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Learning objectives

After completing this topic, you should be able to:

select graphical displays that meaningfully compare
independent populations.

assess the assumptions of the analysis of variance
(ANOVA) visually and by formal tests.

decide whether the means between populations are
different, and how.
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One-way ANOVA

I The one-way analysis of variance is a generalization of the two
sample t-test to k > 2 groups.
—— Assume that the populations of interest have the
following (unknown) population means and standard
deviations:

population 1 population 2 · · · population k

mean µ1 µ2 · · · µk
std dev σ1 σ2 · · · σk

I A usual interest in ANOVA is whether µ1 = µ2 = · · · = µk . If
not, then we wish to know which means differ, and by how
much.
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Data Structure

I Let Yij denote the j th observation in the i th sample/group,
i = 1, 2, · · · , k and j = 1, 2, · · · ni

I Select samples from each of the k populations,
sample 1 sample 2 · · · sample k

size n1 n2 · · · nk
mean Ȳ1· Ȳ2· · · · Ȳk·

SE S1 S2 · · · Sk

I total sample size nT = n1 + n2 + · · ·+ nk , Ȳi · =
ni∑
j=1

Yij/ni

I let Ȳ·· be the average response over all samples, that is

Ȳ·· =

k∑
i=1

ni∑
j=1

Yij

n
=

k∑
i=1

ni Ȳi ·

n
.

Note that Ȳ·· is not the average of the sample means, unless
the sample sizes ni are equal.
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An F -statistic is used to test

H0 : µ1 = µ2 = · · · = µk

against

HA : not H0, that is, at least two means are different.

The assumptions needed for the standard ANOVA F -test are
analogous to the independent pooled two-sample t-test
assumptions:

(1) Independent random samples from each population.

(2) The population frequency curves are normal.

(3) The populations have equal standard deviations,
σ1 = σ2 = · · · = σk .
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Sum of Squares (SS)

I Within SS, often called the Residual SS or the Error SS, is
the portion of the total spread due to variability within
samples:

SS(Within) =
(n1 − 1)S2

1 + (n2 − 1)S2
2 + · · ·+ (nk − 1)S2

k =
∑

ij(Yij − Ȳi ·)
2.

I Between SS, often called the Model SS, measures the spread
between the sample means

SS(Between) =
n1(Ȳ1· − Ȳ··)

2 + n2(Ȳ2· − Ȳ··)
2 + · · ·+ nk(Ȳk· − Ȳ··)

2 =∑
i ni (Ȳi · − Ȳ··)

2,

weighted by the sample sizes. These two SS add to give

I SS(total)

SS(Total) = SS(Between) + SS(Within) =
∑

ij(Yij − Ȳ··)
2.
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Degrees of Freedom (df)

I The df (Between) is the number of groups minus one, k − 1.

I The df (Within) is the total number of observations minus the
number of groups:
(n1 − 1) + (n2 − 1) + · · ·+ (nk − 1) = n − k .

I These two df add to give df (Total)
= (k − 1) + (n − k) = n − 1.
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ANOVA Table

Source df SS MS F

Between Groups dfM = k − 1 SSM =
∑

i ni (Ȳi· − Ȳ··)2 MSM =
SSM

dfM
F =

MSM

MSE
(Model)

Within Groups dfE = n − k SSE =
∑

i (ni − 1)S2
i MSE =

SSE

dfE
(Error)

Total dfT = n − 1 SST =
∑

ij (Yij − Ȳ··)2 MST =
SST

dfT
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The Mean Square for each source of variation is the corresponding
SS divided by its df .

I The MS(Within)

MS(Within) =
(n1 − 1)S2

1 + (n2 − 1)S2
2 + · · ·+ (nk − 1)S2

k

n − k
= S2

pooled

is a weighted average of the sample variances.

I The MS(Within) is known as the pooled estimator of variance,
and estimates the assumed common population variance.

I If all the sample sizes are equal, the MS(Within) is the average
sample variance. The MS(Within) is identical to the pooled
variance estimator in a two-sample problem when k = 2.
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The MS(Between)

MS(Between) =

k∑
i=1

ni (Ȳi · − Ȳ··)
2

k − 1

is a measure of variability among the sample means.

I This MS is a multiple of the sample variance of
Ȳ1·, Ȳ2·, . . . , Ȳk·

The MS(Total)

MS(Total) =

∑
ij(Yij − Ȳ··)

2

n − 1

is the variance in the combined data set.
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Test of equivalence of the means

The decision on whether to reject H0 : µ1 = µ2 = · · · = µk is
based on the ratio of the MS(Between) and the MS(Within):

Fs =
MS(Between)

MS(Within)
.

I Large values of Fs indicate large variability among the sample
means Ȳ1·, Ȳ2·, . . . , Ȳk· relative to the spread of the data
within samples. That is, large values of Fs suggest that H0 is
false.

I Formally, for a size α test, reject H0 if Fs ≥ Fcrit ,
—-where Fcrit is the upper-α percentile from an
F (k − 1, n − k) distribution with numerator degrees of
freedom k − 1 and denominator degrees of freedom n− k (i.e.,
the df for the numerators and denominators in the F -ratio).

I The p-value for the test is the area under the F -probability
curve to the right of Fs .
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0 1 2 3 4 5 6FCrit

α = .05 (fixed)

Reject H0 for FS here

F with 4 and 20 degrees of freedom
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0 1 2 3 4 5 6FS

p−value (random)

F with 4 and 20 degrees of freedom
FS not significant

FCrit
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I For k = 2 the ANOVA F -test is equivalent to the pooled
two-sample t-test.

