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Stat 427/527: Advanced Data Analysis I

Chapter 2: Estimation in One-Sample Problems

Instructor: Yan Lu
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Topics

I Inference for a population mean.

I Confidence intervals.

I Hypothesis testing.

I Statistical versus practical significance.

I Design issues and power.
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Overview
I Identify a population of interest

—-for example, UNM freshmen female students’ weight,
height or entrance GPA.

I Population parameters
—-unknown quantities of the population that are of interest,
say, population mean µ and population variance σ2 etc.

I Random sample
—-Select a random or representative sample from the
population.
—-A sample consists random variables Y1, · · · ,Yn, that
follows a specified distribution, say N(µ, σ2)

I Statistic: a function of radom variables Y1, . . . ,Yn, which
does not depend on any unknown parameters

I Observed sample: y1, y2, · · · , yn are observed sample values
after data collection
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I We cannot see much of the population
—-but would like to know what is typical in the population
— The only information we have is that in the sample.

Goal: want to use the sample information to make inferences
about the population and its parameters.

Figure 1 : Population, sample and statistical inference
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Notations:

I Population mean: µ

I Sample mean: Ȳ =
∑n

i=1 Yi/n

I Estimate of sample mean: the value of Ȳ computed from
data ȳ =

∑n
i=1 yi/n

I Population variance: σ2

I Sample variance: S2 = 1
n−1

∑n
i=1(Yi − Ȳ )2

I Estimate of sample variance: the value of S2 computed from
data s2 = 1

n−1

∑n
i=1(yi − ȳ)2

I Population standard deviation: σ

I Sample standard deviation (Standard error): S

I Estimate of standard error: s, the value of S computed from
data
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Table 1 : Commonly seen parameters, statistics and estimates:

Parameters Statistic Estimate
Describe a popn Describe a random sample Describe an observed

sample
µ Ȳ ȳ
σ2 S2 s2

σ S s
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2.1 Inference for a population mean

Notations:

I Parameter of interest: population mean µ

I Sample mean: Ȳ =
∑n

i=1 Yi

n = Y1+Y2+···+Yn
n .

I Observed sample mean: ȳ =
∑n

i=1 yi/n

Two main methods for inferences on µ:

I Confidence intervals (CI)

I Hypothesis tests

7 / 66



Overview CI Hypotheses Significance Design

Sampling distribution

Sampling distribution: probability distribution of a given statistic
based on a random sample
—-Statistic is also a r.v.
—-Sampling distribution is in contrast to the population
distribution
Want to know the sampling distribution of Ȳ
Recall that

I standard error (SE): the standard deviation of the sampling
distribution of a statistic

I Standard error of the mean (SEM): is the standard deviation
of the sample-mean’s estimator
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If Y1, . . . ,Yn are observations of a random sample of size n from
normal distributions N(µ, σ2) and Ȳ = 1

n

∑n
i=1 Yi is the sample

mean of the n observations. We have

SEȲ = s/
√
n

where
s is the sample standard deviation (i.e., the sample-based estimate
of the standard deviation of the population)
n is the size (number of observations) of the sample.
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Central limit theorem (CLT)

If Y1, . . . ,Yn is a random sample of size n taken from a population
or a distribution with mean µ and variance σ2 and if Ȳ is the
sample mean, then for large n,

Ȳ ∼ N(µ, σ2/n)
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illustration of CLT

I Consider random variables Yi ∼ Uniform(0, 1) distribution
—- any value in the interval [0, 1] is equally likely
—- µ = E (Y ) = 1/2, and σ2 = Var(Y ) = 1/12, so the
standard deviation is σ =

√
1/12 = 0.289.

