

different µ is from the hypothesized value of 0.54.
#### Example: Meteorites

# enter data as a vector

toco <- c(5.6, 2.7, 6.2, 2.9, 1.5, 4.0, 4.3, 3.0, 3.6, 2.4, 6.7, 3.8)

The Tocopilla data is unimodal, skewed right, no extreme outliers.
par(mfrow=c(2,1))

# Histogram overlaid with kernel density curve

hist(toco, freq = FALSE, breaks = 6)

points(density(toco), type = "l")

rug(toco)

# violin plot

library(vioplot)

vioplot(toco, horizontal=TRUE, col="gray")
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# stem-and-leaf plot

stem(toco, scale=2)

##

## The decimal point is at the |

##

## 1 | 5

## 2 | 479

## 3 | 068

## 4 | 03

## 5 | 6

## 6 | 27

# t.crit

qt(1 - 0.05/2, df = length(toco) - 1)

## [1] 2.200985

t.summary <- t.test(toco, mu = 0.54)

t.summary

##

## One Sample t-test

##

## data: toco

## t = 7.3366, df = 11, p-value = 1.473e-05

## alternative hypothesis: true mean is not equal to 0.54

## 95 percent confidence interval:

## 2.886161 4.897172

## sample estimates:

## mean of x

## 3.891667

summary(toco)
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## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 1.500 2.850 3.700 3.892 4.625 6.700

The assumption of normality of the sampling distribution appears reason-
able. Therefore, the results for the t-test above can be trusted.
t.dist.pval(t.summary)

bs.one.samp.dist(toco)
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Plot of data with smoothed density curve
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2.3.3 The mechanics of setting up hypothesis tests

When setting up a test you should imagine you are the researcher conducting the

experiment. In many studies, the researcher wishes to establish that there has

been a change from the status quo, or that they have developed a method that

produces a change (possibly in a specified direction) in the typical response.

The researcher sets H0 to be the status quo and HA to be the research

hypothesis — the claim the researcher wishes to make. In some studies you

define the hypotheses so that HA is the take action hypothesis — rejecting

H0 in favor of HA leads one to take a radical action.

Some perspective on testing is gained by understanding the mechanics be-

hind the tests. A hypothesis test is a decision process in the face of uncertainty.

You are given data and asked which of two contradictory claims about a pop-
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ulation parameter, say µ, is more reasonable. Two decisions are possible, but

whether you make the correct decision depends on the true state of nature

which is unknown to you.

State of nature

Decision H0 true HA true

Fail to reject [accept] H0 correct decision Type-II error

Reject H0 in favor of HA Type-I error correct decision

For a given problem, only one of these errors is possible. For example, if H0

is true you can make a Type-I error but not a Type-II error. Any reasonable

decision rule based on the data that tells us when to reject H0 and when to

not reject H0 will have a certain probability of making a Type-I error if H0 is

true, and a corresponding probability of making a Type-II error if H0 is false

and HA is true. For a given decision rule, define

α = Prob( Reject H0 given H0 is true ) = Prob( Type-I error )

and

β = Prob( Fail to reject H0 when HA true ) = Prob( Type-II error ).

The mathematics behind hypothesis tests allows you to prespecify or control

α. For a given α, the tests we use (typically) have the smallest possible value

of β. Given the researcher can control α, you set up the hypotheses so that

committing a Type-I error is more serious than committing a Type-II error.

The magnitude of α, also called the size or level of the test, should depend

on the seriousness of a Type-I error in the given problem. The more serious

the consequences of a Type-I error, the smaller α should be. In practice α is

often set to 0.10, 0.05, or 0.01, with α = 0.05 being the scientific standard. By

setting α to be a small value, you reject H0 in favor of HA only if the data

convincingly indicate that H0 is false.

Let us piece together these ideas for the meteorite problem. Evolutionary

history predicts µ = 0.54. A scientist examining the validity of the theory is

trying to decide whether µ = 0.54 or µ 6= 0.54. Good scientific practice dictates

that rejecting another’s claim when it is true is more serious than not being able

to reject it when it is false. This is consistent with defining H0 : µ = 0.54 (the
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status quo) and HA : µ 6= 0.54. To convince yourself, note that the implications

of a Type-I error would be to claim the evolutionary theory is false when it is

true, whereas a Type-II error would correspond to not being able to refute the

evolutionary theory when it is false. With this setup, the scientist will refute

the theory only if the data overwhelmingly suggest that it is false.

2.3.4 The effect of α on the rejection region of a two-
sided test

For a size α test, you reject H0 : µ = µ0 if

ts =
Ȳ − µ0

SEȲ

satisfies |ts| > tcrit.

Prof. Erik B. Erhardt



2.3: Hypothesis Testing for µ 93

    0   

3.106

2.201

    0   

3.106

2.201

3.106

−2.201

    0   

3.106

2.201

−3.106

−2.201

Rejection Regions for .05 and .01 level tests

The critical value is computed so that the area under the t-probability curve

(with df = n − 1) outside ±tcrit is α, with 0.5α in each tail. Reducing α

makes tcrit larger. That is, reducing the size of the test makes rejecting H0

harder because the rejection region is smaller. A pictorial representation is

given above for the Tocopilla data, where µ0 = 0.54, n = 12, and df = 11.

Note that tcrit = 2.201 and 3.106 for α = 0.05 and 0.01, respectively.

The mathematics behind the test presumes that H0 is true. Given the data,

you use

ts =
Ȳ − µ0

SEȲ

to measure how far Ȳ is from µ0, relative to the spread in the data given by

SEȲ . For ts to be in the rejection region, Ȳ must be significantly above or

below µ0, relative to the spread in the data. To see this, note that rejection
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rule can be expressed as: Reject H0 if

Ȳ < µ0 − tcritSEȲ or Ȳ > µ0 + tcritSEȲ .

The rejection rule is sensible because Ȳ is our best guess for µ. You would

reject H0 : µ = µ0 only if Ȳ is so far from µ0 that you would question the

reasonableness of assuming µ = µ0. How far Ȳ must be from µ0 before you

reject H0 depends on α (i.e., how willing you are to reject H0 if it is true), and

on the value of SEȲ . For a given sample, reducing α forces Ȳ to be further

from µ0 before you reject H0. For a given value of α and s, increasing n allows

smaller differences between Ȳ and µ0 to be statistically significant (i.e.,

lead to rejecting H0). In problems where small differences between Ȳ and µ0

lead to rejecting H0, you need to consider whether the observed differences are

important.

In essence, the t-distribution provides an objective way to calibrate whether

the observed Ȳ is typical of what sample means look like when sampling from

a normal population where H0 is true. If all other assumptions are satisfied,

and Ȳ is inordinately far from µ0, then our only recourse is to conclude that

H0 must be incorrect.

2.4 Two-sided tests, CI and p-values

An important relationship among two-sided tests of H0 : µ = µ0, CI, and

p-values is that

size α test rejects H0 ⇔ 100(1− α)% CI does not contain

µ0 ⇔ p-value ≤ α, and

size α test fails to reject H0 ⇔ 100(1−α)% CI contains µ0 ⇔ p-value > α.

For example, an α = 0.05 test rejects H0 ⇔ 95% CI does not contain

µ0 ⇔ p-value ≤ 0.05. The picture below illustrates the connection between

p-values and rejection regions.
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Either a CI or a test can be used to decide the plausibility of the claim

that µ = µ0. Typically, you use the test to answer the question is there

a difference? If so, you use the CI to assess how much of a difference

exists. I believe that scientists place too much emphasis on hypothesis testing.

2.5 Statistical versus practical significance

Suppose in the Tocopilla meteorite example, you rejected H0 : µ = 0.54 at

the 5% level and found a 95% two-sided CI for µ to be 0.55 to 0.58. Although

you have sufficient evidence to conclude that the population mean cooling rate

µ differs from that suggested by evolutionary theory, the range of plausible

values for µ is small and contains only values close to 0.54. Although you have
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shown statistical significance here, you need to ask yourself whether the actual

difference between µ and 0.54 is large enough to be important. The answer to

such questions is always problem specific.

2.6 Design issues and power

An experiment may not be sensitive enough to pick up true differences. For

example, in the Tocopilla meteorite example, suppose the true mean cooling

rate is µ = 1.00. To have a 50% chance of correctly rejecting H0 : µ = 0.54,

you would need about n = 48 observations. If the true mean is µ = 0.75, you

would need about 221 observations to have a 50% chance of correctly rejecting

H0. In general, the smaller the difference between the true and hypothesized

mean (relative to the spread in the population), the more data that is needed

to reject H0. If you have prior information on the expected difference between

the true and hypothesized mean, you can design an experiment appropriately

by choosing the sample size required to likely reject H0.

The power of a test is the probability of correctly rejecting H0 when it is

false. Equivalently,

power = 1 − Prob( failing to reject H0 when it is false ) = 1 − Prob( Type-II

error ).

For a given sample size, the tests I have discussed have maximum power (or

smallest probability of a Type-II error) among all tests with fixed size α. How-

ever, the actual power may be small, so sample size calculations, as briefly

highlighted above, are important prior to collecting data. See your local statis-

tician.
#### Power calculations (that you can do on your own)

# install.packages("pwr")

library(pwr)

?power.t.test

power.t.test(n = NULL, delta = 1.00 - 0.54, sd = sd(toco),

, sig.level = 0.05, power = 0.50

, type = "one.sample", alternative = "two.sided")

power.t.test(n = NULL, delta = 0.75 - 0.54, sd = sd(toco),

, sig.level = 0.05, power = 0.50
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, type = "one.sample", alternative = "two.sided")

For more examples, try:
# install.packages("TeachingDemos")

library(TeachingDemos)

# Demonstrate concepts of Power.

?power.examp

2.7 One-sided tests on µ

There are many studies where a one-sided test is appropriate. The two common

scenarios are the lower one-sided test H0 : µ = µ0 (or µ ≥ µ0) versus

HA : µ < µ0 and the upper one-sided test H0 : µ = µ0 (or µ ≤ µ0) versus

HA : µ > µ0. Regardless of the alternative hypothesis, the tests are based on

the t-statistic:

ts =
Ȳ − µ0

SEȲ

.

For the upper one-sided test

1. Compute the critical value tcrit such that the area under the t-curve to

the right of tcrit is the desired size α, that is tcrit = tα.

2. Reject H0 if and only if ts ≥ tcrit.

3. The p-value for the test is the area under the t-curve to the right of the

test statistic ts.

The upper one-sided test uses the upper tail of the t-distribution for

a rejection region. The p-value calculation reflects the form of the rejection

region. You will reject H0 only for large positive values of ts which require Ȳ

to be significantly greater than µ0. Does this make sense?

For the lower one-sided test

1. Compute the critical value tcrit such that the area under the t-curve to

the right of tcrit is the desired size α, that is tcrit = tα.

2. Reject H0 if and only if ts ≤ −tcrit.

3. The p-value for the test is the area under the t-curve to the left of the

test statistic ts.
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The lower one-sided test uses the lower tail of the t-distribution for

a rejection region. The calculation of the rejection region in terms of −tcrit is

awkward but is necessary for hand calculations because many statistical tables

only give upper tail percentiles. Note that here you will reject H0 only for large

negative values of ts which require Ȳ to be significantly less than µ0.

As with two-sided tests, the p-value can be used to decide between rejecting

or not rejecting H0 for a test with a given size α. A picture of the rejection

region and the p-value evaluation for one-sided tests is given below.
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ClickerQ s — One-sided tests on µ

Example: Weights of canned tomatoes A consumer group suspects

that the average weight of canned tomatoes being produced by a large cannery
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is less than the advertised weight of 20 ounces. To check their conjecture, the

group purchases 14 cans of the canner’s tomatoes from various grocery stores.

The weights of the contents of the cans to the nearest half ounce were as follows:

20.5, 18.5, 20.0, 19.5, 19.5, 21.0, 17.5, 22.5, 20.0, 19.5, 18.5, 20.0, 18.0, 20.5. Do

the data confirm the group’s suspicions? Test at the 5% level.

Let µ = the population mean weight for advertised 20 ounce cans of toma-

toes produced by the cannery. The company claims that µ = 20, but the

consumer group believes that µ < 20. Hence the consumer group wishes to

test H0 : µ = 20 (or µ ≥ 20) against HA : µ < 20. The consumer group will

reject H0 only if the data overwhelmingly suggest that H0 is false.

You should assess the normality assumption prior to performing the t-test.

The stem-and-leaf display and the boxplot suggest that the distribution might

be slightly skewed to the left. However, the skewness is not severe and no

outliers are present, so the normality assumption is not unreasonable.

R output for the problem is given below. Let us do a hand calculation using

the summarized data. The sample size, mean, and standard deviation are 14,

19.679, and 1.295, respectively. The standard error is SEȲ = s/
√
n = 0.346.

We see that the sample mean is less than 20. But is it sufficiently less than 20

for us to be willing to publicly refute the canner’s claim? Let us carry out the

test, first using the rejection region approach, and then by evaluating a p-value.

The test statistic is

ts =
Ȳ − µ0

SEȲ

=
19.679− 20

0.346
= −0.93.

The critical value for a 5% one-sided test is t0.05 = 1.771, so we reject H0

if ts < −1.771 (you can get that value from r or from the table). The test

statistic is not in the rejection region. Using the t-table, the p-value is between

0.15 and 0.20. I will draw a picture to illustrate the critical region and p-value

calculation. The exact p-value from R is 0.185, which exceeds 0.05.

Both approaches lead to the conclusion that we do not have sufficient evi-

dence to reject H0. That is, we do not have sufficient evidence to question the

accuracy of the canner’s claim. If you did reject H0, is there something about
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how the data were recorded that might make you uncomfortable about your

conclusions?
#### Example: Weights of canned tomatoes

tomato <- c(20.5, 18.5, 20.0, 19.5, 19.5, 21.0, 17.5

, 22.5, 20.0, 19.5, 18.5, 20.0, 18.0, 20.5)

par(mfrow=c(2,1))

# Histogram overlaid with kernel density curve

hist(tomato, freq = FALSE, breaks = 6)

points(density(tomato), type = "l")

rug(tomato)

# violin plot

library(vioplot)

vioplot(tomato, horizontal=TRUE, col="gray")

# t.crit

qt(1 - 0.05/2, df = length(tomato) - 1)

## [1] 2.160369

t.summary <- t.test(tomato, mu = 20, alternative = "less")

t.summary

##

## One Sample t-test

##

## data: tomato

## t = -0.92866, df = 13, p-value = 0.185

## alternative hypothesis: true mean is less than 20

## 95 percent confidence interval:

## -Inf 20.29153

## sample estimates:

## mean of x

## 19.67857

summary(tomato)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 17.50 18.75 19.75 19.68 20.38 22.50
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The assumption of normality of the sampling distribution appears reason-
able. Therefore, the results for the t-test above can be trusted.
t.dist.pval(t.summary)

bs.one.samp.dist(tomato)
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Bootstrap sampling distribution of the mean
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2.7.1 One-sided CIs

How should you couple a one-sided test with a CI procedure? For a lower one-

sided test, you are interested only in an upper bound on µ. Similarly,

with an upper one-sided test you are interested in a lower bound on

µ. Computing these type of bounds maintains the consistency between tests

and CI procedures. The general formulas for lower and upper 100(1 − α)%

confidence bounds on µ are given by

Ȳ − tcritSEȲ and Ȳ + tcritSEȲ

respectively, where tcrit = tα.

In the cannery problem, to get an upper 95% bound on µ, the critical value

is the same as we used for the one-sided 5% test: t0.05 = 1.771. The upper

bound on µ is

Ȳ + t0.05SEȲ = 19.679 + 1.771× 0.346 = 19.679 + 0.613 = 20.292.

Thus, you are 95% confident that the population mean weight of the canner’s

20oz cans of tomatoes is less than or equal to 20.29. As expected, this interval

covers 20.

If you are doing a one-sided test in R, it will generate the correct one-sided

bound. That is, a lower one-sided test will generate an upper bound, whereas

an upper one-sided test generates a lower bound. If you only wish to compute

a one-sided bound without doing a test, you need to specify the direction of

the alternative which gives the type of bound you need. An upper bound was

generated by R as part of the test we performed earlier. The result agrees with

the hand calculation.

Quite a few packages, do not directly compute one-sided bounds so you have

to fudge a bit. In the cannery problem, to get an upper 95% bound on µ, you

take the upper limit from a 90% two-sided confidence limit on µ. The rational

for this is that with the 90% two-sided CI, µ will fall above the upper limit

5% of the time and fall below the lower limit 5% of the time. Thus, you are

95% confident that µ falls below the upper limit of this interval, which gives us
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our one-sided bound. Here, you are 95% confident that the population mean

weight of the canner’s 20 oz cans of tomatoes is less than or equal to 20.29,

which agrees with our hand calculation.
One-Sample T: Cans
Variable N Mean StDev SE Mean 90% CI
Cans 14 19.6786 1.2951 0.3461 (19.0656, 20.2915)

The same logic applies if you want to generalize the one-sided confidence

bounds to arbitrary confidence levels and to lower one-sided bounds — always

double the error rate of the desired one-sided bound to get the error rate of the

required two-sided interval! For example, if you want a lower 99% bound on

µ (with a 1% error rate), use the lower limit on the 98% two-sided CI for µ

(which has a 2% error rate).

ClickerQ s — P-value
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## Warning in file(filename, "r", encoding = encoding): cannot

open file ’ADA1 12 RFunctions.R’: No such file or directory

## Error in file(filename, "r", encoding = encoding): cannot

open the connection
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Learning objectives

After completing this topic, you should be able to:

select graphical displays that meaningfully compare independent popula-

tions.

assess the assumptions of the two-sample t-test visually.

decide whether the means between two populations are different.

recommend action based on a hypothesis test.

Achieving these goals contributes to mastery in these course learning outcomes:

1. organize knowledge.

5. define parameters of interest and hypotheses in words and notation.

6. summarize data visually, numerically, and descriptively.

8. use statistical software.

12. make evidence-based decisions.

3.1 Comparing Two Sets of Measurements

Suppose you have collected data on one variable from two (independent) sam-

ples and you are interested in “comparing” the samples. What tools are good

to use?

Example: Head Breadths In this analysis, we will compare a physical

feature of modern day Englishmen with the corresponding feature of some of

their ancient countrymen. The Celts were a vigorous race of people who once

populated parts of England. It is not entirely clear whether they simply died

out or merged with other people who were the ancestors of those who live in

England today. A goal of this study might be to shed some light on possible

genetic links between the two groups.

The study is based on the comparison of maximum head breadths (in mil-

limeters) made on unearthed Celtic skulls and on a number of skulls of modern-

day Englishmen. The data are given below. We have a sample of 18 Englishmen

and an independent sample of 16 Celtic skulls.
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#### Example: Head Breadths

# unstacked data as two vectors

english <- c(141, 148, 132, 138, 154, 142, 150, 146, 155, 158,

150, 140, 147, 148, 144, 150, 149, 145)

celts <- c(133, 138, 130, 138, 134, 127, 128, 138, 136, 131,

126, 120, 124, 132, 132, 125)

english

## [1] 141 148 132 138 154 142 150 146 155 158 150 140 147 148 144 150

## [17] 149 145

celts

## [1] 133 138 130 138 134 127 128 138 136 131 126 120 124 132 132 125

What features of these data would we likely be interested in comparing?

The centers of the distributions, the spreads within each distribution, the dis-

tributional shapes, etc.

These data can be analyzed in R as either unstacked separate vectors or as

stacked data where one column contains both samples, with a second column

of labels or subscripts to distinguish the samples. It is easy to create stacked

data from unstacked data and vice-versa. Many comparisons require the plots

for the two groups to have the same scale, which is easiest to control when the

data are stacked.
# stacked data as a vector of values and a vector of labels

HeadBreadth <- c(english, celts)

Group <- c(rep("English", length(english)), rep("Celts", length(celts)))

hb <- data.frame(HeadBreadth, Group)

hb

## HeadBreadth Group

## 1 141 English

## 2 148 English

## 3 132 English

## 4 138 English

## 5 154 English

## 6 142 English

## 7 150 English

## 8 146 English

## 9 155 English

## 10 158 English

## 11 150 English

## 12 140 English

## 13 147 English

## 14 148 English

## 15 144 English
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## 16 150 English

## 17 149 English

## 18 145 English

## 19 133 Celts

## 20 138 Celts

## 21 130 Celts

## 22 138 Celts

## 23 134 Celts

## 24 127 Celts

## 25 128 Celts

## 26 138 Celts

## 27 136 Celts

## 28 131 Celts

## 29 126 Celts

## 30 120 Celts

## 31 124 Celts

## 32 132 Celts

## 33 132 Celts

## 34 125 Celts

3.1.1 Plotting head breadth data:

1. A dotplot with the same scale for both samples is obtained easily from

the stacked data.
#### Plotting head breadth data

# stripchart (dotplot) using R base graphics

stripchart(HeadBreadth ~ Group, method = "stack", data = hb,

main = "Head breadth comparison", xlab = "head breadth (mm)")

# stripchart (dotplot) using ggplot

library(ggplot2)

p <- ggplot(hb, aes(x = HeadBreadth))

p <- p + geom_dotplot(binwidth = 2)

p <- p + facet_grid(Group ~ .) # rows are Group categories

p <- p + labs(title = "Head breadth comparison") + xlab("head breadth (mm)")

print(p)
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2. Boxplots for comparison are most helpful when plotted in the same axes.

# boxplot using R base graphics

boxplot(HeadBreadth ~ Group, method = "stack", data = hb,

horizontal = TRUE,

main = "Head breadth comparison", xlab = "head breadth (mm)")

p <- ggplot(hb, aes(x = Group, y = HeadBreadth))

p <- p + geom_boxplot()

# add a "+" at the mean

p <- p + stat_summary(fun.y = mean, geom = "point", shape = 3, size = 2)

p <- p + coord_flip()

p <- p + labs(title = "Head breadth comparison")

print(p)
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3. Histograms are hard to compare unless you make the scale and actual

bins the same for both. Why is the pair on the right clearly preferable?

# histogram using R base graphics

par(mfcol=c(2,2))

hist(hb$HeadBreadth[(hb$Group == "Celts")],

main = "Head breadth, Celts", xlab = "head breadth (mm)")

hist(hb$HeadBreadth[(hb$Group == "English")],

main = "Head breadth, English", xlab = "head breadth (mm)")

# common x-axis limits based on the range of the entire data set

hist(hb$HeadBreadth[(hb$Group == "Celts")], xlim = range(hb$HeadBreadth),

main = "Head breadth, Celts", xlab = "head breadth (mm)")

hist(hb$HeadBreadth[(hb$Group == "English")], xlim = range(hb$HeadBreadth),

main = "Head breadth, English", xlab = "head breadth (mm)")
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# histogram using ggplot

p <- ggplot(hb, aes(x = HeadBreadth))

p <- p + geom_histogram(binwidth = 4)

p <- p + geom_rug()

p <- p + facet_grid(Group ~ .)

p <- p + labs(title = "Head breadth comparison") + xlab("head breadth (mm)")

print(p)
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p <- ggplot(hb, aes(x = HeadBreadth, fill=Group))

p <- p + geom_histogram(binwidth = 4, alpha = 0.5, position="identity")

p <- p + geom_rug(aes(colour=Group), alpha = 1/2)

p <- p + labs(title = "Head breadth comparison") + xlab("head breadth (mm)")

print(p)

p <- ggplot(hb, aes(x = HeadBreadth, fill=Group))

p <- p + geom_histogram(binwidth = 4, alpha = 1, position="dodge")

p <- p + geom_rug(aes(colour=Group), alpha = 1/2)

p <- p + labs(title = "Head breadth comparison") + xlab("head breadth (mm)")

print(p)
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4. Stem-and-leaf displays for comparisons in R can be pretty useless. The
stems are not forced to match (just like with histograms). It is pretty
hard to make quick comparisons with the following:
stem(english, scale = 2)

##

## The decimal point is 1 digit(s) to the right of the |

##

## 13 | 2

## 13 | 8

## 14 | 0124

## 14 | 567889

## 15 | 0004
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## 15 | 58

stem(celts, scale = 2)

##

## The decimal point is at the |

##

## 120 | 0

## 122 |

## 124 | 00

## 126 | 00

## 128 | 0

## 130 | 00

## 132 | 000

## 134 | 0

## 136 | 0

## 138 | 000

Using the by() function, you can get summaries by group.
#### summaries by group

# summary for separate vectors

summary(english)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 132.0 142.5 147.5 146.5 150.0 158.0

summary(celts)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 120.0 126.8 131.5 130.8 134.5 138.0

# comparing spreads, an assumption of equal variances seems reasonable

sd(english)

## [1] 6.382421

sd(celts)

## [1] 5.434458

IQR(english)

## [1] 7.5

IQR(celts)

## [1] 7.75

# numerical summary of each column in data.frame hb by Group

by(hb, Group, summary)

## Group: Celts

## HeadBreadth Group

## Min. :120.0 Celts :16

## 1st Qu.:126.8 English: 0

## Median :131.5

## Mean :130.8
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## 3rd Qu.:134.5

## Max. :138.0

## ----------------------------------------------------

## Group: English

## HeadBreadth Group

## Min. :132.0 Celts : 0

## 1st Qu.:142.5 English:18

## Median :147.5

## Mean :146.5

## 3rd Qu.:150.0

## Max. :158.0

3.1.2 Salient Features to Notice

The dotplots, boxplots, and histograms indicate that the English and Celt

samples are slightly skewed to the left. There are no outliers in either sample.

It is not unreasonable to operationally assume that the population frequency

curves (i.e., the histograms for the populations from which the samples were

selected) for the English and Celtic head breadths are normal. Therefore, the

sampling distribution of the means will be reasonably normal.

The sample means and medians are close to each other in each sample,

which is not surprising given the near symmetry and the lack of outliers.

The data suggest that the typical modern English head breadth is greater

than that for Celts. The data sets have comparable spreads, as measured by

either the standard deviation or the IQR.

3.2 Two-Sample Methods: Paired Versus
Independent Samples

Suppose you have two populations of interest, say populations 1 and 2, and

you are interested in comparing their (unknown) population means, µ1 and µ2.

Inferences on the unknown population means are based on samples from each

population. In practice, most problems fall into one of two categories.

Independent samples where the sample taken from population 1 has no
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effect on which observations are selected from population 2, and vice versa.

Paired or dependent samples where experimental units are paired based on

factors related or unrelated to the variable measured.

The distinction between paired and independent samples may be made clear

through a series of examples.

Example The English and Celt head breadth samples are independent.

Example Suppose you are interested in whether the CaCO3 (calcium car-

bonate) level in the Atrisco well field, which is the water source for Albuquerque,

is changing over time. To answer this question, the CaCO3 level was recorded

at each of 15 wells at two time points. These data are paired. The two samples

are the observations at Times 1 and 2.

Example To compare state incomes, a random sample of New Mexico house-

holds was selected, and an independent sample of Arizona households was ob-

tained. It is reasonable to assume independent samples.

Example Suppose you are interested in whether the husband or wife is typ-

ically the heavier smoker among couples where both adults smoke. Data are

collected on households. You measure the average number of cigarettes smoked

by each husband and wife within the sample of households. These data are

paired, i.e., you have selected husband wife pairs as the basis for the samples.

It is reasonable to believe that the responses within a pair are related, or cor-

related.

Although the focus here will be on comparing population means, you should

recognize that in paired samples you may also be interested, as in the problems

above, in how observations compare within a pair. That is, a paired compar-

ison might be interested in the difference between the two paired samples.

These goals need not agree, depending on the questions of interest. Note that

with paired data, the sample sizes are equal, and equal to the number of pairs.
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ClickerQ s — Independent or paired 1, STT.08.02.030

ClickerQ s — Independent or paired 2, STT.08.02.040

3.3 Two Independent Samples: CI and Test
Using Pooled Variance

These methods assume that the populations have normal frequency curves,

with equal population standard deviations, i.e., σ1 = σ2. Let (n1, Ȳ1, s1) and

(n2, Ȳ2, s2) be the sample sizes, means and standard deviations from the two

samples. The standard CI for µ1 − µ2 is given by

CI = (Ȳ1 − Ȳ2)± tcritSEȲ1−Ȳ2

The t-statistic for testing H0 : µ1−µ2 = 0 (µ1 = µ2) againstHA : µ1−µ2 6= 0

(µ1 6= µ2) is given by

ts =
Ȳ1 − Ȳ2

SEȲ1−Ȳ2
.

The standard error of Ȳ1 − Ȳ2 used in both the CI and the test is given by

SEȲ1−Ȳ2 = spooled

√
1

n1
+

1

n2
.

Here the pooled variance estimator,

s2
pooled =

(n1 − 1)s2
1 + (n2 − 1)s2

2

n1 + n2 − 2
,

is our best estimate of the common population variance. The pooled estimator

of variance is a weighted average of the two sample variances, with more weight

given to the larger sample. If n1 = n2 then s2
pooled is the average of s2

1 and s2
2.
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The critical value tcrit for CI and tests is obtained in usual way from a t-table

with df = n1 + n2− 2. For the test, follow the one-sample procedure, with the

new ts and tcrit.

The pooled CI and tests are sensitive to the normality and equal standard

deviation assumptions. The observed data can be used to assess the reason-

ableness of these assumptions. You should look at boxplots and histograms to

assess normality, and should check whether s1
.
= s2 to assess the assumption

σ1 = σ2. Formal tests of these assumptions will be discussed later.

3.4 Satterthwaite’s Method, unequal vari-
ances

Satterthwaite’s method assumes normality, but does not require equal

population standard deviations. Satterthwaite’s procedures are somewhat con-

servative, and adjust the SE and df to account for unequal population vari-

ances. Satterthwaite’s method uses the same CI and test statistic formula, with

a modified standard error:

SEȲ1−Ȳ2 =

√
s2

1

n1
+
s2

2

n2
,

and degrees of freedom:

df =

(
s21
n1

+
s22
n2

)2

s41
n21(n1−1)

+
s42

n22(n2−1)

.

Note that df = n1 +n2− 2 when n1 = n2 and s1 = s2. The Satterthwaite and

pooled variance procedures usually give similar results when s1
.
= s2.

The df formula for Satterthwaite’s method is fairly complex, so when done

by hand some use a conservative df formula that uses the minimum of n1 − 1

and n2 − 1 instead.
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3.4.1 R Implementation

R does the pooled and Satterthwaite (Welch) analyses, either on stacked or

unstacked data. The output will contain a p-value for a two-sided test of equal

population means and a CI for the difference in population means. If you

include var.equal = TRUE you will get the pooled method, otherwise the output

is for Satterthwaite’s method.

Example: Head Breadths The English and Celts are independent sam-

ples. We looked at boxplots and histograms, which suggested that the normality

assumption for the t-test is reasonable. The R output shows the English and

Celt sample standard deviations and IQRs are fairly close, so the pooled and

Satterthwaite results should be comparable. The pooled analysis is preferable

here, but either is appropriate.

We are interested in difference in mean head breadths between Celts and

English.

1. Define the population parameters and hypotheses in words

and notation

Let µ1 and µ2 be the mean head breadth for the Celts and English, respec-

tively.

In words: “The difference in population means between Celts and English is

different from zero mm.”

In notation: H0 : µ1 = µ2 versus HA : µ1 6= µ2.

Alternatively: H0 : µ1 − µ2 = 0 versus HA : µ1 − µ2 6= 0.
2. Calculate summary statistics from sample

Mean, standard deviation, sample size:
#### Calculate summary statistics

m1 <- mean(celts)

s1 <- sd(celts)

n1 <- length(celts)

m2 <- mean(english)

s2 <- sd(english)

n2 <- length(english)

c(m1, s1, n1)

## [1] 130.750000 5.434458 16.000000
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c(m2, s2, n2)

## [1] 146.500000 6.382421 18.000000

The pooled-standard devation, standard error, and degrees-of-freedom are:
sdpool <- sqrt(((n1 - 1) * s1^2 + (n2 - 1) * s2^2) / (n1 + n2 - 2))

sdpool

## [1] 5.956876

SEpool <- sdpool * sqrt(1 / n1 + 1 / n2)

SEpool

## [1] 2.046736

dfpool <- n1 + n2 - 2

dfpool

## [1] 32

t_pool <- (m1 - m2) / SEpool

t_pool

## [1] -7.69518

The Satterthwaite SE and degrees-of-freedom are:
SE_Sat <- sqrt(s1^2 / n1 + s2^2 / n2)

SE_Sat

## [1] 2.027043

df_Sat <- (SE_Sat^2)^2 / (s1^4 / (n1^2 * (n1 - 1)) + s2^4 / (n2^2 * (n2 - 1)))

df_Sat

## [1] 31.9511

t_Sat <- (m1 - m2) / SE_Sat

t_Sat

## [1] -7.769937

3. Specify confidence level, calculate t-stat, CI limits, p-value

Let us calculate a 95% CI for µ1 − µ2.
Assuming equal variances, using pooled-variance procedure:
## Equal variances

# var.equal = FALSE is the default

# two-sample t-test specifying two separate vectors

t.summary.eqvar <- t.test(celts, english, var.equal = TRUE)

t.summary.eqvar

##

## Two Sample t-test
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##

## data: celts and english

## t = -7.6952, df = 32, p-value = 9.003e-09

## alternative hypothesis: true difference in means is not equal to 0

## 95 percent confidence interval:

## -19.91906 -11.58094

## sample estimates:

## mean of x mean of y

## 130.75 146.50

Not assuming equal variances, Satterthwaite (Welch):

# two-sample t-test with unequal variances (Welch = Satterthwaite)

# specified using data.frame and a formula, HeadBreadth by Group

t.summary.uneqvar <- t.test(HeadBreadth ~ Group, data = hb, var.equal = FALSE)

t.summary.uneqvar

##

## Welch Two Sample t-test

##

## data: HeadBreadth by Group

## t = -7.7699, df = 31.951, p-value = 7.414e-09

## alternative hypothesis: true difference in means is not equal to 0

## 95 percent confidence interval:

## -19.8792 -11.6208

## sample estimates:

## mean in group Celts mean in group English

## 130.75 146.50

The form of the output will tell you which sample corresponds to population

1 and which corresponds to population 2.

4. Summarize in words (Using the pooled-variance results.)

The pooled analysis strongly suggests that H0 : µ1 − µ2 = 0 is false, given

the large t-statistic of −7.7 and two-sided p-value of 9 × 10−9. Because

the p-value < 0.05 we reject the Null hypothesis in favor of the Alternative

hypothesis concluding that the difference in population mean head breadths

between the Celts and English are different.

We are 95% confident that the difference in population means, µ1 − µ2, is

between −19.9 and −11.6 mm. That is, we are 95% confident that the

population mean head breadth for Englishmen (µ2) exceeds the population

mean head breadth for Celts (µ1) by between 11.6 and 19.9 mm.

The CI interpretation is made easier by recognizing that we concluded the

population means are different, so the direction of difference must be con-
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sistent with that seen in the observed data, where the sample mean head

breadth for Englishmen exceeds that for the Celts. Thus, the limits on the

CI for µ1 − µ2 tells us how much smaller the mean is for the Celts (that is,

between −19.9 and −11.6 mm).

5. Check assumptions

The assumption of equal population variances will be left to a later chapter.

We can test the assumption that the distribution of Ȳ1 − Ȳ2 is normal using

the bootstrap in the following function.
#### Visual comparison of whether sampling distribution is close to Normal via Bootstrap
# a function to compare the bootstrap sampling distribution
# of the difference of means from two samples with
# a normal distribution with mean and SEM estimated from the data
bs.two.samp.diff.dist <- function(dat1, dat2, N = 1e4) {
n1 <- length(dat1);
n2 <- length(dat2);
# resample from data
sam1 <- matrix(sample(dat1, size = N * n1, replace = TRUE), ncol=N);
sam2 <- matrix(sample(dat2, size = N * n2, replace = TRUE), ncol=N);
# calculate the means and take difference between populations
sam1.mean <- colMeans(sam1);
sam2.mean <- colMeans(sam2);
diff.mean <- sam1.mean - sam2.mean;
# save par() settings
old.par <- par(no.readonly = TRUE)
# make smaller margins
par(mfrow=c(3,1), mar=c(3,2,2,1), oma=c(1,1,1,1))
# Histogram overlaid with kernel density curve
hist(dat1, freq = FALSE, breaks = 6

, main = paste("Sample 1", "\n"
, "n =", n1
, ", mean =", signif(mean(dat1), digits = 5)
, ", sd =", signif(sd(dat1), digits = 5))

, xlim = range(c(dat1, dat2)))
points(density(dat1), type = "l")
rug(dat1)

hist(dat2, freq = FALSE, breaks = 6
, main = paste("Sample 2", "\n"

, "n =", n2
, ", mean =", signif(mean(dat2), digits = 5)
, ", sd =", signif(sd(dat2), digits = 5))

, xlim = range(c(dat1, dat2)))
points(density(dat2), type = "l")
rug(dat2)

hist(diff.mean, freq = FALSE, breaks = 25
, main = paste("Bootstrap sampling distribution of the difference in means", "\n"

, "mean =", signif(mean(diff.mean), digits = 5)
, ", se =", signif(sd(diff.mean), digits = 5)))

# overlay a density curve for the sample means
points(density(diff.mean), type = "l")
# overlay a normal distribution, bold and red
x <- seq(min(diff.mean), max(diff.mean), length = 1000)
points(x, dnorm(x, mean = mean(diff.mean), sd = sd(diff.mean))

, type = "l", lwd = 2, col = "red")
# place a rug of points under the plot
rug(diff.mean)
# restore par() settings
par(old.par)
}

The distribution of difference in means in the third plot looks very close to
normal.
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bs.two.samp.diff.dist(celts, english)

Sample 1 
 n = 16 , mean = 130.75 , sd = 5.4345
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ClickerQ s — t-interval, STT.08.02.010

Example: Androstenedione levels in diabetics The data consist of

independent samples of diabetic men and women. For each individual, the

scientist recorded their androstenedione level (ng/dL) (a hormone, and Mark

McGwire’s favorite dietary supplement). Let µ1 = mean androstenedione level

for the population of diabetic men, and µ2 = mean androstenedione level for the

population of diabetic women. We are interested in comparing the population

means given the observed data.
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The raw data and R output are given below. The boxplots suggest that the

distributions are reasonably symmetric. However, the normality assumption

for the women is unreasonable due to the presence of outliers. The equal pop-

ulation standard deviation assumption also appears unreasonable. The sample

standard deviation for men is noticeably larger than the women’s standard

deviation, even with outliers in the women’s sample.
#### Example: Androstenedione levels in diabetics

# Data and numerical summaries

men <- c(217, 123, 80, 140, 115, 135, 59, 126, 70, 63,

147, 122, 108, 70)

women <- c( 84, 87, 77, 84, 73, 66, 70, 35, 77, 73,

56, 112, 56, 84, 80, 101, 66, 84)

level <- c(men, women)

sex <- c(rep("men", length(men)), rep("women", length(women)))

andro <- data.frame(level, sex)

andro

## level sex

## 1 217 men

## 2 123 men

## 3 80 men

## 4 140 men

## 5 115 men

## 6 135 men

## 7 59 men

## 8 126 men

## 9 70 men

## 10 63 men

## 11 147 men

## 12 122 men

## 13 108 men

## 14 70 men

## 15 84 women

## 16 87 women

## 17 77 women

## 18 84 women

## 19 73 women

## 20 66 women

## 21 70 women

## 22 35 women

## 23 77 women

## 24 73 women

## 25 56 women

## 26 112 women

## 27 56 women

## 28 84 women
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## 29 80 women

## 30 101 women

## 31 66 women

## 32 84 women

# numerical summaries

by(andro, sex, summary)

## sex: men

## level sex

## Min. : 59.0 men :14

## 1st Qu.: 72.5 women: 0

## Median :118.5

## Mean :112.5

## 3rd Qu.:132.8

## Max. :217.0

## ----------------------------------------------------

## sex: women

## level sex

## Min. : 35.00 men : 0

## 1st Qu.: 67.00 women:18

## Median : 77.00

## Mean : 75.83

## 3rd Qu.: 84.00

## Max. :112.00

c(sd(men), sd(women), IQR(men), IQR(women), length(men), length(women))

## [1] 42.75467 17.23625 60.25000 17.00000 14.00000 18.00000

p <- ggplot(andro, aes(x = sex, y = level, fill=sex))

p <- p + geom_boxplot()

# add a "+" at the mean

p <- p + stat_summary(fun.y = mean, geom = "point", shape = 3, size = 2)

#p <- p + coord_flip()

p <- p + labs(title = "Androstenedione Levels in Diabetics")

print(p)

p <- ggplot(andro, aes(x = level, fill=sex))

p <- p + geom_histogram(binwidth = 20, alpha = 0.5, position="identity")

p <- p + geom_rug(aes(colour=sex), alpha = 1/2)

p <- p + labs(title = "Androstenedione Levels in Diabetics")

print(p)
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Because of the large difference in variances, I will be more comfortable
with the Satterthwaite analysis here than the pooled variance analysis. The
normality assumption of the difference in means appears to be met using the
bootstrap assessment. The distribution of difference in means in the third plot
looks very close to normal.
bs.two.samp.diff.dist(men, women)

Sample 1 
 n = 14 , mean = 112.5 , sd = 42.755
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1. Define the population parameters and hypotheses in words

and notation

Let µ1 and µ2 be the mean androstenedione level for diabetic men and women,

respectively.

In words: “The difference in population mean androstenedione levels between

diabetic men and women is different from zero.”

In notation: H0 : µ1 − µ2 = 0 versus HA : µ1 − µ2 6= 0.

2. Calculate summary statistics from sample

(see above)
3. Specify confidence level, calculate t-stat, CI limits, p-value

Not assuming equal variances, Satterthwaite (Welch):

# two-sample t-test with unequal variances (Welch = Satterthwaite)

# specified using data.frame and a formula, level by sex

t.summary <- t.test(level ~ sex, data = andro, var.equal = FALSE)

t.summary

##

## Welch Two Sample t-test

##

## data: level by sex

## t = 3.0235, df = 16.295, p-value = 0.007946

## alternative hypothesis: true difference in means is not equal to 0

## 95 percent confidence interval:

## 10.99555 62.33778

## sample estimates:

## mean in group men mean in group women

## 112.50000 75.83333

# plot t-distribution with shaded p-value

t.dist.pval(t.summary)
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4. Summarize in words The unequal-variance analysis suggests that

H0 : µ1 − µ2 = 0 is false, given the large t-statistic of 3.02 and two-sided

p-value of 0.00795. Because the p-value < 0.05 we reject the Null hypothesis

in favor of the Alternative hypothesis concluding that the difference in pop-

ulation mean androstenedione levels between diabetic men and women are

different.

We are 95% confident confident that the difference in population means,

µ1 − µ2, is between 11 and 62.3 ng/dL.

5. Check assumptions

As checked before, while the assumption of equal population variances is not

met, the assumption that the distribution of Ȳ1 − Ȳ2 is normal using the

bootstrap appeared reasonable.

As a comparison, let us examine the output for the pooled procedure (which

is inappropriate since variances are unequal). The p-value for the pooled t-test

is 0.002, whereas the 95% confidence limits are 14.1 and 59.2. That is, we are

95% confident that the population mean andro level for men exceeds that for

women by at least 14.1 but by no more than 59.2. These results are qualitatively

similar to the Satterthwaite conclusions.
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3.5 One-Sided Tests

One-sided tests for two-sample problems are where the null hypothesis is H0 :

µ1 − µ2 = 0 but the alternative is directional, either HA : µ1 − µ2 < 0 (i.e.,

µ1 < µ2) or HA : µ1 − µ2 > 0 (i.e., µ1 > µ2). Once you understand the

general form of rejection regions and p-values for one-sample tests, the one-

sided two-sample tests do not pose any new problems. Use the t-statistic, with

the appropriate tail of the t-distribution to define critical values and p-values.

One-sided two-sample tests are directly implemented in R, by specifying the

type of test with alternative = "less" or alternative = "greater". One-sided

confidence bounds are given with the one-sided tests.

3.6 Paired Analysis

With paired data, inferences on µ1− µ2 are based on the sample of differences

within pairs. By taking differences within pairs, two dependent samples are

transformed into one sample, which contains the relevant information for infer-

ences on µd = µ1 − µ2. To see this, suppose the observations within a pair are

Y1 and Y2. Then within each pair, compute the difference d = Y1 − Y2:

d1 = Y11 − Y21

d2 = Y12 − Y22
...

dn = Y1n − Y2n

If the Y1 data are from a population with mean µ1 and the Y2 data are from a

population with mean µ2, then the ds are a sample from a population with mean

µd = µ1 − µ2. Furthermore, if the sample of differences comes from a normal

population, then we can use standard one-sample techniques on d1, . . . , dn to

test µd = 0 (that is, µ1 = µ2), and to get a CI for µd = µ1 − µ2.

Let d̄ = n−1
∑

i di = Ȳ1 − Ȳ2 be the sample mean of the differences (which

is also the mean difference), and let sd be the sample standard deviation of the

Prof. Erik B. Erhardt



3.6: Paired Analysis 129

differences. The standard error of d̄ is SEd̄ = sd/
√
n, where n is the number

of pairs. The paired t-test (two-sided) CI for µd is given by d̄ ± tcritSEd̄. To

test H0 : µd = 0 (µ1 = µ2) against HA : µd 6= 0 (µ1 6= µ2), use

ts =
d̄− 0

SEd̄

to compute a p-value as in a two-sided one-sample test. One-sided tests are

evaluated in the usual way for one-sample tests on means.

A graphical analysis of paired data focuses on the sample of differences,

and not on the original samples. In particular, the normality assumption is

assessed on the sample of differences.

3.6.1 R Analysis

The most natural way to enter paired data is as two columns, one for each

treatment group. You can then create a new column of differences, and do the

usual one-sample graphical and inferential analysis on this column of differences,

or you can do the paired analysis directly without this intermediate step.

Example: Paired Analysis of Data on Twins Burt (1966) presented

data on IQ scores for identical twins that were raised apart, one by foster parents

and one by the genetic parents. Assuming the data are a random sample of twin

pairs, consider comparing the population mean IQs for twins raised at home to

those raised by foster parents. Let µf=population mean IQ for twin raised by

foster parents, and µg=population mean IQ for twin raised by genetic parents.

I created the data in the worksheet (c1=foster; c2=genetic), and computed

the differences between the IQ scores for the children raised by the genetic and

foster parents (c3=diff=genetic-foster). I also made a scatter plot of the genetic

versus foster IQ scores.
#### Example: Paired Analysis of Data on Twins

# Data and numerical summaries

foster <- c(82, 80, 88, 108, 116, 117, 132, 71, 75, 93,

95, 88, 111, 63, 77, 86, 83, 93, 97, 87,
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94, 96, 112, 113, 106, 107, 98)

genetic <- c(82, 90, 91, 115, 115, 129, 131, 78, 79, 82,

97, 100, 107, 68, 73, 81, 85, 87, 87, 93,

94, 95, 97, 97, 103, 106, 111)

diff <- genetic - foster

axis.lim <- range(c(foster, genetic))

iq <- data.frame(foster, genetic, diff)

# scatterplot of foster and genetic IQs, with 1:1 line

p <- ggplot(iq, aes(x = foster, y = genetic))

# draw a 1:1 line, dots above line indicate "genetic > foster"

p <- p + geom_abline(intercept=0, slope=1, alpha=0.2)

p <- p + geom_point()

p <- p + geom_rug()

# make the axes square so it's a fair visual comparison

p <- p + coord_equal()

p <- p + scale_x_continuous(limits=axis.lim)

p <- p + scale_y_continuous(limits=axis.lim)

p <- p + labs(title = "IQ of identical twins raised by genetic vs foster parents")

print(p)
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This plot of IQ scores shows that scores are related within pairs of twins.

This is consistent with the need for a paired analysis.

Given the sample of differences, I created a boxplot and a stem and leaf

display, neither which showed marked deviation from normality. The boxplot

is centered at zero, so one would not be too surprised if the test result is

insignificant.
p1 <- ggplot(iq, aes(x = diff))

p1 <- p1 + scale_x_continuous(limits=c(-20,+20))

# vertical line at 0

p1 <- p1 + geom_vline(xintercept=0, colour="#BB0000", linetype="dashed")

p1 <- p1 + geom_histogram(aes(y=..density..), binwidth=5)

p1 <- p1 + geom_density(alpha=0.1, fill="white")

p1 <- p1 + geom_rug()

# violin plot

p2 <- ggplot(iq, aes(x = "diff", y = diff))
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p2 <- p2 + scale_y_continuous(limits=c(-20,+20))

p2 <- p2 + geom_hline(yintercept=0, colour="#BB0000", linetype="dashed")

p2 <- p2 + geom_violin(fill = "gray50", alpha=1/2)

p2 <- p2 + geom_boxplot(width = 0.2, alpha = 3/4)

p2 <- p2 + coord_flip()

# boxplot

p3 <- ggplot(iq, aes(x = "diff", y = diff))

p3 <- p3 + scale_y_continuous(limits=c(-20,+20))

p3 <- p3 + geom_hline(yintercept=0, colour="#BB0000", linetype="dashed")

p3 <- p3 + geom_boxplot()

p3 <- p3 + coord_flip()

library(gridExtra)

grid.arrange(grobs = list(p1, p2, p3), ncol=1)
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The normality assumption of the sample mean for a one-sample test is

satisfied (below, left).
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Given the sample of differences, I generated a one-sample CI and test. The

hypothesis under test is µd = µg−µf = 0. The p-value for this test is large. We

do not have sufficient evidence to claim that the population mean IQs for twins

raised apart are different. This is consistent with the CI for µd given below,

which covers zero.
bs.one.samp.dist(iq$diff)

# one-sample t-test of differences (paired t-test)

t.summary <- t.test(iq$diff)

t.summary

##

## One Sample t-test

##

## data: iq$diff

## t = 0.12438, df = 26, p-value = 0.902

## alternative hypothesis: true mean is not equal to 0

## 95 percent confidence interval:

## -2.875159 3.245529

## sample estimates:

## mean of x

## 0.1851852

# plot t-distribution with shaded p-value

t.dist.pval(t.summary)

Plot of data with smoothed density curve
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Alternatively, I can generate the test and CI directly from the raw data in

two columns, specifying paired=TRUE. This gives the following output, which

UNM, Stat 427/527 ADA1



134 Ch 3: Two-Sample Inferences

leads to identical conclusions to the earlier analysis.
# two-sample paired t-test

t.summary <- t.test(iq$genetic, iq$foster, paired=TRUE)

t.summary

##

## Paired t-test

##

## data: iq$genetic and iq$foster

## t = 0.12438, df = 26, p-value = 0.902

## alternative hypothesis: true difference in means is not equal to 0

## 95 percent confidence interval:

## -2.875159 3.245529

## sample estimates:

## mean of the differences

## 0.1851852

You might ask why I tortured you by doing the first analysis, which re-

quired creating and analyzing the sample of differences, when the alternative

and equivalent second analysis is so much easier. (A later topic deals with

non-parametric analyses of paired data for which the differences must be first

computed.)

Remark: I could have defined the difference to be the foster IQ score

minus the genetic IQ score. How would this change the conclusions?

Example: Paired Comparisons of Two Sleep Remedies The fol-

lowing data give the amount of sleep gained in hours from two sleep remedies, A

and B, applied to 10 individuals who have trouble sleeping an adequate amount.

Negative values imply sleep loss. In 9 of the 10 individuals, the sleep gain on B

exceeded that on A.

Let µA = population mean sleep gain (among troubled sleepers) on remedy

A, and µB = population mean sleep gain (among troubled sleepers) on remedy

B. Consider testing H0 : µB − µA = 0 or equivalently µd = 0, where µd =

µB − µA.

The observed distribution of differences between B and A is slightly skewed

to the right, with a single outlier in the upper tail. The normality assumption

of the standard one-sample t-test and CI are suspect here. I will continue with
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the analysis, anyways.
# Data

sleep <- read.table(text="

A B

0.7 1.9

-1.6 0.8

-0.2 1.1

-1.2 0.1

0.1 -0.1

3.4 4.4

3.7 5.5

0.8 1.6

0.0 4.6

2.0 3.0

", header = TRUE)

# calculate paired difference bewteen two remedies, D = B - A

sleep$D <- sleep$B - sleep$A

sleep

## A B D

## 1 0.7 1.9 1.2

## 2 -1.6 0.8 2.4

## 3 -0.2 1.1 1.3

## 4 -1.2 0.1 1.3

## 5 0.1 -0.1 -0.2

## 6 3.4 4.4 1.0

## 7 3.7 5.5 1.8

## 8 0.8 1.6 0.8

## 9 0.0 4.6 4.6

## 10 2.0 3.0 1.0

# determine range of each axis to use most extreme of each for square plot below

axis.lim <- range(c(sleep$A, sleep$B))

library(ggplot2)

# scatterplot of A and B sleep times, with 1:1 line

p <- ggplot(sleep, aes(x = A, y = B))

# draw a 1:1 line, dots above line indicate "B > A"

p <- p + geom_abline(intercept=0, slope=1, alpha=0.2)

p <- p + geom_point()

p <- p + geom_rug()

# make the axes square so it's a fair visual comparison

p <- p + coord_equal()

p <- p + scale_x_continuous(limits=axis.lim)

p <- p + scale_y_continuous(limits=axis.lim)

p <- p + labs(title = "Sleep hours gained on two sleep remedies: A vs B")

print(p)
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There is evidence here against the normality assumption of the sample mean.

We’ll continue anyway (in practice we’d use a nonparametric method, instead,

in a later chapter).
library(ggplot2)

p1 <- ggplot(sleep, aes(x = D))

p1 <- p1 + scale_x_continuous(limits=c(-5,+5))

p1 <- p1 + geom_histogram(aes(y=..density..), binwidth = 1)

p1 <- p1 + geom_density(alpha=0.1, fill="white", adjust = 2)

# vertical reference line at 0

p1 <- p1 + geom_vline(xintercept = 0, colour="red", linetype="dashed")

p1 <- p1 + geom_vline(xintercept = mean(sleep$D), colour="blue", alpha = 0.5)

p1 <- p1 + geom_rug()

p1 <- p1 + labs(title = "Difference of sleep hours gained: D = B - A")

print(p1)

bs.one.samp.dist(sleep$D)
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The p-value for testing H0 is 0.004. We’d reject H0 at the 5% or 1% level,

and conclude that the population mean sleep gains on the remedies are different.

We are 95% confident that µB exceeds µA by between 0.61 and 2.43 hours.

Again, these results must be reported with caution, because the normality

assumption is unreasonable. However, the presence of outliers tends to make

the t-test and CI conservative, so we’d expect to find similar conclusions if we

used the nonparametric methods discussed later in the semester.
# one-sample t-test of differences (paired t-test)

t.summary <- t.test(sleep$d)

## Warning in is.na(x): is.na() applied to non-(list or vector) of type ’NULL’

## Warning in mean.default(x): argument is not numeric or logical: returning NA

## Error in var(x): ’x’ is NULL

t.summary

##

## Paired t-test

##

## data: iq$genetic and iq$foster

## t = 0.12438, df = 26, p-value = 0.902

## alternative hypothesis: true difference in means is not equal to 0

## 95 percent confidence interval:

## -2.875159 3.245529

## sample estimates:

## mean of the differences

## 0.1851852

# plot t-distribution with shaded p-value

t.dist.pval(t.summary)
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Question: In what order should the remedies be given to the patients?

ClickerQ s — Reporting results, STT.06.03.010

3.7 Should You Compare Means?

The mean is the most common feature on which two distributions are com-

pared. You should not, however, blindly apply the two-sample tests (paired or

unpaired) without asking yourself whether the means are the relevant feature to

compare. This issue is not a big concern when, as highlighted in the first graph

below, the two (normal) populations have equal spreads or standard deviations.

In such cases the difference between the two population means is equal to the

difference between any fixed percentile for the two distributions, so the mean

difference is a natural measure of difference.

Consider instead the hypothetical scenario depicted in the bottom pane

below, where the population mean lifetimes using two distinct drugs for a fatal
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disease are µ1 = 16 months from time of diagnosis and µ2 = 22 months from

time of diagnosis, respectively. The standard deviations under the two drugs

are σ1 = 1 and σ2 = 6, respectively. The second drug has the higher mean

lifetime, but at the expense of greater risk. For example, the first drug gives

you a 97.7% chance of living at least 14 months, whereas the second drug only

gives you a 90.8% chance of living at least 14 months. Which drug is best? It

depends on what is important to you, a higher expected lifetime or a lower risk

of dying early.

0 5 10 15

Normal Distributions with Identical Variances

10 15 20 25 30 35 40

Normal Distributions with Different Variances
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## Warning in file(filename, "r", encoding = encoding): cannot

open file ’ADA1 12 RFunctions.R’: No such file or directory

## Error in file(filename, "r", encoding = encoding): cannot

open the connection

Learning objectives

After completing this topic, you should be able to:

assess the assumptions visually and via formal tests.

Achieving these goals contributes to mastery in these course learning outcomes:

10. Model assumptions.
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4.1 Introduction

Almost all statistical methods make assumptions about the data collection pro-

cess and the shape of the population distribution. If you reject the null hypoth-

esis in a test, then a reasonable conclusion is that the null hypothesis is false,

provided all the distributional assumptions made by the test are satisfied. If the

assumptions are not satisfied then that alone might be the cause of rejecting

H0. Additionally, if you fail to reject H0, that could be caused solely by failure

to satisfy assumptions also. Hence, you should always check assumptions to

the best of your abilities.

Two assumptions that underly the tests and CI procedures that I have

discussed are that the data are a random sample, and that the population fre-

quency curve is normal. For the pooled variance two-sample test the population

variances are also required to be equal.

The random sample assumption can often be assessed from an understand-

ing of the data collection process. Unfortunately, there are few general tests for

checking this assumption. I have described exploratory (mostly visual) meth-

ods to assess the normality and equal variance assumption. I will now discuss

formal methods to assess these assumptions.

4.2 Testing Normality

An informal test of normality can be based on a normal scores plot, some-

times called a rankit plot or a normal probability plot or a normal

QQ plot (QQ = quantile-quantile). You plot the quantiles of the data against

the quantiles of the normal distribution, or expected normal order statis-

tics (in a standard normal distribution) for a sample with the given number of

observations. The normality assumption is plausible if the plot is fairly linear.

I give below several plots often seen with real data, and what they indicate

about the underlying distribution.

There are multiple ways to produce QQ plots in R. The shape can depend
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upon whether you plot the normal scores on the x-axis or the y-axis. It is

conventional to plot the data on the y-axis and the normal scores on the x-axis.
Let’s start with some data from a normal distribution.

#### sample from normal distribution

x1 <- rnorm(150, mean = 100, sd = 15)

par(mfrow=c(3,1))

# Histogram overlaid with kernel density curve

hist(x1, freq = FALSE, breaks = 20)

points(density(x1), type = "l")

rug(x1)

# violin plot

library(vioplot)

vioplot(x1, horizontal=TRUE, col="gray")

# boxplot

boxplot(x1, horizontal=TRUE)
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There are many ways to get adequate QQ plots. Consider how outliers

shows up in the QQ plot. There may be isolated points on ends of the QQ plot,

but only on the right side is there an outlier. How could you have identified

that the right tail looks longer than the left tail from the QQ plot?
#### QQ plots

# R base graphics

par(mfrow=c(1,1))
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# plots the data vs their normal scores

qqnorm(x1)

# plots the reference line

qqline(x1)

# ggplot2 graphics

library(ggplot2)

# http://had.co.nz/ggplot2/stat_qq.html

df <- data.frame(x1)

# stat_qq() below requires "sample" to be assigned a data.frame column

p <- ggplot(df, aes(sample = x1))

# plots the data vs their normal scores

p <- p + stat_qq()

print(p)
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If you lay a straightedge along the bulk of the plot (putting in a regression

line is not the right way to do it, even if it is easy), you see that the most

extreme point on the right is a little below the line, and the last few points

on the left a little above the line. What does this mean? The point on the

right corresponds to a data value more extreme than expected from a normal

distribution (the straight line is where expected and actual coincide). Extreme

points on the right are above the line. What about the left? Extreme points

there should be above the line — since the deviations from the line are above

it on the left, those points are also more extreme than expected.

