
Bootstrap

I The bootstrap as a statistical method was invented in 1979 by
Bradley Efron

I The idea is nonparametric, but is not based on ranks, and is very
computationally intensive.

I The bootstrap simulates the sampling distribution for certain
statistics, when it is difficult to derive the distribution from theory.

I The sampling distribution then is usually used in order to get
confidence intervals.
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Example: want a confidence interval for the median

To get a confidence interval for the median

I the Wilcoxon test might be used
—–based on ranks, which is a simplification of the data.
—–doesn’t take full advantage of the data.

What are other ways to get a confidence interval for the population
median?

I There isn’t a Central Limit Theorem that applies to sample medians.

I If the sample median is used to estimate the population median, it is
usually difficult to know what an appropriate standard error is needed,
especially if the underlying distribution is unknown.
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Bootstrap

The bootstrap is a way to get confidence intervals for quantities like odds,
medians, quantiles and other aspects of a distribution where the standard
errors are difficult to derive.

I The bootstrap assumes that the data is representative of the
population.
——if you sample from the data, then this is similar to sample from
the population as a whole.

I Resampling: instead of sampling repeatedly from the population, we
sample repeatedly from the sample itself, hoping that the sample is
representative of the population. This procedure is called resampling.
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Bootstrap Procedure

Suppose θ is the parameter of interest, θ̂ is the estimator of θ using the
original sample

1. Treat original sample as population, then draw “resamples” with
replacement from the original sample

2. Take R bootstrap resamples, obtaining θ̂1, · · · , θ̂R .

3.

V̂B(θ̂) =
1

R − 1

R∑
r=1

[
θ̂r −

1

R

R∑
r=1

θ̂r

]2
or

V̂B(θ̂) =
1

R − 1

R∑
r=1

(θ̂r − θ̂)2

4. 95% CI of θ: [q2.5%, q97.5%]
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Bootstrap Example

I get an estimate of the mean µ from a normal distribution with mean
0 and standard deviation 1, sample size is n = 20.

I compare the bootstrap CI and t-based confidence intervals

> x <- rnorm(20,0,1)

> x <- sort(x)

> options(digits=3)

> x

-3.2139 -0.6799 -0.6693 -0.2472 -0.2196

-0.1190 -0.0459 -0.0148 0.0733 0.1220

0.1869 0.2759 0.3283 0.4984 0.5429

0.9491 1.0510 1.4324 1.4534 1.7554
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Bootstrap

To get a resample: sample with replacement.
—-resample will be similar to the original sample, but not exactly the
same as the original sample.
—-the resample should have approximately the same mean, median, and
variance as the original.

b <- sample(x,replace=T)

> sort(b)

-0.6799 -0.6799 -0.6693 -0.2196 -0.0459

-0.0148 -0.0148 0.1220 0.1220 0.1869

0.1869 0.2759 0.3283 0.4984 0.4984

0.5429 0.5429 1.0510 1.0510 1.4324

The observation -0.6799 shows up twice in the resample, while -3.2139

doesn’t show up at all.
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Bootstrap

> mean(x)

[1] 0.173

> mean(b)

[1] 0.226

> median(x)

[1] 0.154

> median(b)

[1] 0.187

> sd(x)

[1] 1.05

> sd(b)

[1] 0.564
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Bootstrap

Now repeat this procedure many times
—– take a look how variable the resampled values are, such as the mean,
median, and standard deviation.

I <- 1000

boot.mean <- 1:I

boot.median <- 1:I

boot.sd <- 1:I

for(i in 1:I) {

b <- sample(x,replace=T)

boot.mean[i] <- mean(b)

boot.median[i] <- median(b)

boot.sd[i] <- sd(b)

}
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hist(x)

hist(boot.mean)

hist(boot.median)

hist(boot.sd)
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Bootstrap

There is an outlier, but it was simulated using x <- rnorm(20) in R.
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Bootstrap CI

Look at the 2.5 and 97.5 percentiles of the bootstrap distribution.

I sorting the variables boot.mean, boot.median, and boot.sd and
examining the appropriate values.

I the bootstrap distribution can be visualized by a histogram of the
bootstrapped sample statistics.