I We calculate a model object using lm() or aov() and extract
the analysis of variance table with anova().
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Example: Comparison of Fats

During cooking, doughnuts absorb fat in various amounts. A
scientist wished to learn whether the amount absorbed depends on
the type of fat.

I For each of 4 fats, 6 batches of 24 doughnuts were prepared.

I The data are grams of fat absorbed per batch.

Row fat1 fat2 fat3 fat4

1 164 178 175 155

2 172 191 186 166

3 168 197 178 149

4 177 182 171 164

5 190 185 163 170

6 176 177 176 168
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Read in the wide table

#### Example: Comparison of Fats

fat <- read.table(text="

Row fat1 fat2 fat3 fat4

1 164 178 175 155

2 172 191 186 166

3 168 197 178 149

4 177 182 171 164

5 190 185 163 170

6 176 177 176 168

", header=TRUE)

fat

## Row fat1 fat2 fat3 fat4

## 1 1 164 178 175 155

## 2 2 172 191 186 166

## 3 3 168 197 178 149

## 4 4 177 182 171 164

## 5 5 190 185 163 170

## 6 6 176 177 176 168
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Convert the wide table into long format

Use melt() from the reshape2 package.

#### From wide to long format

library(reshape2)

fat.long <- melt(fat,

# id.vars: ID variables

# all variables to keep but not split apart on

id.vars=c("Row"),

# measure.vars: The source columns

#(if unspecified then all other variables are measure.vars)

measure.vars = c("fat1", "fat2", "fat3", "fat4"),

# variable.name: Name of the destination column identifying

#each original column that the measurement came from

variable.name = "type",

# value.name: column name for values in table

value.name = "amount"

)

#names(fat.long) <- c("Row", "type", "amount")
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fat.long

## Row type amount

## 1 1 fat1 164

## 2 2 fat1 172

## 3 3 fat1 168

## 4 4 fat1 177

## 5 5 fat1 190

## 6 6 fat1 176

## 7 1 fat2 178

## 8 2 fat2 191

## 9 3 fat2 197

## 10 4 fat2 182

## 11 5 fat2 185

## 12 6 fat2 177

## 13 1 fat3 175

## 14 2 fat3 186

## 15 3 fat3 178

## 16 4 fat3 171

## 17 5 fat3 163

## 18 6 fat3 176

## 19 1 fat4 155

## 20 2 fat4 166

## 21 3 fat4 149

## 22 4 fat4 164

## 23 5 fat4 170

## 24 6 fat4 168

18 / 81



Intr Test mean Multiple comparisons Checking Assumptions Example

Numerical summaries

#### Back to ANOVA

# Calculate the mean, sd, n, and se for the four fats

# The plyr package is an advanced way to apply a function

#to subsets of data, splitting, applying and combining data"

library(plyr)

# ddply "dd" means the input and output are both data.frames

fat.summary <- ddply(fat.long,

"type",

function(X) {
data.frame( m = mean(X$amount),

s = sd(X$amount),

n = length(X$amount)

)})
# standard errors

fat.summary$se <- fat.summary$s/sqrt(fat.summary$n)

# individual confidence limits

fat.summary$ci.l <- fat.summary$m -

qt(1-.05/2, df=fat.summary$n-1) * fat.summary$se

fat.summary$ci.u <- fat.summary$m +

qt(1-.05/2, df=fat.summary$n-1) * fat.summary$se

#fat.summary 19 / 81
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fat.summary

## type m s n se ci.l ci.u

## 1 fat1 174.5000 9.027735 6 3.685557 165.0260 183.9740

## 2 fat2 185.0000 7.771744 6 3.172801 176.8441 193.1559

## 3 fat3 174.8333 7.626707 6 3.113590 166.8296 182.8371

## 4 fat4 162.0000 8.221922 6 3.356586 153.3716 170.6284
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boxplot(amount type,data=fat.long)

fat1 fat2 fat3 fat4

15
0

16
0

17
0

18
0

19
0
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fit.f <- aov(amount ~ type, data = fat.long)

summary(fit.f)

## Df Sum Sq Mean Sq F value Pr(>F)

## type 3 1596 531.8 7.948 0.0011 **

## Residuals 20 1338 66.9

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

fit.f

## Call:

## aov(formula = amount ~ type, data = fat.long)

##

## Terms:

## type Residuals

## Sum of Squares 1595.500 1338.333

## Deg. of Freedom 3 20

##

## Residual standard error: 8.180261

## Estimated effects may be unbalanced
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Findings:

I The pooled standard deviation spooled = 8.18 is the “Residual
standard error”.

I dfM = 4− 1 = 3, dfE = n − k = 24− 4 = 20

I MSM = SSM/dfM = 1596/3 = 532,
MSE = SSE/dfE = 1338/20 = 66.9

I Fs = MSM/MSE = 531.8/66.9 = 7.949178

I Fcrit = 3.098, Fs > Fcrit , therefore, reject H0 in favor of Hα

I The p-value for the F -test is 0.001. The scientist would reject
H0 at any of the usual test levels (such as, 0.05 or 0.01).
—–suggest that the population mean absorption rates differ
across fats in some way.
—-The F -test does not say how they differ.
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Multiple Comparison Methods

I The ANOVA F -test checks whether all the population means
are equal.