UNM, Stat 427/527 ADA1



144 Ch 4: Checking Assumptions

Even more useful is to add confidence intervals (point-wise, not family-wise

— you will learn the meaning of those terms in the ANOVA section). You

don’t expect a sample from a normally distributed population to have a normal

scores plot that falls exactly on the line, and the amount of deviation depends

upon the sample size.

The best QQ plot I could find is available in the car package called qqPlot.
Note that with the dist= option you can use this technique to see if the data
appear from lots of possible distributions, not just normal.
par(mfrow=c(1,1))

# Normality of Residuals

library(car)

# qq plot for studentized resid

# las = 1 : turns labels on y-axis to read horizontally

# id.n = n : labels n most extreme observations, and outputs to console

# id.cex = 1 : is the size of those labels

# lwd = 1 : line width

qqPlot(x1, las = 1, id.n = 6, id.cex = 1, lwd = 1, main="QQ Plot")

## 65 110 86 125 31 111

## 150 149 148 147 146 1
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In this case the x-axis is labelled “norm quantiles”. You only see a couple

of data values outside the limits (in the tails, where it usually happens). You

expect around 5% outside the limits, so there is no indication of non-normality

here. I did sample from a normal population.

4.2.1 Normality tests on non-normal data

Let’s turn to examples of sampling from other, non-normal distributions to see

how the normal QQ plot identifies important features.

Light-tailed symmetric (Uniform)

#### Light-tailed symmetric (Uniform)

# sample from uniform distribution
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x2 <- runif(150, min = 50, max = 150)

par(mfrow=c(3,1))

# Histogram overlaid with kernel density curve

hist(x2, freq = FALSE, breaks = 20)

points(density(x2), type = "l")

rug(x2)

# violin plot

library(vioplot)

vioplot(x2, horizontal=TRUE, col="gray")

# boxplot

boxplot(x2, horizontal=TRUE)

par(mfrow=c(1,1))

qqPlot(x2, las = 1, id.n = 0, id.cex = 1, lwd = 1, main="QQ Plot")
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Heavy-tailed (fairly) symmetric (Normal-squared)

#### Heavy-tailed (fairly) symmetric (Normal-squared)

# sample from normal distribution

x3.temp <- rnorm(150, mean = 0, sd = 1)

x3 <- sign(x3.temp)*x3.temp^2 * 15 + 100

par(mfrow=c(3,1))
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# Histogram overlaid with kernel density curve

hist(x3, freq = FALSE, breaks = 20)

points(density(x3), type = "l")

rug(x3)

# violin plot

library(vioplot)

vioplot(x3, horizontal=TRUE, col="gray")

# boxplot

boxplot(x3, horizontal=TRUE)

par(mfrow=c(1,1))

qqPlot(x3, las = 1, id.n = 0, id.cex = 1, lwd = 1, main="QQ Plot")
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Right-skewed (Exponential)

#### Right-skewed (Exponential)

# sample from exponential distribution

x4 <- rexp(150, rate = 1)

par(mfrow=c(3,1))

# Histogram overlaid with kernel density curve

hist(x4, freq = FALSE, breaks = 20)

points(density(x4), type = "l")

rug(x4)
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# violin plot

library(vioplot)

vioplot(x4, horizontal=TRUE, col="gray")

# boxplot

boxplot(x4, horizontal=TRUE)

par(mfrow=c(1,1))

qqPlot(x4, las = 1, id.n = 0, id.cex = 1, lwd = 1, main="QQ Plot")
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Left-skewed (Exponential, reversed)

#### Left-skewed (Exponential, reversed)

# sample from exponential distribution

x5 <- 15 - rexp(150, rate = 0.5)

par(mfrow=c(3,1))

# Histogram overlaid with kernel density curve

hist(x5, freq = FALSE, breaks = 20)

points(density(x5), type = "l")

rug(x5)

# violin plot

library(vioplot)

vioplot(x5, horizontal=TRUE, col="gray")
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# boxplot

boxplot(x5, horizontal=TRUE)

par(mfrow=c(1,1))

qqPlot(x5, las = 1, id.n = 0, id.cex = 1, lwd = 1, main="QQ Plot")
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Notice how striking is the lack of linearity in the QQ plot for all the non-

normal distributions, particularly the symmetric light-tailed distribution where

the boxplot looks fairly good. The QQ plot is a sensitive measure of normality.

Let us summarize the patterns we see regarding tails in the plots:
Tail

Tail Weight Left Right

Light Left side of plot points left Right side of plot points right

Heavy Left side of plot points down Right side of plot points up

4.3 Formal Tests of Normality

A formal test of normality is based on the correlation between the data and

the normal scores. The correlation is a measure of the strength of a linear

relationship, with the sign of the correlation indicating the direction of the
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relationship (that is, + for increasing relationship, and − for decreasing). The

correlation varies from −1 to +1. In a normal scores plot, you are looking for

a correlation close to +1. Normality is rejected if the correlation is too small.

Critical values for the correlation test of normality, which is commonly called

the Shapiro-Wilk test, can be found in many texts.

R has several tests of normality. The Shapiro-Wilk test shapiro.test() is

a base function. The R package nortest has five others: the Anderson-Darling

test ad.test() is useful, related to the Kolmogorov-Smirnov (Lilliefors)

test lillie.test() which is commonly used in many scientific disciplines but is

essentially useless, the Cramer-von Mises test cvm.test(), and two more. Some

packages also have the Ryan-Joiner test (closely related to the Shapiro-Wilk

test).

Extreme outliers and skewness have the biggest effects on standard meth-

ods based on normality. The Shapiro-Wilk (SW) test is better at picking up

these problems than the Kolmogorov-Smirnov (KS) test. The KS test tends

to highlight deviations from normality in the center of the distribution. These

types of deviations are rarely important because they do not have a noticeable

effect on the operating characteristics of the standard methods. The AD and

RJ tests are modifications designed to handle some of these objections.

Tests for normality may have low power in small to moderate sized samples.

Visual assessment of normality is often more valuable than a formal test. The

tests for the distributions of data above are below and in Figure 4.1.
Normal distribution

#### Formal Tests of Normality

shapiro.test(x1)

##

## Shapiro-Wilk normality test

##

## data: x1

## W = 0.98584, p-value = 0.1289

library(nortest)

ad.test(x1)

##

## Anderson-Darling normality test

##
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## data: x1

## A = 0.40732, p-value = 0.3446

# lillie.test(x1)

cvm.test(x1)

##

## Cramer-von Mises normality test

##

## data: x1

## W = 0.05669, p-value = 0.4159
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Light-tailed symmetric
shapiro.test(x2)

##
## Shapiro-Wilk normality test
##
## data: x2
## W = 0.95252, p-value = 5.336e-05

library(nortest)
ad.test(x2)

##
## Anderson-Darling normality test
##
## data: x2
## A = 1.9426, p-value = 5.644e-05

# lillie.test(x2)
cvm.test(x2)

##
## Cramer-von Mises normality test
##
## data: x2
## W = 0.29567, p-value = 0.0003642

Heavy-tailed (fairly) symmetric

shapiro.test(x3)

##
## Shapiro-Wilk normality test
##
## data: x3
## W = 0.79633, p-value = 3.587e-13

library(nortest)
ad.test(x3)

##
## Anderson-Darling normality test
##
## data: x3
## A = 9.1433, p-value < 2.2e-16

# lillie.test(x3)
cvm.test(x3)

## Warning in cvm.test(x3): p-value is smaller
than 7.37e-10, cannot be computed more accurately
##
## Cramer-von Mises normality test
##
## data: x3
## W = 1.8248, p-value = 7.37e-10

Right-skewed
shapiro.test(x4)

##
## Shapiro-Wilk normality test
##
## data: x4
## W = 0.74125, p-value = 5.872e-15

library(nortest)
ad.test(x4)

##
## Anderson-Darling normality test
##
## data: x4
## A = 9.3715, p-value < 2.2e-16

# lillie.test(x4)
cvm.test(x4)

## Warning in cvm.test(x4): p-value is smaller
than 7.37e-10, cannot be computed more accurately
##
## Cramer-von Mises normality test
##
## data: x4
## W = 1.6537, p-value = 7.37e-10

Left-skewed
shapiro.test(x5)

##
## Shapiro-Wilk normality test
##
## data: x5
## W = 0.8743, p-value = 5.933e-10

library(nortest)
ad.test(x5)

##
## Anderson-Darling normality test
##
## data: x5
## A = 6.0016, p-value = 7.938e-15

# lillie.test(x5)
cvm.test(x5)

##
## Cramer-von Mises normality test
##
## data: x5
## W = 1.0553, p-value = 9.648e-10

Figure 4.1: Normality tests for non-normal distributions
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Example: Paired Differences on Sleep Remedies The following box-

plot and normal scores plots suggest that the underlying distribution of differ-

ences (for the paired sleep data taken from the previous chapter) is reasonably

symmetric, but heavy tailed. The p-value for the SW test of normality is 0.042,

and for the AD test is 0.029, both of which call into question a normality as-

sumption. A non-parametric test comparing the sleep remedies (one that does

not assume normality) is probably more appropriate here. We will return to

these data later.
# Normality tests

shapiro.test(sleep$d)

##

## Shapiro-Wilk normality test

##

## data: sleep$d

## W = 0.83798, p-value = 0.04173

library(nortest)

ad.test(sleep$d)

##

## Anderson-Darling normality test

##

## data: sleep$d

## A = 0.77378, p-value = 0.02898

# lillie.test(sleep£d)

cvm.test(sleep$d)

##

## Cramer-von Mises normality test

##

## data: sleep$d

## W = 0.13817, p-value = 0.02769

# plot of data

par(mfrow=c(3,1))

# Histogram overlaid with kernel density curve

hist(sleep$d, freq = FALSE, breaks = 20)

points(density(sleep$d), type = "l")

rug(sleep$d)

# violin plot

library(vioplot)

vioplot(sleep$d, horizontal=TRUE, col="gray")

# boxplot

boxplot(sleep$d, horizontal=TRUE)
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# QQ plot

par(mfrow=c(1,1))

qqPlot(sleep$d, las = 1, id.n = 4, id.cex = 1, lwd = 1, main="QQ Plot")

## 9 5 2 8
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Example: Androstenedione Levels This is an independent two-sample

problem, so you must look at normal scores plots for males and females.

The AD test p-value and the SW test p-value for testing normality exceeds

0.10 in each sample. Thus, given the sample sizes (14 for men, 18 for women), we

have insufficient evidence (at α = 0.05) to reject normality in either population.

The women’s boxplot contains two mild outliers, which is highly unusual

when sampling from a normal distribution. The tests are possibly not powerful

enough to pick up this type of deviation from normality in such a small sample.

In practice, this may not be a big concern. The two mild outliers probably

have a small effect on inferences in the sense that non-parametric methods

would probably lead to similar conclusions here.
library(ggplot2)

p1 <- ggplot(andro, aes(x = sex, y = level, fill=sex))

p1 <- p1 + geom_boxplot()
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Men
shapiro.test(men)

##

## Shapiro-Wilk normality test

##

## data: men

## W = 0.90595, p-value = 0.1376

library(nortest)

ad.test(men)

##

## Anderson-Darling normality test

##

## data: men

## A = 0.4718, p-value = 0.2058

# lillie.test(men)

cvm.test(men)

##

## Cramer-von Mises normality test

##

## data: men

## W = 0.063063, p-value = 0.3221

Women
shapiro.test(women)

##

## Shapiro-Wilk normality test

##

## data: women

## W = 0.95975, p-value = 0.5969

library(nortest)

ad.test(women)

##

## Anderson-Darling normality test

##

## data: women

## A = 0.39468, p-value = 0.3364

# lillie.test(women)

cvm.test(women)

##

## Cramer-von Mises normality test

##

## data: women

## W = 0.065242, p-value = 0.3057

# add a "+" at the mean

p1 <- p1 + stat_summary(fun.y = mean, geom = "point", shape = 3, size = 2)

#p1 <- p1 + coord_flip()

p1 <- p1 + labs(title = "Androstenedione Levels in Diabetics")

#print(p1)

p2 <- ggplot(andro, aes(x = level, fill=sex))

p2 <- p2 + geom_histogram(binwidth = 20, alpha = 0.5, position="identity")

p2 <- p2 + geom_rug(aes(colour=sex))

p2 <- p2 + labs(title = "Androstenedione Levels in Diabetics")

#print(p2)

library(gridExtra)

grid.arrange(grobs = list(p1, p2), ncol=1)

# QQ plot

par(mfrow=c(2,1))

qqPlot(men, las = 1, id.n = 0, id.cex = 1, lwd = 1, main="QQ Plot, Men")

qqPlot(women, las = 1, id.n = 0, id.cex = 1, lwd = 1, main="QQ Plot, Women")
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Most statisticians use graphical methods (boxplot, normal scores plot) to

assess normality, and do not carry out formal tests.

You may be surprised at how variable 10 observations from a Normal(0,1)

distribution looks like; here are 25 samples.
n = 10

r = 5

norm.many <- data.frame(id = rep(seq(1:r^2), n)

, x = rnorm(r^2 * n)

)

library(ggplot2)

p <- ggplot(norm.many, aes(x = x))

p <- p + geom_histogram(binwidth = 0.4)

p <- p + geom_rug()

p <- p + facet_wrap(~ id, ncol = r)

p <- p + labs(title = "Twenty-five samples of size n=10 from a Normal(0,1) distribution")

print(p)
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Twenty−five samples of size n=10 from a Normal(0,1) distribution

. . . and here are samples of size n = 30.
n = 30

r = 5

norm.many <- data.frame(id = rep(seq(1:r^2), n)

, x = rnorm(r^2 * n)

)

library(ggplot2)

p <- ggplot(norm.many, aes(x = x))

p <- p + geom_histogram(binwidth = 0.4)

p <- p + geom_rug()
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p <- p + facet_wrap(~ id, ncol = r)

p <- p + labs(title = "Twenty-five samples of size n=30 from a Normal(0,1) distribution")

print(p)
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Twenty−five samples of size n=30 from a Normal(0,1) distribution

By viewing many versions of this of varying samples sizes you’ll develop

your intuition about what a normal sample looks like.
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4.4 Testing Equal Population Variances

In the independent two sample t-test, some researchers test H0 : σ2
1 = σ2

2 as a

means to decide between using the pooled-variance procedure or Satterthwaite’s

methods. They suggest the pooled t-test and CI if H0 is not rejected, and

Satterthwaite’s methods otherwise.

There are a number of well-known tests for equal population variances, of

which Bartlett’s test and Levene’s test are probably the best known. Bartlett’s

test assumes the population distributions are normal, and is the best test when

this is true. In practice, unequal variances and non-normality often go hand-in-

hand, so you should check normality prior to using Bartlett’s test. It is sensitive

to data which is not non-normally distributed, thus it is more likely to return

a “false positive” (reject H0 of equal variances) when the data is non-normal.

Levene’s test is more robust to departures from normality than Bartlett’s test;

it is in the car package. Fligner-Killeen test is a non-parametric test which is

very robust against departures from normality.

I will now define Bartlett’s test, which assumes normally distributed

data. As above, let n∗ = n1 +n2 + · · ·+nk, where the nis are the sample sizes

from the k groups, and define

v = 1 +
1

3(k − 1)

(
k∑
i=1

1

ni − 1
− 1

n∗ − k

)
.

Bartlett’s statistic for testing H0 : σ2
1 = · · · = σ2

k is given by

Bobs =
2.303

v

{
(n− k) log(s2

pooled)−
k∑
i=1

(ni − 1) log(s2
i )

}
,

where s2
pooled is the pooled estimator of variance and s2

i is the estimated variance

based on the ith sample.

Large values of Bobs suggest that the population variances are unequal. For

a size α test, we reject H0 if Bobs ≥ χ2
k−1,crit, where χ2

k−1,crit is the upper-α

percentile for the χ2
k−1 (chi-squared) probability distribution with k−1 degrees
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of freedom. A generic plot of the χ2 distribution is given below. A p-value for

the test is given by the area under the chi-squared curve to the right of Bobs.

Example: Androstenedione Levels The sample standard deviations

and samples sizes are: s1 = 42.8 and n1 = 14 for men and s2 = 17.2 and

n2 = 18 for women. The sample standard deviations appear to be very different,

so I would not be surprised if the test of equal population variances is highly

significant. The output below confirms this: the p-values for Bartlett’s F-test,

Levene’s Test, and Fligner-Killeen test are all much smaller than 0.05. An

implication is that the standard pooled-CI and test on the population means is

inappropriate.
#### Testing Equal Population Variances

# numerical summaries

c(mean(men), mean(women), sd(men), sd(women))

## [1] 112.50000 75.83333 42.75467 17.23625

c(IQR(men), IQR(women), length(men), length(women))

## [1] 60.25 17.00 14.00 18.00

## Test equal variance

# assumes populations are normal

bartlett.test(level ~ sex, data = andro)

##

## Bartlett test of homogeneity of variances

##

## data: level by sex

## Bartlett's K-squared = 11.199, df = 1, p-value = 0.0008183

# does not assume normality, requires car package

library(car)

leveneTest(level ~ sex, data = andro)

## Levene's Test for Homogeneity of Variance (center = median)

## Df F value Pr(>F)

## group 1 7.2015 0.01174 *

## 30

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# nonparametric test

fligner.test(level ~ sex, data = andro)

##

## Fligner-Killeen test of homogeneity of variances

##

## data: level by sex
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## Fligner-Killeen:med chi-squared = 5.8917, df = 1, p-value =

## 0.01521

4.5 Small sample sizes, a comment

In Daniel Kahneman’s “Thinking, Fast and Slow” (Ch 10), he discusses “The

Law of Small Numbers” (in contrast to the Law of Large Numbers). As an

example from statisticians Howard Wainer and Harris Zwerling, he makes this

observation about the incidence of kidney cancer in the 3,141 counties of the

United States. “The counties in which the incidence of kidney cancer is lowest

are mostly rural, sparsely populated, and located in traditionally Republican

states in the Midwest, the South, and the West. What do you make of this?”

The statistians comment: “It is both easy and tempting to infer that their low

cancer rates are directly due to the clean living of the rural lifestyle — no air

pollution, no water pollution, access to fresh food without additives.” This

makes perfect sense.

“Now consider the counties in which the incidence of kidney cancer is high-

est. These ailing counties tend to be mostly rural, sparsely populated, and

located in traditionally Republican states in the Midwest, the South, and the

West.” Tongue-in-cheek, Wainer and Zwerling comment: “It is easy to infer

that their high cancer rates might be directly due to the poverty of the rural

lifestyle — no access to good medical care, a high-fat diet, and too much al-

cohol, too much tobacco.” Something is wrong, of course. The rural lifestyle

cannot explain both very high and very low incidence of kidney cancer.

The key factor is not that the counties were rural or predominantly Re-

publican. It is that rural counties have small populations. The law of large

numbers says that as sample sizes increase that the sample statistic converges

to the population proportion, that is, large samples are more precise than small

samples. What Kahneman is calling the law of small numbers warns that small

samples yield extreme results more often than large samples do.
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Chapter 5

One-Way Analysis of
Variance

Contents
5.1 ANOVA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

5.2 Multiple Comparison Methods: Fisher’s Method . . . . . 170

5.2.1 FSD Multiple Comparisons in R . . . . . . . . . . . . . . . 173

5.2.2 Bonferroni Comparisons . . . . . . . . . . . . . . . . . . . 175

5.3 Further Discussion of Multiple Comparisons . . . . . . . 180
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5.5 Example from the Child Health and Development Study
(CHDS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

## Warning in file(filename, "r", encoding = encoding): cannot

open file ’ADA1 12 RFunctions.R’: No such file or directory

## Error in file(filename, "r", encoding = encoding): cannot

open the connection

Learning objectives

After completing this topic, you should be able to:
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select graphical displays that meaningfully compare independent popula-

tions.

assess the assumptions of the ANOVA visually and by formal tests.

decide whether the means between populations are different, and how.

Achieving these goals contributes to mastery in these course learning outcomes:

1. organize knowledge.

5. define parameters of interest and hypotheses in words and notation.

6. summarize data visually, numerically, and descriptively.

8. use statistical software.

12. make evidence-based decisions.

5.1 ANOVA

The one-way analysis of variance (ANOVA) is a generalization of the two

sample t-test to k ≥ 2 groups. Assume that the populations of interest have

the following (unknown) population means and standard deviations:

population 1 population 2 · · · population k

mean µ1 µ2 · · · µk
std dev σ1 σ2 · · · σk

A usual interest in ANOVA is whether µ1 = µ2 = · · · = µk. If not, then we

wish to know which means differ, and by how much. To answer these questions

we select samples from each of the k populations, leading to the following data

summary:

sample 1 sample 2 · · · sample k

size n1 n2 · · · nk
mean Ȳ1 Ȳ2 · · · Ȳk

std dev s1 s2 · · · sk

A little more notation is needed for the discussion. Let Yij denote the jth

observation in the ith sample and define the total sample size n∗ = n1 + n2 +

· · · + nk. Finally, let ¯̄Y be the average response over all samples (combined),
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that is

¯̄Y =

∑
ij Yij

n∗
=

∑
i niȲi
n∗

.

Note that ¯̄Y is not the average of the sample means, unless the sample sizes ni
are equal.

An F -statistic is used to test H0 : µ1 = µ2 = · · · = µk against HA : not H0

(that is, at least two means are different). The assumptions needed for the

standard ANOVA F -test are analogous to the independent pooled two-sample

t-test assumptions: (1) Independent random samples from each population. (2)

The population frequency curves are normal. (3) The populations have equal

standard deviations, σ1 = σ2 = · · · = σk.

The F -test is computed from the ANOVA table, which breaks the spread in

the combined data set into two components, or Sums of Squares (SS). The

Within SS, often called the Residual SS or the Error SS, is the portion

of the total spread due to variability within samples:

SS(Within) = (n1 − 1)s2
1 + (n2 − 1)s2

2 + · · · + (nk − 1)s2
k =

∑
ij(Yij − Ȳi)2.

The Between SS, often called the Model SS, measures the spread between

the sample means

SS(Between) =

n1(Ȳ1 − ¯̄Y )2 + n2(Ȳ2 − ¯̄Y )2 + · · · + nk(Ȳk − ¯̄Y )2 =
∑

i ni(Ȳi − ¯̄Y )2,

weighted by the sample sizes. These two SS add to give

SS(Total) = SS(Between) + SS(Within) =
∑

ij(Yij − ¯̄Y )2.

Each SS has its own degrees of freedom (df ). The df (Between) is the number

of groups minus one, k−1. The df (Within) is the total number of observations

minus the number of groups: (n1 − 1) + (n2 − 1) + · · · + (nk − 1) = n∗ − k.

These two df add to give df (Total) = (k − 1) + (n∗ − k) = n∗ − 1.
The Sums of Squares and df are neatly arranged in a table, called the

ANOVA table:

Source df SS MS F

Between Groups (Model) dfM = k − 1 SSM =
∑

i ni(Ȳi − ¯̄Y )2 MSM = SSM/dfM MSM/MSE
Within Groups (Error) dfE = n∗ − k SSE =

∑
i(ni − 1)s2i MSE = SSE/dfE

Total dfT = n∗ − 1 SST =
∑

ij(Yij − ¯̄Y )2 MST = SST/dfT
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The Mean Square for each source of variation is the corresponding SS divided

by its df . The Mean Squares can be easily interpreted.

The MS(Within)

MS(Within) =
(n1 − 1)s2

1 + (n2 − 1)s2
2 + · · · + (nk − 1)s2

k

n∗ − k
= s2

pooled

is a weighted average of the sample variances. The MS(Within) is known as the

pooled estimator of variance, and estimates the assumed common population

variance. If all the sample sizes are equal, the MS(Within) is the average sample

variance. The MS(Within) is identical to the pooled variance estimator

in a two-sample problem when k = 2.

The MS(Between)

MS(Between) =

∑
i ni(Ȳi − ¯̄Y )2

k − 1

is a measure of variability among the sample means. This MS is a multiple of

the sample variance of Ȳ1, Ȳ2, . . . , Ȳk when all the sample sizes are equal.

The MS(Total)

MS(Total) =

∑
ij(Yij − ¯̄Y )2

n∗ − 1

is the variance in the combined data set.

The decision on whether to reject H0 : µ1 = µ2 = · · · = µk is based on the

ratio of the MS(Between) and the MS(Within):

Fs =
MS(Between)

MS(Within)
.

Large values of Fs indicate large variability among the sample means Ȳ1, Ȳ2, . . . , Ȳk
relative to the spread of the data within samples. That is, large values of Fs
suggest that H0 is false.

Formally, for a size α test, reject H0 if Fs ≥ Fcrit, where Fcrit is the upper-α

percentile from an F distribution with numerator degrees of freedom k− 1 and
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denominator degrees of freedom n∗ − k (i.e., the df for the numerators and

denominators in the F -ratio). The p-value for the test is the area under the

F -probability curve to the right of Fs:

0 1 2 3 4 5 6FCrit

α = .05 (fixed)

Reject H0 for FS here

F with 4 and 20 degrees of freedom

0 1 2 3 4 5 6FS

p−value (random)

F with 4 and 20 degrees of freedom
FS not significant

FCrit

For k = 2 the ANOVA F -test is equivalent to the pooled two-sample t-test.

The specification of a one-way analysis of variance is analogous to a re-

gression analysis (discussed later, though we’ve seen the specification in some

plotting functions). The only difference is that the descriptive (x) variable

needs to be a factor and not a numeric variable. We calculate a model object

using lm() and extract the analysis of variance table with anova().

Example: Comparison of Fats During cooking, doughnuts absorb fat

in various amounts. A scientist wished to learn whether the amount absorbed

depends on the type of fat. For each of 4 fats, 6 batches of 24 doughnuts were

prepared. The data are grams of fat absorbed per batch.

Let

µi = pop mean grams of fat i absorbed per batch of 24 doughnuts (−100).

The scientist wishes to test H0 : µ1 = µ2 = µ3 = µ4 against HA : not H0.

There is no strong evidence against normality here. Furthermore the sample
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standard deviations (see output below) are close. The standard ANOVA ap-

pears to be appropriate here.
Row fat1 fat2 fat3 fat4
1 164 178 175 155
2 172 191 186 166
3 168 197 178 149
4 177 182 171 164
5 190 185 163 170
6 176 177 176 168

Let’s take a short detour to read the wide table and convert it into long

format.

R skills: wide to long table format Many functions in R expect

data to be in a long format rather than a wide format. Let’s use the fat data

as an example of how to read a table as text, convert the wide format to long,

and then back to wide format.
#### Example: Comparison of Fats

fat <- read.table(text="

Row fat1 fat2 fat3 fat4

1 164 178 175 155

2 172 191 186 166

3 168 197 178 149

4 177 182 171 164

5 190 185 163 170

6 176 177 176 168

", header=TRUE)

fat

## Row fat1 fat2 fat3 fat4

## 1 1 164 178 175 155

## 2 2 172 191 186 166

## 3 3 168 197 178 149

## 4 4 177 182 171 164

## 5 5 190 185 163 170

## 6 6 176 177 176 168

From wide to long: Use melt() from the reshape2 package.
#### From wide to long format

library(reshape2)

fat.long <- melt(fat,

# id.vars: ID variables

# all variables to keep but not split apart on

id.vars=c("Row"),

# measure.vars: The source columns

# (if unspecified then all other variables are measure.vars)

measure.vars = c("fat1", "fat2", "fat3", "fat4"),
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# variable.name: Name of the destination column identifying each

# original column that the measurement came from

variable.name = "type",

# value.name: column name for values in table

value.name = "amount"

)

## naming variables manually, the variable.name and value.name not working 11/2012

#names(fat.long) <- c("Row", "type", "amount")

fat.long

## Row type amount

## 1 1 fat1 164

## 2 2 fat1 172

## 3 3 fat1 168

## 4 4 fat1 177

## 5 5 fat1 190

## 6 6 fat1 176

## 7 1 fat2 178

## 8 2 fat2 191

## 9 3 fat2 197

## 10 4 fat2 182

## 11 5 fat2 185

## 12 6 fat2 177

## 13 1 fat3 175

## 14 2 fat3 186

## 15 3 fat3 178

## 16 4 fat3 171

## 17 5 fat3 163

## 18 6 fat3 176

## 19 1 fat4 155

## 20 2 fat4 166

## 21 3 fat4 149

## 22 4 fat4 164

## 23 5 fat4 170

## 24 6 fat4 168

# or as simple as:

# melt(fat, "Row")

If you don’t specify variable.name, it will name that column “variable”, and

if you leave out value.name, it will name that column “value”.

From long to wide: Use dcast() from the reshape2 package.
#### From long to wide format

fat.wide <- dcast(fat.long, Row ~ type, value.var = "amount")

fat.wide

## Row fat1 fat2 fat3 fat4

## 1 1 164 178 175 155

## 2 2 172 191 186 166
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## 3 3 168 197 178 149

## 4 4 177 182 171 164

## 5 5 190 185 163 170

## 6 6 176 177 176 168

Now that we’ve got our data in the long format, let’s return to the ANOVA.

Back to ANOVA: Let’s look at the numerical summaries. We’ve seen
other ways of computing these so I’ll show you another way.
#### Back to ANOVA

# Calculate the mean, sd, n, and se for the four fats

# The plyr package is an advanced way to apply a function to subsets of data

# "Tools for splitting, applying and combining data"

library(plyr)

# ddply "dd" means the input and output are both data.frames

fat.summary <- ddply(fat.long,

"type",

function(X) {
data.frame( m = mean(X$amount),

s = sd(X$amount),

n = length(X$amount)

)

}
)

# standard errors

fat.summary$se <- fat.summary$s/sqrt(fat.summary$n)

# individual confidence limits

fat.summary$ci.l <- fat.summary$m - qt(1-.05/2, df=fat.summary$n-1) * fat.summary$se

fat.summary$ci.u <- fat.summary$m + qt(1-.05/2, df=fat.summary$n-1) * fat.summary$se

fat.summary

## type m s n se ci.l ci.u

## 1 fat1 174.5000 9.027735 6 3.685557 165.0260 183.9740

## 2 fat2 185.0000 7.771744 6 3.172801 176.8441 193.1559

## 3 fat3 174.8333 7.626707 6 3.113590 166.8296 182.8371

## 4 fat4 162.0000 8.221922 6 3.356586 153.3716 170.6284

Let’s plot the data with boxplots, individual points, mean, and CI by fat
type.
# Plot the data using ggplot

library(ggplot2)

p <- ggplot(fat.long, aes(x = type, y = amount))

# plot a reference line for the global mean (assuming no groups)

p <- p + geom_hline(yintercept = mean(fat.long$amount),

colour = "black", linetype = "dashed", size = 0.3, alpha = 0.5)

# boxplot, size=.75 to stand out behind CI

p <- p + geom_boxplot(size = 0.75, alpha = 0.5)

# points for observed data
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p <- p + geom_point(position = position_jitter(w = 0.05, h = 0), alpha = 0.5)

# diamond at mean for each group

p <- p + stat_summary(fun.y = mean, geom = "point", shape = 18, size = 6,

colour = "red", alpha = 0.8)

# confidence limits based on normal distribution

p <- p + stat_summary(fun.data = "mean_cl_normal", geom = "errorbar",

width = .2, colour = "red", alpha = 0.8)

p <- p + labs(title = "Doughnut fat absorption") + ylab("amount absorbed (g)")

print(p)
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Doughnut fat absorption

The p-value for the F -test is 0.001. The scientist would reject H0 at any
of the usual test levels (such as, 0.05 or 0.01). The data suggest that the
population mean absorption rates differ across fats in some way. The F -test
does not say how they differ. The pooled standard deviation spooled = 8.18 is
the “Residual standard error”. We’ll ignore the rest of this output for now.
fit.f <- aov(amount ~ type, data = fat.long)

summary(fit.f)

## Df Sum Sq Mean Sq F value Pr(>F)
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## type 3 1596 531.8 7.948 0.0011 **

## Residuals 20 1338 66.9

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

fit.f

## Call:

## aov(formula = amount ~ type, data = fat.long)

##

## Terms:

## type Residuals

## Sum of Squares 1595.500 1338.333

## Deg. of Freedom 3 20

##

## Residual standard error: 8.180261

## Estimated effects may be unbalanced

ClickerQ s — ANOVA, Fat 1/2

ClickerQ s — ANOVA, Fat 1/2

5.2 Multiple Comparison Methods: Fisher’s
Method

The ANOVA F -test checks whether all the population means are equal. Mul-

tiple comparisons are often used as a follow-up to a significant ANOVA F -

test to determine which population means are different. I will discuss Fisher’s,

Bonferroni’s, and Tukey’s methods for comparing all pairs of means.

Fisher’s least significant difference method (LSD or FSD) is a two-step

process:

1. Carry out the ANOVA F -test of H0 : µ1 = µ2 = · · · = µk at the α level.

If H0 is not rejected, stop and conclude that there is insufficient evidence

to claim differences among population means. If H0 is rejected, go to step
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2.

2. Compare each pair of means using a pooled two sample t-test at the α

level. Use spooled from the ANOVA table and df = dfE (Residual).

To see where the name LSD originated, consider the t-test of H0 : µi = µj (i.e.,

populations i and j have same mean). The t-statistic is

ts =
Ȳi − Ȳj

spooled

√
1
ni

+ 1
nj

.

You reject H0 if |ts| ≥ tcrit, or equivalently, if

|Ȳi − Ȳj| ≥ tcritspooled

√
1

ni
+

1

nj
.

The minimum absolute difference between Ȳi and Ȳj needed to reject H0 is the

LSD, the quantity on the right hand side of this inequality. If all the sample sizes

are equal n1 = n2 = · · · = nk then the LSD is the same for each comparison:

LSD = tcritspooled

√
2

n1
,

where n1 is the common sample size.

I will illustrate Fisher’s method on the doughnut data, using α = 0.05. At

the first step, you reject the hypothesis that the population mean absorptions

are equal because p-value= 0.001. At the second step, compare all pairs of fats

at the 5% level. Here, spooled = 8.18 and tcrit = 2.086 for a two-sided test based

on 20 df (the dfE for Residual SS). Each sample has six observations, so the

LSD for each comparison is

LSD = 2.086× 8.18×
√

2

6
= 9.85.

Any two sample means that differ by at least 9.85 in magnitude are signifi-

cantly different at the 5% level.
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An easy way to compare all pairs of fats is to order the samples by their

sample means. The samples can then be grouped easily, noting that two fats

are in the same group if the absolute difference between their sample means is

smaller than the LSD.
Fats Sample Mean

2 185.00

3 174.83

1 174.50

4 162.00

There are six comparisons of two fats. From this table, you can visually

assess which sample means differ by at least the LSD=9.85, and which ones do

not. For completeness, the table below summarizes each comparison:

Comparison Absolute difference in means Exceeds LSD?

Fats 2 and 3 10.17 Yes

2 and 1 10.50 Yes

2 and 4 23.00 Yes

Fats 3 and 1 0.33 No

3 and 4 12.83 Yes

Fats 1 and 4 12.50 Yes

The end product of the multiple comparisons is usually presented as a col-

lection of groups, where a group is defined to be a set of populations with

sample means that are not significantly different from each other. Overlap

among groups is common, and occurs when one or more populations appears

in two or more groups. Any overlap requires a more careful interpretation of

the analysis.
There are three groups for the doughnut data, with no overlap. Fat 2 is in

a group by itself, and so is Fat 4. Fats 3 and 1 are in a group together. This
information can be summarized by ordering the samples from lowest to highest
average, and then connecting the fats in the same group using an underscore:

FAT 4 FAT 1 FAT 3 FAT 2
----- -------------- -----

The results of a multiple comparisons must be interpreted carefully. At the

5% level, you have sufficient evidence to conclude that the population mean
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absorption for Fat 2 and Fat 4 are each different than the other population

means. However, there is insufficient evidence to conclude that the population

mean absorptions for Fats 1 and 3 differ.

Be Careful with Interpreting Groups in Multiple Comparisons!

To see why you must be careful when interpreting groupings, suppose you obtain
two groups in a three sample problem. One group has samples 1 and 3. The
other group has samples 3 and 2:

1 3 2
-----------

-----------

This occurs, for example, when |Ȳ1 − Ȳ2| ≥ LSD, but both |Ȳ1 − Ȳ3| and

|Ȳ3 − Ȳ2| are less than the LSD. There is a tendency to conclude, and please

try to avoid this line of attack, that populations 1 and 3 have the same mean,

populations 2 and 3 have the same mean, but populations 1 and 2 have different

means. This conclusion is illogical. The groupings imply that we have sufficient

evidence to conclude that population means 1 and 2 are different, but insufficient

evidence to conclude that population mean 3 differs from either of the other

population means.

5.2.1 FSD Multiple Comparisons in R

One way to get Fisher comparisons in R uses pairwise.t.test() with p.adjust.method = "none".
The resulting summary of the multiple comparisons is in terms of p-values for
all pairwise two-sample t-tests using the pooled standard deviation from the
ANOVA using pool.sd = TRUE. This output can be used to generate groupings.
A summary of the p-values is given below. Let us see that we can recover the
groups from this output.
#### Multiple Comparisons

# all pairwise comparisons among levels of fat

# Fisher's LSD (FSD) uses "none"

pairwise.t.test(fat.long$amount, fat.long$type,

pool.sd = TRUE, p.adjust.method = "none")

##

## Pairwise comparisons using t tests with pooled SD

##

## data: fat.long$amount and fat.long$type

##
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## fat1 fat2 fat3

## fat2 0.038 - -

## fat3 0.944 0.044 -

## fat4 0.015 9.3e-05 0.013

##

## P value adjustment method: none

Discussion of the FSD Method: family error rate

There are c = k(k − 1)/2 pairs of means to compare in the second step of

the FSD method. Each comparison is done at the α level, where for a generic

comparison of the ith and jth populations

α = probability of rejecting H0 : µi = µj when H0 is true.

The individual error rate is not the only error rate that is important in mul-

tiple comparisons. The family error rate (FER), or the experimentwise

error rate, is defined to be the probability of at least one false rejection of

a true hypothesis H0 : µi = µj over all comparisons. When many compar-

isons are made, you may have a large probability of making one or more false

rejections of true null hypotheses. In particular, when all c comparisons of two

population means are performed, each at the α level, then

α < FER < cα.

For example, in the doughnut problem where k = 4, there are c = 4(3)/2 =

6 possible comparisons of pairs of fats. If each comparison is carried out at the

5% level, then 0.05 < FER < 0.30. At the second step of the FSD method,

you could have up to a 30% chance of claiming one or more pairs of population

means are different if no differences existed between population means. Most

statistical packages do not evaluate the FER, so the upper bound is used.

The first step of the FSD method is the ANOVA “screening” test. The

multiple comparisons are carried out only if the F -test suggests that not all

population means are equal. This screening test tends to deflate the FER for

the two-step FSD procedure. However, the FSD method is commonly criticized

for being extremely liberal (too many false rejections of true null hypotheses)

UNM, Stat 427/527 ADA1



176 Ch 5: One-Way Analysis of Variance

when some, but not many, differences exist — especially when the number of

comparisons is large. This conclusion is fairly intuitive. When you do a large

number of tests, each, say, at the 5% level, then sampling variation alone will

suggest differences in 5% of the comparisons where the H0 is true. The number

of false rejections could be enormous with a large number of comparisons. For

example, chance variation alone would account for an average of 50 significant

differences in 1000 comparisons (about 45 populations) each at the 5% level.

5.2.2 Bonferroni Comparisons

The Bonferroni method controls the FER by reducing the individual comparison

error rate. The FER is guaranteed to be no larger than a prespecified amount,

say α, by setting the individual error rate for each of the c comparisons of

interest to α/c. Therefore, α/c < FER < cα/c = α, thus the upper bound for

FER is α. Larger differences in the sample means are needed before declaring

statistical significance using the Bonferroni adjustment than when using the

FSD method at the α level.

ClickerQ s — ANOVA, Bonferroni

Assuming all comparisons are of interest, you can implement the Bonferroni

adjustment in R by specifying p.adjust.method = "bonf" A by-product of the

Bonferroni adjustment is that we have at least 100(1−α)% confidence that all

pairwise t-test statements hold simultaneously!
# Bonferroni 95% Individual p-values

# All Pairwise Comparisons among Levels of fat

pairwise.t.test(fat.long$amount, fat.long$type,

pool.sd = TRUE, p.adjust.method = "bonf")

##

## Pairwise comparisons using t tests with pooled SD

##

## data: fat.long$amount and fat.long$type

##

## fat1 fat2 fat3

## fat2 0.22733 - -
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## fat3 1.00000 0.26241 -

## fat4 0.09286 0.00056 0.07960

##

## P value adjustment method: bonferroni

Looking at the output, can you create the groups? You should get the
groups given below, which implies you have sufficient evidence to conclude that
the population mean absorption for Fat 2 is different than that for Fat 4.

FAT 4 FAT 1 FAT 3 FAT 2
-----------------------

-----------------------

The Bonferroni method tends to produce “coarser” groups than the FSD method,

because the individual comparisons are conducted at a lower (alpha/error) level.

Equivalently, the minimum significant difference is inflated for the Bonferroni

method. For example, in the doughnut problem with FER ≤ 0.05, the critical

value for the individual comparisons at the 0.0083 level is tcrit = 2.929 with

df = 20. The minimum significant difference for the Bonferroni comparisons is

LSD = 2.929× 8.18×
√

2

6
= 13.824

versus an LSD=9.85 for the FSD method. Referring back to our table of sam-

ple means on page 172, we see that the sole comparison where the absolute

difference between sample means exceeds 13.824 involves Fats 2 and 4.

Example from Koopmans: glabella facial tissue thickness In an

anthropological study of facial tissue thickness for different racial groups, data

were taken during autopsy at several points on the faces of deceased individuals.

The Glabella measurements taken at the bony ridge for samples of individuals

from three racial groups (cauc = Caucasian, afam = African American, and

naaa = Native American and Asian) follow. The data values are in mm.
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#### Example from Koopmans: glabella facial tissue thickness

glabella <- read.table(text="

Row cauc afam naaa

1 5.75 6.00 8.00

2 5.50 6.25 7.00

3 6.75 6.75 6.00

4 5.75 7.00 6.25

5 5.00 7.25 5.50

6 5.75 6.75 4.00

7 5.75 8.00 5.00

8 7.75 6.50 6.00

9 5.75 7.50 7.25

10 5.25 6.25 6.00

11 4.50 5.00 6.00

12 6.25 5.75 4.25

13 NA 5.00 4.75

14 NA NA 6.00

", header=TRUE)

glabella.long <- melt(glabella,

id.vars=c("Row"),

variable.name = "pop",

value.name = "thickness",

# remove NAs

na.rm = TRUE

)

# naming variables manually, the variable.name and value.name not working 11/2012

names(glabella.long) <- c("Row", "pop", "thickness")

# another way to remove NAs:

#glabella.long <- subset(glabella.long, !is.na(thickness))

# Plot the data using ggplot

library(ggplot2)

p <- ggplot(glabella.long, aes(x = pop, y = thickness))

# plot a reference line for the global mean (assuming no groups)

p <- p + geom_hline(yintercept = mean(glabella.long$thickness),
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colour = "black", linetype = "dashed", size = 0.3, alpha = 0.5)

# boxplot, size=.75 to stand out behind CI

p <- p + geom_boxplot(size = 0.75, alpha = 0.5)

# points for observed data

p <- p + geom_point(position = position_jitter(w = 0.05, h = 0), alpha = 0.5)

# diamond at mean for each group

p <- p + stat_summary(fun.y = mean, geom = "point", shape = 18, size = 6,

colour = "red", alpha = 0.8)

# confidence limits based on normal distribution

p <- p + stat_summary(fun.data = "mean_cl_normal", geom = "errorbar",

width = .2, colour = "red", alpha = 0.8)

p <- p + labs(title = "Glabella thickness") + ylab("thickness (mm)")

print(p)

4

5

6

7

8

cauc afam naaa

pop

th
ic

kn
es

s 
(m

m
)

Glabella thickness

There are 3 groups, so there are 3 possible pairwise comparisons. If you

want a Bonferroni analysis with FER of no greater than 0.05, you should do

the individual comparisons at the 0.05/3 = 0.0167 level. Except for the mild

outlier in the Caucasian sample, the observed distributions are fairly symmetric,
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with similar spreads. I would expect the standard ANOVA to perform well here.

Let µc = population mean Glabella measurement for Caucasians, µa =

population mean Glabella measurement for African Americans, and µn = pop-

ulation mean Glabella measurement for Native Americans and Asians.
glabella.summary <- ddply(glabella.long, "pop",

function(X) { data.frame( m = mean(X$thickness),

s = sd(X$thickness),

n = length(X$thickness) ) } )

glabella.summary

## pop m s n

## 1 cauc 5.812500 0.8334280 12

## 2 afam 6.461538 0.8946959 13

## 3 naaa 5.857143 1.1168047 14

fit.g <- aov(thickness ~ pop, data = glabella.long)

summary(fit.g)

## Df Sum Sq Mean Sq F value Pr(>F)

## pop 2 3.40 1.6991 1.828 0.175

## Residuals 36 33.46 0.9295

fit.g

## Call:

## aov(formula = thickness ~ pop, data = glabella.long)

##

## Terms:

## pop Residuals

## Sum of Squares 3.39829 33.46068

## Deg. of Freedom 2 36

##

## Residual standard error: 0.9640868

## Estimated effects may be unbalanced

At the 5% level, you would not reject the hypothesis that the population

mean Glabella measurements are identical. That is, you do not have sufficient

evidence to conclude that these racial groups differ with respect to their average

Glabella measurement. This is the end of the analysis!

The Bonferroni intervals reinforce this conclusion, all the p-values are greater

than 0.05. If you were to calculate CIs for the difference in population means,

each would contain zero. You can think of the Bonferroni intervals as simul-

taneous CI. We’re (at least) 95% confident that all of the following statements

hold simultaneously: −1.62 ≤ µc − µa ≤ 0.32, −0.91 ≤ µn − µc ≤ 1.00, and

−1.54 ≤ µn − µa ≤ 0.33. The individual CIs have level 100(1 − 0.0167)% =
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98.33%.
# Bonferroni 95% Individual p-values

# All Pairwise Comparisons among Levels of glabella

pairwise.t.test(glabella.long$thickness, glabella.long$pop,

pool.sd = TRUE, p.adjust.method = "bonf")

##

## Pairwise comparisons using t tests with pooled SD

##

## data: glabella.long$thickness and glabella.long$pop

##

## cauc afam

## afam 0.30 -

## naaa 1.00 0.34

##

## P value adjustment method: bonferroni

5.3 Further Discussion of Multiple Compar-
isons

The FSD and Bonferroni methods comprise the ends of the spectrum of mul-

tiple comparisons methods. Among multiple comparisons procedures, the FSD

method is most likely to find differences, whether real or due to sampling vari-

ation, whereas Bonferroni is often the most conservative method. You can

be reasonably sure that differences suggested by the Bonferroni method will

be suggested by almost all other methods, whereas differences not significant

under FSD will not be picked up using other approaches.

The Bonferroni method is conservative, but tends to work well when the

number of comparisons is small, say 4 or less. A smart way to use the Bonferroni

adjustment is to focus attention only on the comparisons of interest (generated

independently of looking at the data!), and ignore the rest. I will return to this

point later.

A commonly-used alternative is Tukey’s honest significant difference method

(HSD). John Tukey’s honest significant difference method is to reject the equal-

ity of a pair of means based, not on the t-distribution, but the studentized

range distribution. To implement Tukey’s method with a FER of α, reject
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H0 : µi = µj when

|Ȳi − Ȳj| ≥
qcrit√

2
spooled

√
1

ni
+

1

nj
,

where qcrit is the α level critical value of the studentized range distribution. For

the doughnut fats, the groupings based on Tukey and Bonferroni comparisons

are identical.
#### Tukey's honest significant difference method (HSD)

## Fat

# Tukey 95% Individual p-values

# All Pairwise Comparisons among Levels of fat

TukeyHSD(fit.f)

## Tukey multiple comparisons of means

## 95% family-wise confidence level

##

## Fit: aov(formula = amount ~ type, data = fat.long)

##

## $type

## diff lwr upr p adj

## fat2-fat1 10.5000000 -2.719028 23.7190277 0.1510591

## fat3-fat1 0.3333333 -12.885694 13.5523611 0.9998693

## fat4-fat1 -12.5000000 -25.719028 0.7190277 0.0679493

## fat3-fat2 -10.1666667 -23.385694 3.0523611 0.1709831

## fat4-fat2 -23.0000000 -36.219028 -9.7809723 0.0004978

## fat4-fat3 -12.8333333 -26.052361 0.3856944 0.0590077

## Glabella

# Tukey 95% Individual p-values

# All Pairwise Comparisons among Levels of pop

TukeyHSD(fit.g)

## Tukey multiple comparisons of means

## 95% family-wise confidence level

##

## Fit: aov(formula = thickness ~ pop, data = glabella.long)

##

## $pop

## diff lwr upr p adj

## afam-cauc 0.64903846 -0.2943223 1.5923993 0.2259806

## naaa-cauc 0.04464286 -0.8824050 0.9716907 0.9923923

## naaa-afam -0.60439560 -1.5120412 0.3032500 0.2472838

Another popular method controls the false discovery rate (FDR) instead

of the FER. The FDR is the expected proportion of false discoveries amongst

the rejected hypotheses. The false discovery rate is a less stringent condition
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than the family-wise error rate, so these methods are more powerful than the

others, though with a higher FER. I encourage you to learn more about the

methods by Benjamini, Hochberg, and Yekutieli.
#### false discovery rate (FDR)

## Fat

# FDR

pairwise.t.test(fat.long$amount, fat.long$type,

pool.sd = TRUE, p.adjust.method = "BH")

##

## Pairwise comparisons using t tests with pooled SD

##

## data: fat.long$amount and fat.long$type

##

## fat1 fat2 fat3

## fat2 0.05248 - -

## fat3 0.94443 0.05248 -

## fat4 0.03095 0.00056 0.03095

##

## P value adjustment method: BH

## Glabella

# FDR

pairwise.t.test(glabella.long$thickness, glabella.long$pop,

pool.sd = TRUE, p.adjust.method = "BH")

##

## Pairwise comparisons using t tests with pooled SD

##

## data: glabella.long$thickness and glabella.long$pop

##

## cauc afam

## afam 0.17 -

## naaa 0.91 0.17

##

## P value adjustment method: BH

ClickerQ s — ANOVA, multiple comparisons
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5.4 Checking Assumptions in ANOVA Prob-
lems

The classical ANOVA assumes that the populations have normal frequency

curves and the populations have equal variances (or spreads). You can test

the normality assumption using multiple normal QQ-plots and normal scores

tests, which we discussed in Chapter 4. An alternative approach that is useful

with three or more samples is to make a single normal scores plot for the entire

data set. The samples must be centered at the same location for this to be

meaningful. (WHY?) This is done by subtracting the sample mean from each

observation in the sample, giving the so-called residuals. A normal scores

plot or histogram of the residuals should resemble a sample from a normal

population. These two plots can be generated with output in $residuals from

the anova() procedure.

For the glabella residuals, there are a few observations outside the confidence
bands, but the formal normality tests each have p-values > 0.2, so there’s weak
but unconvincing evidence of nonnormality.
#### Checking Assumptions in ANOVA Problems

# plot of data

par(mfrow=c(3,1))

# Histogram overlaid with kernel density curve

hist(fit.g$residuals, freq = FALSE, breaks = 20)

points(density(fit.g$residuals), type = "l")

rug(fit.g$residuals)

# violin plot

library(vioplot)

vioplot(fit.g$residuals, horizontal=TRUE, col="gray")

# boxplot

boxplot(fit.g$residuals, horizontal=TRUE)

# QQ plot

par(mfrow=c(1,1))

library(car)

qqPlot(fit.g$residuals, las = 1, id.n = 8, id.cex = 1, lwd = 1, main="QQ Plot")

## 29 8 34 40 21 25 27 37

## 39 38 1 2 37 3 4 36
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Histogram of fit.g$residuals
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shapiro.test(fit.g$residuals)

##

## Shapiro-Wilk normality test

##

## data: fit.g$residuals

## W = 0.97693, p-value = 0.5927

library(nortest)

ad.test(fit.g$residuals)

##

## Anderson-Darling normality test

##

## data: fit.g$residuals

## A = 0.37731, p-value = 0.3926

# lillie.test(fit.g£residuals)

cvm.test(fit.g$residuals)

##

## Cramer-von Mises normality test

##

## data: fit.g$residuals

## W = 0.070918, p-value = 0.2648

In Chapter 4, I illustrated the use of Bartlett’s test and Levene’s test for

equal population variances, and showed how to evaluate these tests in R.
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0 4 χCrit
2

α = .05 (fixed)

Reject H0 for χS
2 here

χ2 distribution with 3 degrees of freedom

R does the calculation for us, as illustrated below. Because the p-value
> 0.5, we fail to reject the null hypothesis that the population variances are
equal. This result is not surprising given how close the sample variances are to
each other.
## Test equal variance

# Barlett assumes populations are normal

bartlett.test(thickness ~ pop, data = glabella.long)

##

## Bartlett test of homogeneity of variances

##

## data: thickness by pop

## Bartlett's K-squared = 1.1314, df = 2, p-value = 0.568

Levene’s and Flinger’s tests are consistent with Bartlett’s.
# Levene does not assume normality, requires car package

library(car)

leveneTest(thickness ~ pop, data = glabella.long)

## Levene's Test for Homogeneity of Variance (center = median)

## Df F value Pr(>F)
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## group 2 0.5286 0.5939

## 36

# Fligner is a nonparametric test

fligner.test(thickness ~ pop, data = glabella.long)

##

## Fligner-Killeen test of homogeneity of variances

##

## data: thickness by pop

## Fligner-Killeen:med chi-squared = 1.0311, df = 2, p-value =

## 0.5972

5.5 Example from the Child Health and De-
velopment Study (CHDS)

We consider data from the birth records of 680 live-born white male infants.

The infants were born to mothers who reported for pre-natal care to three

clinics of the Kaiser hospitals in northern California. As an initial analysis, we

will examine whether maternal smoking has an effect on the birth weights of

these children. To answer this question, we define 3 groups based on mother’s

smoking history: (1) mother does not currently smoke or never smoked, (2)

mother smoked less than one pack of cigarettes a day during pregnancy, and

(3) mother smoked at least one pack of cigarettes a day during pregnancy.

Let µi = pop mean birth weight (lb) for children in group i, (i = 1, 2, 3).