I Draw a sample of size n
—- the standard error of the mean will be σ/

√
n

—- as n gets larger the distribution of the mean will
increasingly follow a normal distribution.
Illustration:

1. generate unifrom random sample of size n

2. calculate sample mean ȳ

3. repeat for N = 10000 times

4. plot those N means, compute the estimated SEM
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True SEM = 0.2887 , Est SEM =  0.2868

n = 1
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Figure 2 : illustration of CLT, notice even with samples as small as 2 and
6 that the properties of the SEM and the distribution are as predicted
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illustration of CLT

In a more extreme example, we draw samples from an
Exponential(1) distribution (µ = 1 and σ = 1), which is strongly
skewed to the right.

f (x) = e−x , x > 0

Notice that the normality promised by the CLT requires larger
samples sizes, about n ≥ 30, than for the previous Uniform(0,1)
example, which required about n ≥ 6.
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True SEM = 1 , Est SEM =  0.9884

n = 1
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Figure 3 : illustration of CLT, notice that the normality promised by the
CLT requires larger samples sizes, about n ≥ 30
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Note that the further the population distribution is from being
normal, the larger the sample size is required to be for the
sampling distribution of the sample mean to be normal.
Question: If the population distribution is normal, what’s the
minimum sample size for the sampling distribution of the mean to
be normal?
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Standardization

If Y1, . . . ,Yn is a random sample of size n taken from a normal
population with mean µ and variance σ2 and if Ȳ is the sample
mean, then,

Ȳ ∼ N(µ, σ2/n).

We may standardize Ȳ by subtracting the mean and dividing by
the standard deviation, which results in the variable

Z =
Ȳ − µ
σ/
√
n

and
Z ∼ N(0, 1)
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t-distribution

The Student’s t-distribution is a family of continuous probability
distributions that arises when estimating the mean of a normally
distributed population in situations where the sample size is small
and population standard deviation is unknown.

I t-distribution is symmetric and bell-shaped, like the normal
distribution, but has heavier tails, meaning that it is more
prone to producing values that fall far from its mean.

I the t-distribution is wider than the normal distribution because
in addition to estimating the mean µ with Ȳ , we also have to
estimate σ2 with S2, so there’s some additional uncertainty.

I The degrees-of-freedom (df) parameter of the t-distribution is
the sample size n minus the number of variance parameters
estimated. Thus, df = n − 1 when we have one sample and
df = n − 2 when we have two samples.

I As n increases, the t-distribution becomes close to the normal
distribution, and when n =∞ the distributions are equivalent.
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Figure 4 : Normal (red) vs t-distributions with a range of
degrees-of-freedom df=1, 2, 6, 12, 30, 100
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Confidence Interval (CI) for µ, variance unknown
Confidence interval: an interval estimate [l , u] for a population
parameter, say, µ.
—– a range of plausible values for µ, with l the lower bound, and
u the upper bound, based on the observed data
—–Best Guess ± Reasonable Error of the Guess.

I If Y1,Y2, . . . ,Yn is a random sample from normal distribution
with mean µ and variance σ2 (σ2 is unknown), i.e.

Yi
iid∼ N(µ, σ2), i = 1, . . . , n. The r.v.

T =
Ȳ − µ
S/
√
n

has a t distribution with n − 1 degrees of freedom.
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I Confidence coefficient α: a number between 0 and 100%.
—- tα/2 is a number such that p(T ≤ tα/2) = 1− α/2. The
number tα/2 is often called upper 100α/2 percentage point of
the t distribution.

Figure 5 :
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I Further, We can show that

P(−tα/2 ≤
Ȳ − µ
S/
√
n
≤ tα/2) = 1− α

P(−tα/2S/
√
n + µ ≤ Ȳ ≤ tα/2S/

√
n + µ) = 1− α, equivalently

P

(
Ȳ − tα/2 ∗

S√
n
≤ µ ≤ Ȳ + tα/2 ∗

S√
n

)
= 1− α.

21 / 66



Overview CI Hypotheses Significance Design

The t Confidence Interval on µ

If ȳ is the sample mean of an observed sample (y1, . . . , yn) from a
normal population with unknown variance σ2 and unknown mean
µ, then a 100(1− α)% CI on µ is given by

[ȳ − tα/2,n−1 ∗
s√
n
, ȳ + tα/2,n−1 ∗

s√
n

]

I Interpretation: the observed interval [l , u], contains the true
value of µ (interpret µ in the context, for example, mean
income level), with confidence 100(1− α)%.

I If you repeatedly sample the population and construct 95%
CIs for µ, then 95% of the intervals will contain µ, whereas
5% will not.
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Recall a 100(1− α)% CI on µ is given by

[ȳ − tα/2,n−1 ∗
s√
n
, ȳ + tα/2,n−1 ∗

s√
n

]

Notes that the length of the interval estimate is 2 ∗ tα/2 ∗ s/
√
n,

then

I As α ↑, the confidence (1− α)%, tα/2 ↓, and hence the
confidence interval gets narrower.

