
Chapter 6: Nonparametric procedures

If you decide that the assumptions of normality are not sufficiently met for
doing a t-test or ANOVA, then what do you do?

One possibility is to use nonparametric procedures.
I The word nonparametric is in contrast to parametric procedures
I Parametric procedure assume that the data come from a family of

distributions (such as the normal) which is parameterized by a small
number of parameters.
——- normal distributions are parameterized by the mean µ and
variance σ2.
—— the t family of distributions is parameterized by the degrees of
freedom
——Probability statements such as p-values, and the width of
confidence intervals based on these procedures assume a very specific
family of distributions (normal distributions or t distribution) for the
underlying data
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Nonparametric procedures

Nonparametric procedures

I make fewer assumptions about the distribution of the data than do
parametric procedures. ns) for the underlying data.

I still make assumptions about the data, usually that each observation
is independently sampled.

I often make weaker assumptions than parametric procedures.
———Example: some (not all) nonparametric procedures assume
that the data come from a symmetric distribution, but that
distribution is not assumed to be normal. If the distribution does
happen to be normal, then the procedure would still be valid.
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Nonparametric procedures

Comments:

I If the normality assumption is reasonable for t-tests and ANOVA, and
if the equal variances assumption is reasonable for ANOVA, there is
no need to use nonparametric procedures.

I If these assumptions seem questionable, it is reasonable to consider
nonparametric alternatives.

I If nonparametric procedures are used when the assumptions of t-tests
or ANOVA are met, then it is likely that any evidence against the null
hypothesis (i.e., the p-value) would be weakened.
——- Another way of saying this is that t-tests and ANOVA tend to
be more powerful (higher probability of rejecting the null when the
null is false) then nonparametric procedures when the assumptions of
the procedures are met.

ADA1 October 30, 2018 3 / 118



Sign test—nonparametric alternative to the one-sample
t-test

The sign test is a test of the hypothesis that a median of a population is
equal to a certain value.

H0 : η = η0

where η (pronounced Ay-duh) is the population median.
——- approximately half of the observations should be above η0 and half
should be below η0.
The alternative hypothesis can be based on either a two-sided or one-sided
test, so we could have

HA :η 6= η0

HA :η < η0, or

HA :η > η0
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Nonparametric procedures: Sign test

I If the distribution is symmetric (such as for the normal), then the
population median is equal to the population mean

I The test also works for distributions that are skewed, where the
population median is different from the population mean.
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Nonparametric procedures: Sign test
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Nonparametric procedures: Sign test

For hypothesis testing, the usual procedure is:

I to construct a test statistic based on the data (e.g., tobs or F )

I determine the distribution of the test statistic under the null
hypothesis

I quantify how consistent the data are with the null hypothesis (get a
p-value)

I make a decision based on the test statistic or p-value

This general approach to hypothesis testing works for many different
cases, including t-tests, ANOVA and here the sign test.
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Nonparametric procedures: Sign test

I Test statistic is S : the number of observations larger than η0, the
hypothesized median.

I Find a distribution that S should follow under the null hypothesis.
——If the null hypothesis is correct, then each observation has a 50%
chance to be either above or below η0.
——The procedure is similar to flipping a coin for each observation.
With probability 50%, you get heads (the value is above η0), and with
probability 50%, you get tails (the value is below η0).
——The right distribution for describing this is well known in
probability and is called the binomial distribution. This distribution
describes the probability of getting k successes in n trials, where each
trial is independent and has probability p of success. For this
application, p = 1/2.
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I Rejection criterion
S has a Binomial distribution when H0 is true.
—-For a two-sided alternative HA : η 6= η0, the test rejects H0 when
S is significantly different from 0.5n, as determined from the
reference Binomial distribution.
—-One-sided tests use the corresponding lower or upper tail of the
distribution.

I Confidence interval
—- A 100(1− α)% CI for η consists of all values η0 not rejected by a
two-sided size α test of H0 : η = η0.
—-Not all test sizes and confidence levels are possible because the
test statistic S is discrete valued.
—- SIGN.test() in BSDA package gives an exact p-value for the test,
and approximates the desired confidence level using a linear
interpolation algorithm.
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Nonparametric procedures: Sign test

Rather than calculating the binomial probabilities yourself, you can use the
function SIGN.test() in the BSDA package in R. The following is an
example with an extreme outlier:

#### Example: Income Data

income <- c(7, 1110, 7, 5, 8, 12, 0, 5, 2, 2, 46, 7)

# sort in decreasing order

income <- sort(income, decreasing = TRUE)

income

## [1] 1110 46 12 8 7 7 7 5 5 2 2 0

summary(income)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.00 4.25 7.00 100.90 9.00 1110.00

sd(income)

## [1] 318.0078
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Nonparametric procedures: Sign test

par(mfrow=c(3,1))

# Histogram overlaid with kernel density curve

hist(income, freq = FALSE, breaks = 1000)

points(density(income), type = "l")

rug(income)

# violin plot

library(vioplot)

vioplot(income, horizontal=TRUE, col="gray")

# boxplot

boxplot(income, horizontal=TRUE)

ADA1 October 30, 2018 11 / 118



Nonparametric procedures: Sign test
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Nonparametric procedures: Sign test

A t-distribution based CI for this data is unreasonable since it has negative lower
CI bound

income <- c(7, 1110, 7, 5, 8, 12, 0, 5, 2, 2, 46, 7)

t.test(income)

One Sample t-test

data: income

t = 1.0993, df = 11, p-value = 0.2951

alternative hypothesis: true mean is not equal to 0

95 percent confidence interval:

-101.1359 302.9692

sample estimates:

mean of x

100.9167
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Nonparametric procedures: Sign test

Instead let’s try a sign test. The sign test will automatically compute the median
for you.

library(BSDA)

SIGN.test(income)

#defualt is median =0, you can use md=10 to test median =10

#SIGN.test(income,md=10)

s = 11, p-value = 0.0009766

alternative hypothesis: true median is not equal to 0

95 percent confidence interval:

2.319091 11.574545

sample estimates:

median of x

7

Achieved and Interpolated Confidence Intervals:

Conf.Level L.E.pt U.E.pt

Lower Achieved CI 0.8540 5.0000 8.0000

Interpolated CI 0.9500 2.3191 11.5745

Upper Achieved CI 0.9614 2.0000 12.0000
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Nonparametric procedures: Sign test

I Note that the confidence interval here are for the population median,
not the population mean.