I Multiple comparisons are often used as a follow-up to a
significant ANOVA F -test to determine which population
means are different.
—-Fisher’s, Bonferroni’s, and Tukey’s methods for comparing
all pairs of means.
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Fisher’s least significant difference method (LSD or FSD)

Two-step process:

1. Carry out the ANOVA F -test of H0 : µ1 = µ2 = · · · = µk at
the α level. If H0 is not rejected, stop and conclude that there
is insufficient evidence to claim differences among population
means. If H0 is rejected, go to step 2.

2. Compare each pair of means using a pooled two sample t-test
at the α level. Use spooled from the ANOVA table and
df = dfE (Residual).

25 / 81



Intr Test mean Multiple comparisons Checking Assumptions Example

Consider the t-test of H0 : µi = µj (i.e., populations i and j have
same mean).

I The t-statistic is

Ts =
Ȳi − Ȳj

Spooled
√

1
ni

+ 1
nj

.

—-reject H0 if |ts | ≥ tcrit, or equivalently, if

|ȳi − ȳj | ≥ tcritspooled

√
1

ni
+

1

nj
.

—–The minimum absolute difference between Ȳi and Ȳj

needed to reject H0 is the LSD, the quantity on the right
hand side of this inequality.

I If all the sample sizes are equal n1 = n2 = · · · = nk then the
LSD is the same for each comparison:

LSD = tcritspooled

√
2

n1
,

where n1 is the common sample size. 26 / 81
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Example: doughnut data, using α = 0.05

Recall that: at the first step, you reject the hypothesis that the
population mean absorptions are equal because p-value= 0.001.
At the second step, compare all pairs of fats at the 5% level.

I spooled = 8.18 and tcrit = 2.086 for a two-sided test based on
20 df (the dfE for Residual SS).

I Each sample has six observations, so the LSD for each
comparison is

LSD = 2.086× 8.18×
√

2

6
= 9.85.

I Any two sample means that differ by at least 9.85 in
magnitude are significantly different at the 5% level.
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Another way:

I Order the samples by their sample means.

Fats Sample Mean

2 185.00
3 174.83
1 174.50
4 162.00

I Two fats are in the same group, if the absolute difference
between their sample means is smaller than the LSD = 9.85.

Comparison Absolute difference in means Exceeds LSD?

Fats 2 and 3 10.17 Yes
2 and 1 10.50 Yes
2 and 4 23.00 Yes

Fats 3 and 1 0.33 No
3 and 4 12.83 Yes

Fats 1 and 4 12.50 Yes
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Results of Multiple Comparison

I Three groups for the doughnut data, with no overlap.
—-Fat 2 is in a group by itself, and so is Fat 4.
—-Fats 3 and 1 are in a group together.

I This information can be summarized by ordering the samples
from lowest to highest average, and then connecting the fats
in the same group using an underscore:

FAT 4 FAT 1 FAT 3 FAT 2

----- -------------- -----

I At the 5% level, you have sufficient evidence to conclude that
the population mean absorption for Fat 2 and Fat 4 are each
different than the other population means.

I However, there is insufficient evidence to conclude that the
population mean absorptions for Fats 1 and 3 differ.
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Interpreting Groups in Multiple Comparisons

I A group is defined to be a set of populations with sample
means that are not significantly different from each other.

I Overlap among groups is common, and occurs when one or
more populations appears in two or more groups. Any overlap
requires a more careful interpretation of the analysis.
—–suppose you obtain two groups in a three sample problem.
One group has samples 1 and 3. The other group has samples
3 and 2:

1 3 2

-----------

-----------

—-this happens when |Ȳ1 − Ȳ2| ≥ LSD, but both |Ȳ1 − Ȳ3|
and |Ȳ3 − Ȳ2| are less than the LSD.
—-The groupings imply that we have sufficient evidence to
conclude that population means 1 and 2 are different, but
insufficient evidence to conclude that population mean 3
differs from either of the other population means. 30 / 81
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FSD Multiple Comparisons in R

pairwise.t.test() with p.adjust.method = ”none”.

#### Multiple Comparisons

# all pairwise comparisons among levels of fat

# Fisher's LSD (FSD) uses "none"

pairwise.t.test(fat.long$amount, fat.long$type,

pool.sd = TRUE, p.adjust.method = "none")

##

## Pairwise comparisons using t tests with pooled SD

##

## data: fat.long$amount and fat.long$type

##

## fat1 fat2 fat3

## fat2 0.038 - -

## fat3 0.944 0.044 -

## fat4 0.015 9.3e-05 0.013

##

## P value adjustment method: none
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Discussion of the FSD Method: family error rate

I Have c = k(k − 1)/2 pairs of means to compare

I Each comparison is done at the α level, where for a generic
comparison of the i th and j th populations

α = probability of rejecting H0 : µi = µj when H0 is true.

I family error rate (FER), or the experimentwise error rate,
is defined to be the probability of at least one false rejection
of a true hypothesis H0 : µi = µj over all comparisons.
—-When many comparisons are made, you may have a large
probability of making one or more false rejections of true null
hypotheses.
—–when all c comparisons of two population means are
performed, each at the α level, then

α < FER < cα.
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Example: doughnut problem

I k = 4, there are c = 4(3)/2 = 6 possible comparisons of pairs
of fats.

I Suppose each comparison is carried out at the 5% level, then
0.05 < FER < 0.30.
—–At the second step of the FSD method, you could have up
to a 30% chance of claiming one or more pairs of population
means are different if no differences existed between
population means.