I As s ↑, the confidence interval gets wider.

I As n ↑, the confidence interval gets narrower.
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An example with 100 CIs

I Consider drawing a sample of 25 observations from a normally
distributed population with mean 10 and sd 2.

I Calculate the 95% t-CI.

I Repeat that 100 times.

The plot belows reflects the variability of that process. We expect
95 of the 100 CIs to contain the true population mean of 10, that
is, on average 5 times out of 100 we draw the incorrect inference
that the population mean is in an interval when it does not contain
the true value of 10.

24 / 66



Overview CI Hypotheses Significance Design
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Figure 6 : green and red intervals didn’t contain true mean 10
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Assumptions for the t CI procedures

Recall t-distribution If Y1,Y2, . . . ,Yn is a random sample from
normal distribution with mean µ and variance σ2 (σ2 is unknown),

i.e. Yi
iid∼ N(µ, σ2), i = 1, . . . , n. The r.v.

T =
Ȳ − µ
S/
√
n

has a t distribution with n − 1 degrees of freedom.
I Data are a random sample from the population of interest
I Population frequency curve is normal

—- The normality assumption can never be completely
verified without having the entire population data.
—-You can assess the reasonableness of this assumption using
a stem-and-leaf display, a boxplot and a histogram of the
sample data if we assume that sample is representative of the
population.
—-The stem-and-leaf and histogram display from the data
should resemble a normal curve.
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I In fact, the assumptions are slightly looser than this, the
population frequency curve can be anything provided the
sample size is large enough that it’s reasonable to assume that
the sampling distribution of the mean is normal.

I In the cases that sample size is small and the distribution of
the sample data is not normal, we can use bootstrap
procedure to check for the normality of the sampling
distribution of the mean
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Example: Age at First Heart Transplant

Let us go through a hand-calculation of a CI, and also use R to
generate summary data. We are interested in the mean age at first
heart transplant for a population of patients.

1. Define the population parameter, plot
the data
Let µ = mean age at the time of first heart
transplant for a population of patients.
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#### Example: Age at First Transplant

# enter data as a vector

age <- c(54, 42, 51, 54, 49, 56, 33, 58, 54, 64, 49)

>summary(age)

Min. 1st Qu. Median Mean 3rd Qu. Max.

33.00 49.00 54.00 51.27 55.00 64.00

> # stem-and-leaf plot

> stem(age, scale=2)

The decimal point is 1 digit(s) to the right of the |

3 | 3

3 |

4 | 2

4 | 99

5 | 1444

5 | 68

6 | 4
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Histogram of age

age

Den
sity

30 35 40 45 50 55 60 65

0.00
0.02

0.04
0.06

Figure 7 : Histogram plot of age
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I 2. Calculate summary statistics from sample
The ages (in years) at first transplant for a sample of 11 heart
transplant patients are as follows:

54, 42, 51, 54, 49, 56, 33, 58, 54, 64, 49.

Summaries for the data are: n = 11, ȳ = 51.27, and s = 8.26
so that SEȲ = 8.26/

√
11 = 2.4904. The degrees of freedom

are df = 11− 1 = 10, and tcrit = t0.025 = 2.228.

Now calculate the confidence interval by hand.
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3. Specify confidence level, find critical
value, calculate limits
Let us calculate a 95% CI for µ. For a 95% CI
α = 0.05, so we need to find tcrit = t0.025,
which is 2.228. Now
tcrit × SEȲ = 2.228× 2.4904 = 5.55. The
lower limit on the CI is
l = 51.27− 5.55 = 45.72. The upper limit is
u = 51.27 + 5.55 = 56.82.

> # t.crit

> qt(1 - 0.05/2, df = length(age) - 1)

[1] 2.228139

4. Summarize in words For example, I am
95% confident that the mean age at first
transplant of a population is between 45.7 and
56.8 years (rounding off to 1 decimal place).
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I 5. Check assumptions

Plot of data with smoothed density curve

30 35 40 45 50 55 60 65

0.00
0.02

0.04
0.06

Bootstrap sampling distribution of the mean

40 45 50 55 60

0.00
0.05

0.10
0.15

Figure 8 : Plot of data with smoothed density curve and bootstrap
sampling distribution of the mean
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In the cases that sample size is small and the distribution of the
sample data is not normal, we can use bootstrap procedure to
check for the normality of the sampling distribution of the mean.

