Data cleaning

For applied statisticians, data cleaning can be the most time-consuming
part of the job. This involves extracting variables from data bases,
reorganizing data, merging files that are sometimes in different formats,
analyzing subsets of data, understanding missing data in your data set,
and so forth.

Often, raw data cannot be analyzed as is, but must be processed
considerably first. In many cases, also, a data set is not labeled to tell you
which variables are the response and which variables are the predictors.
Often this must be determined by talking withoever collected the data.

ADA1 December 5, 2017 1/37

Data cleaning

G. Raw data)
type checking, normalizing
CZ. Technically correct data)
fixand impute

@. Consistent data)
estimate, analyze, derive, etc.
@. Statistical results)
tabulate, plot

@. Formatted output)

Data cleaning

ADA1 December 5, 2017 2 /37

Data cleaning

1. Raw data might have some variables labeled or some not, might have
some entries coded in a way that turns a numerical column into
strings, have inconsistent date formats (such as 12/1/17, 12/1/2017
and 1-Dec-17 all in the same column), have missing data which might
be coded inconsistently, or have comments in the data. Often this
data can’t even be read in directly as a data.frame in R because it is
not rectangular (same number of rows for each column).

2. Technically correct data can be read into R as a data.frame object
but might still have data values that are not possible or are incorrect,
such as negative numbers for heights or counts, or dates that occur in
the future.

3. Consistent data means data that is cleaned and ready for analysis and
statistical procedures. QOutliers might still be present in the data

ADA1 December 5, 2017 3/37

Data cleaning

4. Statistical results. Results are created in the computer and can be
reused if necessary, but hasn’t necessarily been formatted for a report,
paper, or presentation.

5. Formatted output. Results are presented in a form suitable for a
report or presentation, such as in tables or plots.

Note: it is best to store data in different stages, including raw, technically
correct, and cleaned data so that if there is a question about how the data
has been cleaned, the raw data can be used to clean the data again using
a slightly different method. Also, variables in the raw data might not have
been retained in the cleaned data, so it is always good to have original raw
data available instead of modifying this file. In some cases, such as in the
pharmaceutical industry, data sets are “frozen” so that the data analyst
does not have permissions in the computer to modify an original data file.
If data is in an Excel .csv file, a staistician might modify the data.frame
object in R instead of modigying the .csv file.

ADA1 December 5, 2017 4 /37

Data cleaning

There are several data types in R. These include

>

>

>

|

numeric (includes decimals to approximate real numbers up to some
level of precision)

integer (whole numbers for counting)
factor (categorical-often strings are treated as factor)

character (used for strings that cannot be numeric. Although
apparent numbers might be treated as character strings or factors,
especially when there are errors in the data)

ordered (ordered categories, such as small, medium, large)
raw (binary data, which is rarely used)

matrix (similar to numeric vectors, but arranged in a rectangle)

In addition, certain functions or packages might define their own data
types, such as linear model objects, evolutionary trees, etc.

ADA1 December 5, 2017 5 /37

Data cleaning

Note that vectors and matrices have objects of one type.

> x <= c(1,2,"3")

> class(x)

[1] "character"

> X

[1] "1™ nw2" "3"

> mean (x)

(1] NA

Warning message:

In mean.default(x) : argument is not numeric or logical:
returning NA

Here all objects were converted to character. If you have a column in a data set
that is supposed to be numeric, but someone accidentally typed a character (like
O instead of 0) somewhere, it can convert the entire column to character, which

means that you can't take an average or do other mathematical operations.
ADA1 December 5, 2017 6 /37

Data cleaning

list objects can be very hetrogeneous and can store an array of objects of

different types

> a <- matrix(1:4,ncol=2)
> b <- list(1,a,"a","1")
> b
[[1]]
[1] 1
[[2]]
[,1]1 [,2]
[1,] 1 3
[2,] 2 4
[[3]]
[1] l|a"
[[4]]
[1] "1

ADA1

December 5, 2017

7/37

Data cleaning

Something to be careful of is how R multiplies two vectors together. Consider the
following

> x <- 1:4

>y <= c(-1,1)

> x*y

[1] -1 2 -3 4

>z <-1:3

> zxy

[1] -1 2 -3

Warning message:

In z x y : longer object length is not a multiple of shorter
object length

When two vectors get multiplied, R uses recycling of the shorter object to keep
going to reuse values if the lengths of the vectors don't match up. This doesn't
generate a warning as long as the length of the longer object is a multiple of the

length of the shorter object.