I Outputs a range of CIs for you to choose from. For example, you are
approximately 96% confident that the population median income is
between $2,000 and $12,000.
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Extreme outlier consideration

The original data had one extreme outlier, can we analyze the data by
removing that outlier and then analyzing the remaining data using the
usual t-test approach?
—–by doing so, we can use t statistics, which can be more powerful and
(often) lead to narrower confidence intervals.

Even removing the observation of 1110 leads to a second outlier of 46.
—-Potentially you could remove this outlier as well.
—-But remember, we are making inferences about a population from
which we sampled.
—-If we remove observations that are genuine (not due to typos,
incorrectly copied data, etc.), what population are making inferences
about?
—-For incomes, we seem to be making inferences about the population of
incomes that are not extremely high, rather than the general population of
incomes, which includes some genuinely high values.

An advantage of the nonparametric approach is that it is not very sensitive
to outliers.
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Normality tests for income data after removing outliers

> shapiro.test(income)

Shapiro-Wilk normality test

data: income

W = 0.35148, p-value = 1.718e-06

> shapiro.test(income[income<100])

data: income[income < 100]

W = 0.59454, p-value = 2.175e-05

> shapiro.test(income[income<46])

data: income[income < 46]

W = 0.95189, p-value = 0.6909
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Compare t-test to Sign test for data with outliers

I Construct two data sets, which make the extreme observations
smaller (but still larger than other observations).

income

# [1] 7 1110 7 5 8 12 0 5 2 2 46

7

income2[2] <- 110

income2[11] <- 16

income2

# [1] 7 110 7 5 8 12 0 5 2 2 16 7

income3 <- income2

income3[2] <- 17

income3

[1] 7 17 7 5 8 12 0 5 2 2 16 7
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Sensitivity of t-test to outliers

t.test(income)$conf.int

#[1] -101.1359 302.9692

t.test(income2)$conf.int

#[1] -4.111024 34.277691

t.test(income3)$conf.int

#[1] 3.945899 10.720768

t.test(income)$p.value

#[1] 0.295115

t.test(income2)$p.value

#[1] 0.1116271

t.test(income3)$p.value

#[1] 0.0005855308
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Robustness of sign test to outliers

SIGN.test(income)$conf.int

#[1] 2.319091 11.574545

SIGN.test(income2)$conf.int

#[1] 2.319091 11.574545

SIGN.test(income3)$conf.int

#[1] 2.319091 11.574545
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Comparison of t-test and Sign test if outliers are removed

We could also look at what happens if the outliers are removed. Again, the sign
test is less sensitive than the t-test:

SIGN.test(income)

#s = 11, p-value = 0.0009766

#95 percent confidence interval: 2.319091 11.574545

SIGN.test(income[income<40])

#s = 9, p-value = 0.003906

#95 percent confidence interval: 2.000000 7.675556

t.test(income)

#t = 1.0993, df = 11, p-value = 0.2951

#95 percent confidence interval: -101.1359 302.9692

t.test(income[income<40])

t = 4.9637, df = 9, p-value = 0.0007766

#95 percent confidence interval: 2.993414 8.006586
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Nonparametric procedures: Rank-sum test

An alternative to the sign test is the Wilcoxon signed rank test.

I Assume that the underlying distribution is symmetric, but not
necessarily normal.

I It makes stronger assumptions than the sign test, but not as strong as
the t-test.

I The null is that µ = µ0 where µ is equivalently the mean or median.

I Compute both the signs of Xi − µ0 and the ranks of |Xi − µ0| for
each data point.
——By ranks, we mean that the largest deviation |Xi − µ0| gets rank
n, where n is the sample size, and the smallest deviation |Xi − µ0|
gets rank 1.
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Nonparametric procedures: Rank-sum test

Example: a sample of 8 data points, want to test H0 : µ = 10.

Xi Xi − 10 sign |Xi − 10| rank rank × sign
20 10 + 10 6 6
18 8 + 8 4.5 4:5
23 13 + 13 8 8

5 -5 − 5 3 −3
14 4 + 4 2 2

8 −2 − 2 1 −1
18 8 + 8 4.5 4.5
22 12 + 12 7 7

I For the tied observations, these would have ranks 4 and 5, so we give them
each 4.5, the average of 4 and 5.

I Generally, if k observations are tied for rank r , give them each rank
((r + 0) + (r + 1) + · · ·+ (r + k − 1))/k = r + (k − 1)/2.

ADA1 October 30, 2018 23 / 118



Nonparametric procedures: Rank-sum test

The test statistic is W = the sum of the positive signed ranks. For the
above example

W = 6 + 4.5 + 8 + 2 + 4.5 + 7 = 32

Note that the sum of the unsigned ranks is

1 + 2 + · · ·+ n = n(n + 1)/2

where n is the sample size. For this example, n = 8, so

n(n + 1)/2 = (8)(9)/2 = 36

If half of the observations are above µ0, then you expect half of the
observations to contribute to the W statistic, and the expected value of
W is (1/2)× n(n + 1)/2 = n(n + 1)/4 = 18 for this example. The
question then is whether 32 is significantly different from 18. This depends
on the distribution of W .
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Nonparametric procedures: Rank-sum test

#### Example: Made-up Data

dat <- c(20, 18, 23, 5, 14, 8, 18, 22)

# sort in decreasing order

dat <- sort(dat, decreasing = TRUE)

dat

## [1] 23 22 20 18 18 14 8 5

summary(dat)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 5.0 12.5 18.0 16.0 20.5 23.0

sd(dat)

## [1] 6.524678
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Nonparametric procedures: Rank-sum test

par(mfrow=c(3,1))

# Histogram overlaid with kernel density curve

hist(dat, freq = FALSE, breaks = 10)

points(density(dat), type = "l")

rug(dat)

# violin plot

library(vioplot)

vioplot(dat, horizontal=TRUE, col="gray")

# boxplot

boxplot(dat, horizontal=TRUE)
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Nonparametric procedures: Sign test
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Nonparametric procedures: Rank-sum test

I QQplot and Shapiro-Wilk test do not suggest evidence against
normality.

I No outliers, the distribution is unimodal, and there does not appear
strong skew (slightly left-skewed).

I We would be comfortable using a t-test for this data.