The assumption of normality of the sampling distribution of the
mean appears reasonablly close. In fact, if the data is not
extremely skewed or with extreme outliers, t approximation of the
mean is appropriate. Therefore, the results for the t confidence
interval above can be trusted.

I 6. Now do the calculation in R by yourself
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Statistical hypothesis:

I Statistical hypothesis is a statement about the parameters of
one or more populations.

I Because we use probability distributions to represent
populations, a statistical hypothesis may also be thought of as
a statement about the probability distribution of a random
variable.

Examples:

I a) The chance of showing up head in tossing a coin is 0.5, i.e.
p = 0.5, or the chance is not 0.5, i.e. p 6= 0.5.

I b) The average age of first year college student is 18, i.e.
µ = 18, or the average age is greater than 18, i.e. µ > 18.
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A hypothesis test often consider two competing hypotheses.

I One hypothesis is called null hypothesis, denoted as H0.

I The other hypothesis is called the alternative hypothesis,
denoted as H1 or Hα.

Let θ be a parameter of a population and θ0, θ1 are two specific
real values. The following gives a summary of the possible
combination we are interested in.

I Two sided alternative hypothesis:
a) H0 : θ = θ0, H1 : θ 6= θ0.

I One sided alternative hypothesis:
b) H0 : θ = θ0, H1 : θ < θ0.
c) H0 : θ = θ0, H1 : θ > θ0.
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Test of hypothesis

Test of a hypothesis: a procedure leading to a decision about the
null hypothesis.
—-We take a random sample and see which of the two hypotheses
our data is most consistent with. If data information is consistent
with the null hypothesis, we will not reject it; if this information is
inconsistent with the null hypothesis, we will reject the null
hypothesis and in favor of the alternative.
—-A test statistic is a single measure of some attribute of a
sample (i.e. a statistic) used in statistical hypothesis testing. In
different hypothesis testing problems, different test statistics are
used. Let h(Y1, . . . ,Yn) denote the test statistic. Sample test
statistic is then h(y1, . . . , yn)
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Type I and II errors:

Consider the three scenarios of hypothesis testing
a) H0 : θ = θ0, H1 : θ 6= θ0.
b) H0 : θ = θ0, H1 : θ < θ0, (c) H0 : θ = θ0, H1 : θ > θ0.
Acceptance region: a region [l , u] for which we will fail to reject
the null hypothesis when the sample test statistic is in the region.
The boundaries of the acceptance region are called critical values.
Rejection region: a region for which we reject the null hypothesis
when the test statistic is in the region. The rejection region is the
complementary region of the acceptance region.

Figure 9 :
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Type I error: rejecting the null hypothesis H0 when it is true.
Type II error : failing to reject the null hypothesis when it is false.
Probability of Type I error:

α = P(reject H0 when H0 is true ) = P(h(Y1, . . . ,Yn) /∈ [l , u])|θ = θ0)

Probability of Type I error is also called significance level, or size of
the test.
Probability of Type II error

β = P( fail to reject H0 when H0 is false )

= P(h(Y1, . . . ,Yn) ∈ [l , u])|θ = θ1)

where θ1 is the true population parameter value.
Power of a statistical test: the probability of rejecting the null
hypothesis H0 when the alternative hypothesis is true. It is
computed as 1− β.
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State of nature
Decision H0 true HA true

Fail to reject H0 correct decision Type-II error
Reject H0 in favor of HA Type-I error correct decision
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P-value: the P-value is the probability of obtaining a test statistic
result at least as extreme as the one that was actually observed,
assuming that the null hypothesis and all the other assumptions
used in the test is true. Smaller P-value indicates greater evidence
against the null hypothesis or H0 is less plausible.

I a) H0 : θ = θ0, H1 : θ 6= θ0.

P-value = P (|h(X1, . . . ,Xn)| > |h(x1, . . . , xn)| | θ = θ0)

I b) H0 : θ = θ0, H1 : θ < θ0.