33 / 81



Intr Test mean Multiple comparisons Checking Assumptions Example

Comments:

I The first step of F test of equivalence of the means the FSD
method is the ANOVA “screening” test.

I The multiple comparisons are carried out only if the F -test
suggests that not all population means are equal.

I FSD method is commonly criticized for being extremely liberal
(too many false rejections of true null hypotheses) when
some, but not many, differences exist — especially when the
number of comparisons is large.
—-When you do a large number of tests, each, say, at the 5%
level, then sampling variation alone will suggest differences in
5% of the comparisons where the H0 is true. The number of
false rejections could be enormous with a large number of
comparisons.
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Bonferroni Comparisons

Suppose we have two statements: s1 and s2

I Statement 1 is correct with probability 1− α.

I Statement 2 is correct with probability 1− α.

I What is the probability that both statements are
simultaneously correct?
(1) If the statements are independent, then the probability
that both are correct is (1− α)(1− α).
(2) But they are not independent. The actual probability is
difficult to compute.

I p(s1 is true and s2 is true)
=p(both si ’s are simultaneously true)
≥ 1− 2α
—-this gives a lower bound on the probability that both
statements are simultaneously true.
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I Bonferroni Inequality
Let s1, s2 · · · sc be statements with

p(si is true) = 1− αi

then
p(s1 is true, s2 is true · · · and sc is true)
=p(all si ’s are simultaneously true)
≥ 1-

∑c
i=1 αi

I If αi s are equal, p(s1 is true, s2 is true · · · and sc is true)
≥ 1-cα or

FER < cα.

Example: Suppose 1− αi = .90, k = 10
p(All 10 s ′i s true) ≥ 1−

∑10
i=1 .10 = 0

The Bonferroni inequality works, but might not work very well.
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I Example: If β0 and β1 both have 95% confidence intervals

b0 ± t(.975; n − 2)s(b0)

and
b1 ± t(.975; n − 2)s(b1)

The joint confidence coefficient using the Bonferroni
inequality is greater than or equal to 1− .05− .05 = .90

I To get a joint confidence coefficient of at least (1− α) for β0

and β1, we use the confidence intervals

b0 ± t(1− α

4
; n − 2)s(b0)

and
b1 ± t(1− α

4
; n − 2)s(b1)

The confidence coefficient is at least

1− α

2
− α

2
= 1− α.
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Genreal Case

To get a joint confidence coefficient of at least (1− α) for c
parameters, we construct each interval estimate with statement
confidence coefficient 1− α/c

I The confidence coefficient is at least

1− c ∗ α
c

= 1− α.

I The Bonferroni method controls the family error rate FER
by reducing the individual comparison error rate.

I We have at least 100(1− α)% confidence that all pairwise
t-test statements hold simultaneously!
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Implementation in R

Bonferroni adjustment in R: p.adjust.method = “bonf”

# Bonferroni 95% Individual p-values

# All Pairwise Comparisons among Levels of fat

pairwise.t.test(fat.long$amount, fat.long$type,

pool.sd = TRUE, p.adjust.method = "bonf")

##

## Pairwise comparisons using t tests with pooled SD

##

## data: fat.long$amount and fat.long$type

##

## fat1 fat2 fat3

## fat2 0.22733 - -

## fat3 1.00000 0.26241 -

## fat4 0.09286 0.00056 0.07960

##

## P value adjustment method: bonferroni
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Grouping

We have sufficient evidence to conclude that the population mean
absorption for Fat 2 is different than that for Fat 4.

FAT 4 FAT 1 FAT 3 FAT 2

-----------------------

-----------------------

I The Bonferroni method tends to produce “coarser” groups
than the FSD method, because the individual comparisons are
conducted at a lower (alpha/error) level.
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I Equivalently, the minimum significant difference is inflated for the
Bonferroni method.
—-For example, in the doughnut problem with FER ≤ 0.05, the
critical value for the individual comparisons at the 0.05/6=0.0083
level is tcrit = 2.929 with df = 20, versus LSD at the 0.05 level with
df = 20 and tcrit = 2.086
—-The minimum significant difference for the Bonferroni
comparisons is

LSD = 2.929× 8.18×
√

2

6
= 13.824

versus an LSD=9.85 for the FSD method.
—-Recall that the sole comparison where the absolute difference
between sample means exceeds 13.824 involves Fats 2 and 4.

Fats Sample Mean
2 185.00
3 174.83
1 174.50
4 162.00
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Example from Koopmans: glabella facial tissue thickness

In an anthropological study of facial tissue thickness for different
racial groups,

I data were taken during autopsy at several points on the faces
of deceased individuals.

I the Glabella measurements taken at the bony ridge for
samples of individuals from three racial groups
—-cauc = Caucasian
—-afam = African American
—-naaa = Native American and Asian

I the data values are in mm.
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#### Example from Koopmans: glabella facial tissue thickness

glabella <- read.table(text="

Row cauc afam naaa

1 5.75 6.00 8.00

2 5.50 6.25 7.00

3 6.75 6.75 6.00

4 5.75 7.00 6.25

5 5.00 7.25 5.50

6 5.75 6.75 4.00

7 5.75 8.00 5.00

8 7.75 6.50 6.00

9 5.75 7.50 7.25

10 5.25 6.25 6.00

11 4.50 5.00 6.00

12 6.25 5.75 4.25

13 NA 5.00 4.75

14 NA NA 6.00

", header=TRUE)
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glabella.long <- melt(glabella,

id.vars=c("Row"),

variable.name = "pop",

value.name = "thickness",

# remove NAs

na.rm = TRUE

)