We wish to test H0 : µ1 = µ2 = µ3 against HA : not H0.
We read in the data, create a smoke factor variable, and plot the data by

smoking group.
#### Example from the Child Health and Development Study (CHDS)

# description at http://statacumen.com/teach/ADA1/ADA1_notes_05-CHDS_desc.txt

# read data from website

chds <- read.csv("http://statacumen.com/teach/ADA1/ADA1_notes_05-CHDS.csv")

chds$smoke <- rep(NA, nrow(chds));

# no cigs

chds[(chds$m_smok == 0), "smoke"] <- "0 cigs";

# less than 1 pack (20 cigs = 1 pack)

chds[(chds$m_smok > 0) & (chds$m_smok < 20),"smoke"] <- "1-19 cigs";

# at least 1 pack (20 cigs = 1 pack)

chds[(chds$m_smok >= 20),"smoke"] <- "20+ cigs";
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chds$smoke <- factor(chds$smoke)

# histogram using ggplot

p1 <- ggplot(chds, aes(x = c_bwt))

p1 <- p1 + geom_histogram(binwidth = .4)

p1 <- p1 + geom_rug()

p1 <- p1 + facet_grid(smoke ~ .)

p1 <- p1 + labs(title = "Child birthweight vs maternal smoking") +

xlab("child birthweight (lb)")

#print(p1)

p2 <- ggplot(chds, aes(x = c_bwt, fill=smoke))

p2 <- p2 + geom_histogram(binwidth = .4, alpha = 1/3, position="identity")

p2 <- p2 + geom_rug(aes(colour = smoke), alpha = 1/3)

p2 <- p2 + labs(title = "Child birthweight vs maternal smoking") +

xlab("child birthweight (lb)")

#print(p2)

library(gridExtra)

grid.arrange(grobs = list(p1, p2), ncol=1)

# Plot the data using ggplot

library(ggplot2)

p <- ggplot(chds, aes(x = smoke, y = c_bwt))

# plot a reference line for the global mean (assuming no groups)

p <- p + geom_hline(yintercept = mean(chds$c_bwt),

colour = "black", linetype = "dashed", size = 0.3, alpha = 0.5)

# boxplot, size=.75 to stand out behind CI

p <- p + geom_boxplot(size = 0.75, alpha = 0.5)

# points for observed data

p <- p + geom_point(position = position_jitter(w = 0.05, h = 0), alpha = 0.2)

# diamond at mean for each group

p <- p + stat_summary(fun.y = mean, geom = "point", shape = 18, size = 4,

colour = "red", alpha = 0.8)

# confidence limits based on normal distribution

p <- p + stat_summary(fun.data = "mean_cl_normal", geom = "errorbar",

width = .2, colour = "red", alpha = 0.8)

p <- p + labs(title = "Child birthweight vs maternal smoking") +

ylab("child birthweight (lb)")

print(p)
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Looking at the boxplots, there is some evidence of non-normality here. Al-

though there are outliers in the no smoking group, we need to recognize that

the sample size for this group is fairly large (381). Given that boxplots are cal-

ibrated in such a way that 7 outliers per 1000 observations are expected when

sampling from a normal population, 5 outliers (only 4 are visible!) out of 381

seems a bit excessive. A formal test rejects the hypothesis of normality in the

no and low smoker groups. The normal probability plot and the histogram of

the residuals also suggests that the population distributions are heavy tailed.
library(car)

par(mfrow=c(1,3))

qqPlot(subset(chds, smoke == "0 cigs" )$c_bwt, las = 1, id.n = 0,

id.cex = 1, lwd = 1, main="QQ Plot, 0 cigs")

qqPlot(subset(chds, smoke == "1-19 cigs")$c_bwt, las = 1, id.n = 0,

id.cex = 1, lwd = 1, main="QQ Plot, 1-19 cigs")

qqPlot(subset(chds, smoke == "20+ cigs" )$c_bwt, las = 1, id.n = 0,

id.cex = 1, lwd = 1, main="QQ Plot, 20+ cigs")

UNM, Stat 427/527 ADA1



190 Ch 5: One-Way Analysis of Variance

−3 −2 −1 0 1 2 3

4

6

8

10

QQ Plot, 0 cigs

norm quantiles

su
bs

et
(c

hd
s,

 s
m

ok
e 

=
=

 "
0 

ci
gs

")
$c

_b
w

t

●

●

●

●●
●●

●●
●
●
●●

●●●●
●●●●●●

●
●●●●●●

●●●●
●●●●●
●●●●●●●●●●●●●●

●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●
●●●●●●●●●●●●●●●●●

●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●
●●●●●●●
●●●
●●●●●●●●

●●●●●●●●
●●●●●
●●
●●●
●●●
●●

●●
●●●

●
●
●
●

●

●

●

−2 −1 0 1 2

6

7

8

9

10

QQ Plot, 1−19 cigs

norm quantiles

su
bs

et
(c

hd
s,

 s
m

ok
e 

=
=

 "
1−

19
 c

ig
s"

)$
c_

bw
t

●
● ●●

●●
●●●

●●●

●●●

●●●●●●
●●●●●●●●●●●

●●●
●●●●●●●

●●
●●●●●●

●●●●●
●●●
●●●●●●●●

●●●●
●●●●●●●●

●●●●●●●●
●●●●●
●●●●●●●●●●

●●
●●●●●●
●●●●●
●●●●●●●

●●●●●●
●
●●●●●

●●●●●
●●●●

●●
●●●
●●
●
●●●●

●
●●●●

●

●
●●

●
●●●

●

●

−2 −1 0 1 2

5

6

7

8

9

QQ Plot, 20+ cigs

norm quantiles

su
bs

et
(c

hd
s,

 s
m

ok
e 

=
=

 "
20

+
 c

ig
s"

)$
c_

bw
t

● ●
●

●

●
●
●
●
●
●
●●●

●●●●●
●●●●

●
●●
●●●●●●

●●●
●●●
●●
●●●●●●●●

●●●●●●●●
●●●●●

●●
●●●●●●●●

●●●●●
●●●●●●●●

●●●
●●●●
●●●●●

●●●●●●
●●

●●●
●
●●●●●

●●●
●
●
●●●●●

●●●●
●●

●

●

library(nortest)

# 0 cigs --------------------

shapiro.test(subset(chds, smoke == "0 cigs" )$c_bwt)

##

## Shapiro-Wilk normality test

##

## data: subset(chds, smoke == "0 cigs")$c_bwt

## W = 0.98724, p-value = 0.00199

ad.test( subset(chds, smoke == "0 cigs" )$c_bwt)

##

## Anderson-Darling normality test

##

## data: subset(chds, smoke == "0 cigs")$c_bwt

## A = 0.92825, p-value = 0.01831

cvm.test( subset(chds, smoke == "0 cigs" )$c_bwt)

##

## Cramer-von Mises normality test

##

## data: subset(chds, smoke == "0 cigs")$c_bwt

## W = 0.13844, p-value = 0.03374

# 1-19 cigs --------------------

shapiro.test(subset(chds, smoke == "1-19 cigs")$c_bwt)

##

## Shapiro-Wilk normality test

##

## data: subset(chds, smoke == "1-19 cigs")$c_bwt

## W = 0.97847, p-value = 0.009926

ad.test( subset(chds, smoke == "1-19 cigs")$c_bwt)

##
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## Anderson-Darling normality test

##

## data: subset(chds, smoke == "1-19 cigs")$c_bwt

## A = 0.83085, p-value = 0.03149

cvm.test( subset(chds, smoke == "1-19 cigs")$c_bwt)

##

## Cramer-von Mises normality test

##

## data: subset(chds, smoke == "1-19 cigs")$c_bwt

## W = 0.11332, p-value = 0.07317

# 20+ cigs --------------------

shapiro.test(subset(chds, smoke == "20+ cigs" )$c_bwt)

##

## Shapiro-Wilk normality test

##

## data: subset(chds, smoke == "20+ cigs")$c_bwt

## W = 0.98127, p-value = 0.06962

ad.test( subset(chds, smoke == "20+ cigs" )$c_bwt)

##

## Anderson-Darling normality test

##

## data: subset(chds, smoke == "20+ cigs")$c_bwt

## A = 0.40008, p-value = 0.3578

cvm.test( subset(chds, smoke == "20+ cigs" )$c_bwt)

##

## Cramer-von Mises normality test

##

## data: subset(chds, smoke == "20+ cigs")$c_bwt

## W = 0.040522, p-value = 0.6694

Fit the ANOVA (we’ll look at the table below).
fit.c <- aov(c_bwt ~ smoke, data = chds)

A formal test of normality on the residuals of the combined sample is

marginally significant (SW p-value= 0.047, others > 0.10). However, I am

not overly concerned about this for the following reasons: in large samples,

small deviations from normality are often statistically significant and in my

experience, the small deviations we are seeing here are not likely to impact

our conclusions, in the sense that non-parametric methods that do not require

normality will lead to the same conclusions.
# plot of data

par(mfrow=c(3,1))
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# Histogram overlaid with kernel density curve

hist(fit.c$residuals, freq = FALSE, breaks = 20)

points(density(fit.c$residuals), type = "l")

rug(fit.c$residuals)

# violin plot

library(vioplot)

vioplot(fit.c$residuals, horizontal=TRUE, col="gray")

# boxplot

boxplot(fit.c$residuals, horizontal=TRUE)

# QQ plot

par(mfrow=c(1,1))

library(car)

qqPlot(fit.c$residuals, las = 1, id.n = 0, id.cex = 1, lwd = 1, main="QQ Plot")
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shapiro.test(fit.c$residuals)

##

## Shapiro-Wilk normality test

##

## data: fit.c$residuals

## W = 0.99553, p-value = 0.04758

library(nortest)

ad.test(fit.c$residuals)

##

## Anderson-Darling normality test

##

Prof. Erik B. Erhardt



5.5: Example from the Child Health and Development Study (CHDS) 193

## data: fit.c$residuals

## A = 0.62184, p-value = 0.1051

cvm.test(fit.c$residuals)

##

## Cramer-von Mises normality test

##

## data: fit.c$residuals

## W = 0.091963, p-value = 0.1449

Looking at the summaries, we see that the sample standard deviations are
close. Formal tests of equal population variances are far from significant. The
p-values for Bartlett’s test and Levene’s test are greater than 0.4. Thus, the
standard ANOVA appears to be appropriate here.
# calculate summaries

chds.summary <- ddply(chds, "smoke",

function(X) { data.frame( m = mean(X$c_bwt),

s = sd(X$c_bwt),

n = length(X$c_bwt) ) } )

chds.summary

## smoke m s n

## 1 0 cigs 7.732808 1.052341 381

## 2 1-19 cigs 7.221302 1.077760 169

## 3 20+ cigs 7.266154 1.090946 130

## Test equal variance

# assumes populations are normal

bartlett.test(c_bwt ~ smoke, data = chds)

##

## Bartlett test of homogeneity of variances

##

## data: c_bwt by smoke

## Bartlett's K-squared = 0.3055, df = 2, p-value = 0.8583

# does not assume normality, requires car package

library(car)

leveneTest(c_bwt ~ smoke, data = chds)

## Levene's Test for Homogeneity of Variance (center = median)

## Df F value Pr(>F)

## group 2 0.7591 0.4685

## 677

# nonparametric test

fligner.test(c_bwt ~ smoke, data = chds)

##

## Fligner-Killeen test of homogeneity of variances

##

## data: c_bwt by smoke

## Fligner-Killeen:med chi-squared = 2.0927, df = 2, p-value =

## 0.3512
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The p-value for the F -test is less than 0.0001. We would reject H0 at any of
the usual test levels (such as 0.05 or 0.01). The data suggest that the population
mean birth weights differ across smoking status groups.
summary(fit.c)

## Df Sum Sq Mean Sq F value Pr(>F)

## smoke 2 40.7 20.351 17.9 2.65e-08 ***

## Residuals 677 769.5 1.137

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

fit.c

## Call:

## aov(formula = c_bwt ~ smoke, data = chds)

##

## Terms:

## smoke Residuals

## Sum of Squares 40.7012 769.4943

## Deg. of Freedom 2 677

##

## Residual standard error: 1.066126

## Estimated effects may be unbalanced

The Tukey multiple comparisons suggest that the mean birth weights are
different (higher) for children born to mothers that did not smoke during preg-
nancy.
## CHDS

# Tukey 95% Individual p-values

TukeyHSD(fit.c)

## Tukey multiple comparisons of means

## 95% family-wise confidence level

##

## Fit: aov(formula = c_bwt ~ smoke, data = chds)

##

## $smoke

## diff lwr upr p adj

## 1-19 cigs-0 cigs -0.51150662 -0.7429495 -0.2800637 0.0000008

## 20+ cigs-0 cigs -0.46665455 -0.7210121 -0.2122970 0.0000558

## 20+ cigs-1-19 cigs 0.04485207 -0.2472865 0.3369907 0.9308357
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Nonparametric Methods
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Learning objectives

After completing this topic, you should be able to:

select the appropriate procedure based on assumptions.

explain reason for using one procedure over another.

decide whether the medians between multiple populations are different.

Achieving these goals contributes to mastery in these course learning outcomes:

3. select correct statistical procedure.

5. define parameters of interest and hypotheses in words and notation.

6. summarize data visually, numerically, and descriptively.

8. use statistical software.

10. identify and explain statistical methods, assumptions, and limitations.

12. make evidence-based decisions.

6.1 Introduction

Nonparametric methods do not require the normality assumption of classical

techniques. When the normality assumption is met, the ANOVA and t-test are

most powerful, in that if the alternative is true these methods will make the

correct decision with highest probability. However, if the normality assumption

is not met, results from the ANOVA and t-test can be misleading and too

liberal. I will describe and illustrate selected non-parametric methods,

and compare them with classical methods. Some motivation and discussion of

the strengths and weaknesses of non-parametric methods is given.

6.2 The Sign Test and CI for a Population
Median

The sign test assumes that you have a random sample from a population,

but makes no assumption about the population shape. The standard t-test
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provides inferences on a population mean. The sign test, in contrast, provides

inferences about a population median.

If the population frequency curve is symmetric (see below), then the popu-

lation median, identified by η, and the population mean µ are identical. In this

case the sign procedures provide inferences for the population mean, though

less powerfully than the t-test.

The idea behind the sign test is straightforward. Suppose you have a sample

of size m from the population, and you wish to test H0 : η = η0 (a given value).

Let S be the number of sampled observations above η0. If H0 is true, you expect

S to be approximately one-half the sample size, 0.5m. If S is much greater than

0.5m, the data suggests that η > η0. If S is much less than 0.5m, the data

suggests that η < η0.

Mean = µMedian = η

50%

Mean and Median differ with skewed distributions

Mean = Median

Mean and Median are the same with symmetric distributions

S has a Binomial distribution when H0 is true. The Binomial distri-

bution is used to construct a test with size α (approximately). For a two-sided

alternative HA : η 6= η0, the test rejects H0 when S is significantly different

from 0.5m, as determined from the reference Binomial distribution. One-sided

tests use the corresponding lower or upper tail of the distribution. To generate

a CI for η, you can exploit the duality between CI and tests. A 100(1 − α)%

CI for η consists of all values η0 not rejected by a two-sided size α test of
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H0 : η = η0.

Not all test sizes and confidence levels are possible because the test statistic

S is discrete valued. R’s SIGN.test() in the BSDA package gives an exact p-

value for the test, and approximates the desired confidence level using a linear

interpolation algorithm.

Example: Income Data Recall that the income distribution is extremely
skewed, with two extreme outliers at 46 and 1110.
#### Example: Income Data

income <- c(7, 1110, 7, 5, 8, 12, 0, 5, 2, 2, 46, 7)

# sort in decreasing order

income <- sort(income, decreasing = TRUE)

income

## [1] 1110 46 12 8 7 7 7 5 5 2 2 0

summary(income)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.00 4.25 7.00 100.92 9.00 1110.00

sd(income)

## [1] 318.0078

The income data is unimodal, skewed right, with two extreme outliers.
par(mfrow=c(3,1))

# Histogram overlaid with kernel density curve

hist(income, freq = FALSE, breaks = 1000)

points(density(income), type = "l")

rug(income)

# violin plot

library(vioplot)

vioplot(income, horizontal=TRUE, col="gray")

# boxplot

boxplot(income, horizontal=TRUE)
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Histogram of income
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The normal QQ-plot of the sample data indicates strong deviation from
normality, and the CLT can’t save us: even the bootstrap sampling distribution
of the mean indicates strong deviation from normality.
library(car)

qqPlot(income, las = 1, id.n = 0, id.cex = 1, lwd = 1, main="QQ Plot, Income")

bs.one.samp.dist(income)
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The presence of the outliers has a dramatic effect on the 95% CI for the
population mean income µ, which goes from −101 to 303 (in 1000 dollar units).
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This t-CI is suspect because the normality assumption is unreasonable. A CI
for the population median income η is more sensible because the median is likely
to be a more reasonable measure of typical value. Using the sign procedure,
you are 95% confident that the population median income is between 2.32 and
11.57 (times $1000).
library(BSDA)

## Loading required package: lattice

##

## Attaching package: ’BSDA’

## The following objects are masked from ’package:car’:

##

## Vocab, Wool

## The following object is masked from ’package:TeachingDemos’:

##

## z.test

## The following object is masked from ’package:datasets’:

##

## Orange

t.test(income)

##

## One Sample t-test

##

## data: income

## t = 1.0993, df = 11, p-value = 0.2951

## alternative hypothesis: true mean is not equal to 0

## 95 percent confidence interval:

## -101.1359 302.9692

## sample estimates:

## mean of x

## 100.9167

SIGN.test(income)

##

## One-sample Sign-Test

##

## data: income

## s = 11, p-value = 0.0009766

## alternative hypothesis: true median is not equal to 0

## 95 percent confidence interval:

## 2.319091 11.574545

## sample estimates:

## median of x

## 7

##

## Achieved and Interpolated Confidence Intervals:

##

## Conf.Level L.E.pt U.E.pt
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## Lower Achieved CI 0.8540 5.0000 8.0000

## Interpolated CI 0.9500 2.3191 11.5745

## Upper Achieved CI 0.9614 2.0000 12.0000

Example: Age at First Heart Transplant Recall that the distribution
of ages is skewed to the left with a lower outlier. A question of interest is whether
the “typical age” at first transplant is 50. This can be formulated as a test about
the population median η or as a test about the population mean µ, depending
on the interpretation.
#### Example: Age at First Heart Transplant

age <- c(54, 42, 51, 54, 49, 56, 33, 58, 54, 64, 49)

# sort in decreasing order

age <- sort(age, decreasing = TRUE)

age

## [1] 64 58 56 54 54 54 51 49 49 42 33

summary(age)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 33.00 49.00 54.00 51.27 55.00 64.00

sd(age)

## [1] 8.25943

The age data is unimodal, skewed left, no extreme outliers.
par(mfrow=c(3,1))

# Histogram overlaid with kernel density curve

hist(age, freq = FALSE, breaks = 10)

points(density(age), type = "l")

rug(age)

# violin plot

library(vioplot)

vioplot(age, horizontal=TRUE, col="gray")

# boxplot

boxplot(age, horizontal=TRUE)
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Histogram of age
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The normal QQ-plot of the sample data indicates mild deviation from nor-
mality in the left tail (2 points of 11 outside the bands), and the bootstrap
sampling distribution of the mean indicates weak deviation from normality. It
is good practice in this case to use the nonparametric test as a double-check of
the t-test, with the nonparametric test being the more conservative test.
library(car)

qqPlot(age, las = 1, id.n = 0, id.cex = 1, lwd = 1, main="QQ Plot, Income")

bs.one.samp.dist(age)
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Plot of data with smoothed density curve
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The sign test for H0 : η = 50 against HA : η 6= 50 has a p-value of 0.549,
which is not sufficient to reject H0. A 95% CI for η is 47.0 to 56.6 years, which
includes the hypothesized median age of 50. Similar conclusions are reached
with the t-CI and the test on µ, but you should have less confidence in these
results because the normality assumption is tenuous.
library(BSDA)

t.test(age, mu=50)

##

## One Sample t-test

##

## data: age

## t = 0.51107, df = 10, p-value = 0.6204

## alternative hypothesis: true mean is not equal to 50

## 95 percent confidence interval:

## 45.72397 56.82149

## sample estimates:

## mean of x

## 51.27273

SIGN.test(age, md=50)

##

## One-sample Sign-Test

##

## data: age

## s = 7, p-value = 0.5488

## alternative hypothesis: true median is not equal to 50

## 95 percent confidence interval:

## 46.98909 56.57455

## sample estimates:

## median of x

## 54

##

## Achieved and Interpolated Confidence Intervals:

##

## Conf.Level L.E.pt U.E.pt

## Lower Achieved CI 0.9346 49.0000 56.0000

## Interpolated CI 0.9500 46.9891 56.5745

## Upper Achieved CI 0.9883 42.0000 58.0000

6.3 Wilcoxon Signed-Rank Procedures

The Wilcoxon procedure assumes you have a random sample from a popula-

tion with a symmetric frequency curve. The curve need not be normal. The
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test and CI can be viewed as procedures for either the population median or

mean.

To illustrate the computation of the Wilcoxon statistic W , suppose you

wish to test H0 : µ = µ0 = 10 on the made-up data below. The test statistic

requires us to compute the signs of Xi− µ0 and the ranks of |Xi− µ0|. Ties

in |Xi − µ0| get the average rank and observations at µ0 (here 10) are always

discarded. The Wilcoxon statistic is the sum of the signed ranks for

observations above µ0 = 10. For us

W = 6 + 4.5 + 8 + 2 + 4.5 + 7 = 32.

Xi Xi − 10 sign |Xi − 10| rank sign× rank

20 10 + 10 6 6

18 8 + 8 4.5 4.5

23 13 + 13 8 8

5 −5 − 5 3 −3

14 4 + 4 2 2

8 −2 − 2 1 −1

18 8 + 8 4.5 4.5

22 12 + 12 7 7

The sum of all ranks is always 0.5m(m+1), wherem is the sample size. IfH0

is true, you expect W to be approximately 0.5×0.5m(m+1) = 0.25m(m+1).

Why? Recall that W adds up the ranks for observations above µ0. If H0 is

true, you expect 1/2 of all observations to be above µ0, assuming the population

distribution is symmetric. The ranks of observations above µ0 should add

to approximately 1/2 times the sum of all ranks. You reject H0 in favor of

HA : µ 6= µ0 if W is much larger than, or much smaller than 0.25m(m + 1).

One sided tests can also be constructed. The Wilcoxon CI for µ is computed

in a manner analogous to that described for the sign CI.

Here, m = 8 so the sum of all ranks is 0.5 × 8 × 9 = 36 (check yourself).

The expected value of W is 0.5 × 0.5 × 8 × 9 = 18. Is the observed value of

W = 32 far from the expected value of 18? To formally answer this question,
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we need to use the Wilcoxon procedures, which are implemented in R with

wilcox.test().

Example: Made-up Data The boxplot indicates that the distribution is

fairly symmetric, so the Wilcoxon method is reasonable (so is a t-CI and test).
#### Example: Made-up Data

dat <- c(20, 18, 23, 5, 14, 8, 18, 22)

# sort in decreasing order

dat <- sort(dat, decreasing = TRUE)

dat

## [1] 23 22 20 18 18 14 8 5

summary(dat)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 5.0 12.5 18.0 16.0 20.5 23.0

sd(dat)

## [1] 6.524678

The dat data is unimodal, skewed left, no extreme outliers.
par(mfrow=c(3,1))

# Histogram overlaid with kernel density curve

hist(dat, freq = FALSE, breaks = 10)

points(density(dat), type = "l")

rug(dat)

# violin plot

library(vioplot)

vioplot(dat, horizontal=TRUE, col="gray")

# boxplot

boxplot(dat, horizontal=TRUE)
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Histogram of dat
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The normal QQ-plot of the sample data indicates insufficient evidence of
deviation from normality though both the QQ-plot and the bootstrap sampling
distribution of the mean indicates weak left-skewness. Either the Wilcoxon or
t-test are appropriate.
par(mfrow=c(1,1))

library(car)

qqPlot(dat, las = 1, id.n = 0, id.cex = 1, lwd = 1, main="QQ Plot, Income")

bs.one.samp.dist(dat)
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Plot of data with smoothed density curve
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The Wilcoxon p-value with continuity correction for testing H0 : µ = 10

against a two-sided alternative is 0.058. This would not lead to rejecting H0 at

the 5% level.
t.test(dat, mu=10)

##

## One Sample t-test

##

## data: dat

## t = 2.601, df = 7, p-value = 0.03537

## alternative hypothesis: true mean is not equal to 10

## 95 percent confidence interval:

## 10.54523 21.45477

## sample estimates:

## mean of x

## 16

# with continuity correction in the normal approximation for the p-value

wilcox.test(dat, mu=10, conf.int=TRUE)

## Warning in wilcox.test.default(dat, mu = 10, conf.int = TRUE): cannot compute exact p-value

with ties

## Warning in wilcox.test.default(dat, mu = 10, conf.int = TRUE): cannot compute exact confidence

interval with ties

##

## Wilcoxon signed rank test with continuity correction

##

## data: dat

## V = 32, p-value = 0.0584

## alternative hypothesis: true location is not equal to 10

## 95 percent confidence interval:

## 9.500002 21.499942

## sample estimates:

## (pseudo)median

## 16.0056

# without continuity correction

wilcox.test(dat, mu=10, conf.int=TRUE, correct=FALSE)

## Warning in wilcox.test.default(dat, mu = 10, conf.int = TRUE, correct = FALSE): cannot

compute exact p-value with ties

## Warning in wilcox.test.default(dat, mu = 10, conf.int = TRUE, correct = FALSE): cannot

compute exact confidence interval with ties

##

## Wilcoxon signed rank test

##

## data: dat

## V = 32, p-value = 0.04967

## alternative hypothesis: true location is not equal to 10

## 95 percent confidence interval:

## 10.99996 21.00005

UNM, Stat 427/527 ADA1



210 Ch 6: Nonparametric Methods

## sample estimates:

## (pseudo)median

## 16.0056

6.3.1 Nonparametric Analyses of Paired Data

Nonparametric methods for single samples can be used to analyze paired data

because the difference between responses within pairs is the unit of analysis.

Example: Sleep Remedies I will illustrate Wilcoxon methods on the

paired comparison of two remedies A and B for insomnia. The number of hours

of sleep gained on each method was recorded.
#### Example: Sleep Remedies

# Data and numerical summaries

a <- c( 0.7, -1.6, -0.2, -1.2, 0.1, 3.4, 3.7, 0.8, 0.0, 2.0)

b <- c( 1.9, 0.8, 1.1, 0.1, -0.1, 4.4, 5.5, 1.6, 4.6, 3.0)

d <- b - a;

sleep <- data.frame(a, b, d)

summary(sleep$d)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## -0.200 1.000 1.250 1.520 1.675 4.600

shapiro.test(sleep$d)

##

## Shapiro-Wilk normality test

##

## data: sleep$d

## W = 0.83798, p-value = 0.04173

# boxplot

library(ggplot2)

p3 <- ggplot(sleep, aes(x = "d", y = d))

p3 <- p3 + geom_hline(yintercept=0, colour="#BB0000", linetype="dashed")

p3 <- p3 + geom_boxplot()

p3 <- p3 + geom_point()

p3 <- p3 + stat_summary(fun.y = mean, geom = "point", shape = 18,

size = 4, alpha = 0.3)

p3 <- p3 + coord_flip()

print(p3)
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The boxplot shows that distribution of differences is reasonably symmetric

but not normal. Recall that the Shapiro-Wilk test of normality was significant

at the 5% level (p-value=0.042). It is sensible to use the Wilcoxon procedure

on the differences. Let µB be the population mean sleep gain on remedy B,

and µA be the population mean sleep gain on remedy A. You are 95% confident

that µB − µA is between 0.8 and 2.8 hours. Putting this another way, you are

95% confident that µB exceeds µA by between 0.8 and 2.8 hours. The p-value

for testing H0 : µB − µA = 0 against a two-sided alternative is 0.008, which

strongly suggests that µB 6= µA. This agrees with the CI. Note that the t-CI

and test give qualitatively similar conclusions as the Wilcoxon methods, but

the t-test p-value is about half as large.

If you are uncomfortable with the symmetry assumption, you could use the

sign CI for the population median difference between B and A. I will note that

a 95% CI for the median difference goes from 0.86 to 2.2 hours.
t.test(sleep$d, mu=0)

##

## One Sample t-test

##

## data: sleep$d

## t = 3.7796, df = 9, p-value = 0.004352

## alternative hypothesis: true mean is not equal to 0

## 95 percent confidence interval:

## 0.610249 2.429751

## sample estimates:

## mean of x

## 1.52

# with continuity correction in the normal approximation for the p-value

wilcox.test(sleep$d, mu=0, conf.int=TRUE)

## Warning in wilcox.test.default(sleep$d, mu = 0, conf.int = TRUE): cannot compute exact

p-value with ties
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## Warning in wilcox.test.default(sleep$d, mu = 0, conf.int = TRUE): cannot compute exact

confidence interval with ties

##

## Wilcoxon signed rank test with continuity correction

##

## data: sleep$d

## V = 54, p-value = 0.008004

## alternative hypothesis: true location is not equal to 0

## 95 percent confidence interval:

## 0.7999339 2.7999620

## sample estimates:

## (pseudo)median

## 1.299983

# can use the paired= option

#wilcox.test(sleep£b, sleep£a, paired=TRUE, mu=0, conf.int=TRUE)

# if don't assume symmetry, can use sign test

#SIGN.test(sleep£d)

6.3.2 Comments on One-Sample Nonparametric Meth-
ods

For this discussion, I will assume that the underlying population distribution

is (approximately) symmetric, which implies that population means and me-

dians are equal (approximately). For symmetric distributions the t, sign, and

Wilcoxon procedures are all appropriate.

If the underlying population distribution is extremely skewed, you can use

the sign procedure to get a CI for the population median. Alternatively, as

illustrated on HW 2, you can transform the data to a scale where the underlying

distribution is nearly normal, and then use the classical t-methods. Moderate

degrees of skewness will not likely have a big impact on the standard t-test and

CI.

The one-sample t-test and CI are optimal when the underlying population

frequency curve is normal. Essentially this means that the t-CI is, on average,

narrowest among all CI procedures with given level, or that the t-test has the

highest power among all tests with a given size. The width of a CI provides a

measure of the sensitivity of the estimation method. For a given level CI, the

narrower CI better pinpoints the unknown population mean.
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With heavy-tailed symmetric distributions, the t-test and CI tend to be

conservative. Thus, for example, a nominal 95% t-CI has actual coverage rates

higher than 95%, and the nominal 5% t-test has an actual size smaller than 5%.

The t-test and CI possess a property that is commonly called robustness of

validity. However, data from heavy-tailed distributions can have a profound

effect on the sensitivity of the t-test and CI. Outliers can dramatically inflate

the standard error of the mean, causing the CI to be needlessly wide, and

tests to have diminished power (outliers typically inflate p-values for the t-

test). The sign and Wilcoxon procedures downweight the influence of outliers

by looking at sign or signed-ranks instead of the actual data values. These

two nonparametric methods are somewhat less efficient than the t-methods

when the population is normal (efficiency is about 0.64 and 0.96 for the sign

and Wilcoxon methods relative to the normal t-methods, where efficiency is the

ratio of sample sizes needed for equal power), but can be infinitely more efficient

with heavier than normal tailed distributions. In essence, the t-methods do not

have a robustness of sensitivity.

Nonparametric methods have gained widespread acceptance in many sci-

entific disciplines, but not all. Scientists in some disciplines continue to use

classical t-methods because they believe that the methods are robust to non-

normality. As noted above, this is a robustness of validity, not sensitivity. This

misconception is unfortunate, and results in the routine use of methods that

are less powerful than the non-parametric techniques. Scientists need to

be flexible and adapt their tools to the problem at hand, rather

than use the same tool indiscriminately! I have run into suspicion

that use of nonparametric methods was an attempt to “cheat” in some way —

properly applied, they are excellent tools that should be used.

A minor weakness of nonparametric methods is that they do not easily

generalize to complex modelling problems. A great deal of progress has been

made in this area, but most software packages have not included the more

advanced techniques (R is among the forerunners).

Nonparametric statistics used to refer almost exclusively to the set of meth-
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ods such as we have been discussing that provided analogs like tests and CIs

to the normal theory methods without requiring the assumption of sampling

from normal distributions. There is now a large area of statistics also called

nonparametric methods not focused on these goals at all. In our department

we (used to) have a course titled “Nonparametric Curve Estimation & Image

Reconstruction”, where the focus is much more general than relaxing an as-

sumption of normality. In that sense, what we are covering in this course could

be considered “classical” nonparametrics.

6.4 (Wilcoxon-)Mann-Whitney Two-Sample
Procedure

The WMW procedure assumes you have independent random samples from the

two populations, and assumes that the populations have the same shapes

and spreads (the frequency curves for the two populations are “shifted” ver-

sions of each other — see below). The frequency curves are not required to be

symmetric. The WMW procedures give a CI and tests on the difference η1−η2

between the two population medians. If the populations are symmetric, then

the methods apply to µ1 − µ2.
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The R help on ?wilcox.test gives references to how the exact WMW proce-

dure is actually calculated; here is a good approximation to the exact method

that is easier to understand. The WMW procedure is based on ranks. The

two samples are combined, ranked from smallest to largest (1=smallest) and

separated back into the original samples. If the two populations have equal me-

dians, you expect the average rank in the two samples to be roughly equal. The

WMW test computes a classical two sample t-test using the pooled variance on

the ranks to assess whether the sample mean ranks are significantly different.

Example: Comparison of Cooling Rates of Uwet and Walker

Co. Meteorites The Uwet1 (Cross River, Nigeria) and Walker2 County

(Alabama, US) meteorite cooling rate data are below. A primary interest is

comparing the population “typical” cooling rate measurements.

1http://www.lpi.usra.edu/meteor/metbull.php?code=24138
2http://www.lpi.usra.edu/meteor/metbull.php?code=24204
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#### Example: Comparison of Cooling Rates of Uwet and Walker Co. Meteorites

Uwet <- c(0.21, 0.25, 0.16, 0.23, 0.47, 1.20, 0.29, 1.10, 0.16)

Walker <- c(0.69, 0.23, 0.10, 0.03, 0.56, 0.10, 0.01, 0.02, 0.04, 0.22)

The boxplots and normal QQ-plots show that the distributions are rather
skewed to the right. The AD test of normality indicate that a normality as-
sumption is unreasonable for each population.
met <- data.frame(Uwet=c(Uwet,NA), Walker)

library(reshape2)

met.long <- melt(met, variable.name = "site", value.name = "cool", na.rm=TRUE)

## No id variables; using all as measure variables

# naming variables manually, the variable.name and value.name not working 11/2012

names(met.long) <- c("site", "cool")

library(ggplot2)

p <- ggplot(met.long, aes(x = site, y = cool, fill=site))

p <- p + geom_boxplot()

p <- p + geom_point(position = position_jitter(w = 0.05, h = 0), alpha = 0.5)

p <- p + stat_summary(fun.y = mean, geom = "point", shape = 3, size = 2)

p <- p + coord_flip()

p <- p + labs(title = "Cooling rates for samples of meteorites at two locations")

p <- p + theme(legend.position="none")

print(p)

par(mfrow=c(1,2))

library(car)

qqPlot(Walker, las = 1, id.n = 0, id.cex = 1, lwd = 1, main="QQ Plot, Walker")

qqPlot(Uwet, las = 1, id.n = 0, id.cex = 1, lwd = 1, main="QQ Plot, Uwet")
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I carried out the standard two-sample procedures to see what happens. The
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pooled-variance and Satterthwaithe results are comparable, which is expected

because the sample standard deviations and sample sizes are roughly equal.

Both tests indicate that the mean cooling rates for Uwet and Walker Co. me-

teorites are not significantly different at the 10% level. You are 95% confident

that the mean cooling rate for Uwet is at most 0.1 less, and no more than 0.6

greater than that for Walker Co. (in degrees per million years).
# numerical summaries

summary(Uwet)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.1600 0.2100 0.2500 0.4522 0.4700 1.2000

c(sd(Uwet), IQR(Uwet), length(Uwet))

## [1] 0.4069944 0.2600000 9.0000000

summary(Walker)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.0100 0.0325 0.1000 0.2000 0.2275 0.6900

c(sd(Walker), IQR(Walker), length(Walker))

## [1] 0.2389793 0.1950000 10.0000000

t.test(Uwet, Walker, var.equal = TRUE)

##

## Two Sample t-test

##

## data: Uwet and Walker

## t = 1.6689, df = 17, p-value = 0.1134

## alternative hypothesis: true difference in means is not equal to 0

## 95 percent confidence interval:

## -0.0666266 0.5710710

## sample estimates:

## mean of x mean of y

## 0.4522222 0.2000000

t.test(Uwet, Walker)

##

## Welch Two Sample t-test

##

## data: Uwet and Walker

## t = 1.6242, df = 12.652, p-value = 0.129

## alternative hypothesis: true difference in means is not equal to 0

## 95 percent confidence interval:

## -0.08420858 0.58865302

## sample estimates:

## mean of x mean of y

## 0.4522222 0.2000000
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Given the marked skewness, a nonparametric procedure is more appropriate.

The Wilcoxon-Mann-Whitney comparison of population medians is reasonable.

Why? The WMW test of equal population medians is significant (barely) at

the 5% level. You are 95% confident that median cooling rate for Uwet exceeds

that for Walker by between 0+ and 0.45 degrees per million years.
wilcox.test(Uwet, Walker, conf.int = TRUE)

## Warning in wilcox.test.default(Uwet, Walker, conf.int = TRUE): cannot compute exact p-value

with ties

## Warning in wilcox.test.default(Uwet, Walker, conf.int = TRUE): cannot compute exact confidence

intervals with ties

##

## Wilcoxon rank sum test with continuity correction

##

## data: Uwet and Walker

## W = 69.5, p-value = 0.04974

## alternative hypothesis: true location shift is not equal to 0

## 95 percent confidence interval:

## 0.0000449737 0.4499654518

## sample estimates:

## difference in location

## 0.1702657

The difference between the WMW and t-test p-values and CI lengths (i.e.

the WMW CI is narrower and the p-value smaller) reflects the effect of the

outliers on the sensitivity of the standard tests and CI.

I conducted a pooled-variance two-sample t-test on ranks to show you that

the p-value is close to the WMW p-value, as expected.
rank(met.long$cool)

## [1] 9.0 13.0 7.5 11.5 15.0 19.0 14.0 18.0 7.5 17.0 11.5 5.5 3.0

## [14] 16.0 5.5 1.0 2.0 4.0 10.0

by(rank(met.long$cool), met.long$site, summary)

## met.long$site: Uwet

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 7.50 9.00 13.00 12.72 15.00 19.00

## ----------------------------------------------------

## met.long$site: Walker

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 1.00 3.25 5.50 7.55 11.12 17.00

# note: the CI for ranks is not interpretable

t.test(rank(met.long$cool) ~ met.long$site, var.equal = TRUE)

##

## Two Sample t-test

Prof. Erik B. Erhardt



6.4: (Wilcoxon-)Mann-Whitney Two-Sample Procedure 219

##

## data: rank(met.long$cool) by met.long$site

## t = 2.2082, df = 17, p-value = 0.04125

## alternative hypothesis: true difference in means is not equal to 0

## 95 percent confidence interval:

## 0.2304938 10.1139507

## sample estimates:

## mean in group Uwet mean in group Walker

## 12.72222 7.55000

Example: Newcombe’s Data Experiments of historical importance were

performed beginning in the eighteenth century to determine physical constants,

such as the mean density of the earth, the distance from the earth to the sun,

and the velocity of light. An interesting series of experiments to determine

the velocity of light was begun in 1875. The first method used, and reused

with refinements several times thereafter, was the rotating mirror method3. In

this method a beam of light is reflected off a rapidly rotating mirror to a fixed

mirror at a carefully measured distance from the source. The returning light

is re-reflected from the rotating mirror at a different angle, because the mir-

ror has turned slightly during the passage of the corresponding light pulses.

From the speed of rotation of the mirror and from careful measurements of

the angular difference between the outward-bound and returning light beams,

the passage time of light can be calculated for the given distance. After av-

eraging several calculations and applying various corrections, the experimenter

can combine mean passage time and distance for a determination of the veloc-

ity of light. Simon Newcombe, a distinguished American scientist, used this

method during the year 1882 to generate the passage time measurements given

below, in microseconds. The travel path for this experiment was 3721 meters

in length, extending from Ft. Meyer, on the west bank of the Potomac River in

Washington, D.C., to a fixed mirror at the base of the Washington Monument.

3http://en.wikipedia.org/wiki/File:Speed_of_light_(foucault).PNG
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The problem is to determine a 95% CI for the “true” passage time, which

is taken to be the typical time (mean or median) of the population of measure-

ments that were or could have been taken by this experiment.
#### Example: Newcombe's Data

time <- c(24.828, 24.833, 24.834, 24.826, 24.824, 24.756

, 24.827, 24.840, 24.829, 24.816, 24.798, 24.822

, 24.824, 24.825, 24.823, 24.821, 24.830, 24.829

, 24.831, 24.824, 24.836, 24.819, 24.820, 24.832

, 24.836, 24.825, 24.828, 24.828, 24.821, 24.829

, 24.837, 24.828, 24.830, 24.825, 24.826, 24.832

, 24.836, 24.830, 24.836, 24.826, 24.822, 24.823

, 24.827, 24.828, 24.831, 24.827, 24.827, 24.827

, 24.826, 24.826, 24.832, 24.833, 24.832, 24.824

, 24.839, 24.824, 24.832, 24.828, 24.825, 24.825

, 24.829, 24.828, 24.816, 24.827, 24.829, 24.823)

library(nortest)

ad.test(time)

##

## Anderson-Darling normality test

##

## data: time

## A = 5.8843, p-value = 1.217e-14

# Histogram overlaid with kernel density curve

Passage_df <- data.frame(time)

p1 <- ggplot(Passage_df, aes(x = time))

# Histogram with density instead of count on y-axis
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p1 <- p1 + geom_histogram(aes(y=..density..), binwidth=0.001)

p1 <- p1 + geom_density(alpha=0.1, fill="white")

p1 <- p1 + geom_rug()

# violin plot

p2 <- ggplot(Passage_df, aes(x = "t", y = time))

p2 <- p2 + geom_violin(fill = "gray50")

p2 <- p2 + geom_boxplot(width = 0.2, alpha = 3/4)

p2 <- p2 + coord_flip()

# boxplot

p3 <- ggplot(Passage_df, aes(x = "t", y = time))

p3 <- p3 + geom_boxplot()

p3 <- p3 + coord_flip()

library(gridExtra)

grid.arrange(grobs = list(p1, p2, p3), ncol=1)
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par(mfrow=c(1,1))

library(car)

qqPlot(time, las = 1, id.n = 0, id.cex = 1, lwd = 1, main="QQ Plot, Time")

bs.one.samp.dist(time)

UNM, Stat 427/527 ADA1



222 Ch 6: Nonparametric Methods

−2 −1 0 1 2

24.76

24.78

24.80

24.82

24.84

QQ Plot, Time

norm quantiles

tim
e

●

●

● ●

● ●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●

●●● ● ●
● ●

Plot of data with smoothed density curve

dat

D
en

si
ty

24.76 24.78 24.80 24.82 24.84

0
20

40
60

Bootstrap sampling distribution of the mean

Data: n = 66 , mean = 24.826 , se = 0.00132266 5

D
en

si
ty

24.820 24.822 24.824 24.826 24.828 24.830

0
10

0
20

0
30

0

The data set is skewed to the left, due to the presence of two extreme

outliers that could potentially be misrecorded observations. Without additional

information I would be hesitant to apply normal theory methods (the t-test),

even though the sample size is “large” (bootstrap sampling distribution is still

left-skewed). Furthermore, the t-test still suffers from a lack of robustness of

sensitivity, even in large samples. A formal QQ-plot and normal test rejects, at

the 0.01 level, the normality assumption needed for the standard methods.
The table below gives 95% t, sign, and Wilcoxon CIs. I am more comfortable

with the sign CI for the population median than the Wilcoxon method, which
assumes symmetry.
t.sum <- t.test(time)

t.sum$conf.int

## [1] 24.82357 24.82885

## attr(,"conf.level")

## [1] 0.95

diff(t.test(time)$conf.int)

## [1] 0.005283061

s.sum <- SIGN.test(time)

s.sum[2,c(2,3)]

## Error in s.sum[2, c(2, 3)]: incorrect number of dimensions

diff(s.sum[2,c(2,3)])

## Error in s.sum[2, c(2, 3)]: incorrect number of dimensions

w.sum <- wilcox.test(time, conf.int=TRUE)

w.sum$conf.int
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## [1] 24.82604 24.82853

## attr(,"conf.level")

## [1] 0.95

diff(w.sum$conf.int)

## [1] 0.002487969

parameter Method CI Limits Width

mean t (24.8236, 24.8289) 0.0053

median sign (24.8260, 24.8285) 0.0025

median Wilcoxon (24.8260, 24.8285) 0.0025

Note the big difference between the nonparametric and the t-CI. The nonpara-

metric CIs are about 1/2 as wide as the t-CI. This reflects the impact that

outliers have on the standard deviation, which directly influences the CI width.

6.5 Alternatives for ANOVA and Planned
Comparisons

The classical ANOVA assumes that the populations have normal frequency

curves and the populations have equal variances (or spreads). You learned

formal tests for these assumptions in Chapter 5. When the assumptions do

not hold, you can try one of the following two approaches. Before describing

alternative methods, I will note that deviations from normality in one or more

samples might be expected in a comparison involving many samples. You

should downplay small deviations from normality in problems involving many

samples.

6.5.1 Kruskal-Wallis ANOVA

The Kruskal-Wallis (KW) test is a non-parametric method for testing the

hypothesis of equal population medians against the alternative that not all pop-

ulation medians are equal. The procedure assumes you have independent ran-

dom samples from populations with frequency curves having identical shapes

and spreads. The KW ANOVA is essentially the standard ANOVA based
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on ranked data. That is, we combine the samples, rank the observations from

smallest to largest, and then return the ranks to the original samples and do

the standard ANOVA using the ranks. The KW ANOVA is a multiple sample

analog of the Wilcoxon-Mann-Whitney two sample procedure. Hence, multiple

comparisons for a KW analysis, be they FSD or Bonferroni comparisons, are

based on the two sample WMW procedure.

6.5.2 Transforming Data

The distributions in many data sets are skewed to the right with outliers. If the

sample spreads, say s and IQR, increase with an increasing mean or median, you

can often transform data to a scale where the normality and the constant

spread assumption are more nearly satisfied. The transformed data are analyzed

using the standard ANOVA. The two most commonly used transforms for this

problem are the square root and natural logarithm, provided the data are non-

negative4.

If the original distributions are nearly symmetric, but heavy-tailed, non-

linear transformations will tend to destroy the symmetry. Many statisticians

recommend methods based on trimmed means for such data. These methods

are not commonly used by other researchers.

Example: Hydrocarbon (HC) Emissions Data These data are the

HC emissions at idling speed, in ppm, for automobiles of different years of

manufacture. The data are a random sample of all automobiles tested at an

4The aim behind the choice of a variance-stabilizing transformation is to find a simple function f
to apply to values y in a data set to create new values y′ = f(y) such that the variability of the values y′

is not related to their mean value. For example, suppose that the values y are realizations from a Poisson
distribution. Because for the Poisson distribution the variance is identical to the mean, the variance varies
with the mean. However, if the simple variance-stabilizing transformation y′ =

√
y is applied, the sampling

variance will be independent of the mean. A few distributional examples are provided in the table below.
Distribution Variance=g(mean) Transformation y′ = f(y)
Poisson σ2 = µ y′ =

√
y

binomial σ2 = µ(1− µ) y′ = arcsin(
√

(y))
lognormal σ2 = µ2 y′ = log(y)
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Albuquerque shopping center. (It looks like we need to find some newer cars!)
#### Example: Hydrocarbon (HC) Emissions Data

emis <- read.table(text="

Pre-y63 y63-7 y68-9 y70-1 y72-4

2351 620 1088 141 140

1293 940 388 359 160

541 350 111 247 20

1058 700 558 940 20

411 1150 294 882 223

570 2000 211 494 60

800 823 460 306 20

630 1058 470 200 95

905 423 353 100 360

347 900 71 300 70

NA 405 241 223 220

NA 780 2999 190 400

NA 270 199 140 217

NA NA 188 880 58

NA NA 353 200 235

NA NA 117 223 1880

NA NA NA 188 200

NA NA NA 435 175

NA NA NA 940 85

NA NA NA 241 NA

", header=TRUE)

#emis

# convert to long format

emis.long <- melt(emis,

variable.name = "year",

value.name = "hc",

na.rm = TRUE

)

## No id variables; using all as measure variables

# naming variables manually, the variable.name and value.name not working 11/2012

names(emis.long) <- c("year", "hc")

# summary of each year

by(emis.long$hc, emis.long$year, summary)

## emis.long$year: Pre.y63

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 347.0 548.2 715.0 890.6 1019.8 2351.0

## ----------------------------------------------------

## emis.long$year: y63.7

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 270.0 423.0 780.0 801.5 940.0 2000.0

## ----------------------------------------------------

## emis.long$year: y68.9

## Min. 1st Qu. Median Mean 3rd Qu. Max.
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## 71.0 196.2 323.5 506.3 462.5 2999.0

## ----------------------------------------------------

## emis.long$year: y70.1

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 100.0 197.5 244.0 381.4 449.8 940.0

## ----------------------------------------------------

## emis.long$year: y72.4

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 20.0 65.0 160.0 244.1 221.5 1880.0

# IQR and sd of each year

by(emis.long$hc, emis.long$year, function(X) { c(IQR(X), sd(X), length(X)) })
## emis.long$year: Pre.y63

## [1] 471.5000 591.5673 10.0000

## ----------------------------------------------------

## emis.long$year: y63.7

## [1] 517.0000 454.9285 13.0000

## ----------------------------------------------------

## emis.long$year: y68.9

## [1] 266.2500 707.8026 16.0000

## ----------------------------------------------------

## emis.long$year: y70.1

## [1] 252.2500 287.8864 20.0000

## ----------------------------------------------------

## emis.long$year: y72.4

## [1] 156.5000 410.7866 19.0000

# Plot the data using ggplot

library(ggplot2)

p <- ggplot(emis.long, aes(x = year, y = hc))

# plot a reference line for the global mean (assuming no groups)

p <- p + geom_hline(yintercept = mean(emis.long$hc),

colour = "black", linetype = "dashed", size = 0.3, alpha = 0.5)

# boxplot, size=.75 to stand out behind CI

p <- p + geom_boxplot(size = 0.75, alpha = 0.5)

# points for observed data

p <- p + geom_point(position = position_jitter(w = 0.05, h = 0), alpha = 0.5)

# diamond at mean for each group

p <- p + stat_summary(fun.y = mean, geom = "point", shape = 18, size = 6,

colour = "red", alpha = 0.8)

# confidence limits based on normal distribution

p <- p + stat_summary(fun.data = "mean_cl_normal", geom = "errorbar",

width = .2, colour = "red", alpha = 0.8)

p <- p + labs(title = "Albuquerque automobile hydrocarbon emissions data") + ylab("hc (ppm)")

# to reverse order that years print, so oldest is first on top

p <- p + scale_x_discrete(limits = rev(levels(emis.long$year)) )

p <- p + coord_flip()

p <- p + theme(legend.position="none")

print(p)
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The standard ANOVA shows significant differences among the mean HC

emissions. However, the standard ANOVA is inappropriate because the distri-

butions are extremely skewed to the right due to presence of outliers in each

sample.
fit.e <- aov(hc ~ year, data = emis.long)

summary(fit.e)

## Df Sum Sq Mean Sq F value Pr(>F)

## year 4 4226834 1056709 4.343 0.00331 **

## Residuals 73 17759968 243287

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

fit.e

## Call:

## aov(formula = hc ~ year, data = emis.long)

##

## Terms:

## year Residuals

## Sum of Squares 4226834 17759968

## Deg. of Freedom 4 73

##

## Residual standard error: 493.2416

## Estimated effects may be unbalanced

The boxplots show that the typical HC emissions appear to decrease as
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the age of car increases (the simplest description). Although the spread in the

samples, as measured by the IQR, also decreases as age increases, I am more

comfortable with the KW ANOVA, in part because the KW analysis is not too

sensitive to differences in spreads among samples. This point is elaborated upon

later. As described earlier, the KW ANOVA is essentially an ANOVA based

on the ranks. I give below the ANOVA based on ranks and the output from

the KW procedure. They give similar p-values, and lead to the conclusion that

there are significant differences among the population median HC emissions.

A simple description is that the population median emission tends to decrease

with the age of the car. You should follow up this analysis with Mann-Whitney

multiple comparisons.
# ANOVA of rank, for illustration that this is similar to what KW is doing

fit.er <- aov(rank(hc) ~ year, data = emis.long)

summary(fit.er)

## Df Sum Sq Mean Sq F value Pr(>F)

## year 4 16329 4082 12.85 5.74e-08 ***

## Residuals 73 23200 318

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

fit.er

## Call:

## aov(formula = rank(hc) ~ year, data = emis.long)

##

## Terms:

## year Residuals

## Sum of Squares 16329.32 23199.68

## Deg. of Freedom 4 73

##

## Residual standard error: 17.82705

## Estimated effects may be unbalanced

# KW ANOVA

fit.ek <- kruskal.test(hc ~ year, data = emis.long)

fit.ek

##

## Kruskal-Wallis rank sum test

##

## data: hc by year

## Kruskal-Wallis chi-squared = 31.808, df = 4, p-value =

## 2.093e-06

It is common to transform the data to a log scale when the spread increases
as the median or mean increases.

Prof. Erik B. Erhardt



6.5: Alternatives for ANOVA and Planned Comparisons 229

# log scale

emis.long$loghc <- log(emis.long$hc)

# summary of each year

by(emis.long$loghc, emis.long$year, summary)

## emis.long$year: Pre.y63

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 5.849 6.306 6.565 6.634 6.925 7.763

## ----------------------------------------------------

## emis.long$year: y63.7

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 5.598 6.047 6.659 6.548 6.846 7.601

## ----------------------------------------------------

## emis.long$year: y68.9

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 4.263 5.279 5.775 5.755 6.137 8.006

## ----------------------------------------------------

## emis.long$year: y70.1

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 4.605 5.285 5.497 5.711 6.107 6.846

## ----------------------------------------------------

## emis.long$year: y72.4

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 2.996 4.171 5.075 4.838 5.400 7.539

# IQR and sd of each year

by(emis.long$loghc, emis.long$year, function(X) { c(IQR(X), sd(X), length(X)) })
## emis.long$year: Pre.y63

## [1] 0.6186119 0.5702081 10.0000000

## ----------------------------------------------------

## emis.long$year: y63.7

## [1] 0.7985077 0.5524878 13.0000000

## ----------------------------------------------------

## emis.long$year: y68.9

## [1] 0.8575139 0.9061709 16.0000000

## ----------------------------------------------------

## emis.long$year: y70.1

## [1] 0.8216494 0.6775933 20.0000000

## ----------------------------------------------------

## emis.long$year: y72.4

## [1] 1.228980 1.138882 19.000000

# Plot the data using ggplot

library(ggplot2)

p <- ggplot(emis.long, aes(x = year, y = loghc))

# plot a reference line for the global mean (assuming no groups)

p <- p + geom_hline(yintercept = mean(emis.long$loghc),

colour = "black", linetype = "dashed", size = 0.3, alpha = 0.5)

# boxplot, size=.75 to stand out behind CI

p <- p + geom_boxplot(size = 0.75, alpha = 0.5)
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# points for observed data

p <- p + geom_point(position = position_jitter(w = 0.05, h = 0), alpha = 0.5)

# diamond at mean for each group

p <- p + stat_summary(fun.y = mean, geom = "point", shape = 18, size = 6,

colour = "red", alpha = 0.8)

# confidence limits based on normal distribution

p <- p + stat_summary(fun.data = "mean_cl_normal", geom = "errorbar",

width = .2, colour = "red", alpha = 0.8)

p <- p + labs(title = "Albuquerque automobile hydrocarbon emissions data (log scale)")

p <- p + ylab("log(hc) (log(ppm))")

# to reverse order that years print, so oldest is first on top

p <- p + scale_x_discrete(limits = rev(levels(emis.long$year)) )

p <- p + coord_flip()

p <- p + theme(legend.position="none")

print(p)
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After transformation, the samples have roughly the same spread (IQR and

s) and shape. The transformation does not completely eliminate the outliers.

However, I am more comfortable with a standard ANOVA on this scale than
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with the original data. A difficulty here is that the ANOVA is comparing

population mean log HC emission (so interpretations are on the log ppm scale,

instead of the natural ppm scale). Summaries for the ANOVA on the log

hydrocarbon emissions levels are given below.
# ANOVA of rank, for illustration that this is similar to what KW is doing

fit.le <- aov(loghc ~ year, data = emis.long)

summary(fit.le)

## Df Sum Sq Mean Sq F value Pr(>F)

## year 4 31.90 7.974 11.42 2.98e-07 ***

## Residuals 73 50.98 0.698

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

fit.le

## Call:

## aov(formula = loghc ~ year, data = emis.long)

##

## Terms:

## year Residuals

## Sum of Squares 31.89510 50.97679

## Deg. of Freedom 4 73

##

## Residual standard error: 0.8356508

## Estimated effects may be unbalanced

# KW ANOVA -- same conclusions as original scale, since based on ranks

fit.lek <- kruskal.test(loghc ~ year, data = emis.long)

fit.lek

##

## Kruskal-Wallis rank sum test

##

## data: loghc by year

## Kruskal-Wallis chi-squared = 31.808, df = 4, p-value =

## 2.093e-06

The boxplot of the log-transformed data reinforces the reasonableness of the

original KW analysis. Why? The log-transformed distributions have fairly sim-

ilar shapes and spreads, so a KW analysis on these data is sensible. The ranks

for the original and log-transformed data are identical, so the KW analyses on

the log-transformed data and the original data must lead to the same conclu-

sions. This suggests that the KW ANOVA is not overly sensitive to differences

in spreads among the samples.

There are two reasonable analyses here: the standard ANOVA using log HC
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emissions, and the KW analysis of the original data. The first analysis gives a

comparison of mean log HC emissions. The second involves a comparison of me-

dian HC emissions. A statistician would present both analyses to the scientist

who collected the data to make a decision on which was more meaningful (inde-

pendently of the results5!). Multiple comparisons would be performed relative

to the selected analysis (t-tests for ANOVA or WMW-tests for KW ANOVA).

Example: Hodgkin’s Disease Study Plasma bradykininogen levels

were measured in normal subjects, in patients with active Hodgkin’s disease,

and in patients with inactive Hodgkin’s disease. The globulin bradykininogen

is the precursor substance for bradykinin, which is thought to be a chemical

mediator of inflammation. The data (in micrograms of bradykininogen per

milliliter of plasma) are displayed below. The three samples are denoted by

nc for normal controls, ahd for active Hodgkin’s disease patients, and ihd for

inactive Hodgkin’s disease patients.

The medical investigators wanted to know if the three samples differed in

their bradykininogen levels. Carry out the statistical analysis you consider to

be most appropriate, and state your conclusions to this question.
Read in the data, look at summaries on the original scale, and create a plot.

Also, look at summaries on the log scale and create a plot.
#### Example: Hodgkin's Disease Study

hd <- read.table(text="

nc ahd ihd

5.37 3.96 5.37

5.80 3.04 10.60

4.70 5.28 5.02

5.70 3.40 14.30

3.40 4.10 9.90

8.60 3.61 4.27

7.48 6.16 5.75

5.77 3.22 5.03

7.15 7.48 5.74

6.49 3.87 7.85

4.09 4.27 6.82

5.94 4.05 7.90

6.38 2.40 8.36

5It is unethical to choose a method based on the results it gives.
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9.24 5.81 5.72

5.66 4.29 6.00

4.53 2.77 4.75

6.51 4.40 5.83

7.00 NA 7.30

6.20 NA 7.52

7.04 NA 5.32

4.82 NA 6.05

6.73 NA 5.68

5.26 NA 7.57

NA NA 5.68

NA NA 8.91

NA NA 5.39

NA NA 4.40

NA NA 7.13

", header=TRUE)

#hd

# convert to long format

hd.long <- melt(hd,

variable.name = "patient",

value.name = "level",

na.rm = TRUE

)

## No id variables; using all as measure variables

# naming variables manually, the variable.name and value.name not working 11/2012

names(hd.long) <- c("patient", "level")

# summary of each patient

by(hd.long$level, hd.long$patient, summary)

## hd.long$patient: nc

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 3.400 5.315 5.940 6.081 6.865 9.240

## ----------------------------------------------------

## hd.long$patient: ahd

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 2.400 3.400 4.050 4.242 4.400 7.480

## ----------------------------------------------------

## hd.long$patient: ihd

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 4.270 5.385 5.915 6.791 7.640 14.300

# IQR and sd of each patient

by(hd.long$level, hd.long$patient, function(X) { c(IQR(X), sd(X), length(X)) })
## hd.long$patient: nc

## [1] 1.550000 1.362104 23.000000

## ----------------------------------------------------

## hd.long$patient: ahd

## [1] 1.000000 1.302878 17.000000
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## ----------------------------------------------------

## hd.long$patient: ihd

## [1] 2.25500 2.17647 28.00000

# log scale
hd.long$loglevel <- log(hd.long$level)
# summary of each patient
by(hd.long$loglevel, hd.long$patient, summary)

## hd.long$patient: nc
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.224 1.670 1.782 1.780 1.926 2.224
## ----------------------------------------------------
## hd.long$patient: ahd
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.8755 1.2238 1.3987 1.4039 1.4816 2.0122
## ----------------------------------------------------
## hd.long$patient: ihd
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.452 1.684 1.777 1.875 2.033 2.660

# IQR and sd of each patient
by(hd.long$loglevel, hd.long$patient, function(X) { c(IQR(X), sd(X), length(X)) })
## hd.long$patient: nc
## [1] 0.2557632 0.2303249 23.0000000
## ----------------------------------------------------
## hd.long$patient: ahd
## [1] 0.2578291 0.2920705 17.0000000
## ----------------------------------------------------
## hd.long$patient: ihd
## [1] 0.3496572 0.2802656 28.0000000

# Plot the data using ggplot

library(ggplot2)

p <- ggplot(hd.long, aes(x = patient, y = level))

# plot a reference line for the global mean (assuming no groups)

p <- p + geom_hline(yintercept = mean(hd.long$level),

colour = "black", linetype = "dashed", size = 0.3, alpha = 0.5)

# boxplot, size=.75 to stand out behind CI

p <- p + geom_boxplot(size = 0.75, alpha = 0.5)

# points for observed data

p <- p + geom_point(position = position_jitter(w = 0.05, h = 0), alpha = 0.5)

# diamond at mean for each group

p <- p + stat_summary(fun.y = mean, geom = "point", shape = 18, size = 6,

colour = "red", alpha = 0.8)

# confidence limits based on normal distribution

p <- p + stat_summary(fun.data = "mean_cl_normal", geom = "errorbar",

width = .2, colour = "red", alpha = 0.8)

p <- p + labs(title = "Plasma bradykininogen levels for three patient groups")

p <- p + ylab("level (mg/ml)")

# to reverse order that years print, so oldest is first on top

p <- p + scale_x_discrete(limits = rev(levels(hd.long$patient)) )

p <- p + ylim(c(0,max(hd.long$level)))

p <- p + coord_flip()

p <- p + theme(legend.position="none")

print(p)
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## log scale

# Plot the data using ggplot

library(ggplot2)

p <- ggplot(hd.long, aes(x = patient, y = loglevel))

# plot a reference line for the global mean (assuming no groups)

p <- p + geom_hline(yintercept = mean(hd.long$loglevel),

colour = "black", linetype = "dashed", size = 0.3, alpha = 0.5)

# boxplot, size=.75 to stand out behind CI

p <- p + geom_boxplot(size = 0.75, alpha = 0.5)

# points for observed data

p <- p + geom_point(position = position_jitter(w = 0.05, h = 0), alpha = 0.5)

# diamond at mean for each group

p <- p + stat_summary(fun.y = mean, geom = "point", shape = 18, size = 6,

colour = "red", alpha = 0.8)

# confidence limits based on normal distribution

p <- p + stat_summary(fun.data = "mean_cl_normal", geom = "errorbar",

width = .2, colour = "red", alpha = 0.8)

p <- p + labs(title = "Plasma bradykininogen levels for three patient groups (log scale)")

p <- p + ylab("log(level) (log(mg/ml))")

# to reverse order that years print, so oldest is first on top

p <- p + scale_x_discrete(limits = rev(levels(hd.long$patient)) )

p <- p + ylim(c(0,max(hd.long$loglevel)))

p <- p + coord_flip()

p <- p + theme(legend.position="none")

print(p)
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Plasma bradykininogen levels for three patient groups (log scale)

Although the spread (IQR, s) in the ihd sample is somewhat greater than

the spread in the other samples, the presence of skewness and outliers in the
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boxplots is a greater concern regarding the use of the classical ANOVA. The

shapes and spreads in the three samples are roughly identical, so a Kruskal-

Wallis nonparametric ANOVA appears ideal. As a sidelight, I transformed

plasma levels to a log scale to reduce the skewness and eliminate the outliers.