Data cleaning

There are a few values in R that are treated in a special way, such as NA
which means “not available”, and is used for missing values.

> a <- c(1,2,NA,4)
> b <- c(NA,5,6,7)
> atb

[1] NA 7 NA 11

> mean(a,rm.na=T)
[1] NA

> mean(a,na.rm=T)
[1] 2.333333

ADA1 December 5, 2017 9 /37

Data cleaning

> a <- c(1,2,NA,4,5,6)
> b <- c(NA,7,8,9,1,2)
> cor.test(a,b,na.rm=T)

Pearson’s product-moment correlation

data: a and b
t = -1.3665, df = 2, p-value = 0.3051
alternative hypothesis: true correlation is not equal to (
95 percent confidence interval:
-0.9928808 0.8014513
sample estimates:
cor
-0.6948677

Note the degrees of freedom. How many observations were used?
ADA1 December 5, 2017 10 / 37

Data cleaning

To get a better understanding of how NA is used, try the following:

NA + 1

sum(c(NA, 1, 2))

median(c(NA, 1, 2, 3), na.rm = TRUE)
length(c(NA, 2, 3, 4))

3 == NA

NA == NA

TRUE | NA

TRUE & NA

use is.na() to detect NAs
is.na(c(1, NA, 3))

ADA1 December 5, 2017

11/ 37

Data cleaning

There is also a distinction between missing numeric values and missing
string values. Consider the following data set, called “testl.txt” (I don't
have a link; you just need to make this file yourself if you want to try it):

3 tree

4 house
NA dog

5 NA

ADA1 December 5, 2017 12 / 37

Data cleaning

vV b W N A\

= W

x <- read.table("testl.txt")
X

Vi V2

3 tree

4 house

NA dog

5 <NA>
table (x$V1)

45
11

> table (x$V2)

dog house tree
1 1 1

ADA1

December 5, 2017

13 /37

Data cleaning

Another special value in R is NULL which can be used to initialize a
variable without putting anything in it.

length(c(1, 2, NULL, 4))

sum(c(1, 2, NULL, 4))

x <- NULL

length(x)

c(x, 2)

use is.null() to detect NULL variables
is.null(x)

ADA1 December 5, 2017 14 / 37

Data cleaning

| sometimes use NULL to create a vector when | don't know how many
elements it will have. For example, | roll two dice, and | want to save
outcomes where the sum is greater than or equal to 4. | could use this
code

success <- NULL

for(i in 1:10000) {

x <- sample(1:6,2,replace=T)

if (sum(x) >= 4) success <- c(success,x)

}

This code creates a vector called success which records the value every
time the sum was greater than or equal to 4, and does so by concatenating
to the end of previous results. | don’t know in advance how many
successes | will have.

ADA1 December 5, 2017 15 / 37

Data cleaning

Inf Stands for co and only applies to vectors of class numeric (not integer).

Technically, Inf is a valid numeric that results from calculations like division of a
number by zero, or numbers that are just too big for R to represent.

> 1/0

[1] Inf

> 1/-0

[1] -Inf

> 1071000
[1] Inf

> Inf+1

[1] Inf

> Inf+1 > Inf
[1] FALSE

> 100 < Inf
[1] TRUE

ADA1

December 5, 2017

16 / 37

Data cleaning

As a final special value, NaN stands for not a number, which is different from
missing values handled with NA. Here are some weird examples:

> Inf+Inf
[1] Inf

> Inf-Inf
[1] NaN

> Inf-Inf
[1] NaN

> Inf-NaN
[1] NaN

> NA-NaN
[1] NA

> NaN-NA
[1] NaN

ADA1 December 5, 2017

17 / 37

Data cleaning

Special attention is needed when dealing with dates and times as data.
The base R installation has three types of objects to store a time instance:

Date, POSIX1t, and POSIXct. This is a little bit technical. There is also
the lubridate package which has extra functions for dealing with dates.