P-value = P(h(X1, . . . ,Xn) < h(x1, . . . , xn)|θ = θ0)

I c) H0 : θ = θ0, H1 : θ > θ0.

P-value = P(h(X1, . . . ,Xn) > h(x1, . . . , xn)|θ = θ0)
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Figure 10 : Consider a two-sided test, green shaded area is 1/2 of the
pvalue, red shaded area is 0.05 corresponding to the critical value (CV)
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Tests on the mean of a normal distribution, variance
unknown

The test statistic is

T0 =
Ȳ − µ0

S/
√
n
.

Hypothesis of testing H0 : µ = µ0 vs the following alternative
hypotheses are summarized in the table.
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Table 2 : ȳ is sample mean and s is sample standard deviation; tn−1,α/2

is the upper α/2 percentage points of the t distribution with n − 1
degrees of freedom; tn−1,α is the upper α percentage points of the t
distribution with n − 1 degrees of freedom; Tn−1 is a random variable
following t distribution with n − 1 degrees of freedom. α is the
significance level of the test

Step 1: H1 : µ 6= µ0

Step 2: compute t0 = ȳ−µ0

s/
√
n

Step 3a: Reject H0 if t0 > tn−1,α/2 or t0 < −tn−1,α/2

Step 3b: P-value =2P(Tn−1 > |t0|)
Reject H0 if P-value < α

Power P(T0 > tn−1,α/2|µ1) + P(T0 < −tn−1,α/2|µ1)
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Table 3 : ȳ is sample mean and s is sample standard deviation; tn−1,α/2

is the upper α/2 percentage points of the t distribution with n − 1
degrees of freedom; tn−1,α is the upper α percentage points of the t
distribution with n − 1 degrees of freedom; Tn−1 is a random variable
following t distribution with n − 1 degrees of freedom. α is the
significance level of the test

Step 1: H1 : µ < µ0 H1 : µ > µ0

Step 2: compute t0 = ȳ−µ0

s/
√
n

compute t0 = ȳ−µ0

s/
√
n

Step 3a: Reject H0 if t0 < −tn−1,α Reject H0 if t0 > tn−1,α

Step 3b: P-value =P(Tn−1 < t0) P-value =P(Tn−1 > t0)
Reject H0 if P-value < α Reject H0 if P-value < α

Power P(T0 < −tn−1,α/2|µ1) P(T0 > tn−1,α/2|µ1)
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Exercise: Consider the scores of stat 427 students last year.
Suppose we randomly choose 15 students out of the entire group
of stat 427 students and denote Ȳ as the sample mean. Assume
that the sample standard deviation s = 3. Suppose our acceptance
region for testing H0 : µ = 80 is [−2, 2] and the test Statistic is
Ȳ−80
S/
√
n

, i.e. we fail to reject the null if ȳ−80
s/
√
n
∈ [−2, 2]. What would

be our probability of Type I error? If the true population is normal
with mean score 75. What would be our probability of Type II
error?
Exercise continued. Suppose the class score average is 78, what
would be the P-value for testing H0 : µ = 80?
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Example: Age at First Transplant (Revisited)

The ages (in years) at first transplant for a sample of 11 heart
transplant patients are as follows: 54, 42, 51, 54, 49, 56, 33, 58,
54, 64, 49. Summaries for these data are:

n = 11, ȳ = 51.27, s = 8.26 and SEȲ = 2.4904.

Test the hypothesis that the mean age at first transplant is 50, Use
α = 0.05.
Solution: Define

µ = mean age at time of first transplant for a population of
patients.

We are interested in testing

H0 : µ = 50 against HA : µ 6= 50.

The degrees of freedom are df = 11− 1 = 10. The critical value
for a 5% test is tcrit = t0.025 = 2.228. (Note
α/2 = 0.05/2 = 0.025).
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For the test,

ts =
ȳ − µ0

SEȲ

=
51.27− 50

2.4904
= 0.51.

Since tcrit = 2.228, we do not reject H0 using a 5% test.

I Equivalently, the p-value for the test is 0.62, thus we fail to
reject H0 because 0.62 > 0.05 = α. The results of the
hypothesis test should not be surprising, since the CI
[45.72, 56.82] tells you that 50 is a plausible value for the
population mean age at transplant.