# naming variables manually, the variable.name and value.name not working 11/2012

names(glabella.long) <- c("Row", "pop", "thickness")

# another way to remove NAs:

#glabella.long <- subset(glabella.long, !is.na(thickness))

glabella.long

## Row pop thickness

## 1 1 cauc 5.75

## 2 2 cauc 5.50

## 3 3 cauc 6.75

## 4 4 cauc 5.75

## 5 5 cauc 5.00

## 6 6 cauc 5.75

## 7 7 cauc 5.75

## 8 8 cauc 7.75

## 9 9 cauc 5.75

## 10 10 cauc 5.25

## 11 11 cauc 4.50

## 12 12 cauc 6.25

## 15 1 afam 6.00

## 16 2 afam 6.25

## 17 3 afam 6.75

## 18 4 afam 7.00

## 19 5 afam 7.25

## 20 6 afam 6.75

## 21 7 afam 8.00

## 22 8 afam 6.50

## 23 9 afam 7.50

## 24 10 afam 6.25

## 25 11 afam 5.00

## 26 12 afam 5.75

## 27 13 afam 5.00

## 29 1 naaa 8.00

## 30 2 naaa 7.00

## 31 3 naaa 6.00

## 32 4 naaa 6.25

## 33 5 naaa 5.50

## 34 6 naaa 4.00

## 35 7 naaa 5.00

## 36 8 naaa 6.00

## 37 9 naaa 7.25

## 38 10 naaa 6.00

## 39 11 naaa 6.00

## 40 12 naaa 4.25

## 41 13 naaa 4.75

## 42 14 naaa 6.00
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# Plot the data using boxplot

boxplot(thickness~pop,data=glabella.long)

cauc afam naaa

4
5

6
7

8
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Bonferroni Pairwise comparisons

I 3 groups with 3 possible pairwise comparisons

I If we want FER of no greater than 0.05, we should do the
individual comparisons at the 0.05/3 = 0.0167 level.

I Except for the mild outlier in the Caucasian sample, the
observed distributions are fairly symmetric, with similar
spreads. We would expect the standard ANOVA to perform
well here.

I Let µc = population mean Glabella measurement for
Caucasians,
µa = population mean Glabella measurement for African
Americans, and
µn = population mean Glabella measurement for Native
Americans and Asians.
—-interest in simultaneous pairwise comparisons of
µc − µa = 0, µc − µn = 0,and µa − µn = 0
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Summary Statistics

glabella.summary <- ddply(glabella.long, "pop",

function(X) { data.frame( m = mean(X$thickness),

s = sd(X$thickness),

n = length(X$thickness) ) } )

glabella.summary

## pop m s n

## 1 cauc 5.812500 0.8334280 12

## 2 afam 6.461538 0.8946959 13

## 3 naaa 5.857143 1.1168047 14
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Anova fit

fit.g <- aov(thickness ~ pop, data = glabella.long)

summary(fit.g)

## Df Sum Sq Mean Sq F value Pr(>F)

## pop 2 3.40 1.6991 1.828 0.175

## Residuals 36 33.46 0.9295

fit.g

## Call:

## aov(formula = thickness ~ pop, data = glabella.long)

##

## Terms:

## pop Residuals

## Sum of Squares 3.39829 33.46068

## Deg. of Freedom 2 36

##

## Residual standard error: 0.9640868

## Estimated effects may be unbalanced
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Findings:

I At the 5% level, you would not reject the hypothesis that the
population mean Glabella measurements are identical.
—–That is, you do not have sufficient evidence to conclude
that these racial groups differ with respect to their average
Glabella measurement.
—-This is the end of the analysis!

I The Bonferroni intervals reinforce this conclusion, all the
p-values are greater than 0.05.
—- If you were to calculate CIs for the difference in
population means, each would contain zero.
—-You can think of the Bonferroni intervals as simultaneous
CI. We’re (at least) 95% confident that all of the following
statements hold simultaneously:
−1.62 ≤ µc − µa ≤ 0.32, −0.91 ≤ µn − µc ≤ 1.00, and
−1.54 ≤ µn − µa ≤ 0.33.
—–The individual CIs have level 100(1− 0.0167)% = 98.33%.
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# Bonferroni 95% Individual p-values

# All Pairwise Comparisons among Levels of glabella

pairwise.t.test(glabella.long$thickness, glabella.long$pop,

pool.sd = TRUE, p.adjust.method = "bonf")

##

## Pairwise comparisons using t tests with pooled SD

##

## data: glabella.long$thickness and glabella.long$pop

##

## cauc afam

## afam 0.30 -

## naaa 1.00 0.34

##

## P value adjustment method: bonferroni
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Further Discussion of Multiple Comparisons

I The FSD method is most likely to find differences, whether
real or due to sampling variation

I Bonferroni is often the most conservative method.
—-but tends to work well when the number of comparisons is
small, say 4 or less.
—-focus attention only on the comparisons of interest
(generated independently of looking at the data!), and ignore
the rest.