The boxplots of the transformed data show reasonable symmetry across groups,

but outliers are still present. I will stick with the Kruskal-Wallis ANOVA

(although it would not be much of a problem to use the classical ANOVA on

transformed data).

Let ηnc = population median plasma level for normal controls, ηahd = pop-

ulation median plasma level for active Hodgkin’s disease patients, and ηihd =

population median plasma level for inactive Hodgkin’s disease patients. The

KW test of H0 : ηnc = ηahd = ηihd versus HA : not H0 is highly significant (p-

value= 0.00003), suggesting differences among the population median plasma

levels. The Kruskal-Wallis ANOVA summary is given below.
# KW ANOVA

fit.h <- kruskal.test(level ~ patient, data = hd.long)

fit.h

##

## Kruskal-Wallis rank sum test

##

## data: level by patient

## Kruskal-Wallis chi-squared = 20.566, df = 2, p-value =

## 3.421e-05

I followed up the KW ANOVA with Bonferroni comparisons of the samples,

using the Mann-Whitney two sample procedure. There are three comparisons,

so an overall FER of 0.05 is achieved by doing the individual tests at the

0.05/3=0.0167 level. Alternatively, you can use 98.33% CI for differences in

population medians.
# with continuity correction in the normal approximation for the p-value

wilcox.test(hd$nc , hd$ahd, conf.int=TRUE, conf.level = 0.9833)

## Warning in wilcox.test.default(hd$nc, hd$ahd, conf.int = TRUE, conf.level = 0.9833): cannot

compute exact p-value with ties

## Warning in wilcox.test.default(hd$nc, hd$ahd, conf.int = TRUE, conf.level = 0.9833): cannot

compute exact confidence intervals with ties

##

## Wilcoxon rank sum test with continuity correction

##
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## data: hd$nc and hd$ahd

## W = 329, p-value = 0.0002735

## alternative hypothesis: true location shift is not equal to 0

## 98.33 percent confidence interval:

## 0.8599458 2.9000789

## sample estimates:

## difference in location

## 1.910067

wilcox.test(hd$nc , hd$ihd, conf.int=TRUE, conf.level = 0.9833)

## Warning in wilcox.test.default(hd$nc, hd$ihd, conf.int = TRUE, conf.level = 0.9833): cannot

compute exact p-value with ties

## Warning in wilcox.test.default(hd$nc, hd$ihd, conf.int = TRUE, conf.level = 0.9833): cannot

compute exact confidence intervals with ties

##

## Wilcoxon rank sum test with continuity correction

##

## data: hd$nc and hd$ihd

## W = 276.5, p-value = 0.3943

## alternative hypothesis: true location shift is not equal to 0

## 98.33 percent confidence interval:

## -1.5600478 0.6800262

## sample estimates:

## difference in location

## -0.3413932

wilcox.test(hd$ahd, hd$ihd, conf.int=TRUE, conf.level = 0.9833)

## Warning in wilcox.test.default(hd$ahd, hd$ihd, conf.int = TRUE, conf.level = 0.9833):

cannot compute exact p-value with ties

## Warning in wilcox.test.default(hd$ahd, hd$ihd, conf.int = TRUE, conf.level = 0.9833):

cannot compute exact confidence intervals with ties

##

## Wilcoxon rank sum test with continuity correction

##

## data: hd$ahd and hd$ihd

## W = 56, p-value = 2.143e-05

## alternative hypothesis: true location shift is not equal to 0

## 98.33 percent confidence interval:

## -3.500059 -1.319957

## sample estimates:

## difference in location

## -2.146666

The only comparison with a p-value greater than 0.0167 involved the nc
and ihd samples. The comparison leads to two groups, and is consistent with
what we see in the boxplots.

ahd nc ihd
--- --------

You have sufficient evidence to conclude that the plasma bradykininogen levels
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for active Hodgkin’s disease patients (ahd) is lower than the population median

levels for normal controls (nc) and for patients with inactive Hodgkin’s disease

(ihd). You do not have sufficient evidence to conclude that the population

median levels for normal controls (nc) and for patients with inactive Hodgkin’s

disease (ihd) are different. The CIs give an indication of size of differences in

the population medians.

6.5.3 Planned Comparisons

Bonferroni multiple comparisons are generally preferred to Fisher’s least sig-

nificant difference approach. Fisher’s method does not control the familywise

error rate and produces too many spurious significant differences (claims of sig-

nificant differences that are due solely to chance variation and not to actual

differences in population means). However, Bonferroni’s method is usually very

conservative when a large number of comparisons is performed — large differ-

ences in sample means are needed to claim significance. A way to reduce this

conservatism is to avoid doing all possible comparisons. Instead, one should,

when possible, decide a priori (before looking at the data) which comparisons

are of primary interest, and then perform only those comparisons.

For example, suppose a medical study compares five new treatments with a

control (a six group problem). The medical investigator may not be interested

in all 15 possible comparisons, but only in which of the five treatments differ

on average from the control. Rather than performing the 15 comparisons, each

at the say 0.05/15 = 0.0033 level, she could examine the five comparisons of

interest at the 0.05/5 = 0.01 level. By deciding beforehand which comparisons

are of interest, she can justify using a 0.01 level for the comparisons, instead of

the more conservative 0.0033 level needed when doing all possible comparisons.

To illustrate this idea, consider the KW analysis of HC emissions. We

saw that there are significant differences among the population median HC

emissions. Given that the samples have a natural ordering
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Sample Year of manufacture

1 Pre-1963

2 63 – 67

3 68 – 69

4 70 – 71

5 72 – 74
you may primarily be interested in whether the population medians for cars

manufactured in consecutive samples are identical. That is, you may be pri-

marily interested in the following 4 comparisons:
Pre-1963 vs 63 – 67

63 – 67 vs 68 – 69

68 – 69 vs 70 – 71

70 – 71 vs 72 – 74

A Bonferroni analysis would carry out each comparison at the 0.05/4 = 0.0125

level versus the 0.05/10 = 0.005 level when all comparisons are done.

The following output was obtained for doing these four comparisons, based

on Wilcoxon-Mann-Whitney two-sample tests (why?6). Two-year groups are

claimed to be different if the p-value is 0.0125 or below, or equivalently, if a

98.75% CI for the difference in population medians does not contain zero.
#### Planned Comparisons

# with continuity correction in the normal approximation for the p-value

wilcox.test(emis$y63.7, emis$Pre.y63, conf.int=TRUE, conf.level = 0.9875)

## Warning in wilcox.test.default(emis$y63.7, emis$Pre.y63, conf.int = TRUE, : cannot compute

exact p-value with ties

## Warning in wilcox.test.default(emis$y63.7, emis$Pre.y63, conf.int = TRUE, : cannot compute

exact confidence intervals with ties

##

## Wilcoxon rank sum test with continuity correction

##

## data: emis$y63.7 and emis$Pre.y63

## W = 61.5, p-value = 0.8524

## alternative hypothesis: true location shift is not equal to 0

## 98.75 percent confidence interval:

## -530.0001 428.0000

6The ANOVA is the multi-sample analog to the two-sample t-test for the mean, and the KW ANOVA is
the multi-sample analog to the WMW two-sample test for the median. Thus, we follow up a KW ANOVA
with WMW two-sample tests at the chosen multiple comparison adjusted error rate.
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## sample estimates:

## difference in location

## -15.4763

wilcox.test(emis$y68.9, emis$y63.7 , conf.int=TRUE, conf.level = 0.9875)

## Warning in wilcox.test.default(emis$y68.9, emis$y63.7, conf.int = TRUE, : cannot compute

exact p-value with ties

## Warning in wilcox.test.default(emis$y68.9, emis$y63.7, conf.int = TRUE, : cannot compute

exact confidence intervals with ties

##

## Wilcoxon rank sum test with continuity correction

##

## data: emis$y68.9 and emis$y63.7

## W = 43, p-value = 0.007968

## alternative hypothesis: true location shift is not equal to 0

## 98.75 percent confidence interval:

## -708.99999 -51.99998

## sample estimates:

## difference in location

## -397.4227

wilcox.test(emis$y70.1, emis$y68.9 , conf.int=TRUE, conf.level = 0.9875)

## Warning in wilcox.test.default(emis$y70.1, emis$y68.9, conf.int = TRUE, : cannot compute

exact p-value with ties

## Warning in wilcox.test.default(emis$y70.1, emis$y68.9, conf.int = TRUE, : cannot compute

exact confidence intervals with ties

##

## Wilcoxon rank sum test with continuity correction

##

## data: emis$y70.1 and emis$y68.9

## W = 156, p-value = 0.9112

## alternative hypothesis: true location shift is not equal to 0

## 98.75 percent confidence interval:

## -206.0001 171.0000

## sample estimates:

## difference in location

## -10.99997

wilcox.test(emis$y72.4, emis$y70.1 , conf.int=TRUE, conf.level = 0.9875)

## Warning in wilcox.test.default(emis$y72.4, emis$y70.1, conf.int = TRUE, : cannot compute

exact p-value with ties

## Warning in wilcox.test.default(emis$y72.4, emis$y70.1, conf.int = TRUE, : cannot compute

exact confidence intervals with ties

##

## Wilcoxon rank sum test with continuity correction

##

## data: emis$y72.4 and emis$y70.1

## W = 92.5, p-value = 0.006384

## alternative hypothesis: true location shift is not equal to 0

## 98.75 percent confidence interval:
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## -285.999962 -6.000058

## sample estimates:

## difference in location

## -130

There are significant differences between the 1963-67 and 1968-69 samples,

and between the 1970-71 and 1972-74 samples. You are 98.75% confident that

the population median HC emissions for 1963-67 year cars is between 52 and

708.8 ppm greater than the population median for 1968-69 cars. Similarly, you

are 98.75% confident that the population median HC emissions for 1970-71 year

cars is between 6.1 and 285.9 ppm greater than the population median for 1972-

74 cars. Overall, you are 95% confident among the four pairwise comparisons

that you have not declared a difference significant when it isn’t.

6.5.4 Two final ANOVA comments

It is not uncommon for researchers to combine data from groups not found to

be significantly different. This is not, in general, a good practice. Just because

you do not have sufficient evidence to show differences does not imply that you

should treat the groups as if they are the same!

If the data distributions do not substantially deviate from normality, but the

spreads are different across samples, you might consider the standard ANOVA

followed with multiple comparisons using two-sample tests based on Satterth-

waite’s approximation.

6.6 Permutation tests

Permutation tests7 are a subset of non-parametric statistics. The basic premise

is to use only the assumption that it is possible that all of the treatment groups

are equivalent, and that every member of them is the same before sampling

began (i.e., the position in the group to which they belong is not differentiable

from other position before the positions are filled). From this, one can calculate

7http://en.wikipedia.org/wiki/Resampling_(statistics)
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a statistic and then see to what extent this statistic is special by seeing how

likely it would be if the group assignments had been jumbled.

A permutation test (also called a randomization test, re-randomization test,

or an exact test) is a type of statistical significance test in which the distribution

of the test statistic under the null hypothesis is obtained by calculating all

possible values of the test statistic under rearrangements of the labels on

the observed data points. In other words, the method by which treatments are

allocated to subjects in an experimental design is mirrored in the analysis of

that design. If the labels are exchangeable under the null hypothesis, then the

resulting tests yield exact significance levels. Confidence intervals can then be

derived from the tests. The theory has evolved from the works of R.A. Fisher

and E.J.G. Pitman in the 1930s.

Let’s illustrate the basic idea of a permutation test using the Meteorites

example. Suppose we have two groups Uwet and Walker whose sample means

are ȲU and ȲW, and that we want to test, at 5% significance level, whether they

come from the same distribution. Let nU = 9 and nW = 10 be the sample size

corresponding to each group. The permutation test is designed to determine

whether the observed difference between the sample means is large enough to

reject the null hypothesis H0 : µU = µW, that the two groups have identical

means.
The test proceeds as follows. First, the difference in means between the

two samples is calculated: this is the observed value of the test statistic, T(obs).
Then the observations of groups Uwet and Walker are pooled.
#### Permutation tests

# Calculated the observed difference in means

# met.long includes both Uwet and Walker groups

Tobs <- mean(met.long[(met.long$site == "Uwet" ), 2]) -

mean(met.long[(met.long$site == "Walker"), 2])

Tobs

## [1] 0.2522222

Next, the difference in sample means is calculated and recorded for every
possible way of dividing these pooled values into two groups of size nU =
9 and nW = 10 (i.e., for every permutation of the group labels Uwet and
Walker). The set of these calculated differences is the exact distribution of
possible differences under the null hypothesis that group label does not matter.
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This exact distribution can be approximated by drawing a large number of
random permutations.
# Plan:

# Initialize a vector in which to store the R number of difference of means.

# Calculate R differences in means for R permutations, storing the results.

# Note that there are prod(1:19) = 10^17 total permutations,

# but the R repetitions will serve as a good approximation.

# Plot the permutation null distribution with an indication of the Tobs.

# R = a large number of repetitions

R <- 1e4

# initialize the vector of difference of means from the permutations

Tperm <- rep(NA, R)

# For each of R repetitions, permute the Uwet and Walker labels,

# calculate the difference of means with the permuted labels,

# and store the result in the i.R'th position of Tperm.

for (i.R in 1:R) {
# permutation of 19 = 9+10 integers 1, 2, ..., 19

ind.perm <- sample.int(nrow(met.long))

# identify as "TRUE" numbers 1, ..., 9 (the number of Uwet labels)

lab.U <- (ind.perm <= sum(met.long$site == "Uwet")) #£

# identify as "TRUE" numbers 10, ..., 19 (the number of Walker labels)

# that is, all the non-Uwet labels

lab.W <- !lab.U

# calculate the difference in means and store in Tperm at index i.R

Tperm[i.R] <- mean(met.long[lab.U, 2]) - mean(met.long[lab.W, 2])

}

# Plot the permutation null distribution with an indication of the Tobs.

dat <- data.frame(Tperm)

library(ggplot2)

p <- ggplot(dat, aes(x = Tperm))

#p <- p + scale_x_continuous(limits=c(-20,+20))

p <- p + geom_histogram(aes(y=..density..), binwidth=0.01)

p <- p + geom_density(alpha=0.1, fill="white")

p <- p + geom_rug()

# vertical line at Tobs

p <- p + geom_vline(aes(xintercept=Tobs), colour="#BB0000", linetype="dashed")

p <- p + labs(title = "Permutation distribution of difference in means, Uwet and Walker Meteorites")

p <- p + xlab("difference in means (red line = observed difference in means)")

print(p)
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Permutation distribution of difference in means, Uwet and Walker Meteorites

Notice the contrast in this permutation distribution of the difference in

means from a normal distribution.

The one-sided p-value of the test is calculated as the proportion of sampled

permutations where the difference in means was at least as extreme as T(obs).

The two-sided p-value of the test is calculated as the proportion of sampled

permutations where the absolute difference was at least as extreme as |T(obs)|.
# Calculate a two-sided p-value.

p.upper <- sum((Tperm >= abs(Tobs))) / R

p.upper

## [1] 0.0623

p.lower <- sum((Tperm <= -abs(Tobs))) / R

p.lower

## [1] 0.0604

p.twosided <- p.lower + p.upper

p.twosided
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## [1] 0.1227

Note that the two-sided p-value of 0.1227 is consistent, in this case, with

the two-sample t-test p-values of 0.1134 (pooled) and 0.1290 (Satterthwaite),

but different from 0.0497 (WMW). The permutation is a comparison of means

without the normality assumption, though requires that the observations are

exchangable between populations under H0.

If the only purpose of the test is reject or not reject the null hypothesis, we

can as an alternative sort the recorded differences, and then observe if T(obs) is

contained within the middle 95% of them. If it is not, we reject the hypothesis

of equal means at the 5% significance level.

6.6.1 Linear model permutation tests in R

The coin package provides an implementation of a general framework for condi-

tional inference procedures commonly known as permutation tests. In the help

on ?"coin-package" search for location to find tests for the means or medians

of populations (such as oneway_test()). Other packages of note include perm

and exactRankTests (lmPerm is defunct).
Below I calculate the standard t-test for the Meteorite data using t.test()

and lm(), then compare that with oneway_test() and what we calculated using
our calculation of the permutation test.
# standard two-sample t-test with equal variances

t.summary <- t.test(cool ~ site, data = met.long, var.equal = TRUE)

t.summary

##

## Two Sample t-test

##

## data: cool by site

## t = 1.6689, df = 17, p-value = 0.1134

## alternative hypothesis: true difference in means is not equal to 0

## 95 percent confidence interval:

## -0.0666266 0.5710710

## sample estimates:

## mean in group Uwet mean in group Walker

## 0.4522222 0.2000000

# linear model form of t-test, "siteWalker" has estimate, se, t-stat, and p-value

lm.summary <- lm(cool ~ site, data = met.long)
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summary(lm.summary)

##

## Call:

## lm(formula = cool ~ site, data = met.long)

##

## Residuals:

## Min 1Q Median 3Q Max

## -0.2922 -0.1961 -0.1600 0.0250 0.7478

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 0.4522 0.1096 4.125 0.000708 ***

## siteWalker -0.2522 0.1511 -1.669 0.113438

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.3289 on 17 degrees of freedom

## Multiple R-squared: 0.1408,Adjusted R-squared: 0.09024

## F-statistic: 2.785 on 1 and 17 DF, p-value: 0.1134

# permutation test version

library(coin)

## Loading required package: survival

# Fisher-Pitman permutation test

oneway.summary <- oneway_test(cool ~ site, data = met.long)

oneway.summary

##

## Asymptotic Two-Sample Fisher-Pitman Permutation Test

##

## data: cool by site (Uwet, Walker)

## Z = 1.5919, p-value = 0.1114

## alternative hypothesis: true mu is not equal to 0

# # examples of extracting values from coins S4 class objects

# expectation(oneway.summary)

# covariance(oneway.summary)

# pvalue(oneway.summary)

# confint(oneway.summary)

pvalue(oneway.summary)

## [1] 0.1114144

The permutation test gives a p-value of 0.1114 which is close to our manually

calculated permuatation p-value of 0.1227.
For the emisions data, below we compare the ANOVA results (assuming

normality) with a permutation test without distributional assumptions.
fit.e <- aov(hc ~ year, data = emis.long)

summary(fit.e)
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## Df Sum Sq Mean Sq F value Pr(>F)

## year 4 4226834 1056709 4.343 0.00331 **

## Residuals 73 17759968 243287

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

library(coin)

# Fisher-Pitman permutation test

oneway.summary <- oneway_test(hc ~ year, data = emis.long)

oneway.summary

##

## Asymptotic K-Sample Fisher-Pitman Permutation Test

##

## data: hc by

## year (Pre.y63, y63.7, y68.9, y70.1, y72.4)

## chi-squared = 14.803, df = 4, p-value = 0.005128

Thus the permutation test of the ANOVA hypothesis on means rejects the

null hypothesis of all equal means. A followup set of pairwise tests can be done

by looping over pairs of factors.
First we list the factor levels ordered by their medians, the ordering by

medians is helpful at the end when the results of the pairwise comparisons are
given.
# these are the levels of the factor, ordered by their medians

fac.lev <- levels(reorder(levels(emis.long$year)

, -as.numeric(by(emis.long$loghc, emis.long$year, median)))

)

fac.lev

## [1] "y63.7" "Pre.y63" "y68.9" "y70.1" "y72.4"

Create a matrix to store pairwise comparison p-values, then loop over all

pairs of groups and perform a two-sample permutation test. Store the p-value

for each test in the matrix.
# create a matrix to store pairwise comparison p-values

mc.pval <- matrix(NA

, nrow = length(fac.lev)

, ncol = length(fac.lev)

, dimnames = list(fac.lev, fac.lev))

# diag is always 1, no group differs from itself

diag(mc.pval) <- 1

mc.pval

## y63.7 Pre.y63 y68.9 y70.1 y72.4

## y63.7 1 NA NA NA NA

## Pre.y63 NA 1 NA NA NA

## y68.9 NA NA 1 NA NA
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## y70.1 NA NA NA 1 NA

## y72.4 NA NA NA NA 1

# loop over all pairs of factor levels, perform two-sample test,

# and store p-value in matrix

for (i1 in 1:(length(fac.lev) - 1)) {
for (i2 in (i1 + 1):length(fac.lev)) {
## DEBUG - to make sure the indexing is working, you can print them:

# print(cat(i1, i2))

library(coin)

# Fisher-Pitman permutation test

oneway.summary <- oneway_test(hc ~ year, data = subset(emis.long, (year == fac.lev[i1] | year == fac.lev[i2])))

# put p-value in matrix

mc.pval[i1, i2] <- pvalue(oneway.summary)

mc.pval[i2, i1] <- mc.pval[i1, i2]

}
}

# p-values

mc.pval

## y63.7 Pre.y63 y68.9 y70.1 y72.4

## y63.7 1.000000000 0.676572596 0.1993877 0.004273746 0.002185513

## Pre.y63 0.676572596 1.000000000 0.1611790 0.005319987 0.003379156

## y68.9 0.199387725 0.161179041 1.0000000 0.468455149 0.177187250

## y70.1 0.004273746 0.005319987 0.4684551 1.000000000 0.227517382

## y72.4 0.002185513 0.003379156 0.1771873 0.227517382 1.000000000

Summarize the results of the pairwise comparisons. Groups with a common
letter are not statistically different.
# summary of pairwise comparisons

# threshold is Bonferroni-corrected alpha=0.05 / 10

library(multcompView)

multcompLetters( mc.pval

, compare = "<"

, threshold = 0.05 / choose(length(fac.lev), 2)

, Letters = letters

, reversed = FALSE)

## y63.7 Pre.y63 y68.9 y70.1 y72.4

## "a" "ab" "abc" "bc" "c"
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6.7 Density estimation

Density estimation is like a histogram: It is a method for visualizing the shape

of a univariate distribution (there are methods for doing multivariate density

estimation as well, but we will ignore those for the time being). In fact, I snuck

in density estimation in the first chapter and have been using it all along! Let’s

experiment with Newcombe’s speed-of-light data (excluding the two outliers).

Consider the shape of the histogram for different numbers of bins.
#### Density estimation

# include time ranks 3 and above, that is, remove the lowest two values

time2 <- time[(rank(time) >= 3)]

old.par <- par(no.readonly = TRUE)

# make smaller margins

par(mfrow=c(5,1), mar=c(3,2,2,1), oma=c(1,1,1,1))

hist(time2, breaks=1 , main="1 break" , xlim=c(24.80,24.84), xlab=""); rug(time2)

hist(time2, main="default" , xlim=c(24.80,24.84), xlab=""); rug(time2)

hist(time2, breaks=10 , main="10 breaks" , xlim=c(24.80,24.84), xlab=""); rug(time2)

hist(time2, breaks=20 , main="20 breaks" , xlim=c(24.80,24.84), xlab=""); rug(time2)

hist(time2, breaks=100 , main="100 breaks", xlim=c(24.80,24.84), xlab=""); rug(time2)

# restore par() settings

par(old.par)
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Notice that we are starting to see more and more bins that include only a

single observation (or multiple observations at the precision of measurement).

Taken to its extreme, this type of exercise gives in some sense a “perfect” fit to

the data but is useless as an estimator of shape.

On the other hand, it is obvious that a single bin would also be completely

useless. So we try in some sense to find a middle ground between these two

extremes: “Oversmoothing” by using only one bin and “undersmooting” by

using too many. This same paradigm occurs for density estimation, in which

the amount of smoothing is determined by a quantity called the bandwidth.

By default, R uses an optimal (in some sense) choice of bandwidth.
We’ve already used the density() function to provide a smooth curve to

our histograms. So far, we’ve taken the default “bandwidth”. Let’s see what
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happens when we use different bandwidths.
par(mfrow=c(3,1))

# prob=TRUE scales the y-axis like a density function, total area = 1

hist(time2, prob=TRUE, main="")

# apply a density function, store the result

den = density(time2)

# plot density line over histogram

lines(den, col=2, lty=2, lwd=2)

# extract the bandwidth (bw) from the density line

b = round(den$bw, 4)

title(main=paste("Default =", b), col.main=2)

# undersmooth

hist(time2, prob=TRUE, main="")

lines(density(time2, bw=0.0004), col=3, lwd=2)

text(17.5, .35, "", col=3, cex=1.4)

title(main=paste("Undersmooth, BW = 0.0004"), col.main=3)

# oversmooth

hist(time2, prob=TRUE, main="")

lines(density(time2, bw=0.008), col=4, lwd=2)

title(main=paste("Oversmooth, BW = 0.008"), col.main=4)
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The other determining factor is the kernel, which is the shape each individual
point takes before all the shapes are added up for a final density line. While
the choice of bandwidth is very important, the choice of kernel is not. Choosing
a kernel with hard edges (such as ”rect”) will result in jagged artifacts, so
smoother kernels are often preferred.
par(mfrow=c(1,1))

hist(time2, prob=TRUE, main="")

# default kernel is Gaussian ("Normal")

lines(density(time2) , col=2, lty=1, lwd=2)

lines(density(time2, ker="epan"), col=3, lty=1, lwd=2)

lines(density(time2, ker="rect"), col=4, lty=1, lwd=2)

title(main="Gaussian, Epanechnikov, Rectangular")

# other kernels include: "triangular", "biweight", "cosine", "optcosine"
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## Warning in file(filename, "r", encoding = encoding): cannot

open file ’ADA1 12 RFunctions.R’: No such file or directory

## Error in file(filename, "r", encoding = encoding): cannot

open the connection

Learning objectives

After completing this topic, you should be able to:

select the appropriate statistical method to compare summaries from cate-

gorical variables.

assess the assumptions of one-way and two-way tests of proportions and

independence.

decide whether the proportions between populations are different, including

in stratified and cross-sectional studies.

recommend action based on a hypothesis test.

Achieving these goals contributes to mastery in these course learning outcomes:

1. organize knowledge.

5. define parameters of interest and hypotheses in words and notation.

6. summarize data visually, numerically, and descriptively.

8. use statistical software.

12. make evidence-based decisions.
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7.1 Categorical data

When the response variable is categorical, the interesting questions are often

about the probability of one possible outcome versus another, and whether

these probabilities depend on other variables (continuous or categorical).

Example: Titanic The sinking of the Titanic is a famous event, and new

books are still being published about it. Many well-known facts — from the

proportions of first-class passengers to the “women and children first” policy,

and the fact that policy was not entirely successful in saving the women and

children in the third class — are reflected in the survival rates for various

classes of passenger. The source provides a data set recording class, sex, age,

and survival status for each person on board of the Titanic, and is based on

data originally collected by the British Board of Trade1.
# The Titanic dataset is a 4-dimensional table: Class, Sex, Age, Survived

library(datasets)

data(Titanic)

Titanic

## , , Age = Child, Survived = No

##

## Sex

## Class Male Female

## 1st 0 0

## 2nd 0 0

## 3rd 35 17

## Crew 0 0

##

## , , Age = Adult, Survived = No

##

## Sex

## Class Male Female

## 1st 118 4

## 2nd 154 13

## 3rd 387 89

## Crew 670 3

##

1British Board of Trade (1990), Report on the Loss of the “Titanic” (S.S.). British Board of Trade
Inquiry Report (reprint). Gloucester, UK: Allan Sutton Publishing. Note that there is not complete
agreement among primary sources as to the exact numbers on board, rescued, or lost.
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## , , Age = Child, Survived = Yes

##

## Sex

## Class Male Female

## 1st 5 1

## 2nd 11 13

## 3rd 13 14

## Crew 0 0

##

## , , Age = Adult, Survived = Yes

##

## Sex

## Class Male Female

## 1st 57 140

## 2nd 14 80

## 3rd 75 76

## Crew 192 20

# reshape into long data.frame

library(reshape2)

df.titanic <- melt(Titanic, value.name = "Freq")

df.titanic

## Class Sex Age Survived Freq

## 1 1st Male Child No 0

## 2 2nd Male Child No 0

## 3 3rd Male Child No 35

## 4 Crew Male Child No 0

## 5 1st Female Child No 0

## 6 2nd Female Child No 0

## 7 3rd Female Child No 17

## 8 Crew Female Child No 0

## 9 1st Male Adult No 118

## 10 2nd Male Adult No 154

## 11 3rd Male Adult No 387

## 12 Crew Male Adult No 670

## 13 1st Female Adult No 4

## 14 2nd Female Adult No 13

## 15 3rd Female Adult No 89

## 16 Crew Female Adult No 3

## 17 1st Male Child Yes 5

## 18 2nd Male Child Yes 11

## 19 3rd Male Child Yes 13

## 20 Crew Male Child Yes 0

## 21 1st Female Child Yes 1

## 22 2nd Female Child Yes 13

## 23 3rd Female Child Yes 14

## 24 Crew Female Child Yes 0

## 25 1st Male Adult Yes 57

## 26 2nd Male Adult Yes 14
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## 27 3rd Male Adult Yes 75

## 28 Crew Male Adult Yes 192

## 29 1st Female Adult Yes 140

## 30 2nd Female Adult Yes 80

## 31 3rd Female Adult Yes 76

## 32 Crew Female Adult Yes 20

# Total number of people

sum(df.titanic$Freq)

## [1] 2201

# create colors based on survival

df.titanic$Color <- ifelse(df.titanic$Survived == "Yes", "#008888", "#330066")

# subset only the adults (since there were so few children)

df.titanic.adult <- subset(df.titanic, Age == "Adult")

# see R code on website for function parallelset()

# see help for with(), it allows temporary direct reference to columns in a data.frame

# otherwise, we'd need to specify df.titanic.adult£Survived, ...

with(df.titanic.adult

, parallelset(Survived, Sex, Class, freq = Freq, col = Color, alpha=0.2)

)

Survived

Sex

Class

No Yes

Male Female

1st 2nd 3rd Crew

There are many questions that can be asked of this dataset. How likely were

people to survive such a ship sinking in cold water? Is the survival proportion

dependent on sex, class, or age, or a combination of these? How different is the

survival proportions for 1st class females versus 3rd class males?
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7.2 Single Proportion Problems

Assume that you are interested in estimating the proportion p of individuals

in a population with a certain characteristic or attribute based on a random or

representative sample of size n from the population. The sample proportion

p̂ =(# with attribute in the sample)/n is the best guess for p based on the data.

This is the simplest categorical data problem. Each response falls into

one of two exclusive and exhaustive categories, called “success” and “failure”.

Individuals with the attribute of interest are in the success category. The rest

fall into the failure category. Knowledge of the population proportion p

of successes characterizes the distribution across both categories because the

population proportion of failures is 1− p.

As an aside, note that the probability that a randomly selected individual

has the attribute of interest is the population proportion p with the attribute,

so the terms population proportion and probability can be used interchangeably

with random sampling.

7.2.1 A CI for p

A two-sided CI for p is a range of plausible values for the unknown population

proportion p, based on the observed data. To compute a two-sided CI for p:

1. Specify the confidence level as the percent 100(1− α)% and solve for the

error rate α of the CI.

2. Compute zcrit = z0.5α (i.e., area under the standard normal curve to

the left and to the right of zcrit are 1 − 0.5α and 0.5α, respectively).

qnorm(1-0.05/2)=1.96.

3. The 100(1 − α)% CI for p has endpoints L = p̂ − zcritSE and U =

p̂ + zcritSE, respectively, where the “CI standard error” is

SE =

√
p̂(1− p̂)

n
.

The CI is often written as p̂± zcritSE.
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Reminder of CI interpretation. The CI is determined once the confi-

dence level is specified and the data are collected. Prior to collecting data, the

CI is unknown and can be viewed as random because it will depend on the

actual sample selected. Different samples give different CIs. The “confidence”

in, say, the 95% CI (which has a 0.05 or 5% error rate) can be interpreted as

follows. If you repeatedly sample the population and construct 95% CIs for p,

then 95% of the intervals will contain p, whereas 5% (the error rate) will not.

The CI you get from your data either covers p, or it does not.

The length of the CI

U − L = 2zcritSE

depends on the accuracy of the estimate p̂, as measured by the standard error

SE. For a given p̂, this standard error decreases as the sample size n increases,

yielding a narrower CI. For a fixed sample size, this standard error is maxi-

mized at p̂ = 0.5, and decreases as p̂ moves towards either 0 or 1. In essence,

sample proportions near 0 or 1 give narrower CIs for p. However, the normal

approximation used in the CI construction is less reliable for extreme values of

p̂.

ClickerQ s — CI for proportions STT.08.01.010

Example: Tamper resistant packaging The 1983 Tylenol poisoning

episode highlighted the desirability of using tamper-resistant packaging. The

article “Tamper Resistant Packaging: Is it Really?” (Packaging Engineering,

June 1983) reported the results of a survey on consumer attitudes towards

tamper-resistant packaging. A sample of 270 consumers was asked the ques-

tion: “Would you be willing to pay extra for tamper resistant packaging?” The

number of yes respondents was 189. Construct a 95% CI for the proportion p

of all consumers who were willing in 1983 to pay extra for such packaging.

Here n = 270 and p̂ = 189/270 = 0.700. The critical value for a 95% CI for
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p is z0.025 = 1.96. The CI standard error is given by

SE =

√
0.7× 0.3

270
= 0.028,

so zcritSE = 1.96× 0.028 = 0.055. The 95% CI for p is 0.700± 0.055. You are

95% confident that the proportion of consumers willing to pay extra for better

packaging is between 0.645 and 0.755. (Willing to pay how much extra?)

Appropriateness of the CI

The standard CI is based on a large-sample standard normal approximation

to

z =
p̂− p
SE

.

A simple rule of thumb requires np̂ ≥ 5 and n(1 − p̂) ≥ 5 for the method to

be suitable. Given that np̂ and n(1− p̂) are the observed numbers of successes

and failures, you should have at least 5 of each to apply the large-sample CI.

In the packaging example, np̂ = 270 × (0.700) = 189 (the number who

support the new packaging) and n(1 − p̂) = 270 × (0.300) = 81 (the number

who oppose) both exceed 5. The normal approximation is appropriate here.

7.2.2 Hypothesis Tests on Proportions

The following example is typical of questions that can be answered using a

hypothesis test for a population proportion.

Example Environmental problems associated with leaded gasolines are well-

known. Many motorists have tampered with the emission control devices on

their cars to save money by purchasing leaded rather than unleaded gasoline.

A Los Angeles Times article on March 17, 1984 reported that 15% of all

California motorists have engaged in emissions tampering. A random sample

of 200 cars from L.A. county was obtained, and the emissions devices on 21 are
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found to be tampered with. Does this suggest that the proportion of cars in

L.A. county with tampered devices differs from the statewide proportion?

Two-Sided Hypothesis Test for p

Suppose you are interested in whether the population proportion p is equal to

a prespecified value, say p0. This question can be formulated as a two-sided

test. To carry out the test:

1. Define the null hypothesis H0 : p = p0 and alternative hypothesis HA :

p 6= p0.

2. Choose the size or significance level of the test, denoted by α.

3. Using the standard normal probability table, find the critical value zcrit

such that the areas under the normal curve to the left and right of zcrit

are 1− 0.5α and 0.5α, respectively. That is, zcrit = z0.5α.

4. Compute the test statistic (often to be labelled zobs)

zs =
p̂− p0

SE
,

where the “test standard error” (based on the hypothesized value) is

SE =

√
p0(1− p0)

n
.

5. Reject H0 in favor of HA if |zobs| ≥ zcrit. Otherwise, do not reject H0.

The rejection rule is easily understood visually. The area under the normal

curve outside ±zcrit is the size α of the test. One-half of α is the area in

each tail. You reject H0 in favor of HA if the test statistic exceeds ±zcrit. This

occurs when p̂ is significantly different from p0, as measured by the standardized

distance zobs between p̂ and p0.
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ClickerQ s — Test statistic STT.07.01.057

7.2.3 The p-value for a two-sided test

To compute the p-value (not to be confused with the value of the proportion

p) for a two-sided test:

1. Compute the test statistic zs = zobs.

2. Evaluate the area under the normal probability curve outside ±|zs|.
Recall that the null hypothesis for a size α test is rejected if and only if the

p-value is less than or equal to α.

Example: Emissions data Each car in the target population (L.A. county)

either has been tampered with (a success) or has not been tampered with (a

failure). Let p = the proportion of cars in L.A. county with tampered emissions

control devices. You want to test H0 : p = 0.15 against HA : p 6= 0.15 (here

p0 = 0.15). The critical value for a two-sided test of size α = 0.05 is zcrit = 1.96.
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The data are a sample of n = 200 cars. The sample proportion of cars that

have been tampered with is p̂ = 21/200 = 0.105. The test statistic is

zs =
0.105− 0.15

0.02525
= −1.78,

where the test standard error satisfies

SE =

√
0.15× 0.85

200
= 0.02525.

Given that |zs| = 1.78 < 1.96, you have insufficient evidence to reject H0 at the

5% level. That is, you have insufficient evidence to conclude that the proportion

of cars in L.A. county that have been tampered with differs from the statewide

proportion.

This decision is reinforced by the p-value calculation. The p-value is the area

under the standard normal curve outside ±1.78. This is 2 × 0.0375 = 0.075,

which exceeds the test size of 0.05.
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−4 0 41.78−1.78

.0375.0375

Total area is p−value 
 = .075

Emissions data p−value

Remark The SE used in the test and CI are different. This implies that a

hypothesis test and CI could potentially lead to different decisions. That is, a

95% CI for a population proportion might cover p0 when the p-value for testing

H0 : p = p0 is smaller than 0.05. This will happen, typically, only in cases

where the decision is “borderline.”

7.2.4 Appropriateness of Test

The z-test is based on a large-sample normal approximation, which works better

for a given sample size when p0 is closer to 0.5. The sample size needed for an

accurate approximation increases dramatically the closer p0 gets to 0 or to 1. A

simple rule of thumb is that the test is appropriate when (the expected number
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of successes) np0 ≥ 5 and (the expected number of failures) n(1− p0) ≥ 5.

In the emissions example, np0 = 200 × (0.15) = 30 and n(1 − p0) =

200× (0.85) = 170 exceed 5, so the normal approximation is appropriate.

7.2.5 R Implementation

#### Single Proportion Problems

# Approximate normal test for proportion, without Yates' continuity correction

prop.test(21, 200, p = 0.15, correct = FALSE)

##

## 1-sample proportions test without continuity correction

##

## data: 21 out of 200, null probability 0.15

## X-squared = 3.1765, df = 1, p-value = 0.07471

## alternative hypothesis: true p is not equal to 0.15

## 95 percent confidence interval:

## 0.06970749 0.15518032

## sample estimates:

## p

## 0.105

# Approximate normal test for proportion, with Yates' continuity correction

#prop.test(21, 200, p = 0.15)

ClickerQ s — Parachute null hypothesis STT.08.01.040

ClickerQ s — Parachute conclusion STT.08.01.050

ClickerQ s — Parachute p-value STT.08.01.060

7.2.6 One-Sided Tests and One-Sided Confidence Bounds

The mechanics of tests on proportions are similar to tests on means, except we

use a different test statistic and a different probability distribution for critical
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values. This applies to one-sided and two-sided procedures. The example below

illustrates a one-sided test and bound.

Example: brain hemispheres An article in the April 6, 1983 edition of

The Los Angeles Times reported on a study of 53 learning-impaired youngsters

at the Massachusetts General Hospital. The right side of the brain was found

to be larger than the left side in 22 of the children. The proportion of the

general population with brains having larger right sides is known to be 0.25.

Does the data provide strong evidence for concluding, as the article claims, that

the proportion of learning impaired youngsters with brains having larger right

sides exceeds the proportion in the general population?

I will answer this question by computing a p-value for a one-sided test. Let

p be the population proportion of learning disabled children with brains having

larger right sides. I am interested in testingH0 : p = 0.25 againstHA : p > 0.25

(here p0 = 0.25).

The proportion of children sampled with brains having larger right sides is

p̂ = 22/53 = 0.415. The test statistic is

zs =
0.415− 0.25

0.0595
= 2.78,

where the test standard error satisfies

SE =

√
0.25× 0.75

53
= 0.0595.

The p-value for an upper one-sided test is the area under the standard normal

curve to the right of 2.78, which is approximately .003; see the picture below.

I would reject H0 in favor of HA using any of the standard test levels, say 0.05

or 0.01. The newspaper’s claim is reasonable.

UNM, Stat 427/527 ADA1



268 Ch 7: Categorical Data Analysis

−4 −2 0 4zs = 2.78

.003

p−value is area in 
 right tail only

Right brain upper one−sided p−value

A sensible next step in the analysis would be to compute a lower confi-

dence bound p̂− zcritSE for p. For illustration, consider a 95% bound. The

CI standard error is

SE =

√
p̂(1− p̂)

n
=

√
0.415× 0.585

53
= 0.0677.

The critical value for a one-sided 5% test is zcrit = 1.645, so a lower 95% bound

on p is 0.415−1.645×0.0677 = 0.304. I am 95% confident that the population

proportion of learning disabled children with brains having larger right sides is

at least 0.304. Values of p smaller than 0.304 are not supported by the data.

You should verify that the sample size is sufficiently large to use the approx-

imate methods in this example.
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#### Example: brain hemispheres

# Approximate normal test for proportion, without Yates' continuity correction

prop.test(22, 53, p = 0.25, alternative = "greater", correct = FALSE)

##

## 1-sample proportions test without continuity correction

##

## data: 22 out of 53, null probability 0.25

## X-squared = 7.7044, df = 1, p-value = 0.002754

## alternative hypothesis: true p is greater than 0.25

## 95 percent confidence interval:

## 0.3105487 1.0000000

## sample estimates:

## p

## 0.4150943

7.2.7 Small Sample Procedures

Large sample tests and CIs for p should be interpreted with caution in small

sized samples because the true error rate usually exceeds the assumed (nominal)

value. For example, an assumed 95% CI, with a nominal error rate of 5%, may

be only an 80% CI, with a 20% error rate. The large-sample CIs are usually

overly optimistic (i.e., too narrow) when the sample size is too small to use the

normal approximation.

Alan Agresti suggests the following method for a 95% CI. The standard

method computes the sample proportion as p̂ = x/n where x is the number of

successes in the sample and n is the sample size. Agresti suggested using the

estimated proportion p̃ = (x + 2)/(n + 4) with the standard error

SE =

√
p̃(1− p̃)

n + 4
,

in the “usual 95% interval” formula: p̃ ± 1.96SE. This appears odd, but

amounts to adding two successes and two failures to the observed data, and

then computing the standard CI.

This adjustment has little effect when n is large and p̂ is not near either 0

or 1, as in the Tylenol example.
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Example: swimming segregation This example is based on a case heard

before the U.S. Supreme Court. A racially segregated swimming club was

ordered to admit minority members. However, it is unclear whether the club

has been following the spirit of the mandate. Historically, 85% of the white

applicants were approved. Since the mandate, only 1 of 6 minority applicants

has been approved. Is there evidence of continued discrimination?

I examine this issue by constructing a CI and a test for the probability p (or

population proportion) that a minority applicant is approved. Before examining

the question of primary interest, let me show that the two approximate CIs are

very different, due to the small sample size. One minority applicant (x = 1)

was approved out of n = 6 candidates, giving p̂ = 1/6 = 0.167.

A 95% large-sample CI for p is (−0.14, 0.46). Since a negative proportion is

not possible, the CI should be reported as (0.00, 0.46). Agresti’s 95% CI (based

on 3 successes and 7 failures) is (0.02, 0.58). The big difference between the two

intervals coupled with the negative lower endpoint on the standard CI suggests

that the normal approximation used with the standard method is inappropriate.

This view is reinforced by the rule-of-thumb calculation for using the standard

interval. Agresti’s CI is wider, which is consistent with my comment that the

standard CI is too narrow in small samples. As a comparison, the exact 95%

CI is (0.004, 0.64), which agrees more closely with Agresti’s interval.

I should emphasize that the exact CI is best to use, but is not available in

all statistical packages, so methods based on approximations may be required,

and if so, then Agresti’s method is clearly better than the standard normal

approximation in small sized samples.

Recall that the results of the asymptotic 95% CIs may disagree with the

hypothesis test results. Exact methods will not contradict each other this way

(neither do these asymptotic methods, usually).
#### Example: swimming segregation

## The prop.test() does an additional adjustment, so does not match precisely

## the results in the above paragraphs

# Approximate normal test for proportion, without Yates' continuity correction

prop.test(1, 6, p = 0.85, correct = FALSE)$conf.int
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## Warning in prop.test(1, 6, p = 0.85, correct = FALSE): Chi-squared approximation may be

incorrect

## [1] 0.03005337 0.56350282

## attr(,"conf.level")

## [1] 0.95

# Agresti's method

prop.test(1+2, 6+4, p = 0.85, correct = FALSE)$conf.int

## Warning in prop.test(1 + 2, 6 + 4, p = 0.85, correct = FALSE): Chi-squared approximation

may be incorrect

## [1] 0.1077913 0.6032219

## attr(,"conf.level")

## [1] 0.95

# Exact binomial test for proportion

binom.test(1, 6, p = 0.85)$conf.int

## [1] 0.004210745 0.641234579

## attr(,"conf.level")

## [1] 0.95

Returning to the problem, you might check for discrimination by testing
H0 : p = 0.85 against HA : p < 0.85 using an exact test. The exact test
p-value is 0.000 to three decimal places, and an exact upper bound for p is
0.582. What does this suggest to you?
# Exact binomial test for proportion

binom.test(1, 6, alternative = "less", p = 0.85)

##

## Exact binomial test

##

## data: 1 and 6

## number of successes = 1, number of trials = 6, p-value =

## 0.0003987

## alternative hypothesis: true probability of success is less than 0.85

## 95 percent confidence interval:

## 0.0000000 0.5818034

## sample estimates:

## probability of success

## 0.1666667

7.3 Analyzing Raw Data

In most studies, your data will be stored in a spreadsheet with one observation

per case or individual. For example, the data below give the individual responses

to the applicants of the swim club.
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#### Example: swimming segregation, raw data

## read.table options

# sep = default is any white space, but our strings contain a space,

# so I changed this to a comma

# header = there are no column headers

# stringsAsFActors = default converts strings to factors, but I want them

# to just be the plain character text

swim <- read.table(text="

not approved

not approved

not approved

approved

not approved

not approved

", sep = ",", header=FALSE, stringsAsFactors=FALSE)

# name the column

names(swim) <- c("application")

# show the structure of the data.frame

str(swim)

## 'data.frame': 6 obs. of 1 variable:

## $ application: chr "not approved" "not approved" "not approved" "approved" ...

# display the data.frame

swim

## application

## 1 not approved

## 2 not approved

## 3 not approved

## 4 approved

## 5 not approved

## 6 not approved

The data were entered as alphabetic strings. We can use table() to count
frequencies of categorical variables.
# count the frequency of each categorical variable

table(swim)

## swim

## approved not approved

## 1 5

You can compute a CI and test for a proportion using raw data, provided
the data column includes only two distinct values. The levels can be numerical
or alphanumeric.
# use the counts from table() for input in binom.text()

# the help for binom.test() says x can be a vector of length 2

# giving the numbers of successes and failures, respectively

# that's exactly what table(swim) gave us
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binom.test(table(swim), p = 0.85, alternative = "less")

##

## Exact binomial test

##

## data: table(swim)

## number of successes = 1, number of trials = 6, p-value =

## 0.0003987

## alternative hypothesis: true probability of success is less than 0.85

## 95 percent confidence interval:

## 0.0000000 0.5818034

## sample estimates:

## probability of success

## 0.1666667

It is possible that the order (alphabetically) is the wrong order, failures and

successes, in which case we’d need to reorder the input to binom.test().

In Chapter 6 we looked at the binomial distribution to obtain an exact Sign

Test confidence interval for the median. Examine the following to see where

the exact p-value for this test comes from.
n <- 6

x <- 0:n

p0 <- 0.85

bincdf <- pbinom(x, n, p0)

cdf <- data.frame(x, bincdf)

cdf

## x bincdf

## 1 0 1.139063e-05

## 2 1 3.986719e-04

## 3 2 5.885156e-03

## 4 3 4.733859e-02

## 5 4 2.235157e-01

## 6 5 6.228505e-01

## 7 6 1.000000e+00

ClickerQ s — Excess successes STT.05.01.030
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7.4 Goodness-of-Fit Tests (Multinomial)

Example: jury pool The following data set was used as evidence in a

court case. The data represent a sample of 1336 individuals from the jury pool

of a large municipal court district for the years 1975–1977. The fairness of the

representation of various age groups on juries was being contested. The strategy

for doing this was to challenge the representativeness of the pool of individuals

from which the juries are drawn. This was done by comparing the age group

distribution within the jury pool against the age distribution in the district as

a whole, which was available from census figures.

Age group (yrs) Obs. Counts Obs. Prop. Census Prop.

18-19 23 0.017 0.061

20-24 96 0.072 0.150

25-29 134 0.100 0.135

30-39 293 0.219 0.217

40-49 297 0.222 0.153

50-64 380 0.284 0.182

65-99 113 0.085 0.102

Total: 1336 1.000 1.000

A statistical question here is whether the jury pool population proportions

are equal to the census proportions across the age categories. This comparison

can be formulated as a goodness-of-fit test, which generalizes the large-

sample test on a single proportion to a categorical variable (here age) with

r > 2 levels. For r = 2 categories, the goodness-of-fit test and large-sample

test on a single proportion are identical. Although this problem compares two

populations, only one sample is involved because the census data is a population

summary!

In general, suppose each individual in a population is categorized into one

and only one of r levels or categories. Let p1, p2, . . ., pr, be the population

proportions in the r categories, where each pi ≥ 0 and p1 + p2 + · · · + pr = 1.

The hypotheses of interest in a goodness-of-fit problem are H0 : p1 = p01,
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p2 = p02, . . ., pr = p0r and HA : not H0, where p01, p02, . . ., p0r are given

category proportions.

The plausibility of H0 is evaluated by comparing the hypothesized category

proportions to estimated (i.e., observed) category proportions p̂1, p̂2, . . ., p̂r
from a random or representative sample of n individuals selected from the pop-

ulation. The discrepancy between the hypothesized and observed proportions

is measured by the Pearson chi-squared statistic:

χ2
s =

r∑
i=1

(Oi − Ei)
2

Ei
,

where Oi is the observed number in the sample that fall into the ith category

(Oi = np̂i), and Ei = np0i is the number of individuals expected to be in the

ith category when H0 is true.

The Pearson statistic can also be computed as the sum of the squared resid-

uals:

χ2
s =

r∑
i=1

Z2
i ,

where Zi = (Oi − Ei)/
√
Ei, or in terms of the observed and hypothesized

category proportions

χ2
s = n

r∑
i=1

(p̂i − p0i)
2

p0i
.

The Pearson statistic χ2
s is “small” when all of the observed counts (propor-

tions) are close to the expected counts (proportions). The Pearson χ2 is “large”

when one or more observed counts (proportions) differs noticeably from what

is expected when H0 is true. Put another way, large values of χ2
s suggest that

H0 is false.

The critical value χ2
crit for the test is obtained from a chi-squared probability

table with r − 1 degrees of freedom. The picture below shows the form of the

rejection region. For example, if r = 5 and α = 0.05, then you reject H0 when

χ2
s ≥ χ2

crit = 9.49 (qchisq(0.95, 5-1)). The p-value for the test is the area
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under the chi-squared curve with df = r − 1 to the right of the observed χ2
s

value.

0 5 10 15
χCrit

2

α = .05 (fixed)

Reject H0 for χS
2 here

χ2 with 4 degrees of freedom

0 5 10 15
χCrit

2 χS
2

p − value (random)

χ2 with 4 degrees of freedom

χS
2 significant

Example: jury pool Let p18 be the proportion in the jury pool population

between ages 18 and 19. Define p20, p25, p30, p40, p50, and p65 analogously.

You are interested in testing that the true jury proportions equal the census

proportions, H0 : p18 = 0.061, p20 = 0.150, p25 = 0.135, p30 = 0.217, p40 =

0.153, p50 = 0.182, and p65 = 0.102 against HA : not H0, using the sample of

1336 from the jury pool.

The observed counts, the expected counts, and the category residuals are

given in the table below. For example, E18 = 1336 × (0.061) = 81.5 and

Z18 = (23− 81.5)/
√

81.5 = −6.48 in the 18-19 year category.

The Pearson statistic is

χ2
s = (−6.48)2+(−7.38)2+(−3.45)2+0.182+6.482+8.782+(−1.99)2 = 231.26

on r − 1 = 7− 1 = 6 degrees of freedom. Here χ2
crit = 12.59 at α = 0.05. The

p-value for the goodness-of-fit test is less than 0.001, which suggests that H0 is

false.
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Age group (yrs) Obs. Counts Exp. Counts Residual

18-19 23 81.5 −6.48

20-24 96 200.4 −7.38

25-29 134 180.4 −3.45

30-39 293 289.9 0.18

40-49 297 204.4 6.48

50-64 380 243.2 8.78

65-99 113 136.3 −1.99

7.4.1 Adequacy of the Goodness-of-Fit Test

The chi-squared goodness-of-fit test is a large-sample test. A conservative rule

of thumb is that the test is suitable when each expected count is at least five.

This holds in the jury pool example. There is no widely available alternative

method for testing goodness-of-fit with smaller sample sizes. There is evidence,

however, that the chi-squared test is slightly conservative (the p-values are

too large, on average) when the expected counts are smaller. Some statisticians

recommend that the chi-squared approximation be used when the minimum

expected count is at least one, provided the expected counts are not too variable.

7.4.2 R Implementation

#### Example: jury pool

jury <- read.table(text="

Age Count CensusProp

18-19 23 0.061

20-24 96 0.150

25-29 134 0.135

30-39 293 0.217

40-49 297 0.153

50-64 380 0.182

65-99 113 0.102

", header=TRUE)

# show the structure of the data.frame

str(jury)

## 'data.frame': 7 obs. of 3 variables:
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## $ Age : Factor w/ 7 levels "18-19","20-24",..: 1 2 3 4 5 6 7

## $ Count : int 23 96 134 293 297 380 113

## $ CensusProp: num 0.061 0.15 0.135 0.217 0.153 0.182 0.102

# display the data.frame

jury

## Age Count CensusProp

## 1 18-19 23 0.061

## 2 20-24 96 0.150

## 3 25-29 134 0.135

## 4 30-39 293 0.217

## 5 40-49 297 0.153

## 6 50-64 380 0.182

## 7 65-99 113 0.102

# calculate chi-square goodness-of-fit test

x.summary <- chisq.test(jury$Count, correct = FALSE, p = jury$CensusProp)

# print result of test

x.summary

##

## Chi-squared test for given probabilities

##

## data: jury$Count

## X-squared = 231.26, df = 6, p-value < 2.2e-16

# use output in x.summary and create table

x.table <- data.frame(age = jury$Age

, obs = x.summary$observed

, exp = x.summary$expected

, res = x.summary$residuals

, chisq = x.summary$residuals^2

, stdres = x.summary$stdres)

x.table

## age obs exp res chisq stdres

## 1 18-19 23 81.496 -6.4797466 41.98711613 -6.6869061

## 2 20-24 96 200.400 -7.3748237 54.38802395 -7.9991194

## 3 25-29 134 180.360 -3.4520201 11.91644267 -3.7116350

## 4 30-39 293 289.912 0.1813611 0.03289186 0.2049573

## 5 40-49 297 204.408 6.4762636 41.94199084 7.0369233

## 6 50-64 380 243.152 8.7760589 77.01921063 9.7033764

## 7 65-99 113 136.272 -1.9935650 3.97430128 -2.1037408

Plot observed vs expected values to help identify age groups that deviate

the most. Plot contribution to chi-square values to help identify age groups

that deviate the most. The term “Contribution to Chi-Square” (chisq) refers

to the values of (O−E)2

E for each category. χ2
s is the sum of those contributions.
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library(reshape2)

x.table.obsexp <- melt(x.table,

# id.vars: ID variables

# all variables to keep but not split apart on

id.vars = c("age"),

# measure.vars: The source columns

# (if unspecified then all other variables are measure.vars)

measure.vars = c("obs", "exp"),

# variable.name: Name of the destination column identifying each

# original column that the measurement came from

variable.name = "stat",

# value.name: column name for values in table

value.name = "value"

)

# naming variables manually, the variable.name and value.name not working 11/2012

names(x.table.obsexp) <- c("age", "stat", "value")

# Observed vs Expected counts

library(ggplot2)

p <- ggplot(x.table.obsexp, aes(x = age, fill = stat, weight=value))

p <- p + geom_bar(position="dodge")

p <- p + labs(title = "Observed and Expected frequencies")

p <- p + xlab("Age category (years)")

print(p)

# Contribution to chi-sq

# pull out only the age and chisq columns

x.table.chisq <- x.table[, c("age","chisq")]

# reorder the age categories to be descending relative to the chisq statistic

x.table.chisq$age <- with(x.table, reorder(age, -chisq))

p <- ggplot(x.table.chisq, aes(x = age, weight = chisq))

p <- p + geom_bar()

p <- p + labs(title = "Contribution to Chi-sq statistic")

p <- p + xlab("Sorted age category (years)")

p <- p + ylab("Chi-sq")

print(p)
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7.4.3 Multiple Comparisons in a Goodness-of-Fit Prob-
lem

The goodness-of-fit test suggests that at least one of the age category propor-

tions for the jury pool population differs from the census figures. A reasonable

next step in the analysis would be to separately test the seven hypotheses:

H0 : p18 = 0.061, H0 : p20 = 0.150, H0 : p25 = 0.135, H0 : p30 = 0.217,

H0 : p40 = 0.153, H0 : p50 = 0.182, and H0 : p65 = 0.102 to see which age

categories led to this conclusion.

A Bonferroni comparison with a Family Error Rate≤ 0.05 will be considered

for this multiple comparisons problem. The error rates for the seven individual

tests are set to α = 0.05/7 = 0.0071, which corresponds to 99.29% two-sided

CIs for the individual jury pool proportions. The area under the standard

normal curve to the right of 2.69 is 0.05/2/7 = 0.00357, about one-half the

error rate for the individual CIs, so the critical value for the CIs, or for the

tests, is zcrit ≈ 2.69. The next table gives individual 99.29% CIs based on

the large sample approximation. You can get the individual CIs in R using

the binom.test() or prop.test() function. For example, the CI for Age Group
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18-19 is obtained by specifying 23 successes in 1336 trials.

Below I perform exact binomial tests of proportion for each of the seven age
categories at the Bonferroni-adjusted significance level. I save the p-values and
confidence intervals in a table along with the observed and census proportions
in order to display the table below.
b.sum1 <- binom.test(jury$Count[1], sum(jury$Count), p = jury$CensusProp[1], alternative = "two.sided", conf.level = 1-0.05/7)
b.sum2 <- binom.test(jury$Count[2], sum(jury$Count), p = jury$CensusProp[2], alternative = "two.sided", conf.level = 1-0.05/7)
b.sum3 <- binom.test(jury$Count[3], sum(jury$Count), p = jury$CensusProp[3], alternative = "two.sided", conf.level = 1-0.05/7)
b.sum4 <- binom.test(jury$Count[4], sum(jury$Count), p = jury$CensusProp[4], alternative = "two.sided", conf.level = 1-0.05/7)
b.sum5 <- binom.test(jury$Count[5], sum(jury$Count), p = jury$CensusProp[5], alternative = "two.sided", conf.level = 1-0.05/7)
b.sum6 <- binom.test(jury$Count[6], sum(jury$Count), p = jury$CensusProp[6], alternative = "two.sided", conf.level = 1-0.05/7)
b.sum7 <- binom.test(jury$Count[7], sum(jury$Count), p = jury$CensusProp[7], alternative = "two.sided", conf.level = 1-0.05/7)
# put the p-value and CI into a data.frame
b.sum <- data.frame(

rbind( c(b.sum1$p.value, b.sum1$conf.int)
, c(b.sum2$p.value, b.sum2$conf.int)
, c(b.sum3$p.value, b.sum3$conf.int)
, c(b.sum4$p.value, b.sum4$conf.int)
, c(b.sum5$p.value, b.sum5$conf.int)
, c(b.sum6$p.value, b.sum6$conf.int)
, c(b.sum7$p.value, b.sum7$conf.int)

)
)

names(b.sum) <- c("p.value", "CI.lower", "CI.upper")
b.sum$Age <- jury$Age
b.sum$Observed <- x.table$obs/sum(x.table$obs)
b.sum$CensusProp <- jury$CensusProp
b.sum

## p.value CI.lower CI.upper Age Observed CensusProp
## 1 8.814860e-15 0.00913726 0.02920184 18-19 0.01721557 0.061
## 2 2.694633e-18 0.05415977 0.09294037 20-24 0.07185629 0.150
## 3 1.394274e-04 0.07939758 0.12435272 25-29 0.10029940 0.135
## 4 8.421685e-01 0.18962122 0.25120144 30-39 0.21931138 0.217
## 5 2.383058e-11 0.19245560 0.25433144 40-49 0.22230539 0.153
## 6 5.915839e-20 0.25174398 0.31880556 50-64 0.28443114 0.182
## 7 3.742335e-02 0.06536589 0.10707682 65-99 0.08458084 0.102

The CIs for the 30-39 and 65-99 year categories contain the census propor-

tions. In the other five age categories, there are significant differences between

the jury pool proportions and the census proportions. In general, young adults

appear to be underrepresented in the jury pool whereas older age groups are

overrepresented.