I the data could have come from a distribution with a mean of
50 — this is not convincing evidence that µ actually is 50.
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> # look at help for t.test

> help(t.test)

> # defaults include: alternative = "two.sided",

conf.level = 0.95

> t.summary <- t.test(age, mu = 50)

> t.summary

One Sample t-test

data: age

t = 0.51107, df = 10, p-value = 0.6204

alternative hypothesis: true mean is not equal to 50

95 percent confidence interval:

45.72397 56.82149

sample estimates:

mean of x

51.27273
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We can also find p-value by

pt(observed t statistic, df)

#note this is the probability of the T statistics

#integrated from -infinity to the observed t statistic

> pt(0.51107,10)

[1] 0.6898024

> 1-pt(0.51107,10)

[1] 0.3101976 # this is the right side p-value

> pt(-0.51107,10)

[1] 0.3101976 # this is the left side p-value

Therefore, the p-value of the two sided test is

2*0.31 =0.62
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One sided test example:

Table 4 : Recall one-sided test

Step 1: H1 : µ < µ0 H1 : µ > µ0

Step 2: compute t0 = ȳ−µ0

s/
√
n

compute t0 = ȳ−µ0

s/
√
n

Step 3a: Reject H0 if t0 < −tn−1,α Reject H0 if t0 > tn−1,α

Step 3b: P-value =P(Tn−1 < t0) P-value =P(Tn−1 > t0)
Reject H0 if P-value < α Reject H0 if P-value < α

Power P(T0 < −tn−1,α/2|µ1) P(T0 > tn−1,α/2|µ1)
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Recall: one sided test

2.7: One-sided tests on µ 99

    0   
tcrit

α

Upper One−Sided Rejection Region

    0   
ts

p−value

Upper One−Sided p−value

    0   
− tcrit

α

Lower One−Sided Rejection Region

    0   
ts

p−value

Lower One−Sided p−value

ClickerQ s — One-sided tests on µ

Example: Weights of canned tomatoes A consumer group suspects

that the average weight of canned tomatoes being produced by a large cannery

UNM, Stat 427/527 ADA1
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Example: Weights of canned tomatoes

A consumer group suspects that the average weight of canned
tomatoes being produced by a large cannery is less than the
advertised weight of 20 ounces.

I the group purchases 14 cans of the canner’s tomatoes from
various grocery stores.

I The weights of the contents of the cans to the nearest half
ounce were recorded as follows: 20.5, 18.5, 20.0, 19.5, 19.5,
21.0, 17.5, 22.5, 20.0, 19.5, 18.5, 20.0, 18.0, 20.5.

I Do the data confirm the group’s suspicions? Test at the 5%
level.
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I Let µ = the population mean weight for advertised 20 ounce
cans of tomatoes produced by the cannery.

I The company claims that µ = 20.

I The consumer group believes that µ < 20

H0 : µ = 20 against Hα : µ < 20.

I The consumer group will reject H0 only if the data
overwhelmingly suggest that H0 is false.
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1. assess the normality assumption prior to performing the t-test.

Histogram of tomato

tomato

De
nsi

ty

17 18 19 20 21 22 23

0.0
0.1

0.2
0.3

0.4

18
19

20
21

22
The histogram and the boxplot suggest that the distribution might

be slightly skewed to the left. However, the skewness is not severe

and no outliers are present, so the normality assumption is not

unreasonable.
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2. Summary statistics

I The sample size, mean, and standard deviation are

n = 14, ȳ = 19.679, and s = 1.295

The standard error is SEȲ = s/
√
n = 0.346.

I Sample mean is less than 20. But is it sufficiently less than 20
for us to be willing to publicly refute the canner’s claim?

I Let us do a hand calculation using the summarized data.
—- first using the rejection region approach
—- and then by evaluating a p-value.
—–find CI.
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The test statistic is

ts =
ȳ − µ0

SEȲ

=
19.679− 20

0.346
= −0.93.

The critical value for a 5% one-sided test is t0.05 = 1.771

> qt(1 - 0.05, df = length(tomato) - 1)

[1] 1.770933

I reject H0 if ts < −1.771, In our case, −0.93 > −1.771, the
test statistic is not in the rejection region.