ADA1 December 5, 2017 18 / 37

Data cleaning

The function, as.Date() converts character strings to date objects, which is a
built in class, like numeric and character. Objects of class date can be
manipulated like numbers and other data.

As an example, let's say that you want to generate a data set with all dates in
2018, with one row per date.

date <- as.Date(‘‘01/01/2018’’ ,format="°‘%m/%d/%Y’’)

tempdate <- date

for(i in 1:365) {
tempdate2 <- format(as.Date(tempdate), ‘‘Ym/%d/%Y’’)
stringl <- as.character(tempdate2)
string <- paste(i,stringl)
write(string,file=’’calendar.txt’’,append=T)
tempdate <- format(as.Date(tempdate), ‘‘%m/%d/%Y’’)
tempdate <- tempdate+1

ADA1 December 5, 2017 19 / 37

Data cleaning

Note that formatting a date object creates a character string. Consequently, in

the above code, tempdate is a date object, while tempdate2 is a character
string.

> tempdate <- as.Date("01/01/2018",format="%m/%d/%Y")

> tempdate2 <- format(tempdate,format="%m/%d/%Y")
> tempdate

[1] "2018-01-01"
> tempdate2

[1] "01/01/2018"
> class(tempdate)
[1] "Date"

> class(tempdate2)
[1] "character"

ADA1

December 5, 2017 20 / 37

Data cleaning

The code above was something | wanted for a project, where | wanted one
row per day and wanted to generate all the days in a year. | was able to
add 1 to each temporary day to generate the following day. R is smart
enough to know that 2018 is not a leap year for example. If you ran the
same code starting on 1/1/2020, and ran the loop 366 days, then it would
know that 2020 was a leap year, and generate the dates correctly.

In the code, the date was read in using month-day-year format (although

with Jan 1, | could have interpreted it as day-month-year instead), and
adding 1 to each date added to the day rather than the year or month.

ADA1 December 5, 2017 21 /37

Data cleaning

A similar program could be used to convert each day to a different format. For
example, consider the following code for a fake file called hospital_data.csv.

x <- read.csv(‘‘hospital_data.csv’’)

x$date <- as.Date(x$date,format=°“%m/%d/%Y’’)
x$date <- as.Date(x$date,format="‘‘“%Y/%m/%d’’)
write.csv(x,file=’ ’hospital_data_newdate.csv’’)

ADA1 December 5, 2017 22 /37

Data cleaning

This type of operation can be important when you have data from different
files that needs to be combined and dates are coded inconsistently.

ADA1 December 5, 2017 23 /37

Data cleaning

If you want to extract a month or a day of a week from a date, if all the dates are
in the same format, then the there will be exactly the same number of characters
in each date. So you could get the numerical month or day. Another possibility is

to use the functions weekdays () or months.

> tempdate <- as.Date("01/29/2018",format="%m/%d/%Y")
> tempdate

[1] "2018-01-29"

> month <- substr(tempdate,6,7)
> month

[1] "o1"

> months (tempdate)

[1] "January"

> weekdays (tempdate)

[1] "Monday"

ADA1 December 5, 2017

24 / 37

Data cleaning

Another useful operation on dates is subtracting them. For example, if you
record times that a patient visits a hospital, you might want to create a
new variable for the time between visits. Or if you have the birthdate and
the time of a visit, you might want to calculate the age at the time of the
visit, which might not be explicit in the data.

If you have two objects of type date. Here is an example data set in
hospital_data.csv:

subject,birth,visitl

1,10/05/2001,2017-05-31
2,11/06/2002,2016-06-29
3,08/06/1995,2016-06-16

ADA1 December 5, 2017 25 / 37

Data cleaning

Suppose we want to compute the age of each patient at the time of visitl.