I You can be reasonably sure that differences suggested by the
Bonferroni method will be suggested by almost all other
methods, whereas differences not significant under FSD will
not be picked up using other approaches.
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Tukey’s honest significant difference method (HSD) for
multiple comparisons

John Tukey’s honest significant difference method is to reject the
equality of a pair of means based, not on the t-distribution, but
the studentized range distribution.
To implement Tukey’s method with a FER of α, reject
H0 : µi = µj when

|Ȳi − Ȳj | ≥
qcrit√

2
spooled

√
1

ni
+

1

nj
,

where qcrit is the α level critical value of the studentized range
distribution.
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#### Tukey's honest significant difference method (HSD)

# Tukey 95% Individual p-values

# All Pairwise Comparisons among Levels of fat

TukeyHSD(fit.f)

## Tukey multiple comparisons of means

## 95% family-wise confidence level

##

## Fit: aov(formula = amount ~ type, data = fat.long)

##

## $type

## diff lwr upr p adj

## fat2-fat1 10.5000000 -2.719028 23.7190277 0.1510591

## fat3-fat1 0.3333333 -12.885694 13.5523611 0.9998693

## fat4-fat1 -12.5000000 -25.719028 0.7190277 0.0679493

## fat3-fat2 -10.1666667 -23.385694 3.0523611 0.1709831

## fat4-fat2 -23.0000000 -36.219028 -9.7809723 0.0004978

## fat4-fat3 -12.8333333 -26.052361 0.3856944 0.0590077

For the doughnut fats, the groupings based on Tukey and
Bonferroni comparisons are identical.
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## Glabella

# Tukey 95% Individual p-values

# All Pairwise Comparisons among Levels of pop

TukeyHSD(fit.g)

## Tukey multiple comparisons of means

## 95% family-wise confidence level

##

## Fit: aov(formula = thickness ~ pop, data = glabella.long)

##

## $pop

## diff lwr upr p adj

## afam-cauc 0.64903846 -0.2943223 1.5923993 0.2259806

## naaa-cauc 0.04464286 -0.8824050 0.9716907 0.9923923

## naaa-afam -0.60439560 -1.5120412 0.3032500 0.2472838
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The classical ANOVA assumes

I the populations have normal frequency curves
—-test the normality assumption using multiple normal
QQ-plots and normal scores tests.
—-An alternative approach that is useful with three or more
samples is to make a single normal scores plot for the entire
data set.

I the populations have equal variances (or spreads).
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One way Anova Model

Consider one way ANOVA model

Yij = µi + εij (1)

where

I Yij is the value of the response variable in the jth trial for the
ith factor level/sample/group/treatment

I µi are parmeters to be estimated

I εij are independent N(0, σ2), i = 1, · · · , k; j = 1, · · · ni
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Least square estimators

Yij = µi + εij

Consider the deviation of Yij from its expected value [Yij − µi ]
I Measure:

Q =
n∑

i=1

ni∑
j=1

(Yij − µi )2

I Objective: to find estimates µi , for which Q is minimum

I µ̂i = Ȳi ·
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Residuals

Yij = µi + εij

with LS estimators µ̂i = Ȳi ·
I Predicted (fitted or mean) value of Yij is:

Ŷij = Ȳi ·

—the fitted value Ŷij is not the same as Yij

—Yij is the observed value and Ŷij is the predicted value
I Residual eij = Yij − Ŷij : vertical deviation between Yij and the

estimated µi
I Error term εij = Yij − µi : vertical deviation between Yij and

the true group mean µi
I Residual eij is a prediction of εij

—- eij 6= εij
A normal scores plot or histogram of the residuals should
resemble a sample from a population.
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Glabella example diagnostics

#### Checking Assumptions in ANOVA Problems

# plot of data

# Histogram overlaid with kernel density curve

hist(fit.g$residuals, freq = FALSE, breaks = 20)

points(density(fit.g$residuals), type = "l")

rug(fit.g$residuals)

Histogram of fit.g$residuals

fit.g$residuals
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# boxplot

boxplot(fit.g$residuals, horizontal=TRUE)

−2 −1 0 1 2
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# QQ plot

par(mfrow=c(1,1))

library(car)

qqPlot(fit.g$residuals, las = 1, id.n = 8, id.cex = 1, lwd = 1,

main="QQ Plot")

## 29 8 34 40 21 25 27 37

## 39 38 1 2 37 3 4 36
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shapiro.test(fit.g$residuals)

##

## Shapiro-Wilk normality test

##

## data: fit.g$residuals

## W = 0.97693, p-value = 0.5927

library(nortest)

ad.test(fit.g$residuals)

##

## Anderson-Darling normality test

##

## data: fit.g$residuals

## A = 0.37731, p-value = 0.3926
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cvm.test(fit.g$residuals)

##

## Cramer-von Mises normality test

##

## data: fit.g$residuals

## W = 0.070918, p-value = 0.2648

There are a few observations outside the confidence bands, but the
formal normality tests each have p − values > 0.2, so there’s weak
but unconvincing evidence of nonnormality.
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Equal variance assumption

I Bartlett Test

I Levene Test

## Test equal variance

# Barlett assumes populations are normal

bartlett.test(thickness ~ pop, data = glabella.long)

##

## Bartlett test of homogeneity of variances

##

## data: thickness by pop

## Bartlett's K-squared = 1.1314, df = 2, p-value = 0.568

Because the p-value > 0.5, we fail to reject the null hypothesis
that the population variances are equal. This result is not
surprising given how close the sample variances are to each other.
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# Levene does not assume normality, requires car package

library(car)

leveneTest(thickness ~ pop, data = glabella.long)

## Levene's Test for Homogeneity of Variance (center = median)

## Df F value Pr(>F)

## group 2 0.5286 0.5939

## 36

Levene’s tests are consistent with Bartlett’s.
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Example from the Child Health and Development Study
(CHDS)

We consider data from the birth records of 680 live-born white male
infants. The infants were born to mothers who reported for pre-natal care
to three clinics of the Kaiser hospitals in northern California.