I Illustrate using both the t-test and signed rank test.
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Nonparametric procedures: Rank-sum test

t.test(dat, mu=10)

##

## One Sample t-test

##

## data: dat

## t = 2.601, df = 7, p-value = 0.03537

## alternative hypothesis: true mean is not equal to 10

## 95 percent confidence interval:

## 10.54523 21.45477

## sample estimates:

## mean of x

## 16
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Nonparametric procedures: Rank-sum test

wilcox.test(dat, mu=10, conf.int=TRUE)

## Warning in wilcox.test.default(dat, mu = 10, conf.int = TRUE):

cannot compute exact p-value with ties

## Wilcoxon signed rank test with continuity correction

##

## V = 32, p-value = 0.0584

## 95 percent confidence interval:

## 9.500002 21.499942

## (pseudo)median

## 16.0056

# without continuity correction

wilcox.test(dat, mu=10, conf.int=TRUE, correct=FALSE)

## V = 32, p-value = 0.04967

## alternative hypothesis: true location is not equal to 10

## 95 percent confidence interval:

## 10.99996 21.00005

## (pseudo)median

## 16.0056
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Nonparametric procedures: Rank-sum test

Comments:

I The p-value is slightly different depending on whether a continuity
correction is used or not.
—- is the correct p-value really below .05 or not? Scientifically,
however, p-values of 0.0584 and 0.0497 are quite close. They indicate
similar amounts of evidence against the null hypothesis.
—–This is an example where people might argue that paying too
much attention to p-values is a bad thing.

I Continuity corrections are often used for discrete tests such as this
one and the chi-square test (which we haven’t covered), particularly
when p-values are based on normal approximations.
———-Prefer using the continuity correction since it tends to lead to
better performance for discrete methods.
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Nonparametric procedures: Rank-sum test

I When there are ties in the ranks or the sample size is large (50 or
above), R uses normal approximations.
—– (W − E (W ))/SE (W ) is approximately normally distributed, so
this quantity acts like a z-score.
—– The test is still considered nonparametric even when a normal
approximation for the distribution of W is used.
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Nonparametric procedures: paired data

I Two paired samples (e.g., pre- vs post scores)
——-analyze the differences as a single sample rather than think of it
as a two-independent sample problem.
——works for both the sign test and the Wilcoxon rank-sum test.
——usually be interested in testing H0 : η = 0 or H0 : µ = 0.
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Example: Wilcoxon methods on the paired comparison of two remedies A
and B for insomnia. The number of hours of sleep gained on each method
was recorded.

> # Data and numerical summaries

> a <- c( 0.7, -1.6, -0.2, -1.2, 0.1, 3.4, 3.7, 0.8,

0.0, 2.0)

> b <- c( 1.9, 0.8, 1.1, 0.1, -0.1, 4.4, 5.5, 1.6,

4.6, 3.0)

> d <- b - a;

> sleep <- data.frame(a, b, d)

> summary(sleep$d)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.200 1.000 1.250 1.520 1.675 4.600

> shapiro.test(sleep$d)

data: sleep$d

W = 0.83798, p-value = 0.04173
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I The boxplot shows that distribution of differences is reasonably
symmetric but not normal.
—– Shapiro-Wilk test of normality was marginally significant at the
5% level (p-value=0.042).
—— It may be sensible to use the Wilcoxon procedure on the
differences. But may be ok.

I Let µB be the population mean sleep gain on remedy B, and µA be
the population mean sleep gain on remedy A. We are interested in

H0 : µB − µA = 0
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> t.test(sleep$d, mu=0)

One Sample t-test

data: sleep$d

t = 3.7796, df = 9, p-value = 0.004352

alternative hypothesis: true mean is not equal to 0

95 percent confidence interval:

0.610249 2.429751

sample estimates:

mean of x

1.52
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> wilcox.test(sleep$d, mu=0, conf.int=TRUE)

> # can use the paired= option

> wilcox.test(sleep$b, sleep$a, paired=TRUE, mu=0,

conf.int=TRUE)

Wilcoxon signed rank test with continuity correction

data: sleep$d

V = 54, p-value = 0.008004

alternative hypothesis: true location is not equal to 0

95 percent confidence interval:

0.7999339 2.7999620

sample estimates:

(pseudo)median

1.299983
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By using Wilcoxon signed rank test

I We are 95% confident that µB − µA is between 0.8 and 2.8 hours.
—– or 95% confident that µB exceeds µA by between 0.8 and 2.8
hours.

I The p-value for testing H0 : µB − µA = 0 against a two-sided
alternative is 0.008, which strongly suggests that µB 6= µA.
——-This agrees with the CI.

I The CI by using t procedure gives similar conclusions as the Wilcoxon
methods, but the t-test p-value is about half as large.

I If you are uncomfortable with the symmetry assumption, you could
use the sign CI for the population median difference between B and A.
—- a 95% CI for the median difference goes from 0.86 to 2.2 hours.
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> SIGN.test(sleep$d)

One-sample Sign-Test

data: sleep$d

s = 9, p-value = 0.02148

alternative hypothesis: true median is not equal to 0

95 percent confidence interval:

0.8648889 2.2053333

sample estimates:

median of x

1.25

Achieved and Interpolated Confidence Intervals:

Conf.Level L.E.pt U.E.pt

Lower Achieved CI 0.8906 1.0000 1.8000

Interpolated CI 0.9500 0.8649 2.2053

Upper Achieved CI 0.9785 0.8000 2.4000
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Type I error

Type I error: the probability of falsely rejected the null hypothesis when it
is true.

I We’ll do an example of the exponential with mean 1, and test
H0 : µ = 1 and H0 : η = 0.69.

I For these cases, the null hypothesis is true.

I The assumptions of symmetric (or normal) distributions are incorrect
for the Wilcoxon and t-tests.
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Simulating Type I error

Something bad with Wilcoxon—error increasing with sample size.
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Type I error

Findings from the simulation
I The Wilcoxon test is doing something bad

——— as the sample size increases, it’s type I error rate is increasing.
——— for large samples, it is increasingly likely to reject the null
hypothesis even when the null hypothesis is true!
——— this is because the p-value is based on assuming both the
hypothesized value of µ = 1 and the symmetry of the distribution.
The low p-values (causing the incorrect decisions) are due to the lack
of symmetry, not due to the null hypothesis being wrong.