##

## Attaching package: ’xtable’

## The following object is masked from ’package:TeachingDemos’:

##

## digits
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Age p.value CI.lower CI.upper Observed CensusProp

1 18-19 0.000 0.009 0.029 0.017 0.061

2 20-24 0.000 0.054 0.093 0.072 0.150

3 25-29 0.000 0.079 0.124 0.100 0.135

4 30-39 0.842 0.190 0.251 0.219 0.217

5 40-49 0.000 0.192 0.254 0.222 0.153

6 50-64 0.000 0.252 0.319 0.284 0.182

7 65-99 0.037 0.065 0.107 0.085 0.102

The residuals also highlight significant differences because the largest resid-

uals correspond to the categories that contribute most to the value of χ2
s . Some

researchers use the residuals for the multiple comparisons, treating the Zis as

standard normal variables. Following this approach, you would conclude that

the jury pool proportions differ from the proportions in the general population

in every age category where |Zi| ≥ 2.70 (using the same Bonferroni correction).

This gives the same conclusion as before.

The two multiple comparison methods are similar, but not identical. The

residuals

Zi =
Oi − Ei√

Ei

=
p̂i − p0i√

p0i
n

agree with the large-sample statistic for testing H0 : pi = p0i, except that the

divisor in Zi omits a 1 − p0i term. The Zis are not standard normal random

variables as assumed, and the value of Zi underestimates the significance of the

observed differences. Multiple comparisons using the Zis will find, on average,

fewer significant differences than the preferred method based on the large sample

tests. However, the differences between the two methods are usually minor when

all of the hypothesized proportions are small.
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7.5 Comparing Two Proportions: Indepen-
dent Samples

The New Mexico state legislature is interested in how the proportion of reg-

istered voters that support Indian gaming differs between New Mexico and

Colorado. Assuming neither population proportion is known, the state’s statis-

tician might recommend that the state conduct a survey of registered voters

sampled independently from the two states, followed by a comparison of the

sample proportions in favor of Indian gaming.

Statistical methods for comparing two proportions using independent sam-

ples can be formulated as follows. Let p1 and p2 be the proportion of populations

1 and 2, respectively, with the attribute of interest. Let p̂1 and p̂2 be the corre-

sponding sample proportions, based on independent random or representative

samples of size n1 and n2 from the two populations.

7.5.1 Large Sample CI and Tests for p1 − p2

A large-sample CI for p1 − p2 is (p̂1 − p̂2) ± zcritSECI(p̂1 − p̂2), where zcrit is

the standard normal critical value for the desired confidence level, and

SECI(p̂1 − p̂2) =

√
p̂1(1− p̂1)

n1
+
p̂2(1− p̂2)

n2

is the CI standard error.

A large-sample p-value for a test of the null hypothesis H0 : p1 − p2 = 0

against the two-sided alternative HA : p1 − p2 6= 0 is evaluated using tail

areas of the standard normal distribution (identical to one sample evaluation)

in conjunction with the test statistic

zs =
p̂1 − p̂2

SEtest(p̂1 − p̂2)
,
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where

SEtest(p̂1 − p̂2) =

√
p̄(1− p̄)

n1
+
p̄(1− p̄)

n2
=

√
p̄(1− p̄)

(
1

n1
+

1

n2

)
is the test standard error for p̂1 − p̂2. The pooled proportion

p̄ =
n1p̂1 + n2p̂2

n1 + n2

is the proportion of successes in the two samples combined. The test standard

error has the same functional form as the CI standard error, with p̄ replacing

the individual sample proportions.

The pooled proportion is the best guess at the common population propor-

tion when H0 : p1 = p2 is true. The test standard error estimates the standard

deviation of p̂1 − p̂2 assuming H0 is true.

Remark: As in the one-sample proportion problem, the test and CI SE’s are

different. This can (but usually does not) lead to some contradiction between

the test and CI.

Example, vitamin C Two hundred and seventy nine (279) French skiers

were studied during two one-week periods in 1961. One group of 140 skiers

receiving a placebo each day, and the other 139 receiving 1 gram of ascorbic

acid (Vitamin C) per day. The study was double blind — neither the subjects

nor the researchers knew who received which treatment. Let p1 be the prob-

ability that a member of the ascorbic acid group contracts a cold during the

study period, and p2 be the corresponding probability for the placebo group.

Linus Pauling (Chemistry and Peace Nobel prize winner) and I are interested in

testing whether H0 : p1 = p2. The data are summarized below as a two-by-two

table of counts (a contingency table)
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Outcome Ascorbic Acid Placebo

# with cold 17 31

# with no cold 122 109

Totals 139 140

The sample sizes are n1 = 139 and n2 = 140. The sample proportion of

skiers developing colds in the placebo and treatment groups are p̂2 = 31/140 =

0.221 and p̂1 = 17/139 = 0.122, respectively. The difference is p̂1−p̂2 = 0.122−
0.221 = −0.099. The pooled proportion is the number of skiers that developed

colds divided by the number of skiers in the study: p̄ = 48/279 = 0.172.

The test standard error is

SEtest(p̂1 − p̂2) =

√
0.172× (1− 0.172)

(
1

139
+

1

140

)
= 0.0452.

The test statistic is

zs =
0.122− 0.221

0.0452
= −2.19.

The p-value for a two-sided test is twice the area under the standard normal

curve to the right of 2.19 (or twice the area to the left of −2.19), which is 2×
(0.014) = 0.028. At the 5% level, we reject the hypothesis that the probability

of contracting a cold is the same whether you are given a placebo or Vitamin

C.

A CI for p1− p2 provides a measure of the size of the treatment effect. For

a 95% CI

zcritSECI(p̂1 − p̂2) = 1.96

√
0.221× (1− 0.221)

140
+

0.122× (1− 0.122)

139
= 1.96× (0.04472) = 0.088.

The 95% CI for p1 − p2 is −0.099 ± 0.088, or (−0.187,−0.011). We are 95%

confident that p2 exceeds p1 by at least 0.011 but not by more than 0.187.

On the surface, we would conclude that a daily dose of Vitamin C decreases

a French skier’s chance of developing a cold by between 0.011 and 0.187 (with

95% confidence). This conclusion was somewhat controversial. Several reviews
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of the study felt that the experimenter’s evaluations of cold symptoms were

unreliable. Many other studies refute the benefit of Vitamin C as a treatment

for the common cold.
#### Example, vitamin C

# Approximate normal test for two-proportions, without Yates' continuity correction

prop.test(c(17, 31), c(139, 140), correct = FALSE)

##

## 2-sample test for equality of proportions without continuity

## correction

##

## data: c(17, 31) out of c(139, 140)

## X-squared = 4.8114, df = 1, p-value = 0.02827

## alternative hypothesis: two.sided

## 95 percent confidence interval:

## -0.18685917 -0.01139366

## sample estimates:

## prop 1 prop 2

## 0.1223022 0.2214286

Conditional probability

In probability theory, a conditional probability is the probability that an event

will occur, when another event is known to occur or to have occurred. If

the events are A and B respectively, this is said to be “the probability of A

given B”. It is commonly denoted by Pr(A|B). Pr(A|B) may or may not be

equal to Pr(A), the probability of A. If they are equal, A and B are said to

be independent. For example, if a coin is flipped twice, “the outcome of the

second flip” is independent of “the outcome of the first flip”.

In the Vitamin C example above, the unconditional observed probability of

contracting a cold is Pr(cold) = (17 + 31)/(139 + 140) = 0.172. The condi-

tional observed probabilities are Pr(cold|ascorbic acid) = 17/139 = 0.1223 and

Pr(cold|placebo) = 31/140 = 0.2214. The two-sample test of H0 : p1 = p2

where p1 = Pr(cold|ascorbic acid) and p2 = Pr(cold|placebo) is effectively test-

ing whether Pr(cold) = Pr(cold|ascorbic acid) = Pr(cold|placebo). This tests

whether contracting a cold is independent of the vitamin C treatment.
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Example, cervical dysplasia A case-control study was designed to ex-

amine risk factors for cervical dysplasia2 (Becker et al. 1994). All the women

in the study were patients at UNM clinics. The 175 cases were women, aged

18-40, who had cervical dysplasia. The 308 controls were women aged 18-40

who did not have cervical dysplasia. Each woman was classified as positive or

negative, depending on the presence of HPV (human papilloma virus). The

data are summarized below.

HPV Outcome Cases Controls

Positive 164 130

Negative 11 178

Sample size 175 308

We’ll take a short detour to create this table in R, calculate the column

proportions, and plot the frequencies and proportions.
We first create a table with labelled rows and columns.

# Create the labelled table

hpv <-

matrix(c(164, 130, 11, 178),

nrow = 2, byrow = TRUE,

dimnames = list("HPV.Outcome" = c("Positive", "Negative"),

"Group" = c("Cases", "Controls")))

hpv

## Group

## HPV.Outcome Cases Controls

## Positive 164 130

## Negative 11 178

Next, we create column proportions.
# calculate the column (margin = 2) proportions

hpv.col.prop <- prop.table(hpv, margin = 2)

hpv.col.prop

## Group

## HPV.Outcome Cases Controls

## Positive 0.93714286 0.4220779

## Negative 0.06285714 0.5779221

Here, we reshape the data from wide format to long format. This will allow
us to make plots later, and also shows how to create these tables from a dataset
in long format (which is the typical format).

2http://www.ncbi.nlm.nih.gov/pubmedhealth/PMH0002461/
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# OR, convert to long format and use xtabs to produce the table

library(reshape2)

hpv.long <- melt(hpv, value.name = "Frequency")

hpv.long

## HPV.Outcome Group Frequency

## 1 Positive Cases 164

## 2 Negative Cases 11

## 3 Positive Controls 130

## 4 Negative Controls 178

T1 <- xtabs(Frequency ~ HPV.Outcome + Group, data = hpv.long)

T1

## Group

## HPV.Outcome Cases Controls

## Positive 164 130

## Negative 11 178

hpv.col.prop <- prop.table(T1, margin = 2)

hpv.col.prop

## Group

## HPV.Outcome Cases Controls

## Positive 0.93714286 0.42207792

## Negative 0.06285714 0.57792208

Add a column of proportions to our long-formatted data to plot these pro-
portion values.
library(reshape2)

hpv.col.prop.long <- melt(hpv.col.prop, value.name = "Proportion")

hpv.col.prop.long

## HPV.Outcome Group Proportion

## 1 Positive Cases 0.93714286

## 2 Negative Cases 0.06285714

## 3 Positive Controls 0.42207792

## 4 Negative Controls 0.57792208

# join these two datasets to have both Freq and Prop columns

library(plyr)

hpv.long <- join(hpv.long, hpv.col.prop.long)

## Joining by: HPV.Outcome, Group

hpv.long

## HPV.Outcome Group Frequency Proportion

## 1 Positive Cases 164 0.93714286

## 2 Negative Cases 11 0.06285714

## 3 Positive Controls 130 0.42207792

## 4 Negative Controls 178 0.57792208

Finally, plot the frequencies, and the proportions in three ways (the frequen-
cies can obviously be plotted in many ways, too).
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# plots are easier now that data are in long format.

library(ggplot2)

p <- ggplot(data = hpv.long, aes(x = Group, y = Frequency, fill = HPV.Outcome))

p <- p + geom_bar(stat="identity", position = "dodge")

p <- p + theme_bw()

p <- p + labs(title = "Frequency of HPV by Case/Control group")

print(p)

# bars, stacked

library(ggplot2)

p <- ggplot(data = hpv.long, aes(x = Group, y = Proportion, fill = HPV.Outcome))

p <- p + geom_bar(stat="identity")

p <- p + theme_bw()

p <- p + labs(title = "Proportion of HPV by Case/Control group")

print(p)

# bars, dodged

library(ggplot2)

p <- ggplot(data = hpv.long, aes(x = Group, y = Proportion, fill = HPV.Outcome))

p <- p + geom_bar(stat="identity", position = "dodge")

p <- p + theme_bw()

p <- p + labs(title = "Proportion of HPV by Case/Control group")

p <- p + scale_y_continuous(limits = c(0, 1))

print(p)

# lines are sometimes easier, especially when many categories along the x-axis

library(ggplot2)

p <- ggplot(data = hpv.long, aes(x = Group, y = Proportion, colour = HPV.Outcome))

p <- p + geom_hline(yintercept = c(0, 1), alpha = 1/4)

p <- p + geom_point(aes(shape = HPV.Outcome))

p <- p + geom_line(aes(linetype = HPV.Outcome, group = HPV.Outcome))

p <- p + theme_bw()

p <- p + labs(title = "Proportion of HPV by Case/Control group")

p <- p + scale_y_continuous(limits = c(0, 1))

print(p)
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Returning to the hypothesis test, let p1 be the probability that a case is

HPV positive and let p2 be the probability that a control is HPV positive. The

sample sizes are n1 = 175 and n2 = 308. The sample proportions of positive

cases and controls are p̂1 = 164/175 = 0.937 and p̂2 = 130/308 = 0.422.

For a 95% CI

zcritSECI(p̂1 − p̂2) = 1.96

√
0.937× (1− 0.937)

175
+

0.422× (1− 0.422)

308
= 1.96× (0.03336) = 0.0659.

A 95% CI for p1−p2 is (0.937−0.422)±0.066, or 0.515±0.066, or (0.449, 0.581).

I am 95% confident that p1 exceeds p2 by at least 0.45 but not by more than

0.58.
# Approximate normal test for two-proportions, without Yates' continuity correction

prop.test(c(164, 130), c(175, 308), correct = FALSE)

##

## 2-sample test for equality of proportions without continuity
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## correction

##

## data: c(164, 130) out of c(175, 308)

## X-squared = 124.29, df = 1, p-value < 2.2e-16

## alternative hypothesis: two.sided

## 95 percent confidence interval:

## 0.4492212 0.5809087

## sample estimates:

## prop 1 prop 2

## 0.9371429 0.4220779

Not surprisingly, a two-sided test at the 5% level would reject H0 : p1 = p2.

In this problem one might wish to do a one-sided test, instead of a two-sided

test. Let us carry out this test, as a refresher on how to conduct one-sided tests.
# one-sided test, are cases more likely to be HPV positive?

prop.test(c(164, 130), c(175, 308), correct = FALSE, alternative = "greater")

##

## 2-sample test for equality of proportions without continuity

## correction

##

## data: c(164, 130) out of c(175, 308)

## X-squared = 124.29, df = 1, p-value < 2.2e-16

## alternative hypothesis: greater

## 95 percent confidence interval:

## 0.4598071 1.0000000

## sample estimates:

## prop 1 prop 2

## 0.9371429 0.4220779

Appropriateness of Large Sample Test and CI

The standard two-sample CI and test used above are appropriate when each

sample is large. A rule of thumb suggests a minimum of at least five successes

(i.e., observations with the characteristic of interest) and failures (i.e., observa-

tions without the characteristic of interest) in each sample before using these

methods. This condition is satisfied in our two examples.

ClickerQ s — Comparing two proportions STT.08.02.010
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7.6 Effect Measures in Two-by-Two Tables

Consider a study of a particular disease, where each individual is either exposed

or not-exposed to a risk factor. Let p1 be the proportion diseased among the

individuals in the exposed population, and p2 be the proportion diseased among

the non-exposed population. This population information can be summarized

as a two-by-two table of population proportions:

Outcome Exposed population Non-Exposed population

Diseased p1 p2

Non-Diseased 1− p1 1− p2

A standard measure of the difference between the exposed and non-exposed

populations is the absolute difference: p1−p2. We have discussed statistical

methods for assessing this difference.

In many epidemiological and biostatistical settings, other measures of the

difference between populations are considered. For example, the relative risk

RR =
p1

p2

is commonly reported when the individual risks p1 and p2 are small. The odds

ratio

OR =
p1/(1− p1)

p2/(1− p2)

is another standard measure. Here p1/(1 − p1) is the odds of being diseased

in the exposed group, whereas p2/(1− p2) is the odds of being diseased in the

non-exposed group.

I mention these measures because you may see them or hear about them.

Note that each of these measures can be easily estimated from data, using the

sample proportions as estimates of the unknown population proportions. For

example, in the vitamin C study:

Outcome Ascorbic Acid Placebo

# with cold 17 31

# with no cold 122 109

Totals 139 140
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the proportion with colds in the placebo group is p̂2 = 31/140 = 0.221. The

proportion with colds in the vitamin C group is p̂1 = 17/139 = 0.122.

The estimated absolute difference in risk is p̂1−p̂2 = 0.122−0.221 = −0.099.

The estimated risk ratio and odds ratio are

R̂R =
0.122

0.221
= 0.55

and

ÔR =
0.122/(1− 0.122)

0.221/(1− 0.221)
= 0.49,

respectively.

Interpretting odds ratios, two examples Let’s begin with probabil-

ity3. Let’s say that the probability of success is 0.8, thus p = 0.8 Then the

probability of failure is q = 1 − p = 0.2 The odds of success are defined

as odds(success) = p/q = 0.8/0.2 = 4, that is, the odds of success are 4

to 1. The odds of failure would be odds(failure) = q/p = 0.2/0.8 = 0.25,

that is, the odds of failure are 1 to 4. Next, let’s compute the odds ratio

by OR = odds(success)/odds(failure) = 4/0.25 = 16 The interpretation of

this odds ratio would be that the odds of success are 16 times greater than

for failure. Now if we had formed the odds ratio the other way around with

odds of failure in the numerator, we would have gotten something like this,

OR = odds(failure)/odds(success) = 0.25/4 = 0.0625 Interestingly enough, the

interpretation of this odds ratio is nearly the same as the one above. Here the

interpretation is that the odds of failure are one-sixteenth the odds of success.

In fact, if you take the reciprocal of the first odds ratio you get 1/16 = 0.0625.

Another example This example is adapted from Pedhazur (1997). Sup-

pose that seven out of 10 males are admitted to an engineering school while

three of 10 females are admitted. The probabilities for admitting a male are,

3Borrowed graciously from UCLA Academic Technology Services at http://www.ats.ucla.edu/stat/
sas/faq/oratio.htm
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p = 7/10 = 0.7 and q = 1 − 0.7 = 0.3. Here are the same probabilities

for females, p = 3/10 = 0.3 and q = 1 − 0.3 = 0.7. Now we can use

the probabilities to compute the admission odds for both males and females,

odds(male) = 0.7/0.3 = 2.33333 and odds(female) = 0.3/0.7 = 0.42857. Next,

we compute the odds ratio for admission, OR = 2.3333/0.42857 = 5.44. Thus,

the odds of a male being admitted are 5.44 times greater than for a female.

7.7 Analysis of Paired Samples: Dependent
Proportions

Paired and more general block analyses are appropriate with longitudinal

data collected over time and in medical studies where several treatments are

given to the same patient over time. A key feature of these designs that inval-

idates the two-sample method discussed earlier is that repeated observations

within a unit or individual are likely to be correlated, and not independent.

Example, President performance For example, in a random sample of

n = 1600 voter-age Americans, 944 said that they approved of the President’s

performance. One month later, only 880 of the original 1600 sampled approved.

The following two-by-two table gives the numbers of individuals with each of

the four possible sequences of responses over time. Thus, 150 voter-age Amer-

icans approved of the President’s performance when initially asked but then

disapproved one month later. The row and column totals are the numbers of

approvals and disapprovals for the two surveys (Agresti, 1990, p. 350).

(Obs Counts) Second survey

First Survey Approve Disapprove Total

Approve 794 150 944

Disapprove 86 570 656

Total 880 720 1600

Let pAA, pAD, pDA, pDD be the population proportion of voter-age Amer-

icans that fall into the four categories, where the subscripts preserve the time
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ordering and indicate Approval or Disapproval. For example, pAD is the pop-

ulation proportion that approved of the President’s performance initially and

disapproved one month later. The population proportion that initially approved

is pA+ = pAA + pAD. The population proportion that approved at the time of

the second survey is p+A = pAA +pDA. The “+” sign used as a subscript means

that the replaced subscript has been summed over.

Similarly, let p̂AA, p̂AD, p̂DA, p̂DD be the sample proportion of voter-age

Americans that fall into the four categories, and let p̂A+ = p̂AA + p̂AD and

p̂+A = p̂AA + p̂DA be the sample proportion that approves the first month and

the sample proportion that approves the second month, respectively. The table

below summarizes the observed proportions. For example, p̂AA = 794/1600 =

0.496 and p̂A+ = 944/1600 = 0.496 + 0.094 = 0.590. The sample proportion

of voting-age Americans that approve of the President’s performance decreased

from one month to the next.

(Obs Proportions) Second survey

First Survey Approve Disapprove Total

Approve 0.496 0.094 0.590

Disapprove 0.054 0.356 0.410

Total 0.550 0.450 1.000

The difference in the population proportions from one month to the next

can be assessed by a large-sample CI for pA+ − p+A, given by (p̂A+ − p̂+A) ±
zcritSECI(p̂A+ − p̂+A), where the CI standard error satisfies

SECI(p̂A+− p̂+A) =

√
p̂A+(1− p̂A+) + p̂+A(1− p̂+A)− 2(p̂AAp̂DD − p̂ADp̂DA)

n

One-sided bounds are constructed in the usual way.

The −2(·) term in the standard error accounts for the dependence between

the samples at the two time points. If independent samples of size n had been

selected for the two surveys, then this term would be omitted from the standard

error, giving the usual two-sample CI.
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For a 95% CI in the Presidential survey,

zcritSECI(p̂A+ − p̂+A) = 1.96

√
0.590× 0.410 + 0.550× 0.450− 2(0.496× 0.356− 0.094× 0.054)

1600
= 1.96× (0.0095) = 0.0186.

A 95% CI for pA+ − p+A is (0.590 − 0.550) ± 0.019, or (0.021, 0.059). You

are 95% confident that the population proportion of voter-age Americans that

approved of the President’s performance the first month was between 0.021

and 0.059 larger than the proportion that approved one month later. This

gives evidence of a decrease in the President’s approval rating.

A test of H0 : pA+ = p+A can be based on the CI for pA+ − p+A, or on a

standard normal approximation to the test statistic

zs =
p̂A+ − p̂+A

SEtest(p̂A+ − p̂+A)
,

where the test standard error is given by

SEtest(p̂A+ − p̂+A) =

√
p̂A+p̂+A − 2p̂AA

n
.

The test statistic is often written in the simplified form

zs =
nAD − nDA√
nAD + nDA

,

where the nijs are the observed cell counts. An equivalent form of this test,

based on comparing the square of zs to a chi-squared distribution with 1 degree

of freedom, is the well-known McNemar’s test for marginal homogeneity (or

symmetry) in the two-by-two table.

For example, in the Presidential survey

zs =
150− 86√
150 + 86

= 4.17.

The p-value for a two-sided test is, as usual, the area under the standard normal

curve outside ±4.17. The p-value is less than 0.001, suggesting that H0 is false.

R can perform this test as McNemar’s test.
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#### Example, President performance

# McNemar's test needs data as a matrix

# Presidential Approval Ratings.

# Approval of the President's performance in office in two surveys,

# one month apart, for a random sample of 1600 voting-age Americans.

pres <-

matrix(c(794, 150, 86, 570),

nrow = 2, byrow = TRUE,

dimnames = list("1st Survey" = c("Approve", "Disapprove"),

"2nd Survey" = c("Approve", "Disapprove")))

pres

## 2nd Survey

## 1st Survey Approve Disapprove

## Approve 794 150

## Disapprove 86 570

mcnemar.test(pres, correct=FALSE)

##

## McNemar's Chi-squared test

##

## data: pres

## McNemar's chi-squared = 17.356, df = 1, p-value = 3.099e-05

# => significant change (in fact, drop) in approval ratings

7.8 Testing for Homogeneity of Proportions

Example, cancer deaths The following two-way table of counts summa-

rizes the location of death and age at death from a study of 2989 cancer deaths

(Public Health Reports, 1983).

(Obs Counts) Location of death

Age Home Acute Care Chronic care Row Total

15-54 94 418 23 535

55-64 116 524 34 674

65-74 156 581 109 846

75+ 138 558 238 934

Col Total 504 2081 404 2989

The researchers want to compare the age distributions across locations. A

one-way ANOVA would be ideal if the actual ages were given. Because the ages
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are grouped, the data should be treated as categorical. Given the differences in

numbers that died at the three types of facilities, a comparison of proportions

or percentages in the age groups is appropriate. A comparison of counts is not.

The table below summarizes the proportion in the four age groups by loca-

tion. For example, in the acute care facility 418/2081 = 0.201 and 558/2081 =

0.268. The pooled proportions are the Row Totals divided by the total

sample size of 2989. The pooled summary gives the proportions in the four age

categories, ignoring location of death.

The age distributions for home and for the acute care facilities are similar,

but are very different from the age distribution at chronic care facilities.

To formally compare the observed proportions, one might view the data

as representative sample of ages at death from the three locations. Assum-

ing independent samples from the three locations (populations), a chi-squared

statistic is used to test whether the population proportions of ages at death are

identical (homogeneous) across locations. The chi-squared test for homo-

geneity of population proportions can be defined in terms of proportions, but

is traditionally defined in terms of counts.

(Proportions) Location of death

Age Home Acute Care Chronic care Pooled

15-54 0.187 0.201 0.057 0.179

55-64 0.230 0.252 0.084 0.226

65-74 0.310 0.279 0.270 0.283

75+ 0.273 0.268 0.589 0.312

Total 1.000 1.000 1.000 1.000

In general, assume that the data are independent samples from c populations

(strata, groups, sub-populations), and that each individual is placed into one of

r levels of a categorical variable. The raw data will be summarized as a r × c
contingency table of counts, where the columns correspond to the samples,

and the rows are the levels of the categorical variable. In the age distribution

problem, r = 4 and c = 3.

To implement the test:
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1. Compute the (estimated) expected count for each cell in the table as

follows:

E =
Row Total× Column Total

Total Sample Size
.

2. Compute the Pearson test statistic

χ2
s =

∑
all cells

(O − E)2

E
,

where O is the observed count.

3. For a size α test, reject the hypothesis of homogeneity if χ2
s ≥ χ2

crit, where

χ2
crit is the upper α critical value from the chi-squared distribution with

df = (r − 1)(c− 1).

The p-value for the chi-squared test of homogeneity is equal to the area under

the chi-squared curve to the right of χ2
s .

For a two-by-two table of counts, the chi-squared test of homo-

geneity of proportions is identical to the two-sample proportion

test we discussed earlier.

The (estimated) expected counts for the (15-54, Home) cell and for the (75+,

Acute Care) cell in the age distribution data are E = 535× 504/2989 = 90.21

and E = 934 × 2081/2989 = 650.27, respectively. The other expected counts

were computed similarly, and are summarized below. The row and column

sums on the tables of observed and expected counts always agree.

(Exp Counts) Location of death

Age Home Acute Care Chronic care Row Total

15-54 90.21 372.48 72.31 535

55-64 113.65 469.25 91.10 674

65-74 142.65 589 114.35 846

75- 157.49 650.27 126.24 934

Col Total 504 2081 404 2989

Why is a comparison of the observed and expected counts relevant for testing

homogeneity? To answer this question, first note that the expected cell count
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can be expressed

E = Col Total× Pooled proportion for category.

For example, E = 504×0.179 = 90.21 in the (15-54, Home) cell. A comparison

of the observed and expected counts is a comparison of the observed category

proportions in a location with the pooled proportions, taking the size of each

sample into consideration. Thinking of the pooled proportion as a weighted

average of the sample proportions for a category, the Pearson χ2
s statistic is

an aggregate measure of variation in the observed proportions across samples.

If the category proportions are similar across samples then the category and

pooled proportions are similar, resulting in a “small” value of χ2
s . Large values of

χ2
s occur when there is substantial variation in the observed proportions across

samples, in one or more categories. In this regard, the Pearson statistic is similar

to the F -statistic in a one-way ANOVA (where large differences between groups

result in a large F -statistic).
#### Example, cancer deaths

candeath <-

matrix(c( 94, 418, 23,

116, 524, 34,

156, 581, 109,

138, 558, 238),

nrow = 4, byrow = TRUE,

dimnames = list("Age" = c("15-54", "55-64", "65-74", "75+"),

"Location of death" = c("Home", "Acute Care", "Chronic care")))

candeath

## Location of death

## Age Home Acute Care Chronic care

## 15-54 94 418 23

## 55-64 116 524 34

## 65-74 156 581 109

## 75+ 138 558 238

chisq.summary <- chisq.test(candeath, correct=FALSE)

chisq.summary

##

## Pearson's Chi-squared test

##

## data: candeath

## X-squared = 197.62, df = 6, p-value < 2.2e-16

# The Pearson residuals

chisq.summary$residuals
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## Location of death

## Age Home Acute Care Chronic care

## 15-54 0.3989527 2.3587229 -5.798909

## 55-64 0.2205584 2.5273526 -5.982375

## 65-74 1.1176594 -0.3297027 -0.500057

## 75+ -1.5530094 -3.6183388 9.946704

# The sum of the squared residuals is the chi-squared statistic:

chisq.summary$residuals^2

## Location of death

## Age Home Acute Care Chronic care

## 15-54 0.1591633 5.5635737 33.627351

## 55-64 0.0486460 6.3875111 35.788805

## 65-74 1.2491626 0.1087039 0.250057

## 75+ 2.4118382 13.0923756 98.936922

sum(chisq.summary$residuals^2)

## [1] 197.6241

A visualization of the Pearson residuals is available with a mosaic() plot in

the vcd package. Extended mosaic and association plots are each helpful meth-

ods of visualing complex data and evaluating deviations from a specified inde-

pendence model. For extended mosaic plots, use mosaic(x, condvar=, data=)

where x is a table or formula, condvar= is an optional conditioning variable, and

data= specifies a data frame or a table. Include shade=TRUE to color the figure,

and legend=TRUE to display a legend for the Pearson residuals.
# mosaic plot

library(vcd)

## Loading required package: grid

##

## Attaching package: ’vcd’

## The following object is masked from ’package:BSDA’:

##

## Trucks

mosaic(candeath, shade=TRUE, legend=TRUE)

# association plot

library(vcd)

assoc(candeath, shade=TRUE)
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The vcd package provides a variety of methods for visualizing multivariate

categorical data, inspired by Michael Friendly’s wonderful “Visualizing Cate-

gorical Data”. For more details, see The Strucplot Framework4.

For example, a sieve plot for an n-way contingency table plots rectangles

with areas proportional to the expected cell frequencies and filled with a number

of squares equal to the observed frequencies. Thus, the densities visualize the

deviations of the observed from the expected values.
# sieve plot

library(vcd)

# plot expected values

sieve(candeath, sievetype = "expected", shade = TRUE)

# plot observed table, then label cells with observed values in the cells

sieve(candeath, pop = FALSE, shade = TRUE)

labeling_cells(text = candeath, gp_text = gpar(fontface = 2))(as.table(candeath))

4http://cran.r-project.org/web/packages/vcd/vignettes/strucplot.pdf
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7.8.1 Adequacy of the Chi-Square Approximation

The chi-squared tests for homogeneity and independence are large-sample tests.

As with the goodness-of-fit test, a simple rule-of-thumb is that the approxima-

tion is adequate when the expected (not observed) cell counts are 5 or more.

This rule is conservative, and some statisticians argue that the approximation

is valid for expected counts as small as one.

In practice, the chi-squared approximation to χ2
s tends to be a bit conserva-

tive, meaning that statistically significant results would likely retain significance

had a more accurate approximation been used.

R may not print out a warning message whenever a noticeable percentage

of cells have expected counts less than 5. Ideally, one would use Fisher’s exact

test (fisher.test()) for tables with small counts, and can be used for larger

than 2-by-2 tables when the frequencies are not too large.
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7.9 Testing for Homogeneity in Cross-Sectional
and Stratified Studies

Two-way tables of counts are often collected using either stratified sampling

or cross-sectional sampling.

In a stratified design, distinct groups, strata, or sub-populations are

identified. Independent samples are selected from each group, and the sampled

individuals are classified into categories. The Indian gaming example is an

illustration of a stratified design (where the two strata were NM and CO voters).

Stratified designs provide estimates for the strata (population) proportion in

each of the categories. A test for homogeneity of proportions is used to

compare the strata.

In a cross-sectional design, individuals are randomly selected from a

population and classified by the levels of two categorical variables. With cross-

sectional samples you can test homogeneity of proportions by comparing either

the row proportions or by comparing the column proportions.

Example, antismoking adverts The following data (The Journal of

Advertising, 1983, pp. 34–42) are from a cross-sectional study that involved

soliciting opinions on anti-smoking advertisements. Each subject was asked

whether they smoked and their reaction (on a five-point ordinal scale) to the

ad. The data are summarized as a two-way table of counts, given below:

Str. Dislike Dislike Neutral Like Str. Like Row Tot

Smoker 8 14 35 21 19 97

Non-smoker 31 42 78 61 69 281

Col Total 39 56 113 82 88 378

The row proportions (i.e., fix a row and compute the proportions for the column

categories) are
(Row Prop) Str. Dislike Dislike Neutral Like Str. Like Row Tot

Smoker 0.082 0.144 0.361 0.216 0.196 1.000

Non-smoker 0.110 0.149 0.278 0.217 0.245 1.000
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For example, the entry for the (Smoker, Str. Dislike) cell is: 8/97 = 0.082.

Similarly, the column proportions are
(Col Prop) Str. Dislike Dislike Neutral Like Str. Like

Smoker 0.205 0.250 0.310 0.256 0.216

Non-smoker 0.795 0.750 0.690 0.744 0.784

Total 1.000 1.000 1.000 1.000 1.000
Although it may be more natural to compare the smoker and non-smoker

row proportions, the column proportions can be compared across ad responses.

There is no advantage to comparing “rows” instead of “columns” in a formal

test of homogeneity of proportions with cross-sectional data. The Pearson chi-

squared test treats the rows and columns interchangeably, so you get the same

result regardless of how you view the comparison. However, one of the two

comparisons may be more natural to interpret.

Note that checking for homogeneity of proportions is mean-

ingful in stratified studies only when the comparison is between

strata! Further, if the strata correspond to columns of the table, then the

column proportions or percentages are meaningful whereas the row proportions

are not.

7.9.1 Testing for Independence in a Two-Way Con-
tingency Table

The row and column classifications for a population where each individual is

cross-classified by two categorical variables are said to be independent if each

population cell proportion in the two-way table is the product of the propor-

tion in a given row and the proportion in a given column. One can show that

independence is equivalent to homogeneity of proportions. In particular, the

two-way table of population cell proportions satisfies independence if and only if

the population column proportions are homogeneous. If the population column

proportions are homogeneous then so are the population row proportions.

This suggests that a test for independence or no association between

two variables based on a cross-sectional study can be implemented using the
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chi-squared test for homogeneity of proportions. This suggestion is correct.

If independence is not plausible, I interpret the dependence as a deviation

from homogeneity, using the classification for which the interpretation is most

natural.

The Pearson chi-squared test of independence is not significant (p-value =

0.56). The observed association between smoking status and the ad reaction is

not significant. This suggests, for example, that the smoker’s reactions to the

ad were not statistically significantly different from the non-smoker’s reactions,

which is consistent with the smokers and non-smokers attitudes being fairly

similar.
#### Example, antismoking adverts

antismokead <-

matrix(c( 8, 14, 35, 21, 19,

31, 42, 78, 61, 69),

nrow = 2, byrow = TRUE,

dimnames = list(

"Status" = c("Smoker", "Non-smoker"),

"Reaction" = c("Str. Dislike", "Dislike", "Neutral", "Like", "Str. Like")))

antismokead

## Reaction

## Status Str. Dislike Dislike Neutral Like Str. Like

## Smoker 8 14 35 21 19

## Non-smoker 31 42 78 61 69

chisq.summary <- chisq.test(antismokead, correct=FALSE)

chisq.summary

##

## Pearson's Chi-squared test

##

## data: antismokead

## X-squared = 2.9907, df = 4, p-value = 0.5594

# All expected frequencies are at least 5

chisq.summary$expected

## Reaction

## Status Str. Dislike Dislike Neutral Like Str. Like

## Smoker 10.00794 14.37037 28.99735 21.04233 22.58201

## Non-smoker 28.99206 41.62963 84.00265 60.95767 65.41799

# Contribution to chi-squared statistic

chisq.summary$residuals^2

## Reaction

## Status Str. Dislike Dislike Neutral Like

## Smoker 0.4028612 0.009545628 1.2425876 8.514567e-05
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## Non-smoker 0.1390660 0.003295110 0.4289359 2.939192e-05

## Reaction

## Status Str. Like

## Smoker 0.5681868

## Non-smoker 0.1961356

7.9.2 Further Analyses in Two-Way Tables

The χ2
s statistic is a summary measure of independence or homogeneity. A

careful look at the data usually reveals the nature of the association or het-

erogeneity when the test is significant. There are numerous meaningful ways

to explore two-way tables to identify sources of association or heterogeneity.

For example, in the comparison of age distributions across locations, you might

consider the 4 × 2 tables comparing all possible pairs of locations. Another

possibility would be to compare the proportion in the 75+ age category across

locations. For the second comparison you need a 2 × 3 table of counts, where

the two rows correspond to the individuals less than 75 years old and those

75+ years old, respectively (i.e., collapse the first three rows of the original

4 × 2 table). The possibilities are almost limitless in large tables. Of course,

theoretically generated comparisons are preferred to data dredging.

Example: drugs and nausea, testing for homogeneity A random-

ized double-blind experiment compared the effectiveness of several drugs in

reducing postoperative nausea. All patients were anesthetized with nitrous ox-

ide and ether. The following table shows the incidence of nausea during the

first four postoperative hours of four drugs and a placebo. Compare the drugs

to each other and to the placebo.

Drug # with Nausea # without Nausea Sample Size

Placebo 96 70 166

Chlorpromazine 52 100 152

Dimenhydrinate 52 33 85

Pentobarbitol (100mg) 35 32 67

Pentobarbitol (150mg) 37 48 85
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Let pPL be the probability of developing nausea given a placebo, and define

pCH, pDI, pPE100, and pPE150 analogously. A simple initial analysis would be to

test homogeneity of proportions: H0 : pPL = pCH = pDI = pPE100 = pPE150

against HA : not H0.

The data were entered as frequencies. The output shows that the proportion

of patients exhibiting nausea (see the column percents — the cell and row

percentages are not interpretable, so they are omitted) is noticeably different

across drugs. In particular, Chlorpromazine is the most effective treatment with

p̂CH = 0.34 and Dimenhydrinate is the least effective with p̂DI = 0.61.

The p-value for the chi-squared test is 0.00005, which leads to rejecting H0

at the 0.05 or 0.01 levels. The data strongly suggest there are differences in the

effectiveness of the various treatments for postoperative nausea.
#### Example: drugs and nausea, testing for homogeneity

nausea <-

matrix(c(96, 70, 52, 100, 52, 33, 35, 32, 37, 48),

nrow = 5, byrow = TRUE,

dimnames = list("Drug" = c("PL", "CH", "DI", "PE100", "PE150"),

"Result" = c("Nausea", "No Nausea")))

nausea

## Result

## Drug Nausea No Nausea

## PL 96 70

## CH 52 100

## DI 52 33

## PE100 35 32

## PE150 37 48

# Sorted proportions of nausea by drug

nausea.prop <- sort(nausea[,1]/rowSums(nausea))

nausea.prop

## CH PE150 PE100 PL DI

## 0.3421053 0.4352941 0.5223881 0.5783133 0.6117647

# chi-sq test of association

chisq.summary <- chisq.test(nausea, correct=FALSE)

chisq.summary

##

## Pearson's Chi-squared test

##

## data: nausea

## X-squared = 24.827, df = 4, p-value = 5.451e-05

# All expected frequencies are at least 5

chisq.summary$expected
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## Result

## Drug Nausea No Nausea

## PL 81.35495 84.64505

## CH 74.49369 77.50631

## DI 41.65766 43.34234

## PE100 32.83604 34.16396

## PE150 41.65766 43.34234

A sensible follow-up analysis is to identify which treatments were responsible

for the significant differences. For example, the placebo and chlorpromazine can

be compared using a test of pPL = pCH or with a CI for pPL − pCH.

In certain experiments, specific comparisons are of interest, for example a

comparison of the drugs with the placebo. Alternatively, all possible compar-

isons might be deemed relevant. The second case is suggested here based on

the problem description. I will use a Bonferroni adjustment to account for the

multiple comparisons. The Bonferroni adjustment accounts for data dredging,

but at a cost of less sensitive comparisons.

There are 10 possible comparisons here. The Bonferroni analysis with an

overall Family Error Rate of 0.05 (or less) tests the 10 individual hypotheses at

the 0.05/10=0.005 level.
nausea.table <- data.frame(Interval = rep(NA,10)

, CI.lower = rep(NA,10)
, CI.upper = rep(NA,10)
, Z = rep(NA,10)
, p.value = rep(NA,10)
, sig.temp = rep(NA,10)
, sig = rep(NA,10))

# row names for table
nausea.table[,1] <- c("p_PL - p_CH"

, "p_PL - p_DI"
, "p_PL - p_PE100"
, "p_PL - p_PE150"
, "p_CH - p_DI"
, "p_CH - p_PE100"
, "p_CH - p_PE150"
, "p_DI - p_PE100"
, "p_DI - p_PE150"
, "p_PE100 - p_PE150")

# test results together in a table
i.tab <- 0
for (i in 1:4) {
for (j in (i+1):5) {
i.tab <- i.tab + 1
nausea.summary <- prop.test(nausea[c(i,j),], correct = FALSE, conf.level = 1-0.05/10)
nausea.table[i.tab, 2:6] <- c(nausea.summary$conf.int[1]

, nausea.summary$conf.int[2]
, sign(-diff(nausea.summary$estimate)) * nausea.summary$statistic^0.5
, nausea.summary$p.value
, (nausea.summary$p.value < 0.05/10))

if (nausea.table$sig.temp[i.tab] == 1) { nausea.table$sig[i.tab] <- "*" }
else { nausea.table$sig[i.tab] <- " " }

}
}
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# remove temporary sig indicator
nausea.table <- subset(nausea.table, select = -sig.temp)
#nausea.table

The following table gives two-sample tests of proportions with nausea and

99.5% CIs for the differences between the ten pairs of proportions. The only

two p-values are less than 0.005 corresponding to pPL − pCH and pCH − pDI.

I am 99.5% confident that pCH is between 0.084 and 0.389 less than pPL, and

I am 99.5% confident that pCH is between 0.086 and 0.453 less than pDI. The

other differences are not significant.

Interval CI.lower CI.upper Z p.value sig

1 p PL - p CH 0.0838 0.3887 4.2182 0.0000 *

2 p PL - p DI −0.2167 0.1498 −0.5099 0.6101

3 p PL - p PE100 −0.1464 0.2582 0.7788 0.4361

4 p PL - p PE150 −0.0424 0.3284 2.1485 0.0317

5 p CH - p DI −0.4532 −0.0861 −4.0122 0.0001 *

6 p CH - p PE100 −0.3828 0.0222 −2.5124 0.0120

7 p CH - p PE150 −0.2788 0.0924 −1.4208 0.1554

8 p DI - p PE100 −0.1372 0.3160 1.1058 0.2688

9 p DI - p PE150 −0.0352 0.3881 2.3034 0.0213

10 p PE100 - p PE150 −0.1412 0.3154 1.0677 0.2857

Using ANOVA-type groupings, and arranging the treatments from most to
least effective (low proportions to high), we get:

CH (0.34) PE150 (0.44) PE100 (0.52) PL (0.58) DI (0.61)
---------------------------------------

---------------------------------------------------
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8.10 Regression analysis suggestion . . . . . . . . . . . . . . . . 356
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8.10.2 Gesell data . . . . . . . . . . . . . . . . . . . . . . . . . . 364
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## Warning in file(filename, "r", encoding = encoding): cannot

open file ’ADA1 12 RFunctions.R’: No such file or directory

## Error in file(filename, "r", encoding = encoding): cannot

open the connection

Learning objectives

After completing this topic, you should be able to:

select graphical displays that reveal the relationship between two continu-

ous variables.

summarize model fit.

interpret model parameters, such as slope and R2.

assess the model assumptions visually and numerically.

Achieving these goals contributes to mastery in these course learning outcomes:

1. organize knowledge.

5. define parameters of interest and hypotheses in words and notation.

6. summarize data visually, numerically, and descriptively.
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8. use statistical software.

12. make evidence-based decisions.

8.1 Introduction

Suppose we select n = 10 people from the population of college seniors who

plan to take the medical college admission test (MCAT) exam. Each takes the

test, is coached, and then retakes the exam. Let Xi be the pre-coaching score

and let Yi be the post-coaching score for the ith individual, i = 1, 2, . . . , n.

There are several questions of potential interest here, for example: Are Y and

X related (associated), and how? Does coaching improve your MCAT score?

Can we use the data to develop a mathematical model (formula) for predicting

post-coaching scores from the pre-coaching scores? These questions can be

addressed using correlation and regression models.

The correlation coefficient is a standard measure of association or

relationship between two features Y and X . Most scientists equate Y and X

being correlated to mean that Y and X are associated, related, or dependent

upon each other. However, correlation is only a measure of the strength of a

linear relationship. For later reference, let ρ be the correlation between Y

and X in the population and let r be the sample correlation. I define r below.

The population correlation is defined analogously from population data.

Suppose each of n sampled individuals is measured on two quantitative

characteristics called Y and X . The data are pairs of observations (X1, Y1),

(X2, Y2), . . ., (Xn, Yn), where (Xi, Yi) is the (X, Y ) pair for the ith individual in

the sample. The sample correlation between Y and X , also called the Pearson

product moment correlation coefficient, is

r =
SXY
SXSY

=

∑
i(Xi − X̄)(Yi − Ȳ )√∑

i(Xi − X̄)2
∑

i(Yi − Ȳ )2
,

where

SXY =

∑n
i=1(Xi − X̄)(Yi − Ȳ )

n− 1
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is the sample covariance between Y andX , and SY =
√∑

i(Yi − Ȳ )2/(n− 1)

and SX =
√∑

i(Xi − X̄)2/(n− 1) are the standard deviations for the Y and

X samples.

Important properties of r:

1. −1 ≤ r ≤ 1.

2. If Yi tends to increase linearly with Xi then r > 0.

3. If Yi tends to decrease linearly with Xi then r < 0.

4. If there is a perfect linear relationship between Yi and Xi with a positive

slope then r = +1.

5. If there is a perfect linear relationship between Yi and Xi with a negative

slope then r = −1.

6. The closer the points (Xi, Yi) come to forming a straight line, the closer

r is to ±1.

7. The magnitude of r is unchanged if either the X or Y sample is trans-

formed linearly (such as feet to inches, pounds to kilograms, Celsius to

Fahrenheit).

8. The correlation does not depend on which variable is called Y and which

is called X .

If r is near ±1, then there is a strong linear relationship between Y and X

in the sample. This suggests we might be able to accurately predict Y from X

with a linear equation (i.e., linear regression). If r is near 0, there is a weak

linear relationship between Y and X , which suggests that a linear equation

provides little help for predicting Y from X . The pictures below should help

you develop a sense about the size of r.

Note that r = 0 does not imply that Y and X are not related in the sample.

It only implies they are not linearly related. For example, in the last plot r = 0

yet Yi = X2
i , exactly.
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8.2 Logarithmic transformations

Logarithms1 are useful for understanding data, partly because they allow num-

bers that vary by several orders of magnitude to be viewed on a common scale,

and more importantly because they allow exponential and power-law relations

to be transformed into linearity.

8.2.1 Log-linear and log-log relationships: amoebas,
squares, and cubes

Suppose you have an amoeba that takes one hour to divide, and then the two

amoebas each divide in one more hour, and so forth. What is the equation of

1From: Gelman, Andrew and Deborah Nolan (2002). Teaching statistics: A bag of tricks. Oxford
University Press.
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the number of amoebas, y, as a function of time, x (in hours)? It can be written

as y = 2x or, on the logarithmic scale, log(y) = (log(2))x = 0.30x.

Suppose you have the same example, but the amoeba takes three hours

to divide at each step. Then the number of amoebas y after time x has the

equation, y = 2x/3 = (21/3)x = 1.26x or, on the logarithmic scale, log(y) =

(log(1.26))x = 0.10x. The slope of 0.10 is one-third the earlier slope of 0.30

because the population is growing at one-third the rate.

In the example of exponential growth of amoebas, y is logged while x remains

the same. For power-law relations, it makes sense to log both x and y. How

does the area of a square relate to its circumference (perimeter)? If the side of

the cube has length L, then the area is L2 and the circumference is 4L; thus

area = (circumference/4)2.

Taking the logarithm of both sides yields,

log(area) = 2(log(circumference)− log(4))

log(area) = −1.20 + 2 log(circumference),

a linear relation on the log-log scale.

What is the relation between the surface area and volume of a cube? In

terms of the side length L, are 6L2 and L3, respectively. On the original scale,

this is

surface area = 6(volume)2/3,

or, on the logarithmic scale,

log(surface area) = log(6) + (2/3) log(volume).

Example: Log-linear transformation: world population Consider

the world population from the year 0 to 2000. Compare the data in the table

below with the plots on the original and logarithmic scales; again, the plots

reveals the pattern much clearer than the table.
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On the raw scale, all you can see is that the population has increased very

fast recently. On the log scale, convex curvature is apparent — that is, the rate

of increase has itself increased. On the logarithmic graph, the least-squares

regression line is drawn. The estimated world population has been growing

even faster than exponentially! What would you guess the population to be

fore year 1400? Would you be surprised that it was 350 million? It is actually

lower than the year 1200 population, because of plague and other factors. This

is an illustration that even interpolation can sometimes go awry.
#### Example: Log-linear population growth
pop <- read.table(text="
Year Pop_M

1 170
400 190
800 220
1200 360
1600 545
1800 900
1850 1200
1900 1625
1950 2500
1975 3900
2000 6080
2012 7000
", header=TRUE)
pop$Pop <- 1e6 * pop$Pop_M # convert to millions
pop$PopL10 <- log10(pop$Pop)

# calculate the residuals from a simple linear regression
lm.fit <- lm(PopL10 ~ Year, data = pop)
# include those residuals in the pop table
pop$Res <- residuals(lm.fit)
pop$R10 <- 10^residuals(lm.fit) # residuals on the original scale

Year Pop M Pop PopL10 Res R10
1 1 170 170000000 8.230 0.293 1.964
2 400 190 190000000 8.279 0.050 1.122
3 800 220 220000000 8.342 −0.178 0.663
4 1200 360 360000000 8.556 −0.256 0.554
5 1600 545 545000000 8.736 −0.368 0.428
6 1800 900 900000000 8.954 −0.296 0.505
7 1850 1200 1200000000 9.079 −0.208 0.619
8 1900 1625 1625000000 9.211 −0.113 0.771
9 1950 2500 2500000000 9.398 0.038 1.091

10 1975 3900 3900000000 9.591 0.213 1.631
11 2000 6080 6080000000 9.784 0.387 2.439
12 2012 7000 7000000000 9.845 0.440 2.752

library(ggplot2)

p1 <- ggplot(pop, aes(x = Year, y = Pop))

p1 <- p1 + geom_point()

#print(p1)
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p2 <- ggplot(pop, aes(x = Year, y = PopL10))

p2 <- p2 + geom_point()

p2 <- p2 + geom_smooth(method = lm, se = FALSE)

#print(p2)

library(gridExtra)

grid.arrange(grobs = list(p1, p2), nrow=1

, top = "Log-linear transformation: world population")
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Log−linear transformation: world population

When using data of this nature, consider the source of the population num-

bers. How would you estimate the population of the world in the year 1?

Example: Log-log transformation: metabolic rates A rich source of

examples when covering log-log transformations are biological scaling relations2.

The relationship3 between body mass (M, g) and basal metabolic rate (BMR,

ml of O2 per h (similar to Watts?)) for mammalian orders for selected data are

summarized in plots below, both on the original and log-log scales. The linear

regression summarizes the dark points, the mean for each of the species groups,

2One of the world experts in allometric scaling is Prof. Jim Brown, UNM Biology, http://biology.
unm.edu/jhbrown

3White and Seymour (2003) PNAS, 10.1073/pnas.0436428100
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and the colored points are individual species. The curved regression is found by

inverting the linear regression onto the original scale. The third plot displays

the log axes with values on the original scale.
# http://www.ncbi.nlm.nih.gov/pmc/articles/PMC153045/
# Supp:
# http://www.ncbi.nlm.nih.gov/pmc/articles/PMC153045/bin/pnas_0436428100_index.html
# Supporting information for White and Seymour (2003)
# Proc. Natl. Acad. Sci. USA, 10.1073/pnas.0436428100

library(gdata)

## gdata: read.xls support for ’XLS’ (Excel 97-2004) files
## gdata: ENABLED.
##
## gdata: read.xls support for ’XLSX’ (Excel 2007+) files
## gdata: ENABLED.
##
## Attaching package: ’gdata’
## The following object is masked from ’package:gridExtra’:
##
## combine
## The following object is masked from ’package:stats’:
##
## nobs
## The following object is masked from ’package:utils’:
##
## object.size
## The following object is masked from ’package:base’:
##
## startsWith
fn <- "data/ADA1_notes_08_data_log-logScaling_BodyMassMetabolicRate_2003_WhiteSeymour.xlsx"
bm.bmr <- read.xls(fn, skip = 4, stringsAsFactors = TRUE)
bm.bmr$Log10BodyMass <- log10(bm.bmr$BodyMass)
bm.bmr$Log10BaseMetRate <- log10(bm.bmr$BaseMetRate)

# remove a very strange group
bm.bmr <- subset(bm.bmr, !(Group == "Artiodactyla 7"))
str(bm.bmr)

## 'data.frame': 634 obs. of 9 variables:
## $ Group : Factor w/ 18 levels "Artiodactyla 7",..: 2 2 2 2 2 2 2 2 2 2 ...
## $ Genus : Factor w/ 88 levels "","Acrobatidae",..: 1 12 12 12 12 12 12 12 12 31 ...
## $ Species : Factor w/ 621 levels "","2n = 52","2n = 54",..: 1 22 67 68 79 206 614 615 616 8 ...
## $ BodyMass : num 4452 3600 10000 7720 5444 ...
## $ T : num 37.5 38.6 37 38 38.2 38.8 38 38.7 NA 39 ...
## $ BaseMetRate : num 1244 1374 2687 3860 1524 ...
## $ Ref : Factor w/ 239 levels "","1","10","100",..: 1 230 3 15 24 37 3 50 61 72 ...
## $ Log10BodyMass : num 3.65 3.56 4 3.89 3.74 ...
## $ Log10BaseMetRate: num 3.09 3.14 3.43 3.59 3.18 ...

# log-log scale linear regression
lm.fit <- lm(Log10BaseMetRate ~ Log10BodyMass, data = bm.bmr)
# coefficients for regression line
coef(lm.fit)

## (Intercept) Log10BodyMass
## 0.6775600 0.6575572

library(ggplot2)

p1 <- ggplot(subset(bm.bmr, (Genus == "")), aes(x = BodyMass, y = BaseMetRate))
p1 <- p1 + geom_point(data = subset(bm.bmr, !(Genus == "")), aes(colour = Group), alpha = 0.2)
p1 <- p1 + geom_point(size = 3)

# Using a custom function
f.org.scale <- function(BodyMass) { 10^coef(lm.fit)[1] * BodyMass ^ coef(lm.fit)[2]}

p1 <- p1 + stat_function(fun = f.org.scale, size = 1)
p1 <- p1 + labs(title = paste("BaseMetRate = ", signif(10^coef(lm.fit)[1], 3), " * ", "BodyMass ^ ", signif(coef(lm.fit)[2], 3), sep = ""))
p1 <- p1 + scale_y_continuous(limits=c(0, 1300))
p1 <- p1 + scale_x_continuous(limits=c(0, 5000))
#print(p1)

p2 <- ggplot(subset(bm.bmr, (Genus == "")), aes(x = Log10BodyMass, y = Log10BaseMetRate))
p2 <- p2 + geom_point(data = subset(bm.bmr, !(Genus == "")), aes(colour = Group), alpha = 0.3)
p2 <- p2 + geom_point(size = 3)
p2 <- p2 + geom_smooth(method = lm, se = FALSE, fullrange = TRUE, size = 1, colour = "black")
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p2 <- p2 + labs(title = paste("log10(BaseMetRate) = ", signif(coef(lm.fit)[1], 3), " + ", signif(coef(lm.fit)[2], 3), " log10(BodyMass)", sep = ""))
p2 <- p2 + scale_y_continuous(limits=c(NA, log10(1300)))
p2 <- p2 + scale_x_continuous(limits=c(NA, log10(5000)))
#print(p2)

p3 <- ggplot(subset(bm.bmr, (Genus == "")), aes(x = BodyMass, y = BaseMetRate))
p3 <- p3 + geom_point(data = subset(bm.bmr, !(Genus == "")), aes(colour = Group), alpha = 0.3)
p3 <- p3 + geom_point(size = 3)
p3 <- p3 + geom_smooth(method = lm, se = FALSE, fullrange = TRUE, size = 1, colour = "black")
p3 <- p3 + labs(title = paste("log10(BaseMetRate) = ", signif(coef(lm.fit)[1], 3), " + ", signif(coef(lm.fit)[2], 3), " log10(BodyMass)", sep = ""))
p3 <- p3 + scale_y_log10()#limits=c(NA, log10(1300)))
p3 <- p3 + scale_x_log10()#limits=c(NA, log10(5000)))
#print(p3)

library(gridExtra)
grid.arrange(grobs = list(p1, p2, p3), ncol=1

, top = "Log-log transformation: metabolic rates")

## Warning: Removed 56 rows containing missing values (geom point).
## Warning: Removed 5 rows containing missing values (geom point).
## Warning: Removed 5 rows containing non-finite values (stat smooth).
## Warning: Removed 56 rows containing missing values (geom point).
## Warning: Removed 5 rows containing missing values (geom point).
## Warning: Removed 5 rows containing non-finite values (stat smooth).
## Warning: Removed 1 rows containing missing values (geom point).
## Warning: Removed 5 rows containing missing values (geom point).
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The table below provides predictions over a range of scales. Note that the

smallest mammel in this dataset is about 2.4 grams. A 5-gram mammal uses

about 13.7 Watts, so 1000 5-gram mammals use about 13714 Watts. Whereas,

one 5000-gram mammal uses 1287 Watts. Thus, larger mammals give off less

heat than the equivalent weight of many smaller mammals.
pred.bm.bmr <- data.frame(BodyMass = 5 * c(1, 10, 100, 1000))

pred.bm.bmr$Log10BodyMass <- log10(pred.bm.bmr$BodyMass)

pred.bm.bmr$Log10BaseMetRate <- predict(lm.fit, pred.bm.bmr)

pred.bm.bmr$BaseMetRate <- 10^pred.bm.bmr$Log10BaseMetRate

tab.pred <- subset(pred.bm.bmr, select = c("BodyMass", "BaseMetRate"))

BodyMass BaseMetRate
1 5 13.71
2 50 62.33
3 500 283.33
4 5000 1287.79

We want to focus on the slope in the log-log plot, which is the exponent in

original scale plot. On the log scale we have

log(BaseMetRate) = 0.678 + 0.658 log(BodyMass).