I We will examine whether maternal smoking has an effect on the
birth weights of these children.
—-define 3 groups based on mother’s smoking history:
(1) mother does not currently smoke or never smoked (non smoker,
0 cigs),
(2) mother smoked less than one pack of cigarettes a day during
pregnancy (light smoker, 0-19 cigs)
(3) mother smoked at least one pack of cigarettes a day during
pregnancy (heavey smoker, 20+ cigs)

I Let µi = pop mean birth weight (lb) for children in group i ,
(i = 1, 2, 3). We wish to test

H0 : µ1 = µ2 = µ3 against HA : not H0.
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#### Example from the Child Health and Development Study (CHDS)

# description at http://statacumen.com/teach/ADA1/ADA1_notes_05-CHDS_desc.txt

# read data from website

chds <- read.csv("http://statacumen.com/teach/ADA1/ADA1_notes_05-CHDS.csv")

chds$smoke <- rep(NA, nrow(chds));

# no cigs

chds[(chds$m_smok == 0), "smoke"] <- "0 cigs";

# less than 1 pack (20 cigs = 1 pack)

chds[(chds$m_smok > 0) & (chds$m_smok < 20),"smoke"]<- "1-19 cigs";

# at least 1 pack (20 cigs = 1 pack)

chds[(chds$m_smok >= 20),"smoke"] <- "20+ cigs";

chds$smoke <- factor(chds$smoke)
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head(chds)

id c_head c_len c_bwt gest m_age m_smok m_ht m_ppwt p_age p_educ p_smok p_ht

1 4 13 20 7.3 37 33 25 66 140 37 12 25 74

2 5 13 21 8.0 41 28 0 63 130 35 10 7 71

3 6 13 21 7.5 39 32 0 61 126 38 12 17 65

4 7 13 20 7.0 39 27 2 68 150 30 16 7 73

5 8 13 19 5.3 37 32 17 67 112 28 10 17 71

6 13 14 20 8.6 43 30 0 63 131 34 12 17 66

p_age p_educ p_smok p_ht smoke

37 12 25 74 20+ cigs

35 10 7 71 0 cigs

38 12 17 65 0 cigs

30 16 7 73 1-19 cigs

28 10 17 71 1-19 cigs

34 12 17 66 0 cigs
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# calculate summaries

library(plyr)

chds.summary <-ddply(chds, "smoke",

function(X) { data.frame( m = mean(X$c_bwt),

s = sd(X$c_bwt),

n = length(X$c_bwt) ) } )

chds.summary

## smoke m s n

## 1 0 cigs 7.732808 1.052341 381

## 2 1-19 cigs 7.221302 1.077760 169

## 3 20+ cigs 7.266154 1.090946 130
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# histogram

par(mfrow=c(3,1))

hist(chds$c_bwt[chds$smoke=="0 cigs"])

hist(chds$c_bwt[chds$smoke=="1-19 cigs"])

hist(chds$c_bwt[chds$smoke=="20+ cigs"])

Histogram of chds$c_bwt[chds$smoke == "0 cigs"]
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boxplot(c_bwt~smoke,data=chds,main="Boxplot of birthweight

for three groups",xlab="Smoke",ylab="Birthweight(lb)")
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library(car)

par(mfrow=c(1,3))

qqPlot(subset(chds, smoke == "0 cigs" )$c_bwt, las = 1, id.n = 0,

id.cex = 1, lwd = 1, main="QQ Plot, 0 cigs")

qqPlot(subset(chds, smoke == "1-19 cigs")$c_bwt, las = 1, id.n = 0,

id.cex = 1, lwd = 1, main="QQ Plot, 1-19 cigs")

qqPlot(subset(chds, smoke == "20+ cigs" )$c_bwt, las = 1, id.n = 0,

id.cex = 1, lwd = 1, main="QQ Plot, 20+ cigs")
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shapiro.test(subset(chds, smoke == "0 cigs" )$c_bwt)

##

## Shapiro-Wilk normality test

##

## data: subset(chds, smoke == "0 cigs")$c_bwt

## W = 0.98724, p-value = 0.00199

library(nortest)

ad.test( subset(chds, smoke == "0 cigs" )$c_bwt)

##

## Anderson-Darling normality test

##

## data: subset(chds, smoke == "0 cigs")$c_bwt

## A = 0.92825, p-value = 0.01831

cvm.test( subset(chds, smoke == "0 cigs" )$c_bwt)

##

## Cramer-von Mises normality test

##

## data: subset(chds, smoke == "0 cigs")$c_bwt

## W = 0.13844, p-value = 0.03374
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# 1-19 cigs --------------------

shapiro.test(subset(chds, smoke == "1-19 cigs")$c_bwt)

##

## Shapiro-Wilk normality test

##

## data: subset(chds, smoke == "1-19 cigs")$c_bwt

## W = 0.97847, p-value = 0.009926

ad.test( subset(chds, smoke == "1-19 cigs")$c_bwt)

##

## Anderson-Darling normality test

##

## data: subset(chds, smoke == "1-19 cigs")$c_bwt

## A = 0.83085, p-value = 0.03149

cvm.test( subset(chds, smoke == "1-19 cigs")$c_bwt)