I Both the t-test and the Wilcoxon test are based on assuming
symmetry in the population distribution.
——–the t-test is not very sensitive to this assumption (as long as
there are no extreme outliers).
——– the Wilcoxon test is sensitive to the distribution being
symmetric. But it is not very sensitive to extreme outliers if the rest
of the distribution is symmetric.
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Type I error

I Sign test controls the type I error pretty well.

I Type I error for both Wilcoxon and the t-test is about 0.10 when
testing at level α = 0.05.
——–that means that if the null hypothesis is true, both tests are
rejecting twice as often as they are supposed to due to the violations
of the assumptions.

I When using either test on skewed data, you should keep this in mind.
A p-value of say 0.04, might be too low compared to what it should
be if the assumptions of the test had been met.

I As the sample size increases, the Central Limit Theorem means that
the sampling distribution of the mean is closer to normal
——-the α level for the t-test is getting closer to 0.05 (the proportion
of false rejections was 0.056 for n = 100).
——-unfortunately, large sample sizes are not helping the Wilcoxon
test.
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Simulating power

As mentioned previously, it is usually preferred to do a t-test over a
nonparametric procedure if the assumptions of the t-test are satisfied. Let’s do a
simulation to see why.

I Suppose we have a sample of size n = 10, 20, 30, 40, 50, . . . , 100 from a
normal distribution with mean µ = 1 and variance σ2 = 32 = 9. (i.e., the
standard deviation is 3).

I Want to test H0 : µ = 0 vs HA : µ 6= 0.
—–we can test using either a one-sample t-test or the Wilcoxon test (the
sign test would also work).

I Because we generate sample from N(1, 3), we know that H0 is false.
——-a correct decision is reached if we reject the null hypothesis. Recall
that power is the probability of rejecting the null hypothesis when it is not
true. We want to compare power of the three tests.
—— for the smaller sample sizes, though, there is enough variability that we
often won’t be able to reject the null hypothesis because there is insufficient
evidence.
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Simulating power

#code to simulate power, n=10

I <- 10000 # number of iterations

n <- 10# sample size

decision.t <- 1:I

decision.w <- 1:I

decision.s <- 1:I

for(i in 1:I) {

x <- rnorm(n,1,3)

pvalue.t <- t.test(x)$p.value

pvalue.w <- wilcox.test(x)$p.value

pvalue.s <-SIGN.test(x)$p.value

decision.t[i] <- (pvalue.t < .05) # 1=correct decision

decision.w[i] <- (pvalue.w < .05) #1=correct decision

decision.s[i] <- (pvalue.s < .05) #1 = correct decision

}
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Simulating power

mean(decision.t) # proportion of correct decisions by t test

#[1] 0.1557 # this is the power, about 16\%

mean(decision.w) # proportion of correct decisions

#by Wilcoxon test

#[1] 0.1489 # this is the power, 15\%

mean(decision.s) # proportion of correct decisions

#by Sign test

#[1] 0.0718 # this is the power, 15\%
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Simulating power

#simulated power when n=20

> mean(decision.t) # proportion of correct decisions

# by t test

[1] 0.2873 # this is the power, about 29\%

> mean(decision.w)

[1] 0.2743 # this is the power, about 28\%

> mean(decision.s)

[1] 0.1914 # this is the power, about 19\%
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Simulated power under different settings

Power versus the sample size, n = 10, 20, . . . , 100. Data is generated from
N(1, 9). H0 : µ = 0.
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Comments:

I For each sample size, the t-test is slightly more likely to reach the
correct conclusion (rejecting the null hypothesis) than Wilcoxon test.

I The differences are pretty small. But there is no reason to prefer the
Wilcoxon test than t test when popn is normally distributed.
—–recall that Wilcoxon test assume symmetry of the popn.

I Sign test is much less efficient comparing to t and Wilcoxon tests
——-Sign test only assume that sample is a random sample.
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What happens if the assumptions of the t-test (normality) are not met?
—— Suppose the distribution is uniform(0,1), µ = (0 + 1)/2 = 0.5
——Then the null hypothesis of µ = 0 is easy to reject from any method.
——Suppose the distribution is uniform from -1 to 2,
µ = (−1 + 2)/2 = 0.5
—– But it is harder to reject the null.
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##uniform distribution

y<-runif(1000,-1,2)

a<-seq(1,1000)

plot(a,y)
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Simulating power: Unif(-1,2), µ = .5, H0 : µ = 0
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Simulating power: Unif(-1,2), µ = .5, H0 : µ = 0

Even though the assumptions (normality) of the t-test are not met, the
t-test has better power than the Wilcoxon test and sign test.
——-the uniform distribution is evenly distributed, tends not to have
outliers, not to say extreme outliers, extreme skewness
——-t procedure is still valid, and has better power than the other two
methods.
We could also try, say a bimodal distribution. Here we’ll simulate from a
distribution with values between 0 and 1 that is symmetric but tends to
have values close to 0 or 1, and is less likely to have values in between.

x <- rbeta(1000,.2,.2)

hist(x,nclass=30,xlab="x",cex.lab=1.3,cex.axis=1.3)
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Simulating power: Beta with parameters 0.2, 0.2

rbeta(1000,0.2,0.2)
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Simulating power: Beta with parameters 0.2, 0.2

Two sided test of H0 : µ = 0.3 or H0 : η = 0.3
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Simulating power

What happens if we simulate from a distribution that violates the
assumptions of both the t-test and Wilcoxon test?
——exponential distribution with mean 1 to test H0 : µ = 2 versus
H0 : µ 6= 2.
——for the sign test, using H0 : η = 1.38, which is twice the value of the
population median of 0.69.

The assumptions of both tests are violated because the distribution isn’t
symmetric.
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True SEM = 1 , Est SEM =  0.9884

n = 1

Den
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Figure : illustration of CLT, notice that the normality promised by the CLT
requires larger samples sizes, about n ≥ 30
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Simulating power: Exponential

Two sided test of H0 : µ = 2 or H0 : η = 1.38
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Simulating power: extreme outliers

What about if there are extreme outliers?
———we’ll do an example where the distribution is standard normal for
all observations except one, which is an outlier added with an extreme
value of 5.

x <- c(rnorm(9),5)

——- we test H0 : µ = 1 and H0 : η = 1.
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Simulating power: extreme outliers

The t-test is not as good here....
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Comments:

I Assume that the underlying population distribution is (approximately)
symmetric, which implies that population means and medians are
equal (approximately).
—— For symmetric distributions the t, sign, and Wilcoxon
procedures are all appropriate.