To interpret the slope, for each unit increase in (predictor, x-variable) log(BodyMass),

the expected increase in (response, y-variable) log(BaseMetRate) is 4.55. By

exponentiating on both sides, the expression on the original scale is

BaseMetRate = 100.678 × BodyMass0.658

= 4.76× BodyMass0.658.

For example, if you multiply body mass by 10, then you multiply metabolic

rate by 100.658 = 4.55. If you multiply body mass by 100, then you multiply

metabolic rate by 1000.658 = 20.7, and so forth. The relation between metabolic

rate and body mass is less than linear (that is, the exponent 0.658 is less than

1.0, and the line in the original-scal plot curves downward, not upward), which

implies that the equivalent mass of small mammals gives off more heat, and the

equivalent mass of large mammals gives off less heat.
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This seems related to the general geometrical relation that surface area and

volume are proportional to linear dimension to the second and third power,

respectively, and thus surface area should be proportional to volume to the 2/3

power. Heat produced by a mammal is emitted from its surface, and it would

thus be reasonable to suspect metabolic rate to be proportional to the 2/3 power

of body mass. Biologists have considered whether the empirical slope is closer

to 3/4 or 2/3; the important thing here is to think about log transformations

and power laws (and have a chat with Jim Brown or someone from his lab at

UNM for the contextual details). As an aside, something not seen from this

plot is that males tend to be above the line and females below the line.

8.3 Testing that ρ = 0

Suppose you want to test H0 : ρ = 0 against HA : ρ 6= 0, where ρ is the

population correlation between Y and X . This test is usually interpreted as

a test of no association, or relationship, between Y and X in the population.

Keep in mind, however, that ρ measures the strength of a linear relationship.

The standard test of H0 : ρ = 0 is based on the magnitude of r. If we let

ts = r

√
n− 2

1− r2
,

then the test rejects H0 in favor of HA if |ts| ≥ tcrit, where tcrit is the two-sided

test critical value from a t-distribution with df = n − 2. The p-value for the

test is the area under the t-curve outside ±ts (i.e., two-tailed test p-value).

This test assumes that the data are a random sample from a bivariate

normal population for (X, Y ). This assumption implies that all linear com-

binations of X and Y , say aX + bY , are normal. In particular, the (marginal)

population frequency curves for X and Y are normal. At a minimum, you

should make boxplots of the X and Y samples to check marginal normality.

For large-sized samples, a plot of Y against X should be roughly an elliptical

cloud, with the density of the points decreasing as the points move away from

the center of the cloud.

UNM, Stat 427/527 ADA1



324 Ch 8: Correlation and Regression

8.3.1 The Spearman Correlation Coefficient

The Pearson correlation r can be highly influenced by outliers in one or both

samples. For example, r ≈ −1 in the plot below. If you delete the one extreme

case with the largest X and smallest Y value then r ≈ 0. The two analyses

are contradictory. The first analysis (ignoring the plot) suggests a strong linear

relationship, whereas the second suggests the lack of a linear relationship. I

will not strongly argue that you should (must?) delete the extreme case, but I

am concerned about any conclusion that depends heavily on the presence of a

single observation in the data set.
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Spearman’s rank correlation coefficient rS is a sensible alternative

to r when normality is unreasonable or outliers are present. Most books give

a computational formula for rS. I will verbally describe how to compute rS.

First, order the Xis and assign them ranks. Then do the same for the Yis and

replace the original data pairs by the pairs of ranked values. The Spearman

rank correlation is the Pearson correlation computed from the pairs of ranks.
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The Spearman correlation rS estimates the population rank correla-

tion coefficient, which is a measure of the strength of linear relationship

between population ranks. The Spearman correlation, as with other rank-

based methods, is not sensitive to the presence of outliers in the data (or any

information about the marginal distribution of X or Y ). In the plot above,

rS ≈ 0 whether the unusual point is included or excluded from the analysis. In

samples without unusual observations and a linear trend, you often find that

the Spearman and Pearson correlations are similar, rS ≈ r.

An important point to note is that the magnitude of the Spearman correla-

tion does not change if either X or Y or both are transformed (monotonically).

Thus, if rS is noticeably greater than r, a transformation of the data might

provide a stronger linear relationship.

Example: Blood loss Eight patients underwent a thyroid operation. Three

variables were measured on each patient: weight in kg, time of operation in min-

utes, and blood loss in ml. The scientists were interested in the factors that

influence blood loss.
#### Example: Blood loss
thyroid <- read.table(text="
weight time blood_loss
44.3 105 503
40.6 80 490
69.0 86 471
43.7 112 505
50.3 109 482
50.2 100 490
35.4 96 513
52.2 120 464

", header=TRUE)

# show the structure of the data.frame
str(thyroid)

## 'data.frame': 8 obs. of 3 variables:
## $ weight : num 44.3 40.6 69 43.7 50.3 50.2 35.4 52.2
## $ time : int 105 80 86 112 109 100 96 120
## $ blood_loss: int 503 490 471 505 482 490 513 464

# display the data.frame
#thyroid
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weight time blood loss
1 44.3 105 503
2 40.6 80 490
3 69.0 86 471
4 43.7 112 505
5 50.3 109 482
6 50.2 100 490
7 35.4 96 513
8 52.2 120 464

Below, we calculate the Pearson correlations between all pairs of variables
(left), as well as the p-values (right) for testing whether the correlation is equal
to zero.
p.corr <- cor(thyroid);

#p.corr

# initialize pvalue table with dim names

p.corr.pval <- p.corr;

for (i1 in 1:ncol(thyroid)) {
for (i2 in 1:ncol(thyroid)) {

p.corr.pval[i1,i2] <- cor.test(thyroid[, i1], thyroid[, i2])$p.value

}
}
#p.corr.pval

weight time blood loss
weight 1.000 −0.066 −0.772

time −0.066 1.000 −0.107
blood loss −0.772 −0.107 1.000

weight time blood loss
weight 0.0000 0.8761 0.0247

time 0.8761 0.0000 0.8003
blood loss 0.0247 0.8003 0.0000

Similarly, we calculate the Spearman (rank) correlation table (left), as well
as the p-values (right) for testing whether the correlation is equal to zero.
s.corr <- cor(thyroid, method = "spearman");

#s.corr

# initialize pvalue table with dim names

s.corr.pval <- p.corr;

for (i1 in 1:ncol(thyroid)) {
for (i2 in 1:ncol(thyroid)) {

s.corr.pval[i1,i2] <- cor.test(thyroid[, i1], thyroid[, i2],

method = "spearman")$p.value

}
}
## Warning in cor.test.default(thyroid[, i1], thyroid[, i2], method = "spearman"): Cannot

compute exact p-value with ties
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## Warning in cor.test.default(thyroid[, i1], thyroid[, i2], method = "spearman"): Cannot

compute exact p-value with ties

## Warning in cor.test.default(thyroid[, i1], thyroid[, i2], method = "spearman"): Cannot

compute exact p-value with ties

## Warning in cor.test.default(thyroid[, i1], thyroid[, i2], method = "spearman"): Cannot

compute exact p-value with ties

## Warning in cor.test.default(thyroid[, i1], thyroid[, i2], method = "spearman"): Cannot

compute exact p-value with ties

#s.corr.pval

weight time blood loss
weight 1.000 0.286 −0.874

time 0.286 1.000 −0.156
blood loss −0.874 −0.156 1.000

weight time blood loss
weight 0.0000 0.5008 0.0045

time 0.5008 0.0000 0.7128
blood loss 0.0045 0.7128 0.0000

Here are scatterplots for the original data and the ranks of the data using

ggpairs() from the GGally package with ggplot2.
# Plot the data using ggplot

library(ggplot2)

library(GGally)

p1 <- ggpairs(thyroid[,1:3])

print(p1)

thyroid$rank_weight <- rank(thyroid$weight )

thyroid$rank_time <- rank(thyroid$time )

thyroid$rank_blood_loss <- rank(thyroid$blood_loss)

p2 <- ggpairs(thyroid[,4:6])

print(p2)
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Comments:

1. (Pearson correlations). Blood loss tends to decrease linearly as weight

increases, so r should be negative. The output gives r = −0.77. There is

not much of a linear relationship between blood loss and time, so r should

be close to 0. The output gives r = −0.11. Similarly, weight and time

have a weak negative correlation, r = −0.07.

2. The Pearson and Spearman correlations are fairly consistent here. Only

the correlation between blood loss and weight is significantly different from

zero at the α = 0.05 level (the p-values are given below the correlations).

3. (Spearman p-values) R gives the correct p-values. Calculating the p-value

using the Pearson correlation on the ranks is not correct, strictly speaking.

ClickerQ s — Coney Island STT.02.02.050

Prof. Erik B. Erhardt



8.4: Simple Linear Regression 329

8.4 Simple Linear Regression

In linear regression, we are interested in developing a linear equation that best

summarizes the relationship in a sample between the response variable Y

and the predictor variable (or independent variable) X . The equation

is also used to predict Y fromX . The variables are not treated symmetrically in

regression, but the appropriate choice for the response and predictor is usually

apparent.

8.4.1 Linear Equation

If there is a perfect linear relationship between Y and X then Y = β0 + β1X

for some β0 and β1, where β0 is the Y-intercept and β1 is the slope of the line.

Two plots of linear relationships are given below. The left plot has β0 = 5 and

β1 = 3. The slope is positive, which indicates that Y increases linearly when

X increases. The right plot has β0 = 7 and β1 = −2. The slope is negative,

which indicates that Y decreases linearly when X increases.

X

Y

-1 0 1 2 3 4

5
10

15

1

3

The line Y = 5 + 3X

X

Y

-1 0 1 2 3 4

0
2

4
6

8

1

-2

The line Y = 7 - 2X
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ClickerQ s — Equation STT.02.03.010

8.4.2 Least Squares

Data rarely, if ever, fall on a straight line. However, a straight line will often

describe the trend for a set of data. Given a data set, (Xi, Yi), i = 1, . . . , n,

with a linear trend, what linear equation “best” summarizes the observed

relationship between Y and X? There is no universally accepted definition of

“best”, but many researchers accept the Least Squares line (LS line) as a

reasonable summary.

Mathematically, the LS line chooses the values of β0 and β1 that minimize

n∑
i=1

{Yi − (β0 + β1Xi)}2

over all possible choices of β0 and β1. These values can be obtained using

calculus. Rather than worry about this calculation, note that the LS line makes

the sum of squared (vertical) deviations between the responses Yi and the line

as small as possible, over all possible lines. The LS line goes through the mean

point, (X̄, Ȳ ), which is typically in the “the heart” of the data, and is often

closely approximated by an eye-ball fit to the data.
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The equation of the LS line is

ŷ = b0 + b1X

where the intercept b0 satisfies

b0 = Ȳ − b1X̄

and the slope is

b1 =

∑
i(Yi − Ȳ )(Xi − X̄)∑

i(Xi − X̄)2
= r

SY
SX

.

As before, r is the Pearson correlation between Y and X , whereas SY and SX
are the sample standard deviations for the Y and X samples, respectively. The

sign of the slope and the sign of the correlation are identical (i.e., +

correlation implies + slope).

Special symbols b0 and b1 identify the LS intercept and slope to distinguish

the LS line from the generic line Y = β0 + β1X . You should think of Ŷ as the

fitted value at X , or the value of the LS line at X .

Fit a regression for the equation estimates from summary(). Note that we’ll

reuse the output of lm() over and over again.
lm.blood.wt <- lm(blood_loss ~ weight, data = thyroid)

lm.blood.wt

##

## Call:

## lm(formula = blood_loss ~ weight, data = thyroid)

##

## Coefficients:

## (Intercept) weight

## 552.4 -1.3

# use summary() to get t-tests of parameters (slope, intercept)

summary(lm.blood.wt)

##

## Call:

## lm(formula = blood_loss ~ weight, data = thyroid)

##

## Residuals:

## Min 1Q Median 3Q Max

## -20.565 -6.189 4.712 8.192 9.382

##
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## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 552.4420 21.4409 25.77 2.25e-07 ***

## weight -1.3003 0.4364 -2.98 0.0247 *

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 11.66 on 6 degrees of freedom

## Multiple R-squared: 0.5967,Adjusted R-squared: 0.5295

## F-statistic: 8.878 on 1 and 6 DF, p-value: 0.02465

Create a scatterplot with regression fit.
# ggplot: Plot the data with linear regression fit and confidence bands

library(ggplot2)

p <- ggplot(thyroid, aes(x = weight, y = blood_loss))

p <- p + geom_point()

p <- p + geom_smooth(method = lm, se = FALSE)

print(p)

# Base graphics: Plot the data with linear regression fit and confidence bands

# scatterplot

plot(thyroid$weight, thyroid$blood_loss)

# regression line from lm() fit

abline(lm.blood.wt)

●

●

●

●

●

●

●

●

470

480

490

500

510

40 50 60 70

weight

bl
oo

d_
lo

ss

●

●

●

●

●

●

●

●

35 40 45 50 55 60 65 70

47
0

48
0

49
0

50
0

51
0

thyroid$weight

th
yr

oi
d$

bl
oo

d_
lo

ss

For the thyroid operation data with Y = Blood loss in ml and X =

Weight in kg, the LS line is Ŷ = 552.44 − 1.30X , or Predicted Blood Loss =

552.44 − 1.30 Weight. For an 86kg individual, the Predicted Blood Loss =
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552.44− 1.30× 86 = 440.64ml.

The LS regression coefficients for this model are interpreted as follows. The

intercept b0 is the predicted blood loss for a 0 kg individual. The intercept has

no meaning here. The slope b1 is the predicted increase in blood loss for each

additional kg of weight. The slope is −1.30, so the predicted decrease in blood

loss is 1.30 ml for each increase of 1 kg in weight.

Any fitted linear relationship holds only approximately and does not neces-

sarily extend outside the range of the data. In particular, nonsensical predicted

blood losses of less than zero are obtained at very large weights outside the

range of data.

8.5 ANOVA Table for Regression

The LS line minimizes
n∑
i=1

{Yi − (β0 + β1Xi)}2

over all choices for β0 and β1. Inserting the LS estimates b0 and b1 into this

expression gives

Residual Sums of Squares =

n∑
i=1

{Yi − (b0 + b1Xi)}2.

Several bits of notation are needed. Let

Ŷi = b0 + b1Xi

be the predicted or fitted Y -value for an X-value of Xi and let ei = Yi− Ŷi.
The fitted value Ŷi is the value of the LS line at Xi whereas the residual ei
is the distance that the observed response Yi is from the LS line. Given this

notation,

Residual Sums of Squares = Res SS =

n∑
i=1

(Yi − ŷi)2 =

n∑
i=1

e2
i .
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Here is a picture to clarify matters:
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The Residual SS, or sum of squared residuals, is small if each Ŷi is close to

Yi (i.e., the line closely fits the data). It can be shown that

Total SS in Y =

n∑
i=1

(Yi − Ȳ )2 ≥ Res SS ≥ 0.

Also define

Regression SS = Reg SS = Total SS − Res SS = b1

n∑
i=1

(Yi − Ȳ )(Xi − X̄).

The Total SS measures the variability in the Y -sample. Note that

0 ≤ Regression SS ≤ Total SS.

The percentage of the variability in the Y -sample that is explained by

the linear relationship between Y and X is

R2 = coefficient of determination =
Reg SS

Total SS
.
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Given the definitions of the Sums of Squares, we can show 0 ≤ R2 ≤ 1 and

R2 = square of Pearson correlation coefficient = r2.

To understand the interpretation of R2, at least in two extreme cases, note that

Reg SS = Total SS ⇔ Res SS = 0

⇔ all the data points fall on a straight line

⇔ all the variability in Y is explained by the linear relationship with X

(which has variation)

⇔ R2 = 1. (see the picture below)
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Furthermore,

Reg SS = 0 ⇔ Total SS = Res SS

⇔ b1 = 0

⇔ LS line is Ŷ = Ȳ

⇔ none of the variability in Y is explained by a linear relationship

⇔ R2 = 0.
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Each Sum of Squares has a corresponding df (degrees of freedom). The

Sums of Squares and df are arranged in an analysis of variance (ANOVA)

table:
Source df SS MS

Regression 1 SSR MSR

Residual (Error) n− 2 SSE MSE

Total n− 1

The Total df is n−1. The Residual df is n minus the number of parameters

(2) estimated by the LS line. The Regression df is the number of predictor
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variables (1) in the model. A Mean Square is always equal to the Sum of

Squares divided by the df . Sometime the following notation is used for the

Residual MS: s2
Y |X = Resid(SS)/(n− 2).

# ANOVA table of the simple linear regression fit

anova(lm.blood.wt)

## Analysis of Variance Table

##

## Response: blood_loss

## Df Sum Sq Mean Sq F value Pr(>F)

## weight 1 1207.45 1207.45 8.8778 0.02465 *

## Residuals 6 816.05 136.01

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

8.5.1 Brief discussion of the output for blood loss
problem

1. Identify fitted line: Blood Loss = 552.44 − 1.30 Weight (i.e., b0 = 552.44

and b1 = −1.30).

What is the line of best fit? What is the direction of the relationship?

2. Locate Analysis of Variance Table.

This tests the the hypothesis H0 : βj = 0, j = 0, 1, . . . , p (for all p + 1

beta coefficients), against HA : not H0, i.e., at least one βj 6= 0. More on

this later.

3. Locate Parameter Estimates Table.

Given that not all the betas are zero from the ANOVA, which parameter

betas are different from zero, and what are their estimated values and

standard errors? More on this later.

4. Note that R2 = 0.5967 = (−0.77247)2 = r2.

R2 indicates the proportion of the variance explained by the regression

model. This indicates the predictive ability of the model, and is not a

indication of model fit.

ClickerQ s — Salaries STT.02.02.060
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8.6 The regression model

The following statistical model is assumed as a means to provide error estimates

for the LS line, regression coefficients, and predictions. Assume that the data

(Xi, Yi), i = 1, . . . , n, are a sample of (X, Y ) values from the population of

interest, and

1. The mean in the population of all responses Y at a given X value (some-

times called µY |X) falls on a straight line, β0 +β1X , called the population

regression line.

2. The variation among responses Y at a given X value is the same for each

X , and is denoted by σ2
Y |X .

3. The population of responses Y at a given X is normally distributed.

4. The pairs (Xi, Yi) are a random sample from the population. Alterna-

tively, we can think that the Xis were fixed by the experimenter, and that

the Yi are random responses at the selected predictor values.

The model is usually written in the form

Yi = β0 + β1Xi + εi

(i.e., Response = Mean Response + Residual), where the εis are, by virtue of

assumptions 2, 3, and 4, independent normal random variables with mean 0

and variance σ2
Y |X . The following picture might help see this. Note that the

population regression line is unknown, and is estimated from the data using the

LS line.
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In the plot below, data are simulated where yi = 4 − 2xi + ei, where
xi ∼ Gamma(3, 0.5) and ei ∼ Normal(0, 32). The data are plotted and a
linear regression is fit and the mean regression line is overlayed. Select normal
distributions with variance estimated from the linear model fit are overlayed,
one which indicates limits at two standard deviations. See the R code to create
this image.
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Model assumptions In decreasing order of importance, the model assump-

tions are

1. Validity. Most importantly, the data you are analyzing should map to
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the research question you are trying to answer. This sounds obvious but

is often overlooked or ignored because it can be inconvenient.

2. Additivity and linearity. The most important mathematical as-

sumption of the regression model is that its deterministic component is a

linear function of the separate predictors.

3. Independence of errors. This assumption depends on how the data

were collected.

4. Equal variance of errors.

5. Normality of errors.

Normality and equal variance are typically minor concerns, unless you’re using

the model to make predictions for individual data points.

8.6.1 Back to the Data

There are three unknown population parameters in the model: β0, β1 and

σ2
Y |X . Given the data, the LS line

Ŷ = b0 + b1X

estimates the population regression line Y = β0 + β1X . The LS line is our

best guess about the unknown population regression line. Here b0 estimates the

intercept β0 of the population regression line and b1 estimates the slope β1 of

the population regression line.

The ith observed residual ei = Yi − Ŷi, where Ŷi = b0 + b1Xi is the ith

fitted value, estimates the unobservable residual εi (εi is unobservable

because β0 and β1 are unknown). The Residual MS from the ANOVA table is

used to estimate σ2
Y |X :

s2
Y |X = Res MS =

Res SS

Res df
=

∑
i(Yi − Ŷi)2

n− 2
.
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The denominator df = n− 2 is the number of observations minus the number

of beta parameters in the model, i.e., β0 and β1.

8.7 CI and tests for β1

A CI for β1 is given by b1± tcritSEb1, where the standard error of b1 under the

model is

SEb1 =
sY |X√∑
i(Xi − X̄)2

,

and where tcrit is the appropriate critical value for the desired CI level from a

t-distribution with df =Res df .

To test H0 : β1 = β10 (a given value) against HA : β1 6= β10, reject H0 if

|ts| ≥ tcrit, where

ts =
b1 − β10

SEb1

,

and tcrit is the t-critical value for a two-sided test, with the desired size and

df =Res df . Alternatively, you can evaluate a p-value in the usual manner to

make a decision about H0.
# CI for beta1

sum.lm.blood.wt <- summary(lm.blood.wt)

sum.lm.blood.wt$coefficients

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 552.442023 21.4408832 25.765824 2.253105e-07

## weight -1.300327 0.4364156 -2.979562 2.465060e-02

est.beta1 <- sum.lm.blood.wt$coefficients[2,1]

se.beta1 <- sum.lm.blood.wt$coefficients[2,2]

sum.lm.blood.wt$fstatistic

## value numdf dendf

## 8.877788 1.000000 6.000000

df.beta1 <- sum.lm.blood.wt$fstatistic[3]

t.crit <- qt(1-0.05/2, df.beta1)

t.crit

## [1] 2.446912

CI.lower <- est.beta1 - t.crit * se.beta1

CI.upper <- est.beta1 + t.crit * se.beta1

c(CI.lower, CI.upper)

## [1] -2.3681976 -0.2324567
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The parameter estimates table gives the standard error, t-statistic, and p-

value for testing H0 : β1 = 0. Analogous summaries are given for the intercept,

β0, but these are typically of less interest.

8.7.1 Testing β1 = 0

Assuming the mean relationship is linear, consider testing H0 : β1 = 0 against

HA : β1 6= 0. This test can be conducted using a t-statistic, as outlined above,

or with an ANOVA F -test, as outlined below.

For the analysis of variance (ANOVA) F -test, compute

Fs =
Reg MS

Res MS

and reject H0 when Fs exceeds the critical value (for the desired size test) from

an F -table with numerator df = 1 and denominator df = n − 2 (see qf()).

The hypothesis of zero slope (or no relationship) is rejected when Fs is large,

which happens when a significant portion of the variation in Y is explained by

the linear relationship with X .

The p-values from the t-test and the F -test are always equal. Furthermore

this p-value is equal to the p-value for testing no correlation between Y and X ,

using the t-test described earlier. Is this important, obvious, or disconcerting?

8.8 A CI for the population regression line

I can not overemphasize the power of the regression model. The model allows

you to estimate the mean response at any X value in the range for which the

model is reasonable, even if little or no data is observed at that location.

We estimate the mean population response among individuals with X = Xp

µp = β0 + β1Xp,

with the fitted value, or the value of the least squares line at Xp:

Ŷp = b0 + b1Xp.
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Xp is not necessarily one of the observed Xis in the data. To get a CI for µp,

use Ŷp ± tcritSE(Ŷp), where the standard error of Ŷp is

SE(Ŷp) = sY |X

√
1

n
+

(Xp − X̄)2∑
i(Xi − X̄)2

.

The t-critical value is identical to that used in the subsection on CI for β1.

8.8.1 CI for predictions

Suppose a future individual (i.e., someone not used to compute the LS line) has

X = Xp. The best prediction for the response Y of this individual is the value

of the least squares line at Xp:

Ŷp = b0 + b1Xp.

To get a CI (prediction interval) for an individual response, use Ŷp±tcritSEpred(Ŷp),

where

SEpred(Ŷp) = sY |X

√
1 +

1

n
+

(Xp − X̄)2∑
i(Xi − X̄)2

,

and tcrit is identical to the critical value used for a CI on β1. The prediction vari-

ance has two parts: (1) the 1 indicates the variability associated with the data

around the mean (regression line), and (2) the rest is the variability associated

with estimating the mean.

For example, in the blood loss problem you may want to estimates the blood

loss for an 50kg individual, and to get a CI for this prediction. This problem is

different from computing a CI for the mean blood loss of all 50kg individuals!
# CI for the mean and PI for a new observation at weight=50

predict(lm.blood.wt, data.frame(weight=50), interval = "confidence", level = 0.95)

## fit lwr upr

## 1 487.4257 477.1575 497.6938

predict(lm.blood.wt, data.frame(weight=50), interval = "prediction", level = 0.95)

## fit lwr upr

## 1 487.4257 457.098 517.7533
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Comments

1. The prediction interval is wider than the CI for the mean response. This

is reasonable because you are less confident in predicting an individual

response than the mean response for all individuals.

2. The CI for the mean response and the prediction interval for an individual

response become wider as Xp moves away from X̄ . That is, you get a

more sensitive CI and prediction interval for Xps near the center of the

data.

3. In plots below include confidence and prediction bands along with the

fitted LS line.

# ggplot: Plot the data with linear regression fit and confidence bands

library(ggplot2)

p <- ggplot(thyroid, aes(x = weight, y = blood_loss))

p <- p + geom_point()

p <- p + geom_smooth(method = lm, se = TRUE)

print(p)

# Base graphics: Plot the data with linear regression fit and confidence bands

# scatterplot

plot(thyroid$weight, thyroid$blood_loss)

# regression line from lm() fit

abline(lm.blood.wt)

# x values of weight for predictions of confidence bands

x.pred <- data.frame(weight = seq(min(thyroid$weight), max(thyroid$weight),

length = 20))

# draw upper and lower confidence bands

lines(x.pred$weight, predict(lm.blood.wt, x.pred,

interval = "confidence")[, "upr"], col = "blue")

lines(x.pred$weight, predict(lm.blood.wt, x.pred,

interval = "confidence")[, "lwr"], col = "blue")
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8.8.2 A further look at the blood loss data

� The LS line is: Predicted Blood Loss = 552.442 - 1.30 Weight.

� The R2 is 0.597 (i.e., 59.7%).

� The F -statistic for testingH0 : β1 = 0 is Fobs = 8.88 with a p-value=0.025.

The Error MS is s2
Y |X = 136.0; see ANOVA table.

� The Parameter Estimates table gives b0 and b1, their standard errors, and

t-statistics and p-values for testing H0 : β0 = 0 and H0 : β1 = 0. The t-

test and F -test p-values for testing that the slope is zero are identical. We

could calculate a 95% CI for β0 and β1. If we did so (using the t critical

value) we find we are 95% confident that the slope of the population

regression line is between −2.37 and −0.23.

� Suppose we are interested in estimating the average blood loss among all

50kg individuals. The estimated mean blood loss is 552.442− 1.30033×
50 = 487.43. Reading off the plot, we are 95% confident that the mean

blood loss of all 50kg individuals is between (approximately) 477 and 498

ml. A 95% prediction interval for the blood loss of a single 50 kg person

is less precise (about 457 to 518 ml).
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As a summary we might say that weight is important for explaining the

variation in blood loss. In particular, the estimated slope of the least squares

line (Predicted Blood loss = 552.442 - 1.30 Weight) is significantly different from

zero (p-value = 0.0247), with weight explaining approximately 60% (59.7%) of

the variation in blood loss for this sample of 8 thyroid operation patients.

8.9 Model Checking and Regression Diag-
nostics

8.9.1 Introduction

The simple linear regression model is usually written as

Yi = β0 + β1Xi + εi

where the εis are independent normal random variables with mean 0 and vari-

ance σ2. The model implies (1) The average Y -value at a given X-value is

linearly related to X . (2) The variation in responses Y at a given X value

is constant. (3) The population of responses Y at a given X is normally dis-

tributed. (4) The observed data are a random sample.

A regression analysis is never complete until these assumptions have been

checked. In addition, you need to evaluate whether individual observations, or

groups of observations, are unduly influencing the analysis. A first step in any

analysis is to plot the data. The plot provides information on the linearity and

constant variance assumption.
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Figure (a) is the only plot that is consistent with the assumptions. The plot

shows a linear relationship with constant variance. The other figures show one

or more deviations. Figure (b) shows a linear relationship but the variability

increases as the mean level increases. In Figure (c) we see a nonlinear relation-

ship with constant variance, whereas (d) exhibits a nonlinear relationship with

non-constant variance.

In many examples, nonlinearity or non-constant variability can be addressed

by transforming Y or X (or both), or by fitting polynomial models.

These issues will be addressed later.

8.9.2 Residual Analysis

A variety of methods for assessing model adequacy are based on the observed

residuals,

ei = Yi − Ŷi i.e., Observed − Fitted values.

The residual is the difference between the observed values and predicted or

fitted values. The residual is the part of the observation that is not explained

by the fitted model. You can analyze residuals to determine the adequacy of

the model. A large residual identifies an observation poorly fit by the model.

The residuals are usually plotted in various ways to assess potential inad-

equacies. The observed residuals have different variances, depending on Xi.
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Recall that the standard error of Ŷi (and therefore ei) is

SE(Ŷi) = SE(ei) = sY |X

√
1

n
+

(Xi − X̄)2∑
j(Xj − X̄)2

.

So many statisticians prefer to plot the studentized residuals (sometimes

called the standardized residuals or internally Studentized residual)

ri =
ei

SE(ei)
.

The standardized residual is the residual, ei, divided by an estimate of its stan-

dard deviation. This form of the residual takes into account that the residuals

may have different variances, which can make it easier to detect outliers. The

studentized residuals have a constant variance of 1 (approximately). Standard-

ized residuals greater than 2 and less than −2 are usually considered large. I

will focus on diagnostic methods using the studentized residuals.

A plot of the studentized residuals ri against the fitted values Ŷi often reveals

inadequacies with the model. The real power of this plot is with multiple

predictor problems (multiple regression). The information contained in this

plot with simple linear regression is similar to the information contained in the

original data plot, except it is scaled better and eliminates the effect of the

trend on your perceptions of model adequacy. The residual plot should exhibit

no systematic dependence of the sign or the magnitude of the residuals on the

fitted values:
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The following sequence of plots show how inadequacies in the data plot

appear in a residual plot. The first plot shows a roughly linear relationship

between Y and X with non-constant variance. The residual plot shows a

megaphone shape rather than the ideal horizontal band. A possible remedy is

a weighted least squares analysis to handle the non-constant variance (see

end of chapter for an example), or to transform Y to stabilize the variance.

Transforming the data may destroy the linearity.
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The plot above shows a nonlinear relationship between Y and X . The

residual plot shows a systematic dependence of the sign of the residual on the

fitted value. Possible remedies were mentioned earlier.

The plot below shows an outlier. This case has a large residual and large

studentized residual. A sensible approach here is to refit the model after holding

out the case to see if any conclusions change.
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A third type of residual is called an externally Studentized residual

(or Studentized deleted residual or deleted t-residual). The problem with resid-

uals is that a highly influential value can force the residual to have a very small

value. This measure tries to correct for that by looking at how well the model

fits this observation without using this observation to construct the fit. It is

quite possible for the deleted residual to be huge when the raw residual is tiny.

The studentized deleted residual for observation ith is calculated by fitting

the regression based on all of the cases except the ith one. The residual is then

divided by its estimated standard deviation. Since the Studentized deleted

residual for the ith observation estimates all quantities with this observation

deleted from the data set, the ith observation cannot influence these estimates.

Therefore, unusual Y values clearly stand out. Studentized deleted residuals

with large absolute values are considered large. If the regression model is appro-

priate, with no outlying observations, each Studentized deleted residual follows

the t-distribution with n− 1− p degrees of freedom.

Nonconstant variance vs sample size Because more extreme observa-

tions are more likely to occur with larger sample sizes, sometimes when sample

size depends on X it can appear as noncontant variance. Below sample sizes

are either all 25 or (3, 5, 10, 25, 125), and standard deviations are either all 1

or (0.1, 0.5, 1, 1.5, 3). Note that constant variance and different sample sizes

appears as though it has nonconstant variance.
#### Nonconstant variance vs sample size

dat.var.sam <- function(n, s) {
dat <- data.frame(

x = c(rep(0, n[1]),

rep(1, n[2]),

rep(2, n[3]),

rep(3, n[4]),

rep(4, n[5])),

y = c(rnorm(n[1], mean = 0, sd = s[1]),

rnorm(n[2], mean = 0, sd = s[2]),

rnorm(n[3], mean = 0, sd = s[3]),

rnorm(n[4], mean = 0, sd = s[4]),

rnorm(n[5], mean = 0, sd = s[5]))

)
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return(dat)

}

library(ggplot2)

n <- c(25, 25, 25, 25, 25)

s <- c(1, 1, 1, 1, 1)

dat <- dat.var.sam(n, s)

p1 <- ggplot(dat, aes(x = x, y = y))

p1 <- p1 + geom_point(position = position_jitter(width = 0.1))

p1 <- p1 + labs(title = "Constant variance, constant sample size")

#print(p1)

n <- c(3, 5, 10, 25, 125)

s <- c(1, 1, 1, 1, 1)

dat <- dat.var.sam(n, s)

p2 <- ggplot(dat, aes(x = x, y = y))

p2 <- p2 + geom_point(position = position_jitter(width = 0.1))

p2 <- p2 + labs(title = "Constant variance, different sample sizes")

#print(p2)

n <- c(25, 25, 25, 25, 25)

s <- c(0.1, 0.5, 1, 1.5, 3)

dat <- dat.var.sam(n, s)

p3 <- ggplot(dat, aes(x = x, y = y))

p3 <- p3 + geom_point(position = position_jitter(width = 0.1))

p3 <- p3 + labs(title = "Different variance, constant sample size")

#print(p3)

n <- c(3, 5, 10, 25, 125)

s <- c(0.1, 0.5, 1, 1.5, 3)

dat <- dat.var.sam(n, s)

p4 <- ggplot(dat, aes(x = x, y = y))

p4 <- p4 + geom_point(position = position_jitter(width = 0.1))

p4 <- p4 + labs(title = "Different variance, different sample sizes")

#print(p4)

library(gridExtra)

grid.arrange(grobs = list(p1, p2, p3, p4), nrow=2, ncol=2

, top = "Nonconstant variance vs sample size")
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8.9.3 Checking Normality

The normality assumption for the εis can be evaluated visually with a boxplot or

a normal probability plot (rankit plot) of the ri, or formally with a Shapiro-Wilk

test. The normal probability plot often highlights outliers, or poorly fitted

cases. If an outlier is held out of the data and a new analysis is performed,

the resulting normal scores plot may be roughly linear, but often will show a

short-tailed distribution. (Why?).

You must interpret regression tests and CI with caution with non-normal

data. Statisticians developed robust regression methods for non-normal data

which are available in R packages.
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8.9.4 Checking Independence

Diagnosing dependence among observations requires an understanding of the

data collection process. There are a variety of graphical and inferential tools for

checking independence for data collected over time (called a time series). The

easiest check is to plot the ri against time index and look for any suggestive

patterns.

8.9.5 Outliers

Outliers are observations that are poorly fitted by the regression model. The

response for an outlier is far from the fitted line, so outliers have large positive

or negative values of the studentized residual ri. Usually, |ri| > 2 is considered

large. Outliers are often highlighted in residual plots.

What do you do with outliers? Outliers may be due to incorrect recordings

of the data or failure of the measuring device, or indications or a change in the

mean or variance structure for one or more cases. Incorrect recordings should

be fixed if possible, but otherwise deleted from the analysis.

Routine deletion of outliers from the analysis is not recommended. This

practice can have a dramatic effect on the fit of the model and the perceived

precision of parameter estimates and predictions. Analysts who routinely omit

outliers without cause tend to overstate the significance of their findings and get

a false sense of precision in their estimates and predictions. To assess effects of

outliers, a data analyst should repeat the analysis holding out the outliers to see

whether any substantive conclusions are changed. Very often the only real effect

of an outlier is to inflate MSE and hence make p-values a little larger and CIs

a little wider than necessary, but without substantively changing conclusions.

They can completely mask underlying patterns, however.

ClickerQ s — Outliers STT.02.04.040
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8.9.6 Influential Observations

Certain data points can play an important role in determining the position of

the LS line. These data points may or may not be outliers. In the plots below,

the solid line is the LS line from the full data set, whereas the dashed line is

the LS line after omitting the unusual point. For example, the observation

with Y > 45 in the first plot is an outlier relative to the LS fit. The extreme

observation in the second plot has a very small ri. Both points are highly

influential observations — the LS line changes dramatically when these

observations are held out.
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In the second plot, the extreme value is a high leverage value, which is

basically an outlier among the X values; Y does not enter in this calculation.

This influential observation is not an outlier because its presence in the analysis

determines that the LS line will essentially pass through it! These are values

with the potential of greatly distorting the fitted model. They may or may not

actually have distorted it.
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The hat variable from the influence() function on the object returned from

lm() fit will give the leverages: influence(lm.output)$hat. Leverage values

fall between 0 and 1. Experts consider a leverage value greater than 2p/n or

3p/n, where p is the number of predictors or factors plus the constant and n is

the number of observations, large and suggest you examine the corresponding

observation. A rule-of-thumb is to identify observations with leverage over 3p/n

or 0.99, whichever is smaller.

Dennis Cook developed a measure of the impact that individual cases have

on the placement of the LS line. His measure, called Cook’s distance or

Cook’s D, provides a summary of how far the LS line changes when each

individual point is held out (one at a time) from the analysis. While high

leverage values indicate observations that have the potential of causing trouble,

those with high Cook’sD values actually do disproportionately affect the overall

fit. The case with the largest D has the greatest impact on the placement of

the LS line. However, the actual influence of this case may be small. In the

plots above, the observations I focussed on have the largest Cook’s Ds.

A simple, but not unique, expression for Cook’s distance for the jth case is

Dj ∝
∑
i

(Ŷi − Ŷi[−j])2,

where Ŷi[−j] is the fitted value for the ith case when the LS line is computed from

all the data except case j. Here∝means thatDj is a multiple of
∑

i(Ŷi−Ŷi[−j])2

where the multiplier does not depend on the case. This expression implies that

Dj is also an overall measure of how much the fitted values change when case

j is deleted.

Observations with large D values may be outliers. Because D is calculated

using leverage values and standardized residuals, it considers whether an ob-

servation is unusual with respect to both x- and y-values. To interpret D,

compare it to the F -distribution with (p, n − p) degrees-of-freedom to deter-

mine the corresponding percentile. If the percentile value is less than 10% or

20%, the observation has little influence on the fitted values. If the percentile

value is greater than 50%, the observation has a major influence on the fitted
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values and should be examined.

Many statisticians make it a lot simpler than this sounds and use 1 as a

cutoff value for large Cook’s D (when D is on the appropriate scale). Using

the cutoff of 1 can simplify an analysis, since frequently one or two values will

have noticeably largerD values than other observations without actually having

much effect, but it can be important to explore any observations that stand

out. Cook’s distance values for each observation from a linear regression fit are

given with cooks.distance(lm.output).

Given a regression problem, you should locate the points with the largest

Djs and see whether holding these cases out has a decisive influence on the fit

of the model or the conclusions of the analysis. You can examine the relative

magnitudes of the Djs across cases without paying much attention to the actual

value of Dj, but there are guidelines (see below) on how large Dj needs to be

before you worry about it.

It is difficult to define a good strategy for dealing with outliers and influential

observations. Experience is the best guide. I will show you a few examples that

highlight some standard phenomena. One difficulty you will find is that certain

observations may be outliers because other observations are influential, or vice-

versa. If an influential observation is held out, an outlier may remain an outlier,

may become influential, or both, or neither. Observations of moderate influence

may become more, or less influential, when the most influential observation is

held out.

Thus, any sequential refitting of models holding out of observations should

not be based on the original (full-data) summaries, but rather on the summaries

that result as individual observations are omitted. I tend to focus more on

influential observations than outliers.

In the plots below, which cases do you think are most influential, and which

are outliers. What happens in each analysis if I delete the most influential case?

Are any of the remaining cases influential or poorly fitted?
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Many researchers are hesitant to delete points from an analysis. I think

this view is myopic, and in certain instances, such as the Gesell example to be

discussed, can not be empirically supported. Being rigid about this can lead to

some silly analyses of data, but one needs a very good reason and full disclosure

if any points are deleted.

8.9.7 Summary of diagnostic measures

The various measures discussed above often flag the same observations as un-

usual, but they certainly can flag different observations. At the very least I

examine standardized residuals and Cooks’s D values. They are invaluable

diagnostic measures, but nothing is perfect. Observations can be unusual in
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groups — a pair of unusual high leverage values close to each other will not

necessarily be flagged by Cook’s D since removing just one may not affect the

fit very much. Any analysis takes some careful thought.

These measures and techniques really are designed for multiple regression

problems where several predictor variables are used. We are using them in

simple linear regression to learn what they do and see what they have to say

about data, but in truth it is fairly simple with one variable to see what may

be an outlier in the x-direction, to see if the data are poorly fit, etc. With more

variables all that becomes quite difficult and these diagnostics are essential parts

of those analyses.

8.10 Regression analysis suggestion

There are a lot options allowed in R. I will make a few suggestions here on how

to start an analysis. What you find once you get started determines what more

you might wish to explore.

1. Plot the data. With lots of variables the matrix plot is valuable as a

quick screen. If you want to see better resolution on an individual scatter

plot, do the individual scatter plot.

2. Do any obvious transformations of the data. We will discuss this in a

lot more detail later. Re-plot with transformations.

3. Fit the least squares equation.

4. Examine the residual plots and results. Check for the patterns

discussed earlier.

(a) Plotting several diagnostic plots together seems convenient to me.

This gives you the essential plot (residuals vs. fitted values) plus a

quick check on normality and possible violations of independence

and influence. If you see something that needs closer investigation,

you may need to recreate one of the plots larger by itself.

(b) Do you see curvature in the standardized residual plot? If the sign of

the residuals has a distinct pattern vs. the fitted values, the linear fit
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is not adequate and you need some remedy, such as transformations.

Note that standardized residuals are more conventional and show

you what actually happened, while deleted residuals are probably

the better diagnostic tool for identifying problem cases.

(c) Does it appear σY |X depends upon X (we are assuming it does not)?

A megaphone pattern in residuals vs. fits is the classic (not the only)

pattern to look for. Weighted least squares or transformations may

be called for.

(d) Do you see obvious outliers? Make sure you do not have a mis-

recorded data value. It might be worth refitting the equation without

the outlier to see if it affects conclusions substantially.

(e) Is the normality assumption reasonable? This can be very closely

related to the preceding points.

(f) Is there a striking pattern in residuals vs. order of the data? This

can be an indication that the independence assumption is not valid.

5. Check the Cook’s D values. The Cook’s distance plot and Residuals

vs. Leverage (with Cook’s D) plot are both helpful.

6. If you found problem observations, omit them from the analysis and see

if any conclusions change substantially. There are two good ways to do

this.

(a) Subset the data.frame using subset().

(b) Use lm() with the weights= option with weights of 0 for the excluded

observations, weights of 1 for those included.

You may need to repeat all these steps many times for a complete analysis.

8.10.1 Residual and Diagnostic Analysis of the Blood
Loss Data

We looked at much of this before, but let us go through the above steps sys-

tematically. Recall the data set (we want to predict blood loss from weight):

Prof. Erik B. Erhardt



8.10: Regression analysis suggestion 361

weight time blood loss
1 44.3 105 503
2 40.6 80 490
3 69.0 86 471
4 43.7 112 505
5 50.3 109 482
6 50.2 100 490
7 35.4 96 513
8 52.2 120 464

1. Plot the data. Plot blood loss vs. weight.
# create data ids

thyroid$id <- 1:nrow(thyroid)

# ggplot: Plot the data with linear regression fit and confidence bands

library(ggplot2)

p <- ggplot(thyroid, aes(x = weight, y = blood_loss, label = id))

p <- p + geom_point()

# plot labels next to points

p <- p + geom_text(hjust = 0.5, vjust = -0.5)

# plot regression line and confidence band

p <- p + geom_smooth(method = lm)

print(p)
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Clearly the heaviest individual is an unusual value that warrants a closer

look (maybe data recording error). I might be inclined to try a transforma-

tion here (such as log(weight)) to make that point a little less influential.
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2. Do any obvious transformations of the data. We will look at transfor-

mations later.

3. Fit the least squares equation. Blood Loss appears significantly nega-

tively associated with weight.
lm.blood.wt <- lm(blood_loss ~ weight, data = thyroid)

# use summary() to get t-tests of parameters (slope, intercept)

summary(lm.blood.wt)

##

## Call:

## lm(formula = blood_loss ~ weight, data = thyroid)

##

## Residuals:

## Min 1Q Median 3Q Max

## -20.565 -6.189 4.712 8.192 9.382

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 552.4420 21.4409 25.77 2.25e-07 ***

## weight -1.3003 0.4364 -2.98 0.0247 *

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 11.66 on 6 degrees of freedom

## Multiple R-squared: 0.5967,Adjusted R-squared: 0.5295

## F-statistic: 8.878 on 1 and 6 DF, p-value: 0.02465

(a) Graphs: Check Standardized Residuals (or the Deleted Residu-
als). The residual plots:
# plot diagnistics

par(mfrow=c(2,3))

plot(lm.blood.wt, which = c(1,4,6))

# residuals vs weight

plot(thyroid$weight, lm.blood.wt$residuals, main="Residuals vs weight")

# horizontal line at zero

abline(h = 0, col = "gray75")

# Normality of Residuals

library(car)

# qq plot for studentized resid

# las = 1 : turns labels on y-axis to read horizontally

# id.n = n : labels n most extreme observations, and outputs to console

# id.cex = 1 : is the size of those labels

# lwd = 1 : line width

qqPlot(lm.blood.wt$residuals, las = 1, id.n = 3, main="QQ Plot")

## 8 2 4
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## 1 2 8

# residuals vs order of data

plot(lm.blood.wt$residuals, main="Residuals vs Order of data")

# horizontal line at zero

abline(h = 0, col = "gray75")
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4. Examine the residual plots and results.

(a) Do you see curvature? There does not appear to be curvature (and

it could be hard to detect with so few points).

(b) Does it appear σY |X depends upon X? Not much evidence for this.

(c) Do you see obvious outliers? Observation 3 is an outlier in the x

direction, and therefore possibly a high leverage point and influential

on the model fit.

(d) Is the normality assumption reasonable? There appears to be

some skewness, but with so few points normality may be reasonable.

(e) Is there a striking pattern in residuals vs. order of the data? No

striking pattern.

5. Check the Cook’s D values. We anticipated that the 3rd observation is
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affecting the fit by a lot more than any other values. The D-value is much

larger than 1. Note that the residual is not large for this value.
6. Omit problem observations from the analysis and see if any conclu-

sions change substantially. Let us refit the equation without observa-
tion 3 to see if anything changes drastically. I will use the weighted least
squares approach discussed earlier on this example. Define a variable wt
that is 1 for all observations except obs. 3, and make it 0 for that one.
# wt = 1 for all except obs 3 where wt = 0

thyroid$wt <- as.numeric(!(thyroid$id == 3))

thyroid$wt

## [1] 1 1 0 1 1 1 1 1

What changes by deleting case 3? The fitted line gets steeper (slope
changes from −1.30 to −2.19), adjusted R2 gets larger (up to 58% from
53%), and S changes from 11.7 to 10.6. Because the Weight values are

much less spread out, SE(β̂1) becomes quite a bit larger (to 0.714, up
from 0.436) and we lose a degree of freedom for MS Error (which will
penalize us on tests and CIs). Just about any quantitative statement
we would want to make using CIs would be about the same either way
since CIs will overlap a great deal, and our qualitative interpretations are
unchanged (Blood Loss drops with Weight). Unless something shows up
in the plots, I don’t see any very important changes here.
lm.blood.wt.no3 <- lm(blood_loss ~ weight, data = thyroid, weights = wt)

# use summary() to get t-tests of parameters (slope, intercept)

summary(lm.blood.wt.no3)

##

## Call:

## lm(formula = blood_loss ~ weight, data = thyroid, weights = wt)

##

## Weighted Residuals:

## 1 2 3 4 5 6 7

## 8.5033 -12.6126 0.0000 9.1872 0.6641 8.4448 -1.0186

## 8

## -13.1683

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 591.6677 32.5668 18.168 9.29e-06 ***

## weight -2.1935 0.7144 -3.071 0.0278 *

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 10.6 on 5 degrees of freedom

## Multiple R-squared: 0.6535,Adjusted R-squared: 0.5842
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## F-statistic: 9.428 on 1 and 5 DF, p-value: 0.02777

# exclude obs 3

thyroid.no3 <- subset(thyroid, wt == 1)

# ggplot: Plot the data with linear regression fit and confidence bands

library(ggplot2)

p <- ggplot(thyroid.no3, aes(x = weight, y = blood_loss, label = id))

p <- p + geom_point()

# plot labels next to points

p <- p + geom_text(hjust = 0.5, vjust = -0.5)

# plot regression line and confidence band

p <- p + geom_smooth(method = lm)

print(p)
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Nothing very striking shows up in the residual plots, and no Cook’s D
values are very large among the remaining observations.
# plot diagnistics

par(mfrow=c(2,3))

plot(lm.blood.wt.no3, which = c(1,4,6))

# residuals vs weight

plot(thyroid.no3$weight, lm.blood.wt.no3$residuals[(thyroid$wt == 1)]

, main="Residuals vs weight")

# horizontal line at zero

abline(h = 0, col = "gray75")

# Normality of Residuals

library(car)

# qq plot for studentized resid

# las = 1 : turns labels on y-axis to read horizontally
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# id.n = n : labels n most extreme observations, and outputs to console

# id.cex = 1 : is the size of those labels

# lwd = 1 : line width

qqPlot(lm.blood.wt.no3$residuals, las = 1, id.n = 3, main="QQ Plot")

## 3 8 2

## 8 1 2

# residuals vs order of data

plot(lm.blood.wt.no3$residuals, main="Residuals vs Order of data")

# horizontal line at zero

abline(h = 0, col = "gray75")
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How much difference is there in a practical sense? Examine the 95% predic-

tion interval for a new observation at Weight = 50kg. Previously we saw that

interval based on all 8 observations was from 457.1 to 517.8 ml of Blood Loss.

Based on just the 7 observations the prediction interval is 451.6 to 512.4 ml.

There really is no practical difference here.
# CI for the mean and PI for a new observation at weight=50

predict(lm.blood.wt , data.frame(weight=50), interval = "prediction")

## fit lwr upr

## 1 487.4257 457.098 517.7533

predict(lm.blood.wt.no3, data.frame(weight=50), interval = "prediction")
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## Warning in predict.lm(lm.blood.wt.no3, data.frame(weight = 50), interval = "prediction"):

Assuming constant prediction variance even though model fit is weighted

## fit lwr upr

## 1 481.9939 451.5782 512.4096

Therefore, while obs. 3 was potentially influential, whether the value is

included or not makes very little difference in the model fit or relationship

between Weight and BloodLoss.

8.10.2 Gesell data

These data are from a UCLA study of cyanotic heart disease in children. The

predictor is the age of the child in months at first word and the response variable

is the Gesell adaptive score, for each of 21 children.

id age score
1 1 15 95
2 2 26 71
3 3 10 83
4 4 9 91
5 5 15 102
6 6 20 87
7 7 18 93
8 8 11 100
9 9 8 104

10 10 20 94
11 11 7 113
12 12 9 96
13 13 10 83
14 14 11 84
15 15 11 102
16 16 10 100
17 17 12 105
18 18 42 57
19 19 17 121
20 20 11 86
21 21 10 100

Let us go through the same steps as before.
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1. Plot Score versus Age. Comment on the relationship between Score and
Age.
# ggplot: Plot the data with linear regression fit and confidence bands

library(ggplot2)

p <- ggplot(gesell, aes(x = age, y = score, label = id))

p <- p + geom_point()

# plot labels next to points

p <- p + geom_text(hjust = 0.5, vjust = -0.5)

# plot regression line and confidence band

p <- p + geom_smooth(method = lm)

print(p)
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2. There are no obvious transformations to try here.

3. Fit a simple linear regression model. Provide an equation for the LS line.

Does age at first word appear to be an “important predictor” of Gesell

adaptive score? (i.e., is the estimated slope significantly different from

zero?)
lm.score.age <- lm(score ~ age, data = gesell)

# use summary() to get t-tests of parameters (slope, intercept)

summary(lm.score.age)

##

## Call:

## lm(formula = score ~ age, data = gesell)

##
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## Residuals:

## Min 1Q Median 3Q Max

## -15.604 -8.731 1.396 4.523 30.285

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 109.8738 5.0678 21.681 7.31e-15 ***

## age -1.1270 0.3102 -3.633 0.00177 **

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 11.02 on 19 degrees of freedom

## Multiple R-squared: 0.41,Adjusted R-squared: 0.3789

## F-statistic: 13.2 on 1 and 19 DF, p-value: 0.001769

4. Do these plots suggest any inadequacies with the model?

# plot diagnistics

par(mfrow=c(2,3))

plot(lm.score.age, which = c(1,4,6))

# residuals vs weight

plot(gesell$age, lm.score.age$residuals, main="Residuals vs age")

# horizontal line at zero

abline(h = 0, col = "gray75")

# Normality of Residuals

library(car)

qqPlot(lm.score.age$residuals, las = 1, id.n = 3, main="QQ Plot")

## 19 3 13

## 21 1 2

# residuals vs order of data

plot(lm.score.age$residuals, main="Residuals vs Order of data")

# horizontal line at zero

abline(h = 0, col = "gray75")
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5. Observations 18 and 19 stand out with relatively high Cook’s D. The

cutoff line is only a rough guideline. Those two were flagged with high

influence and standardized residual, respectively, also. Be sure to examine

the scatter plot carefully to see why 18 and 19 stand out.

6. Consider doing two additional analyses: Analyze the data after omitting

case 18 only and analyze the data after omitting case 19 only. Refit the

regression model for each of these two scenarios. Provide a summary

table such as the following, giving the relevant summary statistics for

the three analyses. Discuss the impact that observations 18 and 19 have

individually on the fit of the model.

When observation 18 is omitted, the estimated slope is not significantly

different from zero (p-value = 0.1489), indicating that age is not an impor-

tant predictor of Gesell score. This suggests that the significance of age

as a predictor in the original analysis was due solely to the presence of ob-

servation 18. Note the dramatic decrease in R2 after deleting observation

18.
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The fit of the model appears to improve when observation 19 is omitted.

For example, R2 increases noticeably and the p-value for testing the sig-

nificance of the slope decreases dramatically (in a relative sense). These

tendencies would be expected based on the original plot. However, this

improvement is misleading. Once observation 19 is omitted, observation

18 is much more influential. Again the significance of the slope is due to

the presence of observation 18.

Feature Full data Omit 18 Omit 19

b0 109.87 105.63 109.30

b1 -1.13 -0.78 -1.19

SE(b0) 5.07 7.16 3.97

SE(b1) 0.31 0.52 0.24

R2 0.41 0.11 0.57

p-val for H0 : β1 = 0 0.002 0.149 0.000

Can you think of any reasons to justify doing the analysis without observation

18?

If you include observation 18 in the analysis, you are assuming that the mean

Gesell score is linearly related to age over the entire range of observed ages.

Observation 18 is far from the other observations on age (age for observation

18 is 42; the second highest age is 26; the lowest age is 7). There are no

children with ages between 27 and 41, so we have no information on whether

the relationship is roughly linear over a significant portion of the range of ages. I

am comfortable deleting observation 18 from the analysis because it’s inclusion

forces me to make an assumption that I can not check using these data. I am

only willing to make predictions of Gesell score for children with ages roughly

between 7 and 26. However, once this point is omitted, age does not appear to

be an important predictor.

A more complete analysis would delete observation 18 and 19 together.

What would you expect to see if you did this?
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8.11 Weighted Least Squares

Earlier I indicated that nonconstant error variance can be addressed (some-

times) with weighted least squares. The scedastic function is the conditional

variance of Y given X . Y is said to be heteroscedastic if it’s variance

depends on the value of X (variance changes), and homoscedastic if it’s

variance does not depend on X (constant variance).

Recall the LS (OLS or ordinary LS) line chooses the values of β0 and β1

that minimize
n∑
i=1

{Yi − (β0 + β1Xi)}2

over all possible choices of β0 and β1. The weighted LS (WLS) line chooses the

values of β0 and β1 that minimize

n∑
i=1

wi{Yi − (β0 + β1Xi)}2

over all possible choices of β0 and β1. If σY |X depends up X, then the correct

choice of weights is inversely proportional to variance, wi ∝ σ2
Y |X .

Consider the following data and plot of y vs. x and standardized OLS resid-

uals vs x. It is very clear that variability increases with x.
#### Weighted Least Squares
# R code to generate data
set.seed(7)
n <- 100
# 1s, Xs uniform 0 to 100
X <- matrix(c(rep(1,n),runif(n,0,100)), ncol=2)
# intercept and slope (5, 5)
beta <- matrix(c(5,5),ncol=1)
# errors are X*norm(0,1), so variance increases with X
e <- X[,2]*rnorm(n,0,1)
# response variables
y <- X %*% beta + e

# put data into data.frame
wlsdat <- data.frame(y, x = X[,2])

# fit regression
lm.y.x <- lm(y ~ x, data = wlsdat)

# put residuals in data.frame
wlsdat$res <- lm.y.x$residuals

# ggplot: Plot the data with linear regression fit

library(ggplot2)

p <- ggplot(wlsdat, aes(x = x, y = y))
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p <- p + geom_point()

p <- p + geom_smooth(method = lm, se = FALSE)

print(p)

# ggplot: Plot the residuals

library(ggplot2)

p <- ggplot(wlsdat, aes(x = x, y = res))

p <- p + geom_point()

p <- p + geom_smooth(method = lm, se = FALSE)

print(p)
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In order to use WLS to solve this problem, we need some form for σ2
Y |X .

Finding that form is a real problem with WLS. It can be useful to plot the
absolute value of the standardized residual vs. x to see if the top boundary
seems to follow a general pattern.
# ggplot: Plot the absolute value of the residuals

library(ggplot2)

p <- ggplot(wlsdat, aes(x = x, y = abs(res)))

p <- p + geom_point()

print(p)
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It is plausible the upper boundary is linear, so let us try wi = 1
x2

. Stan-
dardized residuals from this WLS fit look very good. Note that raw (non-
standardized) residuals will still have the same pattern — it is essential to use
standardized residuals here.
# fit regression
lm.y.x.wt <- lm(y ~ x, data = wlsdat, weights = x^(-2))

# put residuals in data.frame
wlsdat$reswt <- lm.y.x.wt$residuals
wlsdat$wt <- lm.y.x.wt$weights^(1/2)

# ggplot: Plot the absolute value of the residuals

library(ggplot2)

p <- ggplot(wlsdat, aes(x = x, y = reswt*wt))

p <- p + geom_point()

print(p)
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Compare also the OLS fitted equation:
summary(lm.y.x)

##

## Call:

## lm(formula = y ~ x, data = wlsdat)

##

## Residuals:

## Min 1Q Median 3Q Max

## -168.175 -24.939 2.542 24.973 125.366

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 7.6308 10.4256 0.732 0.466

## x 5.0348 0.1791 28.116 <2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 50.53 on 98 degrees of freedom

## Multiple R-squared: 0.8897,Adjusted R-squared: 0.8886

## F-statistic: 790.5 on 1 and 98 DF, p-value: < 2.2e-16

to the WLS fitted equation:
summary(lm.y.x.wt)

##

## Call:

## lm(formula = y ~ x, data = wlsdat, weights = x^(-2))

##

## Weighted Residuals:

## Min 1Q Median 3Q Max
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## -1.8939 -0.6707 0.1777 0.5963 2.3132

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 5.09309 0.54931 9.272 4.61e-15 ***

## x 5.10690 0.09388 54.399 < 2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.8902 on 98 degrees of freedom

## Multiple R-squared: 0.9679,Adjusted R-squared: 0.9676

## F-statistic: 2959 on 1 and 98 DF, p-value: < 2.2e-16

Clearly the weighted fit looks better, although note that everything is based

on the weighted SS. In practice it can be pretty difficult to determine the correct

set of weights, but WLS works much better than OLS if appropriate. I actually

simulated this data set using β0 = β1 = 5. Which fit actually did better?
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Chapter 9

Introduction to the
Bootstrap

Contents
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 378

9.2 Bootstrap . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379

9.2.1 Ideal versus Bootstrap world, sampling distributions . . . . 380

9.2.2 The accuracy of the sample mean . . . . . . . . . . . . . . 384

9.2.3 Comparing bootstrap sampling distribution from popula-
tion and sample . . . . . . . . . . . . . . . . . . . . . . . . 390

## Warning in file(filename, "r", encoding = encoding): cannot

open file ’ADA1 12 RFunctions.R’: No such file or directory

## Error in file(filename, "r", encoding = encoding): cannot

open the connection

Learning objectives

After completing this topic, you should be able to:

explain the bootstrap principle for hypothesis tests and inference.

decide (for simple problems) how to construct a bootstrap procedure.
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Achieving these goals contributes to mastery in these course learning outcomes:

1. organize knowledge.