##

## Cramer-von Mises normality test

##

## data: subset(chds, smoke == "1-19 cigs")$c_bwt

## W = 0.11332, p-value = 0.07317
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# 20+ cigs --------------------

shapiro.test(subset(chds, smoke == "20+ cigs" )$c_bwt)

##

## Shapiro-Wilk normality test

##

## data: subset(chds, smoke == "20+ cigs")$c_bwt

## W = 0.98127, p-value = 0.06962

ad.test( subset(chds, smoke == "20+ cigs" )$c_bwt)

##

## Anderson-Darling normality test

##

## data: subset(chds, smoke == "20+ cigs")$c_bwt

## A = 0.40008, p-value = 0.3578

cvm.test( subset(chds, smoke == "20+ cigs" )$c_bwt)

##

## Cramer-von Mises normality test

##

## data: subset(chds, smoke == "20+ cigs")$c_bwt

## W = 0.040522, p-value = 0.6694

73 / 81



Intr Test mean Multiple comparisons Checking Assumptions Example

Observations from plots:

I Looking at the summaries, we see that the sample standard
deviations are close.

I Looking at the boxplots, there are outliers in the non smoker
group.

I Histogram of the low-smoking and heavy smoking groups
show skewness.

I A formal test rejects the hypothesis of normality in the no
smoker and low smoker groups.
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Fit ANOVA

fit.c <- aov(c_bwt ~ smoke, data = chds)

summary(fit.c)

## Df Sum Sq Mean Sq F value Pr(>F)

## smoke 2 40.7 20.351 17.9 2.65e-08 ***

## Residuals 677 769.5 1.137

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

I The p-value for the F -test is less than 0.0001. We would
reject H0 at any of the usual test levels (such as 0.05 or 0.01).

I The data suggest that the population mean birth weights
differ across smoking status groups.

I We will continue with multiple comparison later.
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Test normality by residuals

# QQ plot

par(mfrow=c(1,1))

library(car)

qqPlot(fit.c$residuals, las = 1, id.n = 0, id.cex = 1, lwd = 1,

main="QQ Plot")
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shapiro.test(fit.c$residuals)

##

## Shapiro-Wilk normality test

##

## data: fit.c$residuals

## W = 0.99553, p-value = 0.04758

library(nortest)

ad.test(fit.c$residuals)

##

## Anderson-Darling normality test

##

## data: fit.c$residuals

## A = 0.62184, p-value = 0.1051

cvm.test(fit.c$residuals)

##

## Cramer-von Mises normality test

##

## data: fit.c$residuals

## W = 0.091963, p-value = 0.1449
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I A formal test of normality on the residuals of the combined
sample is marginally significant (SW p-value= 0.047, others
> 0.10).

I We are not overly concerned about this since:
—-in large samples, small deviations from normality are often
statistically significant
—-the small deviations are not likely to impact our
conclusions, as inferece is relatively robust to violation of
normaility
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Checking equal variance assumption

I Summary statistics indicate the variances of the three groups
are close to each other

I Formal tests of equal population variances are far from
significant.
—-The p-values for Bartlett’s test and Levene’s test are
greater than 0.4.

Thus, the standard ANOVA appears to be appropriate here.
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## Test equal variance

# assumes populations are normal

bartlett.test(c_bwt ~ smoke, data = chds)

##

## Bartlett test of homogeneity of variances

##

## data: c_bwt by smoke

## Bartlett's K-squared = 0.3055, df = 2, p-value = 0.8583

# does not assume normality, requires car package

library(car)

leveneTest(c_bwt ~ smoke, data = chds)

## Levene's Test for Homogeneity of Variance (center = median)

## Df F value Pr(>F)

## group 2 0.7591 0.4685

## 677
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# nonparametric test

library(car)

fligner.test(c_bwt ~ smoke, data = chds)

##

## Fligner-Killeen test of homogeneity of variances

##

## data: c_bwt by smoke

## Fligner-Killeen:med chi-squared = 2.0927, df = 2, p-value = 0.3512
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Multiple comparisons

## CHDS

# Tukey 95% Individual p-values

TukeyHSD(fit.c)

## Tukey multiple comparisons of means

## 95% family-wise confidence level

##

## Fit: aov(formula = c_bwt ~ smoke, data = chds)

##

## $smoke

## diff lwr upr p adj

## 1-19 cigs-0 cigs -0.51150662 -0.7429495 -0.2800637 0.0000008

## 20+ cigs-0 cigs -0.46665455 -0.7210121 -0.2122970 0.0000558

## 20+ cigs-1-19 cigs 0.04485207 -0.2472865 0.3369907 0.9308357
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## CHDS, multiple comparisons with letters indicating the same group

library(lsmeans) #tukey comparison

## Loading required package: estimability

library(multcompView) #tukey comparison

comp1<-lsmeans(fit.c, "smoke",adjust="tukey")

cld(comp1, alpha=.05,Letters=letters)

## smoke lsmean SE df lower.CL upper.CL .group

## 1-19 cigs 7.221302 0.08200966 677 7.060278 7.382326 a

## 20+ cigs 7.266154 0.09350540 677 7.082558 7.449749 a

## 0 cigs 7.732808 0.05461927 677 7.625565 7.840052 b

##

## Confidence level used: 0.95

## P value adjustment: tukey method for comparing a family of 3 estimates

## significance level used: alpha = 0.05

The Tukey multiple comparisons suggest that the mean birth
weights are different (higher) for children born to mothers that did
not smoke during pregnancy.
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