I If the underlying population distribution is extremely skewed, you can
use the sign procedure to get a CI for the population median.
——Alternatively, you can transform the data to a scale where the
underlying distribution is nearly normal, and then use the classical
t-methods. Moderate degrees of skewness will not likely have a big
impact on the standard t-test and CI.
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I The one-sample t-test and CI are optimal when the underlying
population frequency curve is normal.
——Essentially this means that the t-CI is, on average, narrowest
among all CI procedures with given level, or that the t-test has the
highest power among all tests with a given size.

I With heavy-tailed symmetric distributions, the t-test and CI tend to
be conservative.
——for example, a nominal 95% t-CI has actual coverage rates
higher than 95%,
——-the nominal 5% t-test has an actual size smaller than 5%.
——-the t-test and CI possess a property that is commonly called
robustness of validity.
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Heavey tail
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Skewness
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Skewness
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I Data from heavy-tailed distributions can have a profound effect on
the sensitivity of the t-test and CI though.
——-outliers can dramatically inflate the standard error of the mean,
causing the CI to be needlessly wide, and tests to have diminished
power (outliers typically inflate p-values for the t-test).
——in essence, the t-methods do not have a robustness of
sensitivity

I The sign and Wilcoxon procedures downweight the influence of
outliers by looking at sign or signed-ranks instead of the actual data
values. These two nonparametric methods are somewhat less efficient
than the t-methods when the population is normal (efficiency is about
0.64 and 0.96 for the sign and Wilcoxon methods relative to the
normal t-methods, where efficiency is the ratio of sample sizes needed
for equal power), but can be more efficient with heavier than normal
tailed distributions.
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I Scientists in some disciplines continue to use classical t-methods
when data is highly skewed, because they believe that t-methods are
robust to non-normality.
——— This is a robustness of validity, not sensitivity.
———Scientists need to be flexible and adapt their tools to the
problem at hand, rather than use the same tool
indiscriminately!
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Newcombe’s Data

Experiments of historical importance were performed beginning in the
eighteenth century to determine physical constants, such as the mean
density of the earth, the distance from the earth to the sun, and the
velocity of light.

I Experiments (rotating mirror method) to determine the velocity of
light was begun in 1875.
——-a beam of light is reflected on a rapidly rotating mirror to a
fixed mirror at a carefully measured distance from the source.
——-the returning light is re-reflected from the rotating mirror at a
different angle, because the mirror has turned slightly during the
passage of the corresponding light pulses.
——– From the speed of rotation of the mirror and from careful
measurements of the angular difference between the outward-bound
and returning light beams, the passage time of light can be calculated
for the given distance.
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Newcombe’s Data

I After averaging several calculations and applying various corrections,
the experimenter can combine mean passage time and distance for a
determination of the velocity of light.

I Simon Newcombe, a distinguished American scientist, used this
method during the year 1882 to generate the passage time
measurements given below, in microseconds.

I The travel path for this experiment was 3721 meters in length,
extending from Ft. Meyer, on the west bank of the Potomac River in
Washington, D.C., to a fixed mirror at the base of the Washington
Monument.

I The problem is to determine a 95% CI for the “true” passage time,
which is taken to be the typical time (mean or median) of the
population of measurements that were or could have been taken by
this experiment.
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Newcombe’s Data
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Newcombe’s Data

#### Example: Newcombe’s Data

time <- c(24.828, 24.833, 24.834, 24.826, 24.824, 24.756

, 24.827, 24.840, 24.829, 24.816, 24.798, 24.822

, 24.824, 24.825, 24.823, 24.821, 24.830, 24.829

, 24.831, 24.824, 24.836, 24.819, 24.820, 24.832

, 24.836, 24.825, 24.828, 24.828, 24.821, 24.829

, 24.837, 24.828, 24.830, 24.825, 24.826, 24.832

, 24.836, 24.830, 24.836, 24.826, 24.822, 24.823

, 24.827, 24.828, 24.831, 24.827, 24.827, 24.827

, 24.826, 24.826, 24.832, 24.833, 24.832, 24.824

, 24.839, 24.824, 24.832, 24.828, 24.825, 24.825

, 24.829, 24.828, 24.816, 24.827, 24.829, 24.823)
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Newcombe’s Data

Plotting the data shows that it is left-skewed with two outliers.
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Newcombe’s Data

The data is skewed to the left

There are two extreme outliers that could potentially be misrecorded
observations

Without additional information I would be hesitant to apply normal theory
methods (the t-test)

Would be more comfortable with the sign CI for the population median
than the Wilcoxon method, which assumes symmetry
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Newcombe’s Data

Here it might be interesting to compare the width of the confidence
intervals for different methods. The Wilcoxon confidence interval is half
the width of the t-based confidence interval.

t.test(time)$conf

#[1] 24.82357 24.82885

#attr(,"conf.level")

#[1] 0.95

t.test(time)$conf[2] - t.test(time)$conf[1]

#[1] 0.005283061

wilcox.test(time,conf.int=T)

# 24.82604 24.82853

wilcox.test(time,conf.int=T)$conf[2]-

wilcox.test(time,conf.int=T)$conf[1]

#[1] 0.002487969
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Table : CIs by different methods for Newcombe’s data

Parameter Methods CI Width
Mean t (24.8236, 24.8289) 0.0053

Median Sign (24.8260, 24.8285) 0.0025
Median Wilcoxon (24.8260, 24.8285) 0.0025

Note the big difference between the nonparametric and the t-CI.
The nonparametric CIs are about 1/2 as wide as the t-CI.
—-This reflects the impact that outliers have on the standard deviation,
which directly influences the CI width.
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Nonparametric tests for two independent samples

A nonparametric alternative to the two-sample t-test is the Mann-Whitney
or Wilcoxon-Mann-Whitney (WMW) test.

I The test assumes that two distributions have the same shapes and
spreads (e.g., they should have the same standard deviations), but
they are not assumed to be symmetric.

I The null hypothesis is often stated as that the population medians are
equal, H0 : η1 = η2.
—— If the distributions are symmetric, then it is testing that the
means are equal as well, H0 : µ1 = µ2.
—— More generally, it can be thought of as testing whether the two
populations have the same distribution.