I for I = 1000 bootstraps, the 25th and 976th observations can be used
since observations 26, 27, . . . , 975 is exactly 950 observations, the
middle 95% of the bootstrap distribution.
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Bootstrap

boot.mean <- sort(boot.mean)

boot.median <- sort(boot.median)

boot.sd <- sort(boot.sd)

CI.mean <- c(boot.mean[25],boot.mean[976])

CI.median <- c(boot.median[25],boot.median[976])

CI.sd <- c(boot.sd[25],boot.sd[976])

CI.mean

#[1] -0.315 0.521

CI.median

# -0.119 0.521

CI.sd

#[1] 0.522 1.563
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Bootstrap

Compare to the t-based interval for the mean and Wilcoxon-based interval
for the median.

CI.mean from bootstrap

#[1] -0.315 0.521

> t.test(x)$conf.int

[1] -0.317 0.663

CI.median from bootstrap

# -0.119 0.521

> wilcox.test(x,conf.int=T)$conf.int

[1] -0.117 0.657

The bootstrap CI for the mean, is quite similar to the t-based CI for the
mean,
The bootstrap CI for the median is similar to the Wilcoxon-based CI for
the median.
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Bootstrap

In addition to means and medians, you can get intervals for other
quantities, such as the 80th percentile of the distribution (here sort each
bootstrap data set, sort it, and pick the 80th percentile, corresponding to
observation 16 or 17 in the sorted sample).

For proportion data, you get functions of proportions such as risk ratio and
odds ratios.
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Bootstrap

Distribution of the risk ratio.
—– Risk ratios are often used in medicine. For example, given either
aspirin or placebo, the number of strokes is recorded for subjects in a
study. The results are as follow:

stroke no stroke subjects

aspirin 119 10918 11037
placebo 98 10936 11034

Proportions of strokes for aspirin versus placebo takers:

p̂1 =
119

11037
= 0.0108, p̂2 =

98

11034
= 0.00888

where p1 is the proportion of aspirin takers who had a stroke and p2 is the
proportion of placebo takers who experienced a stroke.
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Bootstrap

The proportions can be compared by using a test of proportions. However,
an issue with this is that the proportions involved are very small:

> prop.test(c(119,98),c(11037,11034),correct=F)

2-sample test for equality of proportions without

continuity

data: c(119, 98) out of c(11037, 11034)

X-squared = 2, df = 1, p-value = 0.2

alternative hypothesis: two.sided

95 percent confidence interval:

-0.000703 0.004504

sample estimates:

prop 1 prop 2

0.01078 0.00888
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Bootstrap

For this type of problem, often instead a risk ratio, or relative risk is
reported.
—–This gives you an idea of how much more risky it is to have one
treatment than another in relative terms, without giving an idea of the
absolute risk.
—–an estimate for the relative risk is

p̂1/p̂2 = 1.21

The relative risk is 1.21, which indicates that a random person selected
from the aspirin group was 21% more likely to experience a stroke than a
person from the placebo group, even though both groups had a fairly low
risk (both close to 1%) of experiencing a stroke. In medical examples, a
relative risk of 1.21 is fairly large.

We’d also like to get an interval for the relative risk.

ADA1 November 27, 2018 17 / 36



Bootstrap

The usual approach

I take the logarithm of the relative risk, get an interval for the
logarithm of the relative risk

I then transform the interval back into the original scale.

I the reason for this is that the logarithm of a ratio is a difference, and
for sums and differences, it is much easier to derive reasonable
standard errors.
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Bootstrap

outcome (e.g., stroke) no outcome subjects

treatment x1 n1 − x1 n1
placebo (or control) x2 n2 − x2 n2

Let R̂R = p̂1/p̂2 be the estimated relative risk or risk ratio. The standard
large sample CI for the log is

CI = log(R̂R) ± zcrit

√
(n1 − x1)/x1

n1
+

(n2 − x2)/x2
n2

= log(R̂R) ± zcrit

√
1

x1
− 1

n1
+

1

x2
− 1

n2
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Bootstrap

To get the interval on the original scale, you then expontiate both
endpoints. In the stroke example,

SE =

√
1

x1
− 1

n1
+

1

x2
− 1

n2
=

√
1

119
− 1

11037
+

1

98
− 1

11034
= 0.136

The 95% interval is for log RR is therefore (here, log 1.21 = 0.191):

0.191 ± 1.96(0.136) = (−0.0756, 0.458)

This is an interval for the log of the relative risk.
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Bootstrap

Exponentiating the interval, we get (0.927, 1.58). This is done using

> exp(.191-1.96*.136)

[1] 0.927

> exp(.191+1.96*.136)

[1] 1.58

The interval includes 1.0, which is the value that corresponds to equal
risks. The value 0.927 corresponds to the risk for the aspirin group being
92.7% of the risk of the placebo group, while 1.58 corresponds to the
aspririn gorup have a risk that is 58% higher than the placebo group.
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Bootstrap

How to do bootstrapping for proportion data?