5. define parameters of interest and hypotheses in words and notation.

8. use statistical software.

12. make evidence-based decisions.

9.1 Introduction

Statistical theory attempts to answer three basic questions:

1. How should I collect my data?

2. How should I analyze and summarize the data that I’ve collected?

3. How accurate are my data summaries?

Question 3 consitutes part of the process known as statistical inference. The

bootstrap makes certain kinds of statistical inference1. Let’s look at an example.

Example: Aspirin and heart attacks, large-sample theory Does

aspirin prevent heart attacks in healthy middle-aged men? A controlled, ran-

domized, double-blind study was conducted and gathered the following data.
(fatal plus non-fatal)

heart attacks subjects

aspirin group: 104 11037

placebo group: 189 11034
A good experimental design, such as this one, simplifies the results! The ratio

of the two rates (the risk ratio) is

θ̂ =
104/11037

189/11034
= 0.55.

Because of the solid experimental design, we can believe that the aspirin-takers

only have 55% as many heart attacks as the placebo-takers.

1Efron (1979), “Bootstrap methods: another look at the jackknife.” Ann. Statist. 7, 1–26
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We are not really interested in the estimated ratio θ̂, but the true ratio, θ.

That is the ratio if we could treat all possible subjects, not just a sample of

them. Large sample theory tells us that the log risk ratio has an approximate

Normal distribution. The standard error of the log risk ratio is estimated simply

by the square root of the sum of the reciprocals of the four frequencies:

SE(log(RR)) =

√
1

104
+

1

189
+

1

11037
+

1

11034
= 0.1228

The 95% CI for log(θ) is

log(θ̂)± 1.96× SE(log(RR)), (−0.839,−0.357),

and expontiating gives the CI on the ratio scale,

exp{log(θ̂)± 1.96× SE(log(RR))}, (0.432, 0.700).

The same data that allowed us to estimate the ratio θ with θ̂ = 0.55 also

allowed us to get an idea of the estimate’s accuracy.

Example: Aspirin and strokes, large-sample theory The aspirin

study tracked strokes as well as heart attacks.
strokes subjects

aspirin group: 119 11037

placebo group: 98 11034

The ratio of the two rates (the risk ratio) is

θ̂ =
119/11037

98/11034
= 1.21.

It looks like aspirin is actually harmful, now, however the 95% interval for the

true stroke ratio θ is (0.925, 1.583). This includes the neutral value θ = 1, at

which aspirin would be no better or worse than placebo for strokes.
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9.2 Bootstrap

The bootstrap is a data-based simulation method for statistical inference, which

can be used to produce inferences like those in the previous slides. The term

“bootstrap” comes from literature. In “The Adventures of Baron Munchausen”,

by Rudolph Erich Raspe, the Baron had fallen to the bottom of a deep lake,

and he thought to get out by pulling himself up by his own bootstraps.

9.2.1 Ideal versus Bootstrap world, sampling distri-
butions

Ideal world

1. Population of interest

2. Obtain many simple random samples (SRSs) of size n

3. For each SRS, calculate statistic of interest (θ)

4. Sampling distribution is the distribution of the calculated statistic

Bootstrap world

1. Population of interest; One empirical distribution based on a sample of

size n

2. Obtain many bootstrap resamples of size n

3. For each resample, calculate statistic of interest (θ∗)

4. Bootstrap distribution is the distribution of the calculated statistic

5. Bootstrap distribution estimates the sampling distribution centered at the

statistic (not the parameter).

Cartoon: Estimating the proportion of Republican votes Imagine

a two-candidate eleection. The following illustrates how to use exit polls to

estimate (with uncertainty) the probability of a Republican win.
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Note the similar structure 
between the ideal and bootstrap cases

= Republican vote

= Democrat vote
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   Republican votes

How can the sampling distribution of the proportion of Republican votes be estimated?

How is the bootstrap used in this scenario?
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1

2

R

Statistic Bootstrap sampling distribution

0.20 0.50 0.80

Statistic

Election

Registered voters Votes counted Proportion of votes for Republican candidate

Bootstrap resamples
Simulate many elections

If                    , 
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Area = the probability 
of a Republican win
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Example: Aspirin and strokes, bootstrap Here’s how the bootstrap

works in the stroke example. We create two populations:

� the first consisting of 119 ones and 11037− 119 = 10918 zeros,

� the second consisting of 98 ones and 11034− 98 = 10936 zeros.

We draw with replacement a sample of 11037 items from the first population,

and a sample of 11034 items from the second population. Each is called a

bootstrap sample. From these we derive the bootstrap replicate of θ̂:

θ̂∗ =
Proportion of ones in bootstrap sample 1

Proportion of ones in bootstrap sample 2
.

Repeat this process a large number of times, say 10000 times, and obtain 10000

bootstrap replicates θ̂∗. The summaries are in the code, followed by a histogram

of bootstrap replicates, θ̂∗.
#### Example: Aspirin and strokes, bootstrap

# sample size (n) and successes (s) for sample 1 (aspirin) and 2 (placebo)

n <- c(11037, 11034)

s <- c( 119, 98)

# data for samples 1 and 2, where 1 = success (stroke), 0 = failure (no stroke)

dat1 <- c(rep(1, s[1]), rep(0, n[1] - s[1]))

dat2 <- c(rep(1, s[2]), rep(0, n[2] - s[2]))

# draw R bootstrap replicates

R <- 10000

# init location for bootstrap samples

bs1 <- rep(NA, R)

bs2 <- rep(NA, R)

# draw R bootstrap resamples of proportions

for (i in 1:R) {
# proportion of successes in bootstrap samples 1 and 2

# (as individual steps for group 1:)

resam1 <- sample(dat1, n[1], replace = TRUE)

success1 <- sum(resam1)

bs1[i] <- success1 / n[1]

# (as one line for group 2:)

bs2[i] <- sum(sample(dat2, n[2], replace = TRUE)) / n[2]

}
# bootstrap replicates of ratio estimates

rat <- bs1 / bs2

# sort the ratio estimates to obtain bootstrap CI

rat.sorted <- sort(rat)

# 0.025th and 0.975th quantile gives equal-tail bootstrap CI

CI.bs <- c(rat.sorted[round(0.025*R)], rat.sorted[round(0.975*R+1)])

CI.bs
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## [1] 0.9399154 1.5878036

## Plot the bootstrap distribution with CI

# First put data in data.frame for ggplot()

dat.rat <- data.frame(rat)

library(ggplot2)

p <- ggplot(dat.rat, aes(x = rat))

p <- p + geom_histogram(aes(y=..density..), binwidth=0.02)

p <- p + geom_density(alpha=0.1, fill="white")

p <- p + geom_rug()

# vertical line at 1 and CI

p <- p + geom_vline(xintercept=1, colour="#BB0000", linetype="dashed")

p <- p + geom_vline(xintercept=CI.bs[1], colour="#00AA00", linetype="longdash")

p <- p + geom_vline(xintercept=CI.bs[2], colour="#00AA00", linetype="longdash")

p <- p + labs(title = "Bootstrap distribution of relative risk ratio, strokes")

p <- p + xlab("ratio (red = 1, green = bootstrap CI)")

print(p)
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In this simple case, the confidence interval derived from the bootstrap

(0.94, 1.588) agrees very closely with the one derived from statistical theory

(0.925, 1.583). Bootstrap methods are intended to simplify the calculation of

inferences like those using large-sample theory, producing them in an automatic

way even in situations much more complicated than the risk ratio in the aspirin

example.
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9.2.2 The accuracy of the sample mean

For sample means, and essentially only for sample means, an accuracy formula

(for the standard error of the parameter) is easy to obtain (using the delta

method). We’ll see how to use the bootstrap for the sample mean, then for the

more complicated situation of assessing the accuracy of the median.

Bootstrap Principle The plug-in principle is used when the underly-

ing distribution is unknown and you substitute your best guess for what that

distribution is. What to substitute?

Empirical distribution ordinary bootstrap

Smoothed distribution (kernel) smoothed bootstrap

Parametric distribution parametric bootstrap

Satisfy assumptions such as the null hypothesis

This substitution works in many cases, but not always. Keep in mind that the

bootstrap distribution is centered at the statistic, not the parameter. Imple-

mention is done by Monte Carlo sampling.

The bootstrap is commonly implemented in one of two ways, nonparamet-

rically or parametrically. An exact nonparametric bootstrap requires nn

samples! That’s one for every possible combination of each of n observation po-

sitions taking the value of each of n observations. This is sensibly approximated

by using the Monte Carlo strategy of drawing a large number (1000 or 10000)

of random resamples. On the other hand, a parametric bootstrap first

assumes a distribution for the population (such as a normal distribution) and

estimates the distributional parameters (such as the mean and variance) from

the observed sample. Then, the Monte Carlo strategy is used to draw a large

number (1000 or 10000) of samples from the estimated parametric distribution.

Example: Mouse survival, two-sample t-test, mean Sixteen mice

were randomly assigned to a treatment group or a control group. Shown are

their survival times, in days, following a test surgery. Did the treatment prolong

survival?
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Group Data n Mean SE

Control: 52, 104, 146, 10, 9 56.22 14.14

51, 30, 40, 27, 46

Treatment: 94, 197, 16, 38, 7 86.86 25.24

99, 141, 23

Difference: 30.63 28.93

Numerical and graphical summaries of the data are below. There seems to
be a slight difference in variability between the two treatment groups.
#### Example: Mouse survival, two-sample t-test, mean
treatment <- c(94, 197, 16, 38, 99, 141, 23)
control <- c(52, 104, 146, 10, 51, 30, 40, 27, 46)
survive <- c(treatment, control)
group <- c(rep("Treatment", length(treatment)), rep("Control", length(control)))
mice <- data.frame(survive, group)

library(plyr)
# ddply "dd" means the input and output are both data.frames
mice.summary <- ddply(mice,

"group",
function(X) {
data.frame( m = mean(X$survive),

s = sd(X$survive),
n = length(X$survive)

)
}

)
# standard errors
mice.summary$se <- mice.summary$s/sqrt(mice.summary$n)
# individual confidence limits
mice.summary$ci.l <- mice.summary$m - qt(1-.05/2, df=mice.summary$n-1) * mice.summary$se
mice.summary$ci.u <- mice.summary$m + qt(1-.05/2, df=mice.summary$n-1) * mice.summary$se

mice.summary

## group m s n se ci.l ci.u

## 1 Control 56.22222 42.47581 9 14.15860 23.57242 88.87202

## 2 Treatment 86.85714 66.76683 7 25.23549 25.10812 148.60616

diff(mice.summary$m) #£

## [1] 30.63492

# histogram using ggplot

p <- ggplot(mice, aes(x = survive))

p <- p + geom_histogram(binwidth = 20)

p <- p + geom_rug()

p <- p + facet_grid(group ~ .)

p <- p + labs(title = "Mouse survival following a test surgery") + xlab("Survival (days)")

print(p)
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The standard error for the difference is 28.93 =
√

25.242 + 14.142, so the

observed difference of 30.63 is only 30.63/28.93=1.05 estimated standard errors

greater than zero, an insignificant result.

The two-sample t-test of the difference in means confirms the lack of sta-

tistically significant difference between these two treatment groups with a p-

value=0.3155.
t.test(survive ~ group, data = mice)

##

## Welch Two Sample t-test

##

## data: survive by group

## t = -1.0587, df = 9.6545, p-value = 0.3155

## alternative hypothesis: true difference in means is not equal to 0

## 95 percent confidence interval:

## -95.42263 34.15279

## sample estimates:

## mean in group Control mean in group Treatment

## 56.22222 86.85714

But these are small samples, and the control sample does not look normal.

We could do a nonparametric two-sample test of difference of medians. Or, we

could use the bootstrap to make our inference.
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Example: Mouse survival, two-sample bootstrap, mean Here’s

how the bootstrap works in the two-sample mouse example. We draw with

replacement from each sample, calculate the mean for each sample, then take

the difference in means. Each is called a bootstrap sample of the difference in

means. From these we derive the bootstrap replicate of µ̂:

µ̂∗ = x̄∗ − ȳ∗.

Repeat this process a large number of times, say 10000 times, and obtain 10000

bootstrap replicates µ̂∗. The summaries are in the code, followed by a histogram

of bootstrap replicates, µ̂∗.
#### Example: Mouse survival, two-sample bootstrap, mean

# draw R bootstrap replicates

R <- 10000

# init location for bootstrap samples

bs1 <- rep(NA, R)

bs2 <- rep(NA, R)

# draw R bootstrap resamples of means

for (i in 1:R) {
bs2[i] <- mean(sample(control, replace = TRUE))

bs1[i] <- mean(sample(treatment, replace = TRUE))

}
# bootstrap replicates of difference estimates

bs.diff <- bs1 - bs2

sd(bs.diff)

## [1] 27.00087

# sort the difference estimates to obtain bootstrap CI

diff.sorted <- sort(bs.diff)

# 0.025th and 0.975th quantile gives equal-tail bootstrap CI

CI.bs <- c(diff.sorted[round(0.025*R)], diff.sorted[round(0.975*R+1)])

CI.bs

## [1] -21.96825 83.09524

## Plot the bootstrap distribution with CI

# First put data in data.frame for ggplot()

dat.diff <- data.frame(bs.diff)

library(ggplot2)

p <- ggplot(dat.diff, aes(x = bs.diff))

p <- p + geom_histogram(aes(y=..density..), binwidth=5)

p <- p + geom_density(alpha=0.1, fill="white")

p <- p + geom_rug()

# vertical line at 0 and CI

p <- p + geom_vline(xintercept=0, colour="#BB0000", linetype="dashed")
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p <- p + geom_vline(xintercept=CI.bs[1], colour="#00AA00", linetype="longdash")

p <- p + geom_vline(xintercept=CI.bs[2], colour="#00AA00", linetype="longdash")

p <- p + labs(title = "Bootstrap distribution of difference in survival time, median")

p <- p + xlab("ratio (red = 0, green = bootstrap CI)")

print(p)
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Example: Mouse survival, two-sample bootstrap, median For

most statistics (such as the median) we don’t have a formula for the limiting

value of the standard error, but in fact no formula is needed. Instead, we use

the numerical output of the bootstrap program. The summaries are in the code,

followed by a histogram of bootstrap replicates, η̂∗.

Group Data (n) Median est. SE

Control: 52, 104, 146, 10, (9) 46 ?

51, 30, 40, 27, 46

Treatment: 94, 197, 16, 38, (7) 94 ?

99, 141, 23

Difference: 48 ?

#### Example: Mouse survival, two-sample bootstrap, median

sort(control)

## [1] 10 27 30 40 46 51 52 104 146
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sort(treatment)

## [1] 16 23 38 94 99 141 197

# draw R bootstrap replicates

R <- 10000

# init location for bootstrap samples

bs1 <- rep(NA, R)

bs2 <- rep(NA, R)

# draw R bootstrap resamples of medians

for (i in 1:R) {
bs2[i] <- median(sample(control, replace = TRUE))

bs1[i] <- median(sample(treatment, replace = TRUE))

}
# bootstrap replicates of difference estimates

bs.diff <- bs1 - bs2

sd(bs.diff)

## [1] 40.43024

# sort the difference estimates to obtain bootstrap CI

diff.sorted <- sort(bs.diff)

# 0.025th and 0.975th quantile gives equal-tail bootstrap CI

CI.bs <- c(diff.sorted[round(0.025*R)], diff.sorted[round(0.975*R+1)])

CI.bs

## [1] -29 111

## Plot the bootstrap distribution with CI

# First put data in data.frame for ggplot()

dat.diff <- data.frame(bs.diff)

library(ggplot2)

p <- ggplot(dat.diff, aes(x = bs.diff))

p <- p + geom_histogram(aes(y=..density..), binwidth=5)

p <- p + geom_density(alpha=0.1, fill="white")

p <- p + geom_rug()

# vertical line at 0 and CI

p <- p + geom_vline(xintercept=0, colour="#BB0000", linetype="dashed")

p <- p + geom_vline(xintercept=CI.bs[1], colour="#00AA00", linetype="longdash")

p <- p + geom_vline(xintercept=CI.bs[2], colour="#00AA00", linetype="longdash")

p <- p + labs(title = "Bootstrap distribution of difference in survival time, median")

p <- p + xlab("ratio (red = 0, green = bootstrap CI)")

print(p)
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9.2.3 Comparing bootstrap sampling distribution from
population and sample

Example: Law School, correlation of (LSAT, GPA) The popula-

tion of average student measurements of (LSAT, GPA) for the universe of 82

law schools are in the table below. Imagine that we don’t have all 82 schools

worth of data. Consider taking a random sample of 15 schools, indicated by

the +’s.
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School LSAT GPA School LSAT GPA School LSAT GPA
1 622 3.23 28 632 3.29 56 641 3.28
2 542 2.83 29 587 3.16 57 512 3.01
3 579 3.24 30 581 3.17 58 631 3.21
4+ 653 3.12 31+ 605 3.13 59 597 3.32
5 606 3.09 32 704 3.36 60 621 3.24
6+ 576 3.39 33 477 2.57 61 617 3.03
7 620 3.10 34 591 3.02 62 637 3.33
8 615 3.40 35+ 578 3.03 62 572 3.08
9 553 2.97 36+ 572 2.88 64 610 3.13

10 607 2.91 37 615 3.37 65 562 3.01
11 558 3.11 38 606 3.20 66 635 3.30
12 596 3.24 39 603 3.23 67 614 3.15
13+ 635 3.30 40 535 2.98 68 546 2.82
14 581 3.22 41 595 3.11 69 598 3.20
15+ 661 3.43 42 575 2.92 70+ 666 3.44
16 547 2.91 43 573 2.85 71 570 3.01
17 599 3.23 44 644 3.38 72 570 2.92
18 646 3.47 45+ 545 2.76 73 605 3.45
19 622 3.15 46 645 3.27 74 565 3.15
20 611 3.33 47+ 651 3.36 75 686 3.50
21 546 2.99 48 562 3.19 76 608 3.16
22 614 3.19 49 609 3.17 77 595 3.19
23 628 3.03 50+ 555 3.00 78 590 3.15
24 575 3.01 51 586 3.11 79+ 558 2.81
25 662 3.39 52+ 580 3.07 80 611 3.16
26 627 3.41 53+ 594 2.96 81 564 3.02
27 608 3.04 54 594 3.05 82+ 575 2.74

55 560 2.93

#### Example: Law School, correlation of (LSAT, GPA)

School <- 1:82

LSAT <- c(622, 542, 579, 653, 606, 576, 620, 615, 553, 607, 558, 596, 635,

581, 661, 547, 599, 646, 622, 611, 546, 614, 628, 575, 662, 627,

608, 632, 587, 581, 605, 704, 477, 591, 578, 572, 615, 606, 603,

535, 595, 575, 573, 644, 545, 645, 651, 562, 609, 555, 586, 580,

594, 594, 560, 641, 512, 631, 597, 621, 617, 637, 572, 610, 562,

635, 614, 546, 598, 666, 570, 570, 605, 565, 686, 608, 595, 590,

558, 611, 564, 575)

GPA <- c(3.23, 2.83, 3.24, 3.12, 3.09, 3.39, 3.10, 3.40, 2.97, 2.91, 3.11,

3.24, 3.30, 3.22, 3.43, 2.91, 3.23, 3.47, 3.15, 3.33, 2.99, 3.19,
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3.03, 3.01, 3.39, 3.41, 3.04, 3.29, 3.16, 3.17, 3.13, 3.36, 2.57,

3.02, 3.03, 2.88, 3.37, 3.20, 3.23, 2.98, 3.11, 2.92, 2.85, 3.38,

2.76, 3.27, 3.36, 3.19, 3.17, 3.00, 3.11, 3.07, 2.96, 3.05, 2.93,

3.28, 3.01, 3.21, 3.32, 3.24, 3.03, 3.33, 3.08, 3.13, 3.01, 3.30,

3.15, 2.82, 3.20, 3.44, 3.01, 2.92, 3.45, 3.15, 3.50, 3.16, 3.19,

3.15, 2.81, 3.16, 3.02, 2.74)

Sampled <- c(0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0,

1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1)

# law = population

law <- data.frame(School, LSAT, GPA, Sampled)

law$Sampled <- factor(law$Sampled)

# law.sam = sample

law.sam <- subset(law, Sampled == 1)

library(ggplot2)

p <- ggplot(law, aes(x = LSAT, y = GPA))

p <- p + geom_point(aes(colour = Sampled, shape = Sampled), alpha = 0.8, size = 2)

p <- p + labs(title = "Law School average scores of LSAT and GPA")

print(p)
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Let’s bootstrap the sample of 15 observations to get the bootstrap sampling

distribution of correlation (for sampling 15 from the population). From the
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bootstrap sampling distribution we’ll calculate a bootstrap confidence interval

for the true population correlation, as well as a bootstrap standard deviation for

the correlation. But how well does this work? Let’s compare it against the true

sampling distribution by drawing 15 random schools from the population of 82

schools and calculating the correlation. If the bootstrap works well (from our

hopefully representative sample of 15), then the bootstrap sampling distribution

from the 15 schools will be close to the true sampling distribution.

The code below does that, followed by two histograms. In this case, the

histograms are noticeably non-normal, having a long tail toward the left. In-

ferences based on the normal curve are suspect when the bootstrap histogram

is markedly non-normal. The histogram on the left is the nonparametric boot-

strap sampling distribution using only the n = 15 sampled schools with 10000

bootstrap replicates of ĉorr(x∗). The histogram on the right is the true sam-

pling distribution using 10000 replicates of ĉorr(x∗) from the population of law

school data, repeatedly drawing n = 15 without replacement from the N = 82

points. Impressively, the bootstrap histogram on the left strongly resembles

the population histogram on the right. Remember, in a real problem we would

only have the information on the left, from which we would be trying to infer

the situation on the right.
# draw R bootstrap replicates

R <- 10000

# init location for bootstrap samples

bs.pop <- rep(NA, R)

bs.sam <- rep(NA, R)

# draw R bootstrap resamples of medians

for (i in 1:R) {
# sample() draws indicies then bootstrap correlation of LSAT and GPA

# population

bs.pop[i] = cor(law [sample(seq(1,nrow(law )), nrow(law.sam)

, replace = TRUE), 2:3])[1, 2]

# sample

bs.sam[i] = cor(law.sam[sample(seq(1,nrow(law.sam)), nrow(law.sam)

, replace = TRUE), 2:3])[1, 2]

}

# sort the difference estimates to obtain bootstrap CI

diff.sorted <- sort(bs.pop)

# 0.025th and 0.975th quantile gives equal-tail bootstrap CI
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CI.bs.pop <- c(diff.sorted[round(0.025*R)], diff.sorted[round(0.975*R+1)])

# population correlation

cor(law [, c(2,3)])[1,2]

## [1] 0.7599979

CI.bs.pop

## [1] 0.4296745 0.9271040

sd(bs.pop)

## [1] 0.1295076

# sort the difference estimates to obtain bootstrap CI

diff.sorted <- sort(bs.sam)

# 0.025th and 0.975th quantile gives equal-tail bootstrap CI

CI.bs.sam <- c(diff.sorted[round(0.025*R)], diff.sorted[round(0.975*R+1)])

# sample correlation

cor(law.sam[, c(2,3)])[1,2]

## [1] 0.7763745

CI.bs.sam

## [1] 0.4637826 0.9637982

sd(bs.sam)

## [1] 0.1334595

law.bs.df <- data.frame(corr = c(bs.pop, bs.sam), group = c(rep("Pop",R),rep("Sam",R)))

# histogram using ggplot

library(ggplot2)

p <- ggplot(law.bs.df, aes(x = corr, fill=group))

p <- p + geom_histogram(binwidth = .01, alpha = 0.5, position="identity")

p <- p + geom_rug(aes(colour=group))

p <- p + labs(title = "Sampling distribution of 15 observation from 82 (Pop) vs 15 (Sam, BS)") +

xlab("Correlation")

print(p)
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## Warning in file(filename, "r", encoding = encoding): cannot

open file ’ADA1 12 RFunctions.R’: No such file or directory

## Error in file(filename, "r", encoding = encoding): cannot

open the connection

Learning objectives

After completing this topic, you should be able to:

assess the power of a test or

determine the required sample size for a study.

Achieving these goals contributes to mastery in these course learning outcomes:

7. Distinguish between statistical significance and scientific relevance.

10. Identify and explain the statistical methods, assumptions, and limita-

tions.
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12. Make evidence-based decisions by constructing and deciding between

testable hypotheses using appropriate data and methods.

10.1 Power Analysis

The meaning of statistical power Power is the probability (1 − β)

of detecting an effect, given that the effect is really there. In other words,

it is the probability of correctly rejecting the null hypothesis when it is in fact

false. For example, let’s say that we have a simple study with drug A and a

placebo group, and that the drug truly is effective; the power is the probability

of finding a difference between the two groups. So, imagine that we had a power

of 1− β = 0.8 and that this simple study was conducted many times. Having

power of 0.8 means that 80% of the time, we would get a statistically significant

difference between the drug A and placebo groups. This also means that 20%

of the times that we run this experiment, we will not obtain a statistically

significant effect between the two groups, even though there really is an effect

in reality. That is, the probability of a Type-II error is β = 0.2.

One-sample power figure Consider the plot below for a one-sample one-

tailed greater-than t-test. If the null hypothesis, H0 : µ = µ0, is true, then

the test statistic t is follows the null distribution indicated by the hashed area.

Under a specific alternative hypothesis, H1 : µ = µ1, the test statistic t follows

the distribution indicated by the solid area. If α is the probability of making

a Type-I error (rejecting H0 when it is true), then “crit. val.” indicates the

location of the tcrit value associated with H0 on the scale of the data. The

rejection region is the area under H0 that is at least as far as “crit. val.” is from

µ0. The power (1 − β) of the test is the green area, the area under H1 in the

rejection region. A Type-II error is made when H1 is true, but we fail to reject

H0 in the red region. (Note, for a two-tailed test the rejection region for both

tails under the H1 curve contribute to the power.)
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#### One-sample power

# Power plot with two normal distributions

# http://stats.stackexchange.com/questions/14140/how-to-best-display-graphically-type-ii-beta-error-power-and-sample-size

x <- seq(-4, 4, length=1000)

hx <- dnorm(x, mean=0, sd=1)

plot(x, hx, type="n", xlim=c(-4, 8), ylim=c(0, 0.5),

ylab = "",

xlab = "",

main= expression(paste("Type-II Error (", beta, ") and Power (", 1-beta, ")")), axes=FALSE)

#shift = qnorm(1-0.025, mean=0, sd=1)*1.7

shift = qnorm(1-0.05, mean=0, sd=1)*1.7 # one-tailed

xfit2 <- x + shift

yfit2 <- dnorm(xfit2, mean=shift, sd=1)

#axis(1, at = c(-qnorm(.025), 0, shift, -4),

# labels = expression("p-value", 0, mu, -infinity ))

#axis(1, at = c(-qnorm(.025), 0, shift),

# labels = expression((t[alpha/2]), mu[0], mu[1]))

axis(1, at = c(-qnorm(.05), 0, shift),

labels = expression("crit. val.", mu[0], mu[1]))

axis(1, at = c(-4, 4+shift),

labels = expression(-infinity, infinity ), lwd=1, lwd.tick=FALSE)

## The alternative hypothesis area

# The red - underpowered area

lb <- min(xfit2)

#ub <- round(qnorm(.975),2)

ub <- round(qnorm(.95),2)

col1 = "#CC2222"

i <- xfit2 >= lb & xfit2 <= ub

polygon(c(lb,xfit2[i],ub), c(0,yfit2[i],0), col=col1)

# The green area where the power is

col2 = "#22CC22"

i <- xfit2 >= ub

polygon(c(ub,xfit2[i],max(xfit2)), c(0,yfit2[i],0), col=col2)

# Outline the alternative hypothesis

lines(xfit2, yfit2, lwd=2)

## Print null hypothesis area

#col_null = "#DDDDDD"

#polygon(c(min(x), x,max(x)), c(0,hx,0), col=col_null)
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#lines(x, hx, lwd=2)

col_null = "#AAAAAA"

polygon(c(min(x), x,max(x)), c(0,hx,0), col=col_null, lwd=2, density=c(10, 40), angle=-45, border=0)

lines(x, hx, lwd=2, lty="dashed", col=col_null)

axis(1, at = (c(ub, max(xfit2))), labels=c("", expression(infinity)),

col=col2, lwd=1, lwd.tick=FALSE)

#legend("topright", inset=.05, title="Color",

# c("Null hypoteses","Type II error", "True"), fill=c(col_null, col1, col2), horiz=FALSE)

legend("topright", inset=.015, title="Color",

c("Null hypothesis","Type-II error", "Power"), fill=c(col_null, col1, col2),

angle=-45,

density=c(20, 1000, 1000), horiz=FALSE)

abline(v=ub, lwd=2, col="#000088", lty="dashed")

arrows(ub, 0.45, ub+1, 0.45, lwd=3, col="#008800")

arrows(ub, 0.45, ub-1, 0.45, lwd=3, col="#880000")

Type−II Error (β) and Power (1 − β)

µ0 crit. val. µ1− ∞ ∞∞

Color

Null hypothesis
Type−II error
Power

UNM, Stat 427/527 ADA1



402 Ch 10: Power and Sample size

Example: IQ drug Imagine that we are evaluating the effect of a puta-

tive memory enhancing drug. We have randomly sampled 25 people from a

population known to be normally distributed with a µ of 100 and a σ of 15.

We administer the drug, wait a reasonable time for it to take effect, and then

test our subjects’ IQ. Assume that we were so confident in our belief that the

drug would either increase IQ or have no effect that we entertained one-sided

(directional) hypotheses. Our null hypothesis is that after administering the

drug µ ≤ 100 and our alternative hypothesis is µ > 100.

These hypotheses must first be converted to exact hypotheses. Converting

the null is easy: it becomes µ = 100. The alternative is more troublesome.

If we knew that the effect of the drug was to increase IQ by 15 points, our

exact alternative hypothesis would be µ = 115, and we could compute power,

the probability of correctly rejecting the false null hypothesis given that µ is

really equal to 115 after drug treatment, not 100 (normal IQ). But if we already

knew how large the effect of the drug was, we would not need to do inferential

statistics. . .

One solution is to decide on a minimum nontrivial effect size. What

is the smallest effect that you would consider to be nontrivial? Suppose that

you decide that if the drug increases µIQ by 2 or more points, then that is a

nontrivial effect, but if the mean increase is less than 2 then the effect is trivial.

Now we can test the null of µ = 100 versus the alternative of µ = 102. Con-

sider the previous plot. Let the left curve represent the distribution of sample

means if the null hypothesis were true, µ = 100. This sampling distribution

has a µ = 100 and a σȲ = 15/
√

25 = 3. Let the right curve represent the

sampling distribution if the exact alternative hypothesis is true, µ = 102. Its

µ is 102 and, assuming the drug has no effect on the variance in IQ scores, also

has σȲ = 3.

The green area in the upper tail of the null distribution (gray hatched curve)

is α. Assume we are using a one-tailed α of 0.05. How large would a sample

mean need be for us to reject the null? Since the upper 5% of a normal distribu-

tion extends from 1.645σ above the µ up to positive infinity, the sample mean
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IQ would need be 100 + 1.645(3) = 104.935 or more to reject the null. What

are the chances of getting a sample mean of 104.935 or more if the alternative

hypothesis is correct, if the drug increases IQ by 2 points? The area under the

alternative curve from 104.935 up to positive infinity represents that probabil-

ity, which is power. Assuming the alternative hypothesis is true, that µ = 102,

the probability of rejecting the null hypothesis is the probability of getting a

sample mean of 104.935 or more in a normal distribution with µ = 102, σ = 3.

Z = (104.935 − 102)/3 = 0.98, and P (Z > 0.98) = 0.1635. That is, power is

about 16%. If the drug really does increase IQ by an average of 2 points, we

have a 16% chance of rejecting the null. If its effect is even larger, we have a

greater than 16% chance.

Suppose we consider 5 (rather than 2) the minimum nontrivial effect size.

This will separate the null and alternative distributions more, decreasing their

overlap and increasing power. Now, Z = (104.935 − 105)/3 = −0.02, P (Z >

−0.02) = 0.5080 or about 51%. It is easier to detect large effects than

small effects.

Suppose we conduct a 2-tailed test, since the drug could actually decrease

IQ; α is now split into both tails of the null distribution, 0.025 in each tail. We

shall reject the null if the sample mean is 1.96 or more standard errors away from

the µ of the null distribution. That is, if the mean is 100 + 1.96(3) = 105.88 or

more (or if it is 100−1.96(3) = 94.12 or less) we reject the null. The probability

of that happening if the alternative is correct (µ = 105) is: Z = (105.88 −
105)/3 = 0.29, P (Z > 0.29) = 0.3859, and P (Z < (94.12− 105)/3) = P (Z <

−3.63) = 0.00014, for a total power = (1 − β) = 0.3859 + 0.00014, or about

39%. Note that our power is less than it was with a one-tailed test. If you

can correctly predict the direction of effect, a one-tailed test is

more powerful than a two-tailed test.

Consider what would happen if you increased sample size to 100. Now

the σȲ = 15/
√

100 = 1.5. With the null and alternative distributions are

narrower, and should overlap less, increasing power. With σȲ = 1.5 the sample

mean will need be 100 + (1.96)(1.5) = 102.94 (rather than 105.88 from before)
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or more to reject the null. If the drug increases IQ by 5 points, power is:

Z = (102.94− 105)/1.5 = −1.37, P (Z > −1.37) = 0.9147, or between 91 and

92%. Anything that decreases the standard error will increase

power. This may be achieved by increasing the sample size N or

by reducing the σ of the dependent variable. The σ of the dependent

variable may be reduced by reducing the influence of extraneous variables upon

the dependent variable (eliminating “noise” in the dependent variable makes it

easier to detect the signal).

Now consider what happens if you change the significance level, α. Let us

reduce α to 0.01. Now the sample mean must be 2.58 or more standard errors

from the null µ before we reject the null. That is, 100 + 2.58(1.5) = 103.87

(rather than 102.94 with α = 0.05). Under the alternative, Z = (103.87 −
105)/1.5 = −0.75, P (Z > −0.75) = 0.7734 or about 77%, less than it was

with α = 0.05. Reducing α reduces power.

Please note that all of the above analyses have assumed that we have used a

normally distributed test statistic, as Z = (Ȳ −µ0)/σȲ will be if the dependent

variable is normally distributed in the population or if sample size is large

enough to invoke the central limit theorem (CLT). Remember that using Z

also requires that you know the population σ rather than estimating it from

the sample data. We more often estimate the population σ, using Student’s t

as the test statistic. If N is fairly large, Student’s t is nearly normal, so this is

no problem. For example, with a two-tailed α = 0.05 and N = 25, we went

out ±1.96 standard errors to mark off the rejection region. With Student’s

t on N − 1 = 24 df we should have gone out ±2.064 standard errors. But

1.96 versus 2.06 is a relatively trivial difference, so we should feel comfortable

with the normal approximation. If, however, we had N = 5, df = 4, critical

t = ±2.776, then the normal approximation would not do. A more complex

analysis would be needed.
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10.2 Effect size

For the one-sample test, the effect size in σ units is d = (µ1 − µ0)/σ. For our

IQ problem with minimum nontrivial effect size at 5 IQ points, d = (105 −
100)/15 = 1/3. Cohen’s1 conventions for small, medium, and large effects for

a two-sample difference test between two means is in the table below.
One- or two-sample difference of means

Size of effect d % variance

small 0.2 1

medium 0.5 6

large 0.8 16
Cohen has conventions for other tests (correlation, contingency tables, etc.),

but they should be used with caution.

What is a small or even trivial effect in one context may be a large effect

in another context. For example, Rosnow and Rosenthal (1989) discussed a

1988 biomedical research study on the effects of taking a small, daily dose of

aspirin. Each participant was instructed to take one pill a day. For about

half of the participants the pill was aspirin, for the others it was a placebo.

The dependent variable was whether or not the participant had a heart attack

during the study. In terms of a correlation coefficient, the size of the observed

effect was r = 0.034. In terms of percentage of variance explained, that is

0.12%. In other contexts this might be considered a trivial effect, but it this

context it was so large an effect that the researchers decided it was unethical

to continue the study and the contacted all of the participants who were taking

the placebo and told them to start taking aspirin every day.

10.3 Sample size

Before you can answer the question “how many subjects do I need,”’ you will

have to answer several other questions, such as:

1Cohen, J. (1988). Statistical power analysis for the behavior sciences. (2nd ed.). Hillsdale, NJ:
Erlbaum.
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� How much power do I want?

� What is the likely size (in the population) of the effect I am trying to

detect, or, what is smallest effect size that I would consider of importance?

� What criterion of statistical significance will I employ?

� What test statistic will I employ?

� What is the standard deviation (in the population) of the criterion vari-

able?

� For correlated samples designs, what is the correlation (in the population)

between groups?

If one considers Type I and Type II errors equally serious, then one should have

enough power to make α = β. If employing the traditional 0.05 criterion of

statistical significance, that would mean you should have 95% power. However,

getting 95% power usually involves expenses too great – that is, too many

samples.

A common convention is to try to get at least enough data to have 80%

power. So, how do you figure out how many subjects you need to have the

desired amount of power. There are several methods, including:

� You could buy an expensive, professional-quality software package to do

the power analysis.

� You could buy an expensive, professional-quality book on power analysis

and learn to do the calculations yourself and/or to use power tables and

figures to estimate power.

� You could try to find an interactive web page on the Internet that will do

the power analysis for you. This is probably fine, but be cautious.

� You could download and use the G Power program, which is free, not too

difficult to use, and generally reliable (this is not to say that it is error

free).

� You could use the simple guidelines provided in Jacob Cohen’s “A Power

Primer” (Psychological Bulletin, 1992, 112, 155-159).

The plots below indicate the amount of power for a given effect size and

sample size for a one-sample t-test and ANOVA test. This graph makes clear
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the diminishing returns you get for adding more and more subjects if you already

have moderate to high power. For example, let’s say we’re doing a one-sample

test and we an effect size of 0.2 and have only 10 subjects. We can see that we

have a power of about 0.15, which is really, really low. Going to 25 subjects

increases our power to about 0.25, and to 100 subjects increases our power to

about 0.6. But if we had a large effect size of 0.8, 10 subjects would already

give us a power of about 0.8, and using 25 or 100 subjects would both give a

power at least 0.98. So each additional subject gives you less additional power.

This curve also illustrates the “cost” of increasing your desired power from 0.8

to 0.98.
# Power curve plot for one-sample t-test with range of sample sizes

# http://stackoverflow.com/questions/4680163/power-vs-effect-size-plot/4680786#4680786

P <- 3 # number of groups for ANOVA

fVals <- seq(0, 1.2, length.out=100) # effect sizes f for ANOVA

dVals <- seq(0, 3, length.out=100) # effect sizes d for t-Test

#nn <- seq(10, 25, by=5) # group sizes

nn <- c(5,10,25,100) # group sizes

alpha <- 0.05 # test for level alpha

# function to calculate one-way ANOVA power for given group size

getFPow <- function(n) {
critF <- qf(1-alpha, P-1, P*n - P) # critical F-value

# probabilities of exceeding this F-value given the effect sizes f

# P*n*fVals^2 is the non-centrality parameter

1-pf(critF, P-1, P*n - P, P*n * fVals^2)

}

# function to calculate one-sample t-Test power for given group size

getTPow <- function(n) {
critT <- qt(1-alpha, n-1) # critical t-value

# probabilities of exceeding this t-value given the effect sizes d

# sqrt(n)*d is the non-centrality parameter

1-pt(critT, n-1, sqrt(n)*dVals)

}

powsF <- sapply(nn, getFPow) # ANOVA power for for all group sizes

powsT <- sapply(nn, getTPow) # t-Test power for for all group sizes

#dev.new(width=10, fig.height=5)

par(mfrow=c(1, 2))
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matplot(dVals, powsT, type="l", lty=1, lwd=2, xlab="effect size d",

ylab="Power", main="Power one-sample t-test", xaxs="i",

xlim=c(-0.05, 1.1), col=c("blue", "red", "darkgreen", "green"))

#legend(x="bottomright", legend=paste("N =", c(5,10,25,100)), lwd=2,

# col=c("blue", "red", "darkgreen", "green"))

legend(x="bottomright", legend=paste("N =", nn), lwd=2,

col=c("blue", "red", "darkgreen", "green"))

#matplot(fVals, powsF, type="l", lty=1, lwd=2, xlab="effect size f",

# ylab="Power", main=paste("Power one-way ANOVA, ", P, " groups", sep=""), xaxs="i",

# xlim=c(-0.05, 1.1), col=c("blue", "red", "darkgreen", "green"))

##legend(x="bottomright", legend=paste("Nj =", c(10, 15, 20, 25)), lwd=2,

## col=c("blue", "red", "darkgreen", "green"))

#legend(x="bottomright", legend=paste("Nj =", nn), lwd=2,

# col=c("blue", "red", "darkgreen", "green"))

library(pwr)

pwrt2 <- pwr.t.test(d=.2,n=seq(2,100,1),

sig.level=.05,type="one.sample", alternative="two.sided")

pwrt3 <- pwr.t.test(d=.3,n=seq(2,100,1),

sig.level=.05,type="one.sample", alternative="two.sided")

pwrt5 <- pwr.t.test(d=.5,n=seq(2,100,1),

sig.level=.05,type="one.sample", alternative="two.sided")

pwrt8 <- pwr.t.test(d=.8,n=seq(2,100,1),

sig.level=.05,type="one.sample", alternative="two.sided")

#plot(pwrt£n, pwrt£power, type="b", xlab="sample size", ylab="power")

matplot(matrix(c(pwrt2$n,pwrt3$n,pwrt5$n,pwrt8$n),ncol=4),

matrix(c(pwrt2$power,pwrt3$power,pwrt5$power,pwrt8$power),ncol=4),

type="l", lty=1, lwd=2, xlab="sample size",

ylab="Power", main="Power one-sample t-test", xaxs="i",

xlim=c(0, 100), ylim=c(0,1), col=c("blue", "red", "darkgreen", "green"))

legend(x="bottomright", legend=paste("d =", c(0.2, 0.3, 0.5, 0.8)), lwd=2,

col=c("blue", "red", "darkgreen", "green"))
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Reasons to do a power analysis There are several of reasons why one

might do a power analysis. (1) Perhaps the most common use is to determine

the necessary number of subjects needed to detect an effect of a given size. Note

that trying to find the absolute, bare minimum number of subjects needed in the

study is often not a good idea. (2) Additionally, power analysis can be used to

determine power, given an effect size and the number of subjects available. You

might do this when you know, for example, that only 75 subjects are available

(or that you only have the budget for 75 subjects), and you want to know if you

will have enough power to justify actually doing the study. In most cases, there

is really no point to conducting a study that is seriously underpowered. Besides

the issue of the number of necessary subjects, there are other good reasons for

doing a power analysis. (3) For example, a power analysis is often required as

part of a grant proposal. (4) And finally, doing a power analysis is often just

part of doing good research. A power analysis is a good way of making sure

that you have thought through every aspect of the study and the statistical

analysis before you start collecting data.
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Limitations Despite these advantages of power analyses, there are some

limitations. (1) One limitation is that power analyses do not typically generalize

very well. If you change the methodology used to collect the data or change

the statistical procedure used to analyze the data, you will most likely have to

redo the power analysis. (2) In some cases, a power analysis might suggest a

number of subjects that is inadequate for the statistical procedure. For example

(beyond the scope of this class), a power analysis might suggest that you need

30 subjects for your logistic regression, but logistic regression, like all maximum

likelihood procedures, require much larger sample sizes. (3) Perhaps the most

important limitation is that a standard power analysis gives you a “best case

scenario” estimate of the necessary number of subjects needed to detect the

effect. In most cases, this “best case scenario” is based on assumptions and

educated guesses. If any of these assumptions or guesses are incorrect, you may

have less power than you need to detect the effect. (4) Finally, because power

analyses are based on assumptions and educated guesses, you often get a range

of the number of subjects needed, not a precise number. For example, if you do

not know what the standard deviation of your outcome measure will be, you

guess at this value, run the power analysis and get X number of subjects. Then

you guess a slightly larger value, rerun the power analysis and get a slightly

larger number of necessary subjects. You repeat this process over the plausible

range of values of the standard deviation, which gives you a range of the number

of subjects that you will need.

Other considerations After all of this discussion of power analyses and

the necessary number of subjects, we need to stress that power is not the only

consideration when determining the necessary sample size. For example, differ-

ent researchers might have different reasons for conducting a regression analysis.

(1) One might want to see if the regression coefficient is different from zero, (2)

while the other wants to get a very precise estimate of the regression coefficient

with a very small confidence interval around it. This second purpose requires a

larger sample size than does merely seeing if the regression coefficient is different
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from zero. (3) Another consideration when determining the necessary sample

size is the assumptions of the statistical procedure that is going to be used (e.g.,

parametric vs nonparametric procedure). (4) The number of statistical tests

that you intend to conduct will also influence your necessary sample size: the

more tests that you want to run, the more subjects that you will need (mul-

tiple comparisons). (5) You will also want to consider the representativeness

of the sample, which, of course, influences the generalizability of the results.

Unless you have a really sophisticated sampling plan, the greater the desired

generalizability, the larger the necessary sample size.

10.4 Power calculation via simulation

Using the principles of the bootstrap (to be covered later) we can estimate

statistical power through simulation.

Example: IQ drug, revisited Recall that we sample N = 25 people

from a population known to be normally distributed with a µ of 100 and a σ

of 15. Consider the first one-sided alternative H0 : µ = 100 and H1 : µ > 100.

Assume the minimum nontrivial effect size was that the drug increases µIQ

by 2 or more points, so that the specific alternative to consider is H1 : µ = 102.

What is the power of this test?

We already saw how to calculate this analytically. To solve this computa-

tionally, we need to simulate samples of N = 25 from the alternative distribu-

tion (µ = 102 and σ = 15) and see what proportion of the time we correctly

reject H0.
#### Example: IQ drug, revisited

# R code to simulate one-sample one-sided power

# Strategy:

# Do this R times:

# draw a sample of size N from the distribution specified by the alternative hypothesis

# That is, 25 subjects from a normal distribution with mean 102 and sigma 15

# Calculate the mean of our sample

# Calculate the associated z-statistic
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# See whether that z-statistic has a p-value < 0.05 under H0: mu=100

# If we reject H0, then set reject = 1, else reject = 0.

# Finally, the proportion of rejects we observe is the approximate power

n <- 25; # sample size of 25

mu0 <- 100; # null hypothesis mean of 100

mu1 <- 102; # alternative mean of 102

#mu1 <- 105; # alternative mean of 105

sigma <- 15; # standard deviation of normal population

alpha <- 0.05; # significance level

R <- 10000; # Repetitions to draw sample and see whether we reject H0

# The proportion of these that reject H0 is the power

reject <- rep(NA, R); # allocate a vector of length R with missing values (NA)

# to fill with 0 (fail to reject H0) or 1 (reject H0)

for (i in 1:R) {
sam <- rnorm(n, mean=mu1, sd=sigma); # sam is a vector with 25 values

ybar <- mean(sam); # Calculate the mean of our sample sam

z <- (ybar - mu0) / (sigma / sqrt(n)); # z-statistic (assumes we know sigma)

# we could also have calculated the t-statistic, here

pval <- 1-pnorm(z); # one-sided right-tail p-value

# pnorm gives the area to the left of z

# therefore, the right-tail area is 1-pnorm(z)

if (pval < 0.05) {
reject[i] <- 1; # 1 for correctly rejecting H0

} else {
reject[i] <- 0; # 0 for incorrectly fail to reject H0

}

}

power <- mean(reject); # the average reject (proportion of rejects) is the power

power

## [1] 0.166

# 0.1655 for mu1=102

# 0.5082 for mu1=105

Our simulation (this time) with µ1 = 102 gave a power of 0.166 (exact

answer is P (Z > 0.98) = 0.1635). Rerunning with µ1 = 105 gave a power

of 0.5082 (exact answer is P (Z > −0.02) = 0.5080). Our simulation well-
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approximates the true value, and the power can be made more precise by in-

creasing the number of repetitions calculated. However, two to three decimal

precision is quite sufficient.

Example: Head breadth Recall the head breadth example in Chapter 3
comparing maximum head breadths (in millimeters) of modern day Englishmen
with ancient Celts. The data are summarized below.
Descriptive Statistics: ENGLISH, CELTS
Variable N Mean SE Mean StDev Minimum Q1 Median Q3 Maximum
ENGLISH 18 146.50 1.50 6.38 132.00 141.75 147.50 150.00 158.00
CELTS 16 130.75 1.36 5.43 120.00 126.25 131.50 135.50 138.00

Imagine that we don’t have the information above. Imagine we have been

invited to a UK university to take skull measurements for 18 modern day En-

glishmen, and 16 ancient Celts. We have some information about modern day

skulls to use as prior information for measurement mean and standard devia-

tion. What is the power to observe a difference between the populations? Let’s

make some reasonable assumptions that allows us to be a bit conservative. Let’s

assume the sampled skulls from each of our populations is a random sample

with common standard deviation 7mm, and let’s assume we can’t get the full

sample but can only measure 15 skulls from each population. At a significance

level of α = 0.05, what is the power for detecting a difference of 5, 10, 15, 20,

or 25 mm?

The theoretical two-sample power result is not too hard to derive (and is

available in text books), but let’s simply compare the power calculated exactly

and by simulation.

For the exact result we use R library pwr. Below is the function call as well

as the result. Note that we specified multiple effect sizes (diff/SD) in one call

of the function.
# R code to compute exact two-sample two-sided power

library(pwr) # load the power calculation library

pwr.t.test(n = 15,

d = c(5,10,15,20,25)/7,

sig.level = 0.05,

power = NULL,

type = "two.sample",

alternative = "two.sided")
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##

## Two-sample t test power calculation

##

## n = 15

## d = 0.7142857, 1.4285714, 2.1428571, 2.8571429, 3.5714286

## sig.level = 0.05

## power = 0.4717438, 0.9652339, 0.9998914, 1.0000000, 1.0000000

## alternative = two.sided

##

## NOTE: n is number in *each* group

To simulate the power under the same circumstances, we follow a similar
strategy as in the one-sample example.
# R code to simulate two-sample two-sided power

# Strategy:

# Do this R times:

# draw a sample of size N from the two hypothesized distributions

# That is, 15 subjects from a normal distribution with specified means and sigma=7

# Calculate the mean of the two samples

# Calculate the associated z-statistic

# See whether that z-statistic has a p-value < 0.05 under H0: mu_diff=0

# If we reject H0, then set reject = 1, else reject = 0.

# Finally, the proportion of rejects we observe is the approximate power

n <- 15; # sample size of 25

mu1 <- 147; # null hypothesis English mean

mu2 <- c(142, 137, 132, 127, 122); # Celt means

sigma <- 7; # standard deviation of normal population

alpha <- 0.05; # significance level

R <- 2e4; # Repetitions to draw sample and see whether we reject H0

# The proportion of these that reject H0 is the power

power <- rep(NA,length(mu2)); # allocate a vector to store the calculated power in

for (j in 1:length(mu2)) { # do for each value of mu2

reject <- rep(NA, R); # allocate a vector of length R with missing values (NA)

# to fill with 0 (fail to reject H0) or 1 (reject H0)

for (i in 1:R) {
sam1 <- rnorm(n, mean=mu1 , sd=sigma); # English sample

sam2 <- rnorm(n, mean=mu2[j], sd=sigma); # Celt sample

ybar1 <- mean(sam1); # Calculate the mean of our sample sam
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ybar2 <- mean(sam2); # Calculate the mean of our sample sam

# z-statistic (assumes we know sigma)

# we could also have calculated the t-statistic, here

z <- (ybar2 - ybar1) / (sigma * sqrt(1/n+1/n));

pval.Left <- pnorm(z); # area under left tail

pval.Right <- 1-pnorm(z); # area under right tail

# p-value is twice the smaller tail area

pval <- 2 * min(pval.Left, pval.Right);

if (pval < 0.05) {
reject[i] <- 1; # 1 for correctly rejecting H0

} else {
reject[i] <- 0; # 0 for incorrectly fail to reject H0

}

}

# the average reject (proportion of rejects) is the power

power[j] <- mean(reject);

}

power

## [1] 0.49275 0.97650 1.00000 1.00000 1.00000

Note the similarity between power calculated using both the exact and sim-

ulation methods. If there is a power calculator for your specific problem, it is

best to use that because it is faster and there is no programming. However,

using the simulation method is better if we wanted to entertain different sam-

ple sizes with different standard deviations, etc. There may not be a standard

calculator for our specific problem, so knowing how to simulate the power can

be valuable.
Mean Sample size Power

µE µC diff SD nE nC exact simulated

147 142 5 7 15 15 0.4717 0.4928

147 137 10 7 15 15 0.9652 0.9765

147 132 15 7 15 15 0.9999 1

147 127 20 7 15 15 1.0000 1

147 122 25 7 15 15 1.0000 1
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Data Cleaning
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11.1: The five steps of statistical analysis 417

Data cleaning1, or data preparation, is an essential part of statistical anal-

ysis. In fact, in practice it is often more time-consuming than the statistical

analysis itself. Data cleaning may profoundly influence the statistical state-

ments based on the data. Typical actions like imputation or outlier handling

obviously influence the results of a statistical analyses. For this reason, data

cleaning should be considered a statistical operation, to be performed in a repro-

ducible manner. The R statistical environment provides a good environment

for reproducible data cleaning since all cleaning actions can be scripted and

therefore reproduced.

11.1 The five steps of statistical analysis

Statistical analysis can be viewed as the result of a number of value-increasing

data processing steps.

1. Raw data
type checking, normalizing

D
at

a 
cl

ea
ni

ng

�x and impute

estimate, analyze, derive, etc.

tabulate, plot

2. Technically correct data

3. Consistent data

4. Statistical results

5. Formatted output

1Content in this chapter is derived with permission from Statistics Netherlands at http://cran.

r-project.org/doc/contrib/de_Jonge+van_der_Loo-Introduction_to_data_cleaning_with_R.pdf
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Each box represents data in a certain state while each arrow represents the

activities needed to get from one state to the other.

1. Raw Data The data “as is” may lack headers, contain wrong data types

(e.g., numbers stored as strings), wrong category labels, unknown or unex-

pected character encoding and so on. Reading such files into an R data.frame

directly is either difficult or impossible without some sort of preprocessing.

2. Technically correct data The data can be read into an R data.frame,

with correct names, types and labels, without further trouble. However, that

does not mean that the values are error-free or complete.

For example, an age variable may be reported negative, an under-aged person

may be registered to possess a driver’s license, or data may simply be missing.

Such inconsistencies obviously depend on the subject matter that the data

pertains to, and they should be ironed out before valid statistical inference

from such data can be produced.

3. Consistent data The data is ready for statistical inference. It is the

data that most statistical theories use as a starting point. Ideally, such the-

ories can still be applied without taking previous data cleaning steps into

account. In practice however, data cleaning methods like imputation of miss-

ing values will influence statistical results and so must be accounted for in

the following analyses or interpretation thereof.

4. Statistical results The results of the analysis have been produced and

can be stored for reuse.

5. Formatted output The results in tables and figures ready to include

in statistical reports or publications.

Best practice Store the input data for each stage (raw, technically correct,

consistent, results, and formatted) separately for reuse. Each step between the

stages may be performed by a separate R script for reproducibility.

Prof. Erik B. Erhardt



11.2: R background review 419

11.2 R background review

11.2.1 Variable types

The most basic variable in R is a vector. An R vector is a sequence of values of

the same type. All basic operations in R act on vectors (think of the element-

wise arithmetic, for example). The basic types in R are as follows.

numeric Numeric data (approximations of the real numbers)

integer Integer data (whole numbers)

factor Categorical data (simple classifications, like gender)

ordered Ordinal data (ordered classifications, like educational level)

character Character data (strings)

raw Binary data (rarely used)
All basic operations in R work element-wise on vectors where the shortest ar-
gument is recycled if necessary. Why does the following code work the way it
does?
# vectors have variables of _one_ type

c(1, 2, "three")

## [1] "1" "2" "three"

# shorter arguments are recycled

(1:3) * 2

## [1] 2 4 6

(1:4) * c(1, 2)

## [1] 1 4 3 8

# warning! (why?)

(1:4) * (1:3)

## Warning in (1:4) * (1:3): longer object length is not a multiple of shorter object length

## [1] 1 4 9 4

11.2.2 Special values and value-checking functions

Below are the definitions and some illustrations of the special values NA, NULL,

±Inf, and NaN.

� NA Stands for “not available”. NA is a placeholder for a missing value.

All basic operations in R handle NA without crashing and mostly return
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NA as an answer whenever one of the input arguments is NA. If you

understand NA, you should be able to predict the result of the following

R statements.
NA + 1

sum(c(NA, 1, 2))

median(c(NA, 1, 2, 3), na.rm = TRUE)

length(c(NA, 2, 3, 4))

3 == NA

NA == NA

TRUE | NA

# use is.na() to detect NAs

is.na(c(1, NA, 3))

� NULL Think of NULL as the empty set from mathematics; it has no class
(its class is NULL) and has length 0 so it does not take up any space in a
vector.
length(c(1, 2, NULL, 4))

sum(c(1, 2, NULL, 4))

x <- NULL

length(x)

c(x, 2)

# use is.null() to detect NULL variables

is.null(x)

� Inf Stands for “infinity” and only applies to vectors of class numeric (not
integer). Technically, Inf is a valid numeric that results from calculations
like division of a number by zero. Since Inf is a numeric, operations be-
tween Inf and a finite numeric are well-defined and comparison operators
work as expected.
pi/0

2 * Inf

Inf - 1e+10

Inf + Inf

3 < -Inf

Inf == Inf

# use is.infinite() to detect Inf variables

is.infinite(-Inf)

� NaN Stands for “not a number”. This is generally the result of a calculation
of which the result is unknown, but it is surely not a number. In particular
operations like 0/0, Inf − Inf and Inf/Inf result in NaN. Technically,
NaN is of class numeric, which may seem odd since it is used to indicate
that something is not numeric. Computations involving numbers and NaN
always result in NaN.
NaN + 1

exp(NaN)
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# use is.nan() to detect NULL variables

is.nan(0/0)

Note that is.finite() checks a numeric vector for the occurrence of any
non-numerical or special values.
is.finite(c(1, NA, 2, Inf, 3, -Inf, 4, NULL, 5, NaN, 6))

## [1] TRUE FALSE TRUE FALSE TRUE FALSE TRUE TRUE FALSE TRUE

11.3 From raw to technically correct data

11.3.1 Technically correct data

Limiting ourselves to “rectangular” data sets read from a text-based format,

technically correct data in R

1. is stored in a data.frame with suitable columns names, and

2. each column of the data.frame is of the R type that adequately represents

the value domain.