I The two samples are pooled and then ranked, where the ranking is
similar to the Wilcoxon one-sample test: a rank of 1 is used for the
smallest observation, and a rank of n1 + n2 is used for the largest
observation.
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WMW test

I After ranking, the pooled samples are separated back into the original
samples.

I If the two populations have equal medians, you expect the average
rank in the two samples to be roughly equal since they are from same
distribution.

I The WMW can also be used for ordinal but non-numeric data, for
example, data are ordered categories but not measurement scale data.
Ordinal data includes Likert scale data where people indicate that they
strongly disagree, disagree, are neutral, agree, or strongly disagree.
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WMW test: example

Here an example is from comparing cooling rate (degrees per million years)
for meteorite fragments from two locations: Uwet (Cross River, Nigeria),
and Walker County in Alabama (US).

Uwet <- c(.21, .25, .16, .23, .47, 1.20, .29, 1.10, .16)

Walker <- c(.69, .23, .10, .03, .56, .10, .01, .02, .04, .22)
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WMW test: example

Skew to right, with outliers
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WMW test: example

This example has a small sample size, marked skewness, and with outliers,
so we might expect the WMW test to do well compared to a t-test.

wilcox.test(Uwet,Walker,conf.int=T))

#95 percent confidence interval:

# 0.0000449737 0.4499654518

#W = 69.5, p-value = 0.04974

t.test(Uwet,Walker)

#t = 1.6242, df = 12.652, p-value = 0.129

#95 percent confidence interval:

# -0.08420858 0.58865302
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I t test indicates that the mean cooling rates for Uwet and Walker Co.
meteorites are not significantly different at the 10% level. You are
95% confident that the mean cooling rate for Uwet is at most 0.1
less, and no more than 0.6 greater than that for Walker Co. (in
degrees per million years).

I The WMW test of equal population medians is significant (barely) at
the 5% level. You are 95% confident that median cooling rate for
Uwet exceeds that for Walker by between 0+ and 0.45 degrees per
million years.

I The difference between the WMW and t-test p-values and CI lengths
(i.e. the WMW CI is narrower and the p-value smaller) reflects the
effect of the outliers on the sensitivity of the standard tests and CI.
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WMW test: example

One can get very similar results from the WMW by doing a two-sample t-test on
the ranks. I.e., replace the data measurement values by their ranks and then
perform the t-test using the equal variance assumption. This could be done as
follows:

dat <- c(Uwet,Walker)

group <- c(rep("a",length(Uwet)),rep("b",length(Walker)))

order <- rank(dat)

order

[1] 9.0 13.0 7.5 11.5 15.0 19.0 14.0 18.0 7.5 17.0 11.5 5.5 3.0 16.0 5.5

[16] 1.0 2.0 4.0 10.0

t.test(order ~ group,var.equal=T)

t = 2.2082, df = 17, p-value = 0.04125

95 percent confidence interval:

0.2304938 10.1139507
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Nonparametric alternative to ANOVA: Kruskal-Wallis

I Kruskal-Wallis tests the hypothesis that all populations have the same
median. The null can be written as

H0 : η1 = η2 = · · · = ηk

when there are k groups.
——-The alternative hypothesis is that at least two population
medians are different.

I The procedure assumes you have independent random samples from
populations with frequency curves having identical shapes and
spreads.

I The idea for the KW test is similar to the WMW: pool all the data
and rank them ignoring group membership, averaging the ranks in the
case of ties. After ranking, the pooled data are separated back to
original sample. Then each group should have similar distributions of
ranks if the null is true.
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#### Example: Hydrocarbon (HC) Emissions Data (from 45 yrs ago!)

emis <- read.table(text="

Pre-y63 y63-7 y68-9 y70-1 y72-4

2351 620 1088 141 140

1293 940 388 359 160

541 350 111 247 20

1058 700 558 940 20

411 1150 294 882 223

570 2000 211 494 60

800 823 460 306 20

630 1058 470 200 95

905 423 353 100 360

347 900 71 300 70

NA 405 241 223 220

NA 780 2999 190 400

NA 270 199 140 217

NA NA 188 880 58

NA NA 353 200 235

NA NA 117 223 1880

NA NA NA 188 200

NA NA NA 435 175

NA NA NA 940 85

NA NA NA 241 NA

", header=TRUE)
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library(reshape2)

# convert to long format

emis.long <- melt(emis,

variable.name = "year",

value.name = "hc",

na.rm = TRUE

)

# No id variables; using all as measure variables

attach(emis.long)

boxplot(hc ~ year,cex.axis=1.3,cex.lab=1.3,ylab="Emissions")

points(hc ~ yr)
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KW test: example
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KW test: example

> by(emis.long$hc,emis.long$year,median)

emis.long$year: Pre.y63

[1] 715

emis.long$year: y63.7

[1] 780

emis.long$year: y68.9

[1] 323.5

emis.long$year: y70.1

[1] 244

emis.long$year: y72.4

[1] 160
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KW test: example

> by(emis.long$hc,emis.long$year,sd)

emis.long$year: Pre.y63

[1] 591.5673

emis.long$year: y63.7

[1] 454.9285

emis.long$year: y68.9

[1] 707.8026

emis.long$year: y70.1

[1] 287.8864

emis.long$year: y72.4

[1] 410.7866
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KW test: example

The different groups seem to have different spreads, which violates the
assumptions of both ANOVA and the KW test. We’ll see how both
methods perform with this data. The techinical name for different spreads
is “heteroscedasticity”.
For some discussion on the KW test and why it is used and sometimes
misused when assumptions of ANOVA are violated, see the webpage

http://influentialpoints.com/Training/Multiple comparison tests after ANOVA use and misuse.htm
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KW test: example

kruskal.test(emis.long$hc ~ factor(emis.long$year))

#

# Kruskal-Wallis rank sum test

#

#data: emis.long$hc by factor(emis.long$year)

#Kruskal-Wallis chi-squared = 31.808, df = 4, p-value = 2.093e-06

a <- aov(emis.long$hc ~ factor(emis.long$year))

summary(a)

# Df Sum Sq Mean Sq F value Pr(>F)

#factor(emis.long$year) 4 4226834 1056709 4.343 0.00331 **

#Residuals 73 17759968 243287
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Type I error: different populations and heteroscedasticity