I The exact p-value from R is 0.185, which exceeds 0.05.
—Both approaches lead to the conclusion that we do not
have sufficient evidence to reject H0.

I CI, (−∞, 19.679 + 1.77× 0.346] = (−∞, 20.29]
—–As expected, this interval covers 20. That is,

I we do not have sufficient evidence to question the accuracy of
the canner’s claim.

I We are 95% cofident that the population mean weight of the
canner’s 20oz cans of tomatoes is less than or equal to
20.29oz. 57 / 66
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> t.summary <- t.test(tomato, mu = 20,

alternative = "less")

> t.summary

One Sample t-test

data: tomato

t = -0.92866, df = 13, p-value = 0.185

alternative hypothesis: true mean is less than 20

95 percent confidence interval:

-Inf 20.29153

sample estimates:

mean of x

19.67857
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Statistical versus practical significance

I Statistical significance(α, p-value): simply mean that the null
hypothesis was rejected at the selected significance level.
—-Reflects the odds that a particular finding could have
occurred by chance. If the p-value for a difference between
two groups is 0.05, it would be expected to occur by chance
just 5 times out of 100 (thus, it is likely to be a “real”
difference).
—-A small p-value, which would ordinarily indicate statistical
significance, may be the result of a large sample size in
combination with a departure from H0 that has little practical
significance.
—-In many experimental situations, only departures from H0

of large magnitude would be worthy of detection, whereas a
small departure from H0 would have little practical
significance.
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I Practical significance
—–Reflects the magnitude, or size, of the difference, not the
odds that it could have occurred by chance. Arguably much
more important than statistical significance, especially for
clinical questions.
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Example

Let µ denote the true average IQ of all children in the very large
city of Euphoria. Consider testing

H0 : µ = 100 versus Hα : µ > 100

where µ is the mean from a normal population with σ = 15.

I For a reasonably large sample size n, suppose ȳ = 101 was
observed. But one IQ point is no big deal. We would not want
this sample evidence to argue strongly for rejection of H0.

I For various sample sizes, Table (5) records both the P-value
when ȳ = 101 and also the probability of not rejecting H0 at
level .01 when µ = 101(β).
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Table 5 : An illustration of the Effect of Sample Size on P-values and
type II error β

n P-value when ȳ = 101 β(101) for level 0.01 test

25 0.3085 0.9664
100 0.1587 0.9082
400 0.0228 0.6293
900 0.0013 0.2514

1600 0.0000335 0.0475
2500 0.000000297 0.0038

10,000 7.69× 10−24 0.0000
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I The second column in Table (5) shows that even for
moderately large sample sizes, the P-value indicate strong
rejection of H0, whereas the observed ȳ itself suggests that in
practical terms the true value of µ differs little from the null
value µ0 = 100.

I The third column points out that even when there is little
practical difference between the true µ and the null value, for
a fixed level of significance, a large sample size will almost
always lead to rejection of the null hypothesis at that level.

I One must be especially careful in interpreting evidence when
the sample size is large, since any small departure from H0 will
almost surely be detected by a test, yet such a departure may
have little practical significance.
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Design issues

Sample size for specified error on mean, variance known:

I ȳ is an estimate of µ

I we can be 100(1− α)% confident that the absolute error
|ȳ − µ| will not exceed a specified amount E when the sample
size needed is ∣∣∣∣Zα/2

σ√
n

∣∣∣∣ ≤ E

or

n ≥
(zα/2σ

E

)2

.
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Estimate σ2:

I Pilot sample: a small sample taken to provide information and
guidance for the future data collection can be used to
estimate quantities needed for setting the sample size

I Use previous studies or data available in the literature

I Guess the variance
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An experiment may not be sensitive enough to pick up true
differences.

I Tocopilla meteorite example, suppose the true mean cooling
rate is µ = 1.00.

I To have a 50% chance of correctly rejecting H0 : µ = 0.54,
you would need about n = 48 observations.

I If the true mean is µ = 0.75, you would need about 221
observations to have a 50% chance of correctly rejecting H0.

I In general, the smaller the difference between the true and
hypothesized mean (relative to the spread in the population),
the more data that is needed to reject H0.

I If you have prior information on the expected difference
between the true and hypothesized mean, you can design an
experiment appropriately by choosing the sample size required
to likely reject H0.
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