The second demand implies that numeric data should be stored as numeric or

integer, textual data should be stored as character and categorical data should

be stored as a factor or ordered vector, with the appropriate levels.

Best practice Whenever you need to read data from a foreign file format,

like a spreadsheet or proprietary statistical software that uses undisclosed file

formats, make that software responsible for exporting the data to an open

format that can be read by R.

11.3.2 Reading text data into an R data.frame

In the following, we assume that the text-files we are reading contain data of at

most one unit per line. The number of attributes, their format and separation

symbols in lines containing data may differ over the lines. This includes files in

fixed-width or csv-like format, but excludes XML-like storage formats.
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Reading text

read.table() and similar functions below will read a text file and return a

data.frame.

Best practice. A freshly read data.frame should always be inspected with

functions like head(), str(), and summary().

The read.table() function is the most flexible function to read tabular data

that is stored in a textual format. The other read-functions below all even-

tually use read.table() with some fixed parameters and possibly after some

preprocessing. Specifically

� read.csv() for comma separated values with period as decimal separator.

� read.csv2() for semicolon separated values with comma as decimal sepa-

rator.

� read.delim() tab-delimited files with period as decimal separator.

� read.delim2() tab-delimited files with comma as decimal separator.

� read.fwf() data with a predetermined number of bytes per column.

Additional optional arguments include:
Argument Description

header Does the first line contain column names?

col.names character vector with column names.

na.string Which strings should be considered NA?

colClasses character vector with the types of columns. Will

coerce the columns to the specified types.

stringsAsFactors If TRUE, converts all character vectors into factor vec-

tors.

sep Field separator.
Except for read.table() and read.fwf(), each of the above functions assumes
by default that the first line in the text file contains column headers. The
following demonstrates this on the following text file.
21,6.0

42,5.9

18,5.7*

21,NA
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Read the file with defaults, then specifying necessary options.
fn.data <- "http://statacumen.com/teach/ADA2/ADA2_notes_Ch18_unnamed.txt"

# first line is erroneously interpreted as column names

person <- read.csv(fn.data)

person

## X21 X6.0

## 1 42 5.9

## 2 18 5.7*

## 3 21 <NA>

# instead, use header = FALSE and specify the column names

person <- read.csv(file = fn.data

, header = FALSE

, col.names = c("age", "height")

)

person

## age height

## 1 21 6.0

## 2 42 5.9

## 3 18 5.7*

## 4 21 <NA>

If colClasses is not specified by the user, read.table() will try to determine
the column types. Although this may seem convenient, it is noticeably slower for
larger files (say, larger than a few MiB) and it may yield unexpected results. For
example, in the above script, one of the rows contains a malformed numerical
variable (5.7*), causing R to interpret the whole column as a text variable.
Moreover, by default text variables are converted to factor, so we are now stuck
with a height variable expressed as levels in a categorical variable:
str(person)

## 'data.frame': 4 obs. of 2 variables:

## $ age : int 21 42 18 21

## $ height: Factor w/ 3 levels "5.7*","5.9","6.0": 3 2 1 NA

As an alternative, columns can be read in as character by setting stringsAsFactors=FALSE.
Next, one of the as.-functions can be applied to convert to the desired type, as
shown below.
person <- read.csv(file = fn.data

, header = FALSE

, col.names = c("age", "height")

, stringsAsFactors = FALSE)

person

## age height

## 1 21 6.0

## 2 42 5.9

## 3 18 5.7*
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## 4 21 <NA>

person$height <- as.numeric(person$height)

## Warning: NAs introduced by coercion

person

## age height

## 1 21 6.0

## 2 42 5.9

## 3 18 NA

## 4 21 NA

Now, everything is read in and the height column is translated to numeric,

with the exception of the row containing 5.7*. Moreover, since we now get a

warning instead of an error, a script containing this statement will continue to

run, albeit with less data to analyse than it was supposed to. It is of course up

to the programmer to check for these extra NA’s and handle them appropriately.

Reading data with readLines

When the rows in a data file are not uniformly formatted you can consider
reading in the text line-by-line and transforming the data to a rectangular set
yourself. With readLines() you can exercise precise control over how each line
is interpreted and transformed into fields in a rectangular data set. We use the
following data as an example.
%% Data on the Dalton Brothers

Gratt ,1861,1892

Bob,1892

1871,Emmet ,1937

% Names, birth and death dates

And this is the table we want.
Name Birth Death

Gratt 1861 1892

Bob NA 1892

Emmet 1871 1937

The file has comments on several lines (starting with a % sign) and a missing

value in the second row. Moreover, in the third row the name and birth date

have been swapped. We want a general strategy so that if we had a file with

10,000 records we could process them all. The table suggests one strategy.
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Step result

1 Read the data with readLines character

2 Select lines containing data character

3 Split lines into separate fields list of character vectors

4 Standardize rows list of equivalent vectors

5 Transform to data.frame data.frame

6 Normalize and coerce to correct type data.frame

Step 1. Reading data. The readLines() function accepts filename as ar-

gument and returns a character vector containing one element for each line

in the file. readLines() detects both the end-of-line and carriage return char-

acters so lines are detected regardless of whether the file was created under

DOS, UNIX, or MAC (each OS has traditionally had different ways of mark-

ing an end-of-line). Reading in the Daltons file yields the following.
fn.data <- "http://statacumen.com/teach/ADA2/ADA2_notes_Ch18_dalton.txt"

dalton.txt <- readLines(fn.data)

dalton.txt

## [1] "%% Data on the Dalton Brothers" "Gratt ,1861,1892"

## [3] "Bob,1892" "1871,Emmet ,1937"

## [5] "% Names, birth and death dates"

str(dalton.txt)

## chr [1:5] "%% Data on the Dalton Brothers" "Gratt ,1861,1892" ...

The variable dalton.txt has 5 character elements, equal to the number of

lines in the textfile.
Step 2. Selecting lines containing data. This is generally done by
throwing out lines containing comments or otherwise lines that do not contain
any data fields. You can use grep() or grepl() to detect such lines. Regular
expressions2, though challenging to learn, can be used to specify what you’re
searching for. I usually search for an example and modify it to meet my
needs.
# detect lines starting (^) with a percentage sign (%)

ind.nodata <- grepl("^%", dalton.txt)

ind.nodata

## [1] TRUE FALSE FALSE FALSE TRUE

# and throw them out

2http://en.wikipedia.org/wiki/Regular_expression
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!ind.nodata

## [1] FALSE TRUE TRUE TRUE FALSE

dalton.dat <- dalton.txt[!ind.nodata]

dalton.dat

## [1] "Gratt ,1861,1892" "Bob,1892" "1871,Emmet ,1937"

Here, the first argument of grepl() is a search pattern, where the caret (^)

indicates a start-of-line. The result of grepl() is a logical vector that indicates

which elements of dalton.txt contain the pattern ’start-of-line’ followed by

a percent-sign. The functionality of grep() and grepl() will be discussed in

more detail later.
Step 3. Split lines into separate fields. This can be done with strsplit().
This function accepts a character vector and a split argument which tells
strsplit() how to split a string into substrings. The result is a list of char-
acter vectors.

# remove whitespace by substituting nothing where spaces appear

dalton.dat2 <- gsub(" ", "", dalton.dat)

# split strings by comma

dalton.fieldList <- strsplit(dalton.dat2, split = ",")

dalton.fieldList

## [[1]]

## [1] "Gratt" "1861" "1892"

##

## [[2]]

## [1] "Bob" "1892"

##

## [[3]]

## [1] "1871" "Emmet" "1937"

Here, split= is a single character or sequence of characters that are to be

interpreted as field separators. By default, split is interpreted as a regular

expression, and the meaning of a special characters can be ignored by passing

fixed=TRUE as extra parameter.

Step 4. Standardize rows. The goal of this step is to make sure that

(a) every row has the same number of fields and (b) the fields are in the right

order. In read.table(), lines that contain fewer fields than the maximum

number of fields detected are appended with NA. One advantage of the do-it-

yourself approach shown here is that we do not have to make this assumption.
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The easiest way to standardize rows is to write a function that takes a single

character vector as input and assigns the values in the right order.
The function below accepts a character vector and assigns three values to
an output vector of class character. The grepl() statement detects fields
containing alphabetical values a-z or A-Z. To assign year of birth and year of
death, we use the knowledge that all Dalton brothers were born before and
died after 1890. To retrieve the fields for each row in the example, we need
to apply this function to every element of dalton.fieldList.
# function to correct column order for Dalton data

f.assignFields <- function(x) {
# create a blank character vector of length 3

out <- character(3)

# get name and put into first position

ind.alpha <- grepl("[[:alpha:]]", x)

out[1] <- x[ind.alpha]

# get birth date (if any) and put into second position

ind.num.birth <- which(as.numeric(x) < 1890)

# if there are more than 0 years <1890,

# then return that value to second position,

# else return NA to second position

out[2] <- ifelse(length(ind.num.birth) > 0, x[ind.num.birth], NA)

# get death date (if any) and put into third position (same strategy as birth)

ind.num.death <- which(as.numeric(x) > 1890)

out[3] <- ifelse(length(ind.num.death) > 0, x[ind.num.death], NA)

out

}

The function lapply() will apply the function f.assignFields() to each list
element in dalton.fieldList.
dalton.standardFields <- lapply(dalton.fieldList, f.assignFields)

## Warning in which(as.numeric(x) < 1890): NAs introduced by coercion

## Warning in which(as.numeric(x) > 1890): NAs introduced by coercion

## Warning in which(as.numeric(x) < 1890): NAs introduced by coercion

## Warning in which(as.numeric(x) > 1890): NAs introduced by coercion

## Warning in which(as.numeric(x) < 1890): NAs introduced by coercion

## Warning in which(as.numeric(x) > 1890): NAs introduced by coercion

dalton.standardFields

## [[1]]

## [1] "Gratt" "1861" "1892"

##

## [[2]]

## [1] "Bob" NA "1892"

##

## [[3]]

## [1] "Emmet" "1871" "1937"
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The advantage of this approach is having greater flexibility than read.table

offers. However, since we are interpreting the value of fields here, it is un-

avoidable to know about the contents of the dataset which makes it hard to

generalize the field assigner function. Furthermore, f.assignFields() func-

tion we wrote is still relatively fragile. That is, it crashes for example when

the input vector contains two or more text-fields or when it contains more

than one numeric value larger than 1890. Again, no one but the data ana-

lyst is probably in a better position to choose how safe and general the field

assigner should be.
Step 5. Transform to data.frame. There are several ways to trans-
form a list to a data.frame object. Here, first all elements are copied into
a matrix which is then coerced into a data.frame.
# unlist() returns each value in a list in a single object

unlist(dalton.standardFields)

## [1] "Gratt" "1861" "1892" "Bob" NA "1892" "Emmet" "1871"

## [9] "1937"

# there are three list elements in dalton.standardFields

length(dalton.standardFields)

## [1] 3

# fill a matrix will the character values

dalton.mat <- matrix(unlist(dalton.standardFields)

, nrow = length(dalton.standardFields)

, byrow = TRUE

)

dalton.mat

## [,1] [,2] [,3]

## [1,] "Gratt" "1861" "1892"

## [2,] "Bob" NA "1892"

## [3,] "Emmet" "1871" "1937"

# name the columns

colnames(dalton.mat) <- c("name", "birth", "death")

dalton.mat

## name birth death

## [1,] "Gratt" "1861" "1892"

## [2,] "Bob" NA "1892"

## [3,] "Emmet" "1871" "1937"

# convert to a data.frame but don't turn character variables into factors

dalton.df <- as.data.frame(dalton.mat, stringsAsFactors=FALSE)

str(dalton.df)
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## 'data.frame': 3 obs. of 3 variables:

## $ name : chr "Gratt" "Bob" "Emmet"

## $ birth: chr "1861" NA "1871"

## $ death: chr "1892" "1892" "1937"

dalton.df

## name birth death

## 1 Gratt 1861 1892

## 2 Bob <NA> 1892

## 3 Emmet 1871 1937

The function unlist() concatenates all vectors in a list into one large char-

acter vector. We then use that vector to fill a matrix of class character.

However, the matrix function usually fills up a matrix column by column.

Here, our data is stored with rows concatenated, so we need to add the ar-

gument byrow=TRUE. Finally, we add column names and coerce the matrix

to a data.frame. We use stringsAsFactors=FALSE since we have not started

interpreting the values yet.
Step 6. Normalize and coerce to correct types. This step consists
of preparing the character columns of our data.frame for coercion and trans-
lating numbers into numeric vectors and possibly character vectors to factor
variables. String normalization and type conversion are discussed later. In
this example we can suffice with the following statements.

dalton.df$birth <- as.numeric(dalton.df$birth)

dalton.df$death <- as.numeric(dalton.df$death)

str(dalton.df)

## 'data.frame': 3 obs. of 3 variables:

## $ name : chr "Gratt" "Bob" "Emmet"

## $ birth: num 1861 NA 1871

## $ death: num 1892 1892 1937

dalton.df

## name birth death

## 1 Gratt 1861 1892

## 2 Bob NA 1892

## 3 Emmet 1871 1937
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11.4 Type conversion

Converting a variable from one type to another is called coercion. The reader
is probably familiar with R’s basic coercion functions, but as a reference they
are listed here.
as.numeric

as.integer

as.character

as.logical

as.factor

as.ordered

Each of these functions takes an R object and tries to convert it to the class
specified behind the “as.”. By default, values that cannot be converted to the
specified type will be converted to a NA value while a warning is issued.
as.numeric(c("7", "7*", "7.0", "7,0"))

## Warning: NAs introduced by coercion

## [1] 7 NA 7 NA

In the remainder of this section we introduce R’s typing and storage system

and explain the difference between R types and classes. After that we discuss

date conversion.

11.4.1 Introduction to R’s typing system

Everything in R is an object. An object is a container of data endowed with
a label describing the data. Objects can be created, destroyed, or overwritten
on-the-fly by the user. The function class returns the class label of an R object.

class(c("abc", "def"))

## [1] "character"

class(1:10)

## [1] "integer"

class(c(pi, exp(1)))

## [1] "numeric"

class(factor(c("abc", "def")))

## [1] "factor"

# all columns in a data.frame

sapply(dalton.df, class)

## name birth death

## "character" "numeric" "numeric"
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For the user of R these class labels are usually enough to handle R objects in
R scripts. Under the hood, the basic R objects are stored as C structures as C
is the language in which R itself has been written. The type of C structure that
is used to store a basic type can be found with the typeof function. Compare
the results below with those in the previous code snippet.
typeof(c("abc", "def"))

## [1] "character"

typeof(1:10)

## [1] "integer"

typeof(c(pi, exp(1)))

## [1] "double"

typeof(factor(c("abc", "def")))

## [1] "integer"

Note that the type of an R object of class numeric is double. The term

double refers to double precision, which is a standard way for lower-level com-

puter languages such as C to store approximations of real numbers. Also, the

type of an object of class factor is integer. The reason is that R saves memory

(and computational time!) by storing factor values as integers, while a trans-

lation table between factor and integers are kept in memory. Normally, a user

should not have to worry about these subtleties, but there are exceptions (the

homework includes an example of the subtleties).

In short, one may regard the class of an object as the object’s type from

the user’s point of view while the type of an object is the way R looks at the

object. It is important to realize that R’s coercion functions are fundamentally

functions that change the underlying type of an object and that class changes

are a consequence of the type changes.

11.4.2 Recoding factors

In R, the value of categorical variables is stored in factor variables. A factor is an
integer vector endowed with a table specifying what integer value corresponds
to what level. The values in this translation table can be requested with the
levels function.
f <- factor(c("a", "b", "a", "a", "c"))

f
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## [1] a b a a c

## Levels: a b c

levels(f)

## [1] "a" "b" "c"

as.numeric(f)

## [1] 1 2 1 1 3

You may need to create a translation table by hand. For example, suppose
we read in a vector where 1 stands for male, 2 stands for female and 0 stands for
unknown. Conversion to a factor variable can be done as in the example below.
# example:

gender <- c(2, 1, 1, 2, 0, 1, 1)

gender

## [1] 2 1 1 2 0 1 1

# recoding table, stored in a simple vector

recode <- c(male = 1, female = 2)

recode

## male female

## 1 2

gender <- factor(gender, levels = recode, labels = names(recode))

gender

## [1] female male male female <NA> male male

## Levels: male female

Note that we do not explicitly need to set NA as a label. Every integer

value that is encountered in the first argument, but not in the levels argument

will be regarded missing.
Levels in a factor variable have no natural ordering. However in multivariate

(regression) analyses it can be beneficial to fix one of the levels as the reference
level. R’s standard multivariate routines (lm, glm) use the first level as reference
level. The relevel function allows you to determine which level comes first.
gender <- relevel(gender, ref = "female")

gender

## [1] female male male female <NA> male male

## Levels: female male

Levels can also be reordered, depending on the mean value of another vari-
able, for example:
age <- c(27, 52, 65, 34, 89, 45, 68)

gender <- reorder(gender, age)

gender

## [1] female male male female <NA> male male

## attr(,"scores")
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## female male

## 30.5 57.5

## Levels: female male

Here, the means are added as a named vector attribute to gender. It can
be removed by setting that attribute to NULL.
attr(gender, "scores") <- NULL

gender

## [1] female male male female <NA> male male

## Levels: female male

11.4.3 Converting dates

The base R installation has three types of objects to store a time instance:

Date, POSIXlt, and POSIXct. The Date object can only be used to store dates,

the other two store date and/or time. Here, we focus on converting text to

POSIXct objects since this is the most portable way to store such information.

Under the hood, a POSIXct object stores the number of seconds that have

passed since January 1, 1970 00:00. Such a storage format facilitates the calcu-

lation of durations by subtraction of two POSIXct objects.
When a POSIXct object is printed, R shows it in a human-readable calen-

der format. For example, the command Sys.time() returns the system time
provided by the operating system in POSIXct format.
current_time <- Sys.time()

class(current_time)

## [1] "POSIXct" "POSIXt"

current_time

## [1] "2017-08-17 17:58:34 MDT"

Here, Sys.time() uses the time zone that is stored in the locale settings of

the machine running R.

Converting from a calender time to POSIXct and back is not entirely trivial,

since there are many idiosyncrasies to handle in calender systems. These include

leap days, leap seconds, daylight saving times, time zones and so on. Converting

from text to POSIXct is further complicated by the many textual conventions of

time/date denotation. For example, both 28 September 1976 and 1976/09/28

indicate the same day of the same year. Moreover, the name of the month (or
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weekday) is language-dependent, where the language is again defined in the

operating system’s locale settings.
The lubridate package contains a number of functions facilitating the con-

version of text to POSIXct dates. As an example, consider the following code.

library(lubridate)

##

## Attaching package: ’lubridate’

## The following object is masked from ’package:plyr’:

##

## here

## The following object is masked from ’package:base’:

##

## date

dates <- c("15/02/2013"

, "15 Feb 13"

, "It happened on 15 02 '13")

dmy(dates)

## [1] "2013-02-15" "2013-02-15" "2013-02-15"

Here, the function dmy assumes that dates are denoted in the order day-

month-year and tries to extract valid dates. Note that the code above will

only work properly in locale settings where the name of the second month

is abbreviated to Feb. This holds for English or Dutch locales, but fails for

example in a French locale (Fevrier).
There are similar functions for all permutations of d, m, and y. Explicitly,

all of the following functions exist.
dmy()

dym()

mdy()

myd()

ydm()

ymd()

So once it is known in what order days, months and years are denoted,

extraction is very easy.

Note It is not uncommon to indicate years with two numbers, leaving out the
indication of century. Recently in R, 00-69 was interpreted as 2000-2069 and
70-99 as 1970-1999; this behaviour is according to the 2008 POSIX standard,
but one should expect that this interpretation changes over time. Currently all
are now 2000-2099.
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dmy("01 01 68")

## [1] "2068-01-01"

dmy("01 01 69")

## [1] "1969-01-01"

dmy("01 01 90")

## [1] "1990-01-01"

dmy("01 01 00")

## [1] "2000-01-01"

It should be noted that lubridate (as well as R’s base functionality) is only

capable of converting certain standard notations. For example, the following

notation does not convert.
dmy("15 Febr. 2013")

## Warning: All formats failed to parse. No formats found.

## [1] NA

The standard notations that can be recognized by R, either using lubridate

or R’s built-in functionality are shown below. The complete list can be found by

typing ?strptime in the R console. These are the day, month, and year formats

recognized by R.

Code Description Example

%a Abbreviated weekday name in the current locale. Mon

%A Full weekday name in the current locale. Monday

%b Abbreviated month name in the current locale. Sep

%B Full month name in the current locale. September

%m Month number (01-12) 09

%d Day of the month as decimal number (01-31). 28

%y Year without century (00-99) 13

%Y Year including century. 2013

Here, the names of (abbreviated) week or month names that are sought for in

the text depend on the locale settings of the machine that is running R.

If you know the textual format that is used to describe a date in the input,

you may want to use R’s core functionality to convert from text to POSIXct. This

can be done with the as.POSIXct function. It takes as arguments a character
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vector with time/date strings and a string describing the format.
dates <- c("15-9-2009", "16-07-2008", "17 12-2007", "29-02-2011")

as.POSIXct(dates, format = "%d-%m-%Y")

## [1] "2009-09-15 MDT" "2008-07-16 MDT" NA

## [4] NA

In the format string, date and time fields are indicated by a letter preceded

by a percent sign (%). Basically, such a %-code tells R to look for a range of

substrings. For example, the %d indicator makes R look for numbers 1-31 where

precursor zeros are allowed, so 01, 02, . . . , 31 are recognized as well. Strings

that are not in the exact format specified by the format argument (like the third

string in the above example) will not be converted by as.POSIXct. Impossible

dates, such as the leap day in the fourth date above are also not converted.

Finally, to convert dates from POSIXct back to character, one may use the

format function that comes with base R. It accepts a POSIXct date/time object

and an output format string.
mybirth <- dmy("28 Sep 1976")

format(mybirth, format = "I was born on %B %d, %Y")

## [1] "I was born on September 28, 1976"

11.5 Character-type manipulation

Because of the many ways people can write the same things down, character
data can be difficult to process. For example, consider the following excerpt of
a data set with a gender variable.
gender

M

male

Female

fem.

If this would be treated as a factor variable without any preprocessing,

obviously four, not two classes would be stored. The job at hand is therefore

to automatically recognize from the above data whether each element pertains

to male or female. In statistical contexts, classifying such “messy” text strings

into a number of fixed categories is often referred to as coding.
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Below we discuss two complementary approaches to string coding: string

normalization and approximate text matching. In particular, the following

topics are discussed.

� Remove prepending or trailing white spaces.

� Pad strings to a certain width.

� Transform to upper/lower case.

� Search for strings containing simple patterns (substrings).

� Approximate matching procedures based on string distances.

11.5.1 String normalization

String normalization techniques are aimed at transforming a variety of strings

to a smaller set of string values which are more easily processed. By default,

R comes with extensive string manipulation functionality that is based on the

two basic string operations: finding a pattern in a string and replacing one

pattern with another. We will deal with R’s generic functions below but start

by pointing out some common string cleaning operations.
The stringr package offers a number of functions that make some some

string manipulation tasks a lot easier than they would be with R’s base func-
tions. For example, extra white spaces at the beginning or end of a string can
be removed using str_trim().
library(stringr)

str_trim(" hello world ")

## [1] "hello world"

str_trim(" hello world ", side = "left")

## [1] "hello world "

str_trim(" hello world ", side = "right")

## [1] " hello world"

Conversely, strings can be padded with spaces or other characters with
str_pad() to a certain width. For example, numerical codes are often repre-
sented with prepending zeros.
str_pad(112, width = 6, side = "left", pad = 0)

## [1] "000112"

Both str_trim() and str_pad() accept a side argument to indicate whether

trimming or padding should occur at the beginning (left), end (right), or both
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sides of the string.
Converting strings to complete upper or lower case can be done with R’s

built-in toupper() and tolower() functions.
toupper("Hello world")

## [1] "HELLO WORLD"

tolower("Hello World")

## [1] "hello world"

11.5.2 Approximate string matching

There are two forms of string matching. The first consists of determining

whether a (range of) substring(s) occurs within another string. In this case

one needs to specify a range of substrings (called a pattern) to search for in

another string. In the second form one defines a distance metric between strings

that measures how “different” two strings are. Below we will give a short

introduction to pattern matching and string distances with R.

There are several pattern matching functions that come with base R. The

most used are probably grep() and grepl(). Both functions take a pattern and

a character vector as input. The output only differs in that grepl() returns a

logical index, indicating which element of the input character vector contains

the pattern, while grep() returns a numerical index. You may think of grep(...)

as which(grepl(...)).
In the most simple case, the pattern to look for is a simple substring. For

example, from the previous example, we get the following.
gender <- c("M", "male ", "Female", "fem.")

grepl("m", gender)

## [1] FALSE TRUE TRUE TRUE

grep("m", gender)

## [1] 2 3 4

Note that the result is case sensitive: the capital M in the first element of
gender does not match the lower case m. There are several ways to circumvent
this case sensitivity. Either by case normalization or by the optional argument
ignore.case.
grepl("m", gender, ignore.case = TRUE)

## [1] TRUE TRUE TRUE TRUE
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grepl("m", tolower(gender))

## [1] TRUE TRUE TRUE TRUE

Obviously, looking for the occurrence of m or M in the gender vector does not
allow us to determine which strings pertain to male and which not. Preferably
we would like to search for strings that start with an m or M. Fortunately, the
search patterns that grep() accepts allow for such searches. The beginning of
a string is indicated with a caret (^).
grepl("^m", gender, ignore.case = TRUE)

## [1] TRUE TRUE FALSE FALSE

Indeed, the grepl() function now finds only the first two elements of gender.
The caret is an example of a so-called meta-character. That is, it does not
indicate the caret itself but something else, namely the beginning of a string.
The search patterns that grep(), grepl() (and sub() and gsub()) understand
have more of these meta-characters, namely:
. \ | ( ) [ { ^ $ * + ?

If you need to search a string for any of these characters, you can use the
option fixed=TRUE.
grepl("^", gender, fixed = TRUE)

## [1] FALSE FALSE FALSE FALSE

This will make grepl() or grep() ignore any meta-characters in the search

string (and thereby search for the “^” character).

Search patterns using meta-characters are called regular expressions. Reg-

ular expressions3 offer powerful and flexible ways to search (and alter) text.

A concise description of regular expressions allowed by R’s built-in string pro-

cessing functions can be found by typing ?regex at the R command line. If

you frequently have to deal with “messy” text variables, learning to work with

regular expressions is a worthwhile investment. Moreover, since many popular

programming languages support some dialect of regexps, it is an investment

that could pay off several times.
We now turn our attention to the second method of approximate matching,

namely string distances. A string distance is an algorithm or equation that
indicates how much two strings differ from each other. An important distance
measure is implemented by the R’s native adist() function. This function
counts how many basic operations are needed to turn one string into another.
These operations include insertion, deletion, or substitution of a single charac-

3http://en.wikipedia.org/wiki/Regular_expression
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ter. For example
adist("abc", "bac")

## [,1]

## [1,] 2

The result equals two since turning ”abc” into ”bac” involves two character

substitutions: abc → bbc → bac.

Using adist(), we can compare fuzzy text strings to a list of known codes.
For example:
codes <- c("male", "female")

# calculate pairwise distances between the gender strings and codes strings

dist.g.c <- adist(gender, codes)

# add column and row names

colnames(dist.g.c) <- codes

rownames(dist.g.c) <- gender

dist.g.c

## male female

## M 4 6

## male 1 3

## Female 2 1

## fem. 4 3

Here, adist() returns the distance matrix between our vector of fixed codes
and the input data. For readability we added row and column names accord-
ingly. Now, to find out which code matches best with our raw data, we need
to find the index of the smallest distance for each row of dist.g.c. This can be
done as follows.
ind.min <- apply(dist.g.c, 1, which.min)

data.frame(rawtext = gender, coded = codes[ind.min])

## rawtext coded

## 1 M male

## 2 male male

## 3 Female female

## 4 fem. female

We use apply() to apply which.min() to every row of dist.g.c. Note that

in the case of multiple minima, the first match will be returned. At the end of

this subsection we show how this code can be simplified with the stringdist

package.

Finally, we mention three more functions based on string distances. First,

the R built-in function agrep() is similar to grep(), but it allows one to specify
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a maximum Levenshtein distance4 between the input pattern and the found

substring. The agrep() function allows for searching for regular expression

patterns, which makes it very flexible.

Secondly, the stringdist package offers a function called stringdist() which
can compute a variety of string distance metrics, some of which are likely to
provide results that are better than adist()’s. Most importantly, the distance
function used by adist() does not allow for character transpositions, which is a
common typographical error. Using the optimal string alignment distance (the
default choice for stringdist()) we get
library(stringdist)

stringdist("abc", "bac")

## [1] 1

The answer is now 1 (not 2 as with adist()), since the optimal string align-

ment distance allows for transpositions of adjacent characters: abc → bac.

Thirdly, the stringdist package provides a function called amatch(), which
mimics the behaviour of R’s match() function: it returns an index to the closest
match within a maximum distance. Recall the earlier gender and code example.

# this yields the closest match of 'gender' in 'codes' (within a distance of 4)

ind <- amatch(gender, codes, maxDist = 4)

ind

## [1] 1 1 2 2

# store results in a data.frame

data.frame(rawtext = gender, code = codes[ind])

## rawtext code

## 1 M male

## 2 male male

## 3 Female female

## 4 fem. female

4Informally, the Levenshtein distance between two words is the minimum number of single-character
edits (i.e., insertions, deletions, or substitutions) required to change one word into the other: https:

//en.wikipedia.org/wiki/Levenshtein_distance.
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11.6 From technically correct data to con-
sistent data

Consistent data are technically correct data that are fit for statistical analysis.

They are data in which missing values, special values, (obvious) errors and

outliers are either removed, corrected, or imputed. The data are consistent

with constraints based on real-world knowledge about the subject that the

data describe.

Consistency can be understood to include in-record consistency, mean-

ing that no contradictory information is stored in a single record, and cross-

record consistency, meaning that statistical summaries of different variables

do not conflict with each other. Finally, one can include cross-dataset consis-

tency, meaning that the dataset that is currently analyzed is consistent with

other datasets pertaining to the same subject matter. In this tutorial we mainly

focus on methods dealing with in-record consistency, with the exception of

outlier handling which can be considered a cross-record consistency issue.

The process towards consistent data always involves the following three

steps.

� Detection of an inconsistency. That is, one establishes which con-

straints are violated. For example, an age variable is constrained to non-

negative values.

� Selection of the field or fields causing the inconsistency. This is

trivial in the case of a univariate demand as in the previous step, but may

be more cumbersome when cross-variable relations are expected to hold.

For example the marital status of a child must be unmarried. In the case

of a violation it is not immediately clear whether age, marital status, or

both are wrong.

� Correction of the fields that are deemed erroneous by the selec-

tion method. This may be done through deterministic (model-based) or

stochastic methods.
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For many data correction methods these steps are not necessarily neatly sepa-

rated.

First, we introduce a number of techniques dedicated to the detection of

errors and the selection of erroneous fields. If the field selection procedure is

performed separately from the error detection procedure, it is generally referred

to as error localization. Next, we describe techniques that implement cor-

rection methods based on “direct rules” or “deductive correction”. In these

techniques, erroneous values are replaced by better ones by directly deriving

them from other values in the same record. Finally, we give an overview of

some commonly used imputation techniques that are available in R.

11.6.1 Detection and localization of errors

This section details a number of techniques to detect univariate and multivariate

constraint violations.

Missing values

A missing value, represented by NA in R, is a placeholder for a datum of which

the type is known but its value isn’t. Therefore, it is impossible to perform

statistical analysis on data where one or more values in the data are missing.

One may choose to either omit elements from a dataset that contain missing

values or to impute a value, but missingness is something to be dealt with prior

to any analysis.

In practice, analysts, but also commonly used numerical software may con-

fuse a missing value with a default value or category. For instance, in Excel

2010, the result of adding the contents of a field containing the number 1 with

an empty field results in 1. This behaviour is most definitely unwanted since

Excel silently imputes “0” where it should have said something along the lines

of “unable to compute”. It should be up to the analyst to decide how empty val-

ues are handled, since a default imputation may yield unexpected or erroneous

results for reasons that are hard to trace.
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Another commonly encountered mistake is to confuse an NA in categorical

data with the category unknown. If unknown is indeed a category, it should

be added as a factor level so it can be appropriately analyzed. Consider as an

example a categorical variable representing place of birth. Here, the category

unknown means that we have no knowledge about where a person is born. In

contrast, NA indicates that we have no information to determine whether the

birth place is known or not.

The behaviour of R’s core functionality is completely consistent with the

idea that the analyst must decide what to do with missing data. A common

choice, namely “leave out records with missing data” is supported by many

base functions through the na.rm option.
age <- c(23, 16, NA)

mean(age)

## [1] NA

mean(age, na.rm = TRUE)

## [1] 19.5

Functions such as sum(), prod(), quantile(), sd(), and so on all have this

option. Functions implementing bivariate statistics such as cor() and cov()

offer options to include complete or pairwise complete values.

Besides the is.na() function, that was already mentioned previously, R

comes with a few other functions facilitating NA handling. The complete.cases()

function detects rows in a data.frame that do not contain any missing value.

Recall the person data set example from earlier.
print(person)

## age height

## 1 21 6.0

## 2 42 5.9

## 3 18 NA

## 4 21 NA

complete.cases(person)

## [1] TRUE TRUE FALSE FALSE

The resulting logical can be used to remove incomplete records from the

data.frame. Alternatively the na.omit() function, does the same.
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persons_complete <- na.omit(person)

persons_complete

## age height

## 1 21 6.0

## 2 42 5.9

na.action(persons_complete)

## 3 4

## 3 4

## attr(,"class")

## [1] "omit"

The result of the na.omit() function is a data.frame where incomplete rows

have been deleted. The row.names of the removed records are stored in an

attribute called na.action.

Note. It may happen that a missing value in a data set means 0 or Not

applicable. If that is the case, it should be explicitly imputed with that value,

because it is not unknown, but was coded as empty.

Special values

As explained previously, numeric variables are endowed with several formalized

special values including ±Inf, NA, and NaN. Calculations involving special values

often result in special values, and since a statistical statement about a real-world

phenomenon should never include a special value, it is desirable to handle special

values prior to analysis. For numeric variables, special values indicate values

that are not an element of the mathematical set of real numbers. The function

is.finite() determines which values are “regular” values.
is.finite(c(1, Inf, NaN, NA))

## [1] TRUE FALSE FALSE FALSE

This function accepts vectorial input. With little effort we can write a

function that may be used to check every numerical column in a data.frame.
f.is.special <- function(x) {

if (is.numeric(x)) {
return(!is.finite(x))

} else {
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return(is.na(x))

}
}
person

## age height

## 1 21 6.0

## 2 42 5.9

## 3 18 NA

## 4 21 NA

sapply(person, f.is.special)

## age height

## [1,] FALSE FALSE

## [2,] FALSE FALSE

## [3,] FALSE TRUE

## [4,] FALSE TRUE

Here, the f.is.special() function is applied to each column of person using

sapply(). f.is.special() checks its input vector for numerical special values if

the type is numeric, otherwise it only checks for NA.

Outliers

There is a vast body of literature on outlier detection, and several definitions

of outlier exist. A general definition by Barnett and Lewis defines an outlier

in a data set as an observation (or set of observations) which appear to be

inconsistent with that set of data. Although more precise definitions exist

(see e.g., the book by Hawkins), this definition is sufficient for the current

chapter. Below we mention a few fairly common graphical and computational

techniques for outlier detection in univariate numerical data. In a previous

chapter, we’ve discussed using PCA as a graphical technique to help detect

multivariate outliers.

Note. Outliers do not equal errors. They should be detected, but not neces-

sarily removed. Their inclusion in the analysis is a statistical decision.

For more or less unimodal and symmetrically distributed data, Tukey’s box-

and-whisker method for outlier detection is often appropriate. In this method,

an observation is an outlier when it is larger than the so-called “whiskers” of
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the set of observations. The upper whisker is computed by adding 1.5 times

the interquartile range to the third quartile and rounding to the nearest lower

observation. The lower whisker is computed likewise. The base R installation

comes with function boxplot.stats(), which, amongst other things, list the

outliers.
x <- c(1:10, 20, 30)

boxplot.stats(x)

## $stats

## [1] 1.0 3.5 6.5 9.5 10.0

##

## $n

## [1] 12

##

## $conf

## [1] 3.76336 9.23664

##

## $out

## [1] 20 30

Here, 20 and 30 are detected as outliers since they are above the upper

whisker of the observations in x. The factor 1.5 used to compute the whisker

is to an extent arbitrary and it can be altered by setting the coef option of

boxplot.stats(). A higher coefficient means a higher outlier detection limit (so

for the same dataset, generally less upper or lower outliers will be detected).
boxplot.stats(x, coef = 2)$out

## [1] 30

The box-and-whisker method can be visualized with the box-and-whisker

plot, where the box indicates the interquartile range and the median, the

whiskers are represented at the ends of the box-and-whisker plots and outliers

are indicated as separate points above or below the whiskers.
op <- par(no.readonly = TRUE) # save plot settings

par(mfrow=c(1,3))

boxplot(x, main="default")

boxplot(x, range = 1.5, main="range = 1.5")

boxplot(x, range = 2, main="range = 2")

par(op) # restore plot settings
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The box-and-whisker method fails when data distribution is skewed, as in

an exponential or log-normal distribution. In that case one can attempt to

transform the data, for example with a logarithm or square root transformation.

Another option is to use a method that takes the skewness into account.

A particularly easy-to-implement method for outlier detection with positive

observations is by Hiridoglou and Berthelot. In this method, an observation is

an outlier when

h(x) = max

(
x

x∗
,
x∗

x

)
≥ r, and x > 0.

Here, r is a user-defined reference value and x∗ is usually the median obser-

vation, although other measures of centrality may be chosen. Here, the score

function h(x) grows as 1/x as x approaches zero and grows linearly with x when

it is larger than x∗. It is therefore appropriate for finding outliers on both sides

of the distribution. Moreover, because of the different behaviour for small and

large x-values, it is appropriate for skewed (long-tailed) distributions. An im-

plementation of this method in R does not seem available but it is implemented

simple enough as follows.
f.hb.outlier <- function(x,r) {

x <- x[is.finite(x)]

stopifnot(length(x) > 0 , all(x>0)) # if empty vector or non-positive values, quit

xref <- median(x)

if (xref <= sqrt(.Machine$double.eps)) {
warning("Reference value close to zero: results may be inaccurate")

}
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pmax(x/xref, xref/x) > r

}
f.hb.outlier(x, r = 4)

## [1] TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

## [12] TRUE

The above function returns a logical vector indicating which elements of x

are outliers.

11.6.2 Edit rules for detecting obvious inconsisten-
cies

An obvious inconsistency occurs when a record contains a value or combination

of values that cannot correspond to a real-world situation. For example, a

person’s age cannot be negative, a man cannot be pregnant and an under-aged

person cannot possess a drivers license.

Such knowledge can be expressed as rules or constraints. In data editing

literature these rules are referred to as edit rules or edits, in short. Checking for

obvious inconsistencies can be done straightforwardly in R using logical indices

and recycling. For example, to check which elements of x obey the rule ‘x must

be non negative’ one simply uses the following.
x_nonnegative <- (x >= 0)

However, as the number of variables increases, the number of rules may

increase rapidly and it may be beneficial to manage the rules separate from

the data. Moreover, since multivariate rules may be interconnected by common

variables, deciding which variable or variables in a record cause an inconsistency

may not be straightforward.

The editrules package allows one to define rules on categorical, numerical

or mixed-type data sets which each record must obey. Furthermore, editrules

can check which rules are obeyed or not and allows one to find the minimal

set of variables to adapt so that all rules can be obeyed. The package also

implements a number of basic rule operations allowing users to test rule sets

for contradictions and certain redundancies.
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As an example, we will work with a small file containing the following data.
age,agegroup,height,status,yearsmarried

21,adult,6.0,single,-1

2,child,3,married, 0

18,adult,5.7,married, 20

221,elderly, 5,widowed, 2

34,child, -7,married, 3

We read this data into a variable called people and define some restrictions

on age using editset().
fn.data <- "http://statacumen.com/teach/ADA2/ADA2_notes_Ch18_people.txt"

people <- read.csv(fn.data)

people

## age agegroup height status yearsmarried

## 1 21 adult 6.0 single -1

## 2 2 child 3.0 married 0

## 3 18 adult 5.7 married 20

## 4 221 elderly 5.0 widowed 2

## 5 34 child -7.0 married 3

library(editrules)

## Loading required package: igraph

##

## Attaching package: ’igraph’

## The following objects are masked from ’package:lubridate’:

##

## %--%, union

## The following objects are masked from ’package:stats’:

##

## decompose, spectrum

## The following object is masked from ’package:base’:

##

## union

##

## Attaching package: ’editrules’

## The following objects are masked from ’package:igraph’:

##

## blocks, normalize

E <- editset(c("age >=0", "age <= 150"))

E

##

## Edit set:

## num1 : 0 <= age

## num2 : age <= 150

The editset() function parses the textual rules and stores them in an
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editset object. Each rule is assigned a name according to it’s type (numeric,

categorical, or mixed) and a number. The data can be checked against these

rules with the violatedEdits() function. Record 4 contains an error according

to one of the rules: an age of 221 is not allowed.
violatedEdits(E, people)

## edit

## record num1 num2

## 1 FALSE FALSE

## 2 FALSE FALSE

## 3 FALSE FALSE

## 4 FALSE TRUE

## 5 FALSE FALSE

violatedEdits() returns a logical array indicating for each row of the data,

which rules are violated. The number and type of rules applying to a data set

usually quickly grow with the number of variables. With editrules, users may

read rules, specified in a limited R-syntax, directly from a text file using the

editfile() function. As an example consider the contents of the following text

file (note, you can’t include braces in your if() statement).
# numerical rules

age >= 0

height > 0

age <= 150

age > yearsmarried

# categorical rules

status %in% c("married", "single", "widowed")

agegroup %in% c("child", "adult", "elderly")

if ( status == "married" ) agegroup %in% c("adult","elderly")

# mixed rules

if ( status %in% c("married","widowed")) age - yearsmarried >= 17

if ( age < 18 ) agegroup == "child"

if ( age >= 18 && age <65 ) agegroup == "adult"

if ( age >= 65 ) agegroup == "elderly"

There are rules pertaining to purely numerical, purely categorical and rules

pertaining to both data types. Moreover, there are univariate as well as mul-

tivariate rules. Comments are written behind the usual # character. The rule

set can be read as follows.
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fn.data <- "http://statacumen.com/teach/ADA2/ADA2_notes_Ch18_edits.txt"

E <- editfile(fn.data)

E

##

## Data model:

## dat6 : agegroup %in% c('adult', 'child', 'elderly')

## dat7 : status %in% c('married', 'single', 'widowed')

##

## Edit set:

## num1 : 0 <= age

## num2 : 0 < height

## num3 : age <= 150

## num4 : yearsmarried < age

## cat5 : if( agegroup == 'child' ) status != 'married'

## mix6 : if( age < yearsmarried + 17 ) !( status %in% c('married', 'widowed') )

## mix7 : if( age < 18 ) !( agegroup %in% c('adult', 'elderly') )

## mix8 : if( 18 <= age & age < 65 ) !( agegroup %in% c('child', 'elderly') )

## mix9 : if( 65 <= age ) !( agegroup %in% c('adult', 'child') )

Since rules may pertain to multiple variables, and variables may occur in sev-

eral rules (e.g., the age variable in the current example), there is a dependency

between rules and variables. It can be informative to show these dependencies

in a graph using the plot function. Below the graph plot shows the interconnec-

tion of restrictions. Blue circles represent variables and yellow boxes represent

restrictions. The lines indicate which restrictions pertain to what variables.
op <- par(no.readonly = TRUE) # save plot settings

par(mfrow=c(1,1), mar = c(0,0,0,0))

plot(E)

par(op) # restore plot settings
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As the number of rules grows, looking at the full array produced by violatedEdits()

becomes cumbersome. For this reason, editrules offers methods to summarize

or visualize the result.
ve <- violatedEdits(E, people)

summary(ve)

## Edit violations, 5 observations, 0 completely missing (0%):

##

## editname freq rel

## cat5 2 40%

## mix6 2 40%

## num2 1 20%

## num3 1 20%

## num4 1 20%

## mix8 1 20%

##

## Edit violations per record:

##

## errors freq rel

## 0 1 20%

## 1 1 20%

## 2 2 40%

## 3 1 20%

plot(ve)
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Here, the edit labeled cat5 is violated by two records (20% of all records).

Violated edits are sorted from most to least often violated. The plot visualizes

the same information.

Error localization

The interconnectivity of edits is what makes error localization difficult. For

example, the graph above shows that a record violating edit num4 may contain

an error in age and/or yrsmr (years married). Suppose that we alter age so that

num4 is not violated anymore. We then run the risk of violating up to six other

edits containing age.

If we have no other information available but the edit violations, it makes

sense to minimize the number of fields being altered. This principle, commonly
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referred to as the principle of Fellegi and Holt, is based on the idea that er-

rors occur relatively few times and when they do, they occur randomly across

variables. Over the years several algorithms have been developed to solve this

minimization problem of which two have been implemented in editrules. The

localizeErrors() function provides access to this functionality.

As an example we take two records from the people dataset from the previous

subsection.
id <- c(2, 5)

people[id, ]

## age agegroup height status yearsmarried

## 2 2 child 3 married 0

## 5 34 child -7 married 3

violatedEdits(E, people[id, ])

## edit

## record num1 num2 num3 num4 dat6 dat7 cat5 mix6 mix7 mix8

## 2 FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE

## 5 FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE

## edit

## record mix9

## 2 FALSE

## 5 FALSE

Record 2 violates mix6 while record 5 violates edits num2, cat5, and mix8.

We use localizeErrors(), with a mixed-integer programming (MIP) approach

to find the minimal set of variables to adapt.
le <- localizeErrors(E, people[id, ], method = "mip")

le$adapt

## age agegroup height status yearsmarried

## 2 FALSE FALSE FALSE TRUE FALSE

## 5 FALSE TRUE TRUE FALSE FALSE

Here, the le object contains some processing metadata and a logical array

labeled adapt which indicates the minimal set of variables to be altered in each

record. It can be used in correction and imputation procedures for filling in

valid values. Such procedures are not part of editrules, but for demonstration

purposes we will manually fill in new values showing that the solution computed

by localizeErrors() indeed allows one to repair records to full compliance with

all edit rules.
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people[2, "status"] <- "single"

people[5, "height"] <- 7

people[5, "agegroup"] <- "adult"

summary(violatedEdits(E, people[id, ]))

## No violations detected, 0 checks evaluated to NA

## NULL

The behaviour of localizeErrors() can be tuned with various options. It

is possible to supply a confidence weight for each variable allowing for fine

grained control on which values should be adapted. It is also possible to choose

a branch-and-bound based solver (instead of the MIP solver used here), which

is typically slower but allows for more control.

11.6.3 Correction

Correction methods aim to fix inconsistent observations by altering invalid val-

ues in a record based on information from valid values. Depending on the

method this is either a single-step procedure or a two-step procedure where

first, an error localization method is used to empty certain fields, followed by

an imputation step.

In some cases, the cause of errors in data can be determined with enough

certainty so that the solution is almost automatically known. In recent years,

several such methods have been developed and implemented in the deducorrect

package.

For the purposes of ADA1, we will manually correct errors, either by replac-

ing values or by excluding observations.

Simple transformation rules

In practice, data cleaning procedures involve a lot of ad-hoc transformations.

This may lead to long scripts where one selects parts of the data, changes some

variables, selects another part, changes some more variables, etc. When such

scripts are neatly written and commented, they can almost be treated as a log of

the actions performed by the analyst. However, as scripts get longer it is better
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to store the transformation rules separately and log which rule is executed on

what record. The deducorrect package offers functionality for this. Consider

as an example the following (fictitious) dataset listing the body length of some

brothers.
marx <- read.table(text = "

name height unit

Groucho 170.00 cm

Zeppo 1.74 m

Chico 70.00 inch

Gummo 168.00 cm

Harpo 5.91 ft

", header=TRUE, stringsAsFactors = FALSE)

marx

## name height unit

## 1 Groucho 170.00 cm

## 2 Zeppo 1.74 m

## 3 Chico 70.00 inch

## 4 Gummo 168.00 cm

## 5 Harpo 5.91 ft

The task here is to standardize the lengths and express all of them in me-

ters. The obvious way would be to use indexing techniques, which would look

something like this.
marx_m <- marx

ind <- (marx$unit == "cm") # indexes for cm

marx_m[ind, "height"] <- marx$height[ind] / 100

marx_m[ind, "unit"] <- "m"

ind <- (marx$unit == "inch") # indexes for inch

marx_m[ind, "height"] <- marx$height[ind] / 39.37

marx_m[ind, "unit"] <- "m"

ind <- (marx$unit == "ft") # indexes for ft

marx_m[ind, "height"] <- marx$height[ind] / 3.28

marx_m[ind, "unit"] <- "m"

marx_m

## name height unit

## 1 Groucho 1.700000 m

## 2 Zeppo 1.740000 m

## 3 Chico 1.778004 m

## 4 Gummo 1.680000 m

## 5 Harpo 1.801829 m

Such operations quickly become cumbersome. Of course, in this case one

could write a for-loop but that would hardly save any code. Moreover, if you

want to check afterwards which values have been converted and for what reason,
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there will be a significant administrative overhead. The deducorrect package

takes all this overhead off your hands with the correctionRules() functionality.

For example, to perform the above task, one first specifies a file with correction

rules as follows.
# convert centimeters

if ( unit == "cm" ){
height <- height / 100

unit <- "m" # set all units to meter

}
# convert inches

if (unit == "inch" ){
height <- height / 39.37

unit <- "m" # set all units to meter

}
# convert feet

if (unit == "ft" ){
height <- height / 3.28

unit <- "m" # set all units to meter

}

With deducorrect we can read these rules, apply them to the data and

obtain a log of all actual changes as follows.
library(deducorrect)

fn.data <- "http://statacumen.com/teach/ADA2/ADA2_notes_Ch18_conversions.txt"

# read the conversion rules.

R <- correctionRules(fn.data)

R

## Object of class 'correctionRules'

## ## 1-------

## if (unit == "cm") {

## height <- height/100

## unit <- "m"

## }

## ## 2-------

## if (unit == "inch") {

## height <- height/39.37

## unit <- "m"

## }

## ## 3-------

## if (unit == "ft") {

## height <- height/3.28

## unit <- "m"

## }

correctionRules() has parsed the rules and stored them in a correctionRules
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object. We may now apply them to the data.
cor <- correctWithRules(R, marx)

The returned value, cor, is a list containing the corrected data
cor$corrected

## name height unit

## 1 Groucho 1.700000 m

## 2 Zeppo 1.740000 m

## 3 Chico 1.778004 m

## 4 Gummo 1.680000 m

## 5 Harpo 1.801829 m

as well as a log of applied corrections.
cor$corrections[1:4]

## row variable old new

## 1 1 height 170 1.7

## 2 1 unit cm m

## 3 3 height 70 1.77800355600711

## 4 3 unit inch m

## 5 4 height 168 1.68

## 6 4 unit cm m

## 7 5 height 5.91 1.80182926829268

## 8 5 unit ft m

The log lists for each row, what variable was changed, what the old value was

and what the new value is. Furthermore, the fifth column of cor$corrections

shows the corrections that were applied (not shown above for formatting rea-

sons).
cor$corrections[5]

## how

## 1 if (unit == "cm") { height <- height/100 unit <- "m" }

## 2 if (unit == "cm") { height <- height/100 unit <- "m" }

## 3 if (unit == "inch") { height <- height/39.37 unit <- "m" }

## 4 if (unit == "inch") { height <- height/39.37 unit <- "m" }

## 5 if (unit == "cm") { height <- height/100 unit <- "m" }

## 6 if (unit == "cm") { height <- height/100 unit <- "m" }

## 7 if (unit == "ft") { height <- height/3.28 unit <- "m" }

## 8 if (unit == "ft") { height <- height/3.28 unit <- "m" }

So here, with just two commands, the data is processed and all actions

logged in a data.frame which may be stored or analyzed. The rules that may

be applied with deducorrect are rules that can be executed record-by-record.

By design, there are some limitations to which rules can be applied with
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correctWithRules(). The processing rules should be executable record-by-record.

That is, it is not permitted to use functions like mean() or sd(). The symbols

that may be used can be listed as follows.
getOption("allowedSymbols")

## [1] "if" "else" "is.na" "is.finite" "=="

## [6] "<" "<=" "=" ">=" ">"

## [11] "!=" "!" "%in%" "identical" "sign"

## [16] "abs" "||" "|" "&&" "&"

## [21] "(" "{" "<-" "=" "+"

## [26] "-" "*" "^" "/" "%%"

## [31] "%/%"

When the rules are read by correctionRules(), it checks whether any symbol

occurs that is not in the list of allowed symbols and returns an error message

when such a symbol is found as in the following example.
correctionRules(expression(x <- mean(x)))

##

## Forbidden symbols found:

## ## ERR 1 ------

## Forbidden symbols: mean

## x <- mean(x)

## Error in correctionRules.expression(expression(x <- mean(x))): Forbidden symbols found

Finally, it is currently not possible to add new variables using correctionRules()

although such a feature will likely be added in the future.

Deductive correction

When the data you are analyzing is generated by people rather than machines

or measurement devices, certain typical human-generated errors are likely to

occur. Given that data has to obey certain edit rules, the occurrence of such

errors can sometimes be detected from raw data with (almost) certainty. Ex-

amples of errors that can be detected are typing errors in numbers (under linear

restrictions) rounding errors in numbers and sign errors or variable swaps. The

deducorrect package has a number of functions available that can correct such

errors. Below we give some examples, every time with just a single edit rule.

The functions can handle larger sets of edits however.

[I will complete this section if we need it for our Spring semester.]
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Deterministic imputation

In some cases a missing value can be determined because the observed values

combined with their constraints force a unique solution.

[I will complete this section if we need it for our Spring semester.]

11.6.4 Imputation

Imputation is the process of estimating or deriving values for fields where data

is missing. There is a vast body of literature on imputation methods and it

goes beyond the scope of this chapter to discuss all of them.

There is no one single best imputation method that works in all cases. The

imputation model of choice depends on what auxiliary information is available

and whether there are (multivariate) edit restrictions on the data to be imputed.

The availability of R software for imputation under edit restrictions is limited.

However, a viable strategy for imputing numerical data is to first impute missing

values without restrictions, and then minimally adjust the imputed values so

that the restrictions are obeyed. Separately, these methods are available in R.
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Custom R functions
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A.1 Ch 2. Estimation in One-Sample Problems

# a function to compare the bootstrap sampling distribution with

# a normal distribution with mean and SEM estimated from the data

bs.one.samp.dist <- function(dat, N = 1e4) {
n <- length(dat);

# resample from data

sam <- matrix(sample(dat, size = N * n, replace = TRUE), ncol=N);

# draw a histogram of the means

sam.mean <- colMeans(sam);

# save par() settings

old.par <- par(no.readonly = TRUE)

# make smaller margins

par(mfrow=c(2,1), mar=c(3,2,2,1), oma=c(1,1,1,1))

# Histogram overlaid with kernel density curve

hist(dat, freq = FALSE, breaks = 6

, main = "Plot of data with smoothed density curve")

points(density(dat), type = "l")

rug(dat)

hist(sam.mean, freq = FALSE, breaks = 25

, main = "Bootstrap sampling distribution of the mean"

, xlab = paste("Data: n =", n
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, ", mean =", signif(mean(dat), digits = 5)

, ", se =", signif(sd(dat)/sqrt(n)), digits = 5))

# overlay a density curve for the sample means

points(density(sam.mean), type = "l")

# overlay a normal distribution, bold and red

x <- seq(min(sam.mean), max(sam.mean), length = 1000)

points(x, dnorm(x, mean = mean(dat), sd = sd(dat)/sqrt(n))

, type = "l", lwd = 2, col = "red")

# place a rug of points under the plot

rug(sam.mean)

# restore par() settings

par(old.par)

}

# Function ot plot t-distribution with shaded p-value

t.dist.pval <- function(t.summary) {
par(mfrow=c(1,1))

lim.extreme <- max(4, abs(t.summary$statistic) + 0.5)

lim.lower <- -lim.extreme;

lim.upper <- lim.extreme;

x.curve <- seq(lim.lower, lim.upper, length=200)

y.curve <- dt(x.curve, df = t.summary$parameter)

plot(x.curve, y.curve, type = "n"

, ylab = paste("t-dist( df =", signif(t.summary$parameter, 3), ")")

, xlab = paste("t-stat =", signif(t.summary$statistic, 5)

, ", Shaded area is p-value =", signif(t.summary$p.value, 5)))

if ((t.summary$alternative == "less")

| (t.summary$alternative == "two.sided")) {
x.pval.l <- seq(lim.lower, -abs(t.summary$statistic), length=200)

y.pval.l <- dt(x.pval.l, df = t.summary$parameter)

polygon(c(lim.lower, x.pval.l, -abs(t.summary$statistic))

, c(0, y.pval.l, 0), col="gray")

}
if ((t.summary$alternative == "greater")

| (t.summary$alternative == "two.sided")) {
x.pval.u <- seq(abs(t.summary$statistic), lim.upper, length=200)

y.pval.u <- dt(x.pval.u, df = t.summary$parameter)

polygon(c(abs(t.summary$statistic), x.pval.u, lim.upper)

, c(0, y.pval.u, 0), col="gray")

}
points(x.curve, y.curve, type = "l", lwd = 2, col = "blue")

}
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# a function to compare the bootstrap sampling distribution

# of the difference of means from two samples with

# a normal distribution with mean and SEM estimated from the data

bs.two.samp.diff.dist <- function(dat1, dat2, N = 1e4) {
n1 <- length(dat1);

n2 <- length(dat2);

# resample from data

sam1 <- matrix(sample(dat1, size = N * n1, replace = TRUE), ncol=N);

sam2 <- matrix(sample(dat2, size = N * n2, replace = TRUE), ncol=N);

# calculate the means and take difference between populations

sam1.mean <- colMeans(sam1);

sam2.mean <- colMeans(sam2);

diff.mean <- sam1.mean - sam2.mean;

# save par() settings

old.par <- par(no.readonly = TRUE)

# make smaller margins

par(mfrow=c(3,1), mar=c(3,2,2,1), oma=c(1,1,1,1))

# Histogram overlaid with kernel density curve

hist(dat1, freq = FALSE, breaks = 6

, main = paste("Sample 1", "\n"
, "n =", n1

, ", mean =", signif(mean(dat1), digits = 5)

, ", sd =", signif(sd(dat1), digits = 5))

, xlim = range(c(dat1, dat2)))

points(density(dat1), type = "l")

rug(dat1)

hist(dat2, freq = FALSE, breaks = 6

, main = paste("Sample 2", "\n"
, "n =", n2

, ", mean =", signif(mean(dat2), digits = 5)

, ", sd =", signif(sd(dat2), digits = 5))

, xlim = range(c(dat1, dat2)))

points(density(dat2), type = "l")

rug(dat2)

hist(diff.mean, freq = FALSE, breaks = 25

, main = paste("Bootstrap sampling distribution of the difference in means", "\n"
, "mean =", signif(mean(diff.mean), digits = 5)

, ", se =", signif(sd(diff.mean), digits = 5)))

# overlay a density curve for the sample means

points(density(diff.mean), type = "l")

# overlay a normal distribution, bold and red

x <- seq(min(diff.mean), max(diff.mean), length = 1000)

points(x, dnorm(x, mean = mean(diff.mean), sd = sd(diff.mean))

, type = "l", lwd = 2, col = "red")

# place a rug of points under the plot

rug(diff.mean)
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# restore par() settings

par(old.par)

}
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