I <- 10000

myp.1 <- 1:I

myp.2 <- 1:I

for(i in 1:I) {

x <- runif(20,-1,1)

y <- rbeta(20,.2,.2)-0.5

z <- rnorm(20,0,2)

dat <- c(x,y,z)

group <- c(rep("a",20),rep("b",20),rep("c",20))

a <- aov(dat ~ factor(group))

#this next line was tricky

myp.1[i] <- summary(a)[[1]][["Pr(>F)"]][1]

a <- kruskal.test(dat ~ factor(group))

myp.2[i] <- a$p.value

myp.2

}

print(c(mean(myp.1<.05),mean(myp.2<.05)))

#[1] 0.0769 0.0755 # similar type I errors, ideally <= 0.05
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Analyzing the log of the data

For highly skewed data, another possibility is to analyze the data on a
transformed scale, such as the log scale.
This often reduces the number or severity of the outliers and can make the
distributions more nearly symmetric. Note that Bartlett’s test suggests
considerably closer variances under the log transform than under the
original scale, although the p-value is still under 0.05.

boxplot(log(emis.long$hc) ~ emis.long$year)

bartlett.test(log(emis.long$hc),emis.long$year)

#

#data: log(emis.long$hc) and emis.long$year

#Bartlett’s K-squared = 10.879, df = 4, p-value = 0.02795

bartlett.test(emis.long$hc,emis.long$year)

#data: emis.long$hc and emis.long$year

#Bartlett’s K-squared = 14.451, df = 4, p-value = 0.005986
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Analyzing the log of the data
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Analyzing the log of the data

Note that taking the log of the pooled data doesn’t change the ranking of
the data, so that performing a KW test on the log of the data gives
identical results to using the original data. This suggests that the KW test
might have some robustness to heteroscedasticity since the
log-transformed data have more reasonably close spread.

On the other hand, for the example using three different distributions, the
t-test and KW test had similarly inflated type I error rates.

We’ll encounter other approaches to analyzing transformed data later on.
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Multiple comparisons

With the ANOVA, if the null hyptohesis is rejected, you often follow up
with pairwise comparisons, adjusting for multiple comparisons using
Fisher’s Least Significant Differences (LSD or FSD), Bonferroni, or
Tukey’s Honest Differences.

For Kruskal-Wallis, the same approach can be used, usually using the
WMW tests for the follow up pairwise comparisons.
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Multiple comparisons

We’ll illustrate with an example from treating Hodgkin’s disease:

Hodgkin’s Disease Study Plasma. bradykininogen levels were measured
in normal subjects, in patients with active Hodgkin’s disease, and in
patients with inactive Hodgkin’s disease. The globulin bradykininogen is
the precursor substance for bradykinin, which is thought to be a chemical
mediator of inflammation. The data (in micrograms of bradykininogen per
milliliter of plasma) are displayed below. The three samples are denoted by
nc for normal controls, ahd for active Hodgkin’s disease patients, and ihd
for inactive Hodgkin’s disease patients. The medical investigators wanted
to know if the three samples differed in their bradykininogen levels.
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Multiple comparisons

#### Example: Hodgkins Disease Study

nc <- c(5.37,5.8,4.7,5.7,3.4,8.6,7.48,5.77,7.15,6.49,4.09,5.94,

6.38,9.24,5.68,4.53,6.51,7.0,6.2,7.04,4.82,6.73,5.26)

ahd <- c(3.96,3.04,5.28,3.4,4.1,3.61,6.16,3.22,7.48,3.87,4.27

,4.05,2.40,5.81,4.29,2.77,4.40)

ihd <- c(5,37,10.6,5.02,14.3,9.9,4.27,5.75,5.03,5.74,7.85,6.82,

7.9,8.36,5.72,6.0,4.75,5.83,7.3,7.52,5.32,6.05,5.68,7.57,5.68,

8.91,5.39,4.40,7.13)

hd <- c(nc,ahd,ihd)

group <- c(rep(‘‘nc’’,length(nc)),rep(‘‘ahd’’,length(ahd)),

rep(‘‘ihd’’,length(ihd)))

hd.long <- as.data.frame(cbind(hd,group))

#the next line is tricky, to convert a factor to numeric

hd.long$hd <- as.numeric(levels(hd.long$hd))[hd.long$hd]

Note that only using cbind() creates a matrix object. Using as.data.frame()

converts the matrix to a data frame. The as.numeric() command converts

from string to numeric for the numbers.
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Multiple comparisons

by(hd.long$hd, hd.long$group, summary)

#hd.long$group: ahd

# Min. 1st Qu. Median Mean 3rd Qu. Max.

# 3.00 7.00 12.00 16.76 17.00 54.00

#------------------------------------------------------------

#hd.long$group: ihd

# Min. 1st Qu. Median Mean 3rd Qu. Max.

# 1.00 23.00 33.00 35.52 53.00 63.00

#------------------------------------------------------------

#hd.long$group: nc

# Min. 1st Qu. Median Mean 3rd Qu. Max.

# 7.00 26.50 39.00 37.13 48.00 62.00
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Multiple comparisons

Fancy code to extract several summary statistics at the same time...

by(hd.long$hd, hd.long$group, function(X) { c(IQR(X), sd(X),

length(X)) } )

#hd.long$group: ahd

#[1] 10.00000 14.65661 17.00000

#------------------------------------------------------------

#hd.long$group: ihd

#[1] 30.00000 17.99726 29.00000

#------------------------------------------------------------

#hd.long$group: nc

#[1] 21.50000 15.14567 23.00000
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Boxplots for Hodgkin’s data

There are some extreme outliers.
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Boxplots for Hodgkin’s data (log scale)

Plotting the log of the data looks more reasonable...
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Hodgkin’s data: ihd group only
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Hodgkin’s data

Based on the plots of the data, it might be reasonable to use either the
KW test or to use ANOVA on the log-transformed data. The null
hypothesis is that the population medians are equal:

H0 : ηnc = ηahd = ηihd

fit.h <- kruskal.test(hd ~ group, data = hd.long)

summary(fit.h)

fit.h

Kruskal-Wallis chi-squared = 21.025, df = 2, p-value = 2.719e-05
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Hodgkin’s data