> x <- read.csv(‘‘hospital_data.csv’’)

> birth <- as.Date(x$birth,format="%m/%d/%Y")
> birth

[1] "2001-10-05" "2002-11-06" "1995-08-06"

> visitl <- as.Date(x$visitl,format="%Y-%m-%d")
> visitl

[1] "2017-05-31" "2016-06-29" "2016-06-16"

> visitl-birth

Time differences in days

[1] 5717 4984 7620

> (visitl-birth)/365

Time differences in days

[1] 15.66301 13.65479 20.87671

ADA1 December 5, 2017

26 / 37

Data cleaning

Speaking of .csv files...One reason they are useful is that they can
accommodate data where there might be spaces in the data itself. For
example, data with street addresses might look something like this:

1101 Mesa Verde Ave NE, Albuquerque, NM, 87110
123459 Fork in the Road Drive, Rio Rancho, NM, 87124
etc

Names also have a variable number of words (0, 1, or 2 middle names, for
example). Occasionally you might want commas to be in the name, for
example in a database of song or movie titles. In this case you can use a
different delimiter instead of a comma, such as a semicolon, which is less
likely to be actual character data.

ADA1 December 5, 2017 27 / 37

Data cleaning

Sometimes, in addition to dates to work with, you have times in minutes
and seconds (or fractions of seconds). This often occurs, for example, in
automated tracking data from GPS or other locations. Consider the
following (the data is available in that file name at math.unm.edu/~james
but with no link) on earthquakes in New Zealand.

ADA1 December 5, 2017 28 / 37

Data cleaning

vV Vv

D O WN -

o O W N

x <- read.csv("quakeslJanll_31Maril.csv")

head (x)
publicid
3489855
3489852
3489806
3489774
3489769
3489764
longitude
166.7705
172.7105
172.7047
172.4061
172.0999
172.7004

eventtype
earthquake
earthquake
earthquake
earthquake
earthquake
earthquake
latitude
.47349
.58500
.48363
.40538
.50152
.57466

2011-03-31T22
2011-03-31T22
2011-03-31T20

2011-03-31T18:
2011-03-31T18:
2011-03-31T18:

magnitude

3.016
.937
.338
.744
.025
.053

12.

W w NN NN
o1 00 O U1 O

origintime

:38:
:28:
:09:
41:
27:
10:

0000

.9356
.0000
.0000
.2128
.6451

41.
04.
27.
13.
.4927
52.
depth magnitudetype
ML operator

31

8827
740Z
623Z
6387

1917

modificati

2013-08-21T16
2013-08-21T16
2013-08-21T16
2013-08-21T16
2013-08-21T16
2013-08-21T16

ML

ML operator
ML operator

ML
ML

(4T
(47|
(4T
(47|
(4T
(4T
dep

ADA1

December 5, 2017

29 / 37

Data cleaning

The data set includes lots of variables, only some of which might be of interest
for a statistical analysis. Each earthquake (these include many aftershocks) gets a
time stamp based on the time of origin as well as the time at which the data was
reviewed and possibly modified. Often the magnitude of a quake is initially
estimated and then later adjusted. Here is a list of the variables in the data set:

> names (x)
[1] "publicid"
[4] "modificationtime"
[7] "magnitude"
[10] "depthtype"
[13] "evaluationmode"
[16] "usedstationcount"
[19] "azimuthalgap"

"eventtype"
"longitude"
"depth"
"evaluationmethod"
"earthmodel"

"origintime"
"latitude"
"magnitudety:;
"evaluations
"usedphaseco

"magnitudestationcount" "minimumdigt:

"originerror"

"magnitudepn

ADA1

December 5, 2017 30 /37

Data cleaning

Suppose you are interested in only the origintime variable. The variable
includes dates and times in a single string. The dates are in the format
YYYY-mm-dd followed by the letter T and the time in 24-hr (military)
time with hours:minutes:seconds and seconds are measured to the nearest
thousandth. The time is then followed by a Z with no space. What to do
with data like this?