Here we create data sets of 0s and 1s and bootstrap those data sets.
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Bootstrap
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Bootstrap
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Bootstrap

For a two-sample proportion case, we need two sets of 0s and 1s (i.e., red
and blue) to represent the placebo group and the treatment (aspirin)
group).
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Bootstrap code

aspirin <- c(rep(1,119),rep(0,11037-119))

placebo <- c(rep(1,98),rep(0,11034-98))

boot.rr <- 1:1000

boot.or <- 1:1000

for(i in 1:1000) {

aspirin.b <- sample(aspirin,replace=TRUE)

placebo.b <- sample(placebo,replace=TRUE)

boot.rr[i] <- mean(aspirin.b)/mean(placebo.b)

p1hat <- mean(aspirin.b)

p2hat <- mean(placebo.b)

boot.rr[i] <- p1hat/p2hat

boot.or[i] <- p1hat*(1-p1hat)/(p2hat*(1-p2hat))

}

> c(sort(boot.rr)[25],sort(boot.rr)[976])

[1] 0.9286731 1.6014550

> c(sort(boot.or)[25],sort(boot.or)[976])

[1] 0.929285 1.594332
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Bootstrap

The bootstrap intervals for relative risk [0.9286731, 1.6014550] are
remarkably close to the interval obtained by exponentiating the interval for
the log of the relative risk [0.927, 1.58].
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Bootstrap regression problems

Bootstrapping can also be applied to more complex data sets such as
regression problems.

I bootstrap each row in the data set
—–this means that if xi appears in the bootstrap sample, then so
does the pair (xi , yi ).

I to sample rows of the data set, randomly bootstrap the index for the
row you want to include in the bootstrap sample, then apply the rows
to a new, temporary data set, or just new vectors for the x and y
variables.
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Bootstrap code

x <- read.table("couples.txt",header=T)

attach(x)

a <- lm(HusbandAge ~ WifeAge)

abline(a,lwd=3)

plot(WifeAge,HusbandAge)

abline(a,lwd=3)

for(i in 1:100) {

boot.obs <- sample(1:length(WifeAge),replace=T)

boot.WifeAge <- WifeAge[boot.obs]

boot.HusbandAge <- HusbandAge[boot.obs]

atemp <- lm(boot.HusbandAge ~ boot.WifeAge)

abline(atemp,col="grey")

}

abline(a,lwd=3) # original is hidden by bootstrap lines
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Bootstrap, 100 replicates
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Bootstrap, 100 replicates
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Bootstrap, about outliers

An interesting feature of the bootstrap is how it handles outliers. If a data
set has an outlier, what is the probability that the outlier is included in one
bootstrap sample?

The probability that the outlier is not included is

P(no outlier) =

(
1 − 1

n

)n

where n is the number of observations. The reason is that each
observation in the bootstrap sample is not the outlier with probability

n − 1

n
= 1 − 1

n

because there are n − 1 ways to got an observation other than the outlier,
and each of the n observations is equally likely.
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Bootstrap

If n is large, then

P(no outlier) =

(
1 − 1

n

)n

≈ 0.368

How large is large?

n (1 − 1/n)n

2 0.25
3 0.296
6 0.335

12 0.352
20 0.358
30 0.361

100 0.366

ADA1 November 27, 2018 33 / 36



Bootstrap

Approximately 1 − e−1 ≈ 63% of bootstrap replicates DO have the
outlier, but a substantial proportion do not have the outlier.

I This can lead to interesting bootstrap histograms, where if the outlier
is strong enough, the bootstrap samples can be bi- or multi-modal,
where the number of modes is the number of times that the outlier
was included in the bootstrap sample (recall that in a bootstrap
sample, an original observation can occur 0, 1, 2, . . . , n times in theory.

I The number of times the outlier appears in a bootstrap sample is a
binomial random variable with parameters n and p = 1/n. For a data
set with 100 regular observations and 1 outlier, the probability that
the outlier occurs k times, for k = 0, . . . 4 is

> dbinom(0:4,101,p=1/101)

[1] 0.36605071 0.36971121 0.18485561 0.06100235 0.01494558
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Bootstrap code

> x <- rnorm(100)

> x <- c(x,10) #add 10 as an outlier

> boot.sd <- 1:10000

> for(i in 1:10000) {

+ temp <- sample(x,replace=T)

+ boot.sd[i] <- sd(temp)

+ }

> hist(boot.sd,nclass=30)
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