To do multiple comparisons, you can use, for example, Bonferroni
comparisons and do the Wilcoxon test pairwise for each pair of groups.
There are three pairs: (nc,ahd), (nc,ihd), (ahd,ihd). This suggests using
two-sample tests with α = .05/3 = 0.0167.

wilcox.test(nc,ihd,conf.level=(1-0.05/3))

#W = 279, p-value = 0.3197

wilcox.test(nc,ahd,conf.level=(1-0.05/3))

#W = 329, p-value = 0.0002735

wilcox.test(ihd,ahd,conf.level=(1-0.05/3))

#W = 436, p-value = 1.696e-05

## The results imply the following grouping

## ahd nc ihd

## ---- -----------
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You can also use the following code to get the same results

> pairwise.wilcox.test(hd,group,data=hd.long,

p.adjust.method="none")

Pairwise comparisons using Wilcoxon rank sum test

data: hd and group

ahd ihd

ihd 1.7e-05 -

nc 0.00027 0.31974

P value adjustment method: none
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We have sufficient evidence to conclude that the plasma bradykininogen
levels, for active Hodgkin’s disease patients (ahd) is lower than the
population median levels for normal controls (nc) and for patients with
inactive Hodgkin’s disease (ihd).

We do not have sufficient evidence to conclude that the population
median levels for normal controls (nc) and for patients with inactive
Hodgkin’s disease (ihd) are different.
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Hodgkin’s data

If we use ANOVA to analyze the data instead, it is interesting to compare
analyzing the log data versus the original data. Both would reject the null
hypothesis, but using the log-transformed data, the evidence against the
null appears stronger.

summary(aov(hd~group,data=hd.long))

# Df Sum Sq Mean Sq F value Pr(>F)

#group 2 139.9 69.95 4.279 0.0179 *

#Residuals 66 1078.9 16.35

summary(aov(log(hd)~group,data=hd.long))

Df Sum Sq Mean Sq F value Pr(>F)

group 2 3.020 1.5101 13.11 1.61e-05 ***

Residuals 66 7.604 0.1152
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Hodgkin’s data

Doing pairwise comparisons with Bonferroni adjustments gives slightly different
results using the original data or the transformed data. The transformed data
gives the same grouping as the KW test, and given that this analysis satisfied the
assumptions better of equal variances, I would prefer using the transformed data
over the untransformed data with ANOVA.

pairwise.t.test(hd,group, data = hd.long,p.adjust.method="bonf")

# ahd ihd

#ihd 0.015 -

#nc 0.478 0.385

## ahd nc ihd

## ------

## -------

pairwise.t.test(log(hd),group, data = hd.long,

p.adjust.method="bonf")

ahd ihd

ihd 9.4e-06 -

nc 0.0028 0.3441
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Nonparametric methods: permutation tests

A subset of nonparametric methods with a very different approach from
rank-based methods are permutation tests. These methods are useful for
alternatives to t-tests and ANOVA as well as some other procedures.

The idea is that if each group has the same distribution, then you should
get roughly the same test statistic if all of the groups are the same,
regardless of which group each observation belongs to.

Recompute the test statistic under different assignments of labels. The
distribution of the test statistic is not assumed to follow a standard,
named distribution. Instead, the distribution of the test statistic is
computed under different permuations of the group labels.
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Nonparametric methods: permutation tests

Once the distribution of the test statistic is determined, you can decide
whether the observed test statistic is sufficiently unusual compared to the
distribution to count as evidence against the null hypothesis.

To illustrate with an example, suppose the data are:

data 1 3 6 5 2 7 tobs
group a a a a b b -0.274

Then a permutation is

data 1 3 6 5 2 7 tobs
group b a a b a a 0.645

Here we’ve permuted the labels and kept the sample sizes the same for
each group.
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Nonparametric methods: permutation tests

For a permutation test, you repeat this permutation of the labels many
times. Each time compute a statistic such as the t-statistic. Keeping track
of the computed t-statistic gives you a distribution of the t-statistic that
might differ from an actual t-distribution.

For a small example like this, you could in principle enumerate all possible
permutations of the labels. Typically, there are too many to enumerate
them all, so you just generate a large number of permutations randomly to
estimate the distribution.
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Nonparametric methods: permutation tests

Theory for permutation tests was developed in the 1930s by Fisher and
Pitman. However, it is computationally intensive since you have to
randomize the labels and recompute quantities. Here is some code. I’m
using the anova() command so that you can generalize to ANOVA with
with 3 or more groups if desired. The idea is the same.
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Nonparametric methods: permutation tests

x <- c(1,3,6,5,2,7)

group <- c("a","a","a","a","b","b")

a <- aov(x ~ group)

Fobs <- summary(a)[[1]][[4]][1] #tricky to extract F-stat.

I <- 1000

myF <- 1:I

for(i in 1:I) {

mygroup <- sample(group)

# do ANOVA but randomize group membership

temp <- aov(x ~ mygroup)

myF[i] <- summary(temp)[[1]][[4]][1]

}

hist(myF,nclass=30)

Fobs

#[1] 0.1100917

mean(myF>=Fobs)

# 0.7339 # this is the simulated p-value
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Nonparametric methods: permutation tests

ADA1 October 30, 2018 115 / 118



Nonparametric methods: permutation tests

The simulated p-value is the proportion of F-tests from the permutated
labels that values at least as large as the oberved value of 0.1100917.

You can also use a package (of course!) to do the permutation test. One
package is the coin package. It uses the function oneway test(), which
has similar syntax to the aov() command and gives a similar p-value.

oneway_test(x ~ factor(group))

#

# Asymptotic Two-Sample Fisher-Pitman Permutation Test

#

#data: x by factor(group) (a, b)

#Z = -0.36596, p-value = 0.7144

#alternative hypothesis: true mu is not equal to 0
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Nonparametric methods: permutation test on the Hodgkin
data

x <- hd.long$hd

group <- hd.long$group

a <- aov(x ~ group)

Fobs <- summary(a)[[1]][[4]][1] # returns 4.279

I <- 10000

myF <- 1:I

for(i in 1:I) {

mygroup <- sample(group)

# do ANOVA but randomize group membership

temp <- aov(x ~ mygroup)

# extract F-statistic, this was a little tricky

myF[i] <- summary(temp)[[1]][[4]][1]

}

hist(myF,nclass=30)

mean(myF>=Fobs)

#[1] 0.0019
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Permutation tests on Hodgkin data
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