If you were only interested in the dates, then you could replace the T with
a space and eliminate the Zs. Then you would need to create two variable
names instead of just the one origintime, such as origindate and
originSeconds. This might be tricky to do in the original file because
you might not be able to replace every instance of T or Z without
corrupting other data in the file. Consequently, one possibility would be to
copy the origintime column to a new spreadsheet, do the replace
functions there, then copy back to the original file. Another possibility is
to not modify any spreadsheet and do the manipulations in R.

ADA1 December 5, 2017 31/37

Data cleaning

In R, you have x$origintime as a variable. We could create a two new
variables with just the date and just the hour-minutes-seconds. The
following code would work:

mydate <- x$origintime
mydate <- substr(mydate,1,10)
mytime <- x$origintime
mytime <- substr(mytime,12,23)

This code works using the substr() function which extracts only certain
characters from a string, such as characters 1 through 10, or 12 through
23.

ADA1 December 5, 2017 32 /37

Data cleaning

Another solution to the problem is to replace T with nothing, or replace it

with a space, and similarly with the Z.

> mydate <- x$origintime

> mydate <- gsub("T"," ",mydate)

> mydate <- gsub("Z","",mydate)

> head(mydate)

[1] "2011-03-31 22:38:41.882" "2011-03-31 22:28:04.740"
[3] "2011-03-31 20:09:27.623" "2011-03-31 18:41:13.638"
[6] "2011-03-31 18:27:31.492" "2011-03-31 18:10:52.191"

In this case, I've have kept the date and time as a single variable string

but

with a space separating the date and time. The gsub() function replaces

the first string with the second string in the variable listed in the third
argument.

ADA1 December 5, 2017

33 /37

Data cleaning

The lubridate package is useful for a wide range of date-time functions,

especially for reading in seconds. It uses a different data type from the
base R time/date functions:

> mydate2 <- ymd_hms(mydate,tz="Pacific/Auckland")
> mydate2[1]

[1] "2011-03-31 22:38:41 NZDT"

> class(mydate2)

[1] "POSIXct" "POSIXt"

> mydate2[2] -mydate2[1]

Time difference of -10.61903 mins

ADA1 December 5, 2017

34 /37

Data cleaning

A final topic to mention that comes up in data cleaning is merging files.
Let's say you have filel which has patient ID and insurance status
(Presbyterian, BCBS, or none), and file2 has patient ID and number of
visits to a clinic. Your job is to determine how type of insurance is related
to the number of visits to the number of visits. To make things more
complicated, not every patient is listed in both files.

Here is what the data might look like

ADA1 December 5, 2017 35 /37

####mergel . txt
ID insurance age
11047 Pres 47
11098 BCBS 48
12011 BCBS 41
12221 none 37
12241 BCBS 51

####merge2. txt
ID nvisits
11047 3

11066
12011
12221
12241
13131

= 0N -

ADA1 December 5, 2017 36 / 37

> dl <- read.table("mergel.txt" ,header=T)

> d2 <- read.table("merge2.txt",header=T)

> merged.data <- merge(dl, d2, by="ID")

> merged.data # only includes cases with no missing data
ID insurance age nvisits

1 11047 Pres 47 3

2 12011 BCBS 41 1

3 12221 none 37 2

4 12241 BCBS 51 5

> help(merge)

> merged.data <- merge(dl, d2, by="ID",all=TRUE)

> merged.data # includes all patient IDs in either data set
ID insurance age nvisits

1 11047 Pres 47 3

2 11066 <NA> NA 1

3 11098 BCBS 48 NA

4 12011 BCBS 41 1

5 12221 none 37 2

6 12241 BCBS 51 5

7 13131 <NA> NA 1

ADA1 December 5, 2017 37 /37

It is also possible to merge by more than one variable. For example if you
don't have unique IDs, then you might have to merge by name (which
might not be unique) in combination with other variables, such as address
or phone number. Things can get messy, however. In one data set, names
might have middle initials while they don't occur in the other data set,
address info might be slightly different due to abbreviations, etc.

ADA1 December 5, 2017 38 /37

