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Chapter 11

Data Cleaning

Data cleaning1, or data preparation, is an essential part of statistical analysis.

In fact, in practice it is often more time-consuming than the statistical analysis

itself. Data cleaning may profoundly influence the statistical statements based

on the data. Typical actions like imputation or outlier handling obviously

influence the results of a statistical analyses. For this reason, data cleaning

should be considered a statistical operation, to be performed in a reproducible

manner. The R statistical environment provides a good environment for repro-

ducible data cleaning since all cleaning actions can be scripted and therefore

reproduced.

11.1 The five steps of statistical analysis

Statistical analysis can be viewed as the result of a number of value-increasing

data processing steps.

1Content in this chapter is derived with permission from Statistics Netherlands at http://cran.

r-project.org/doc/contrib/de_Jonge+van_der_Loo-Introduction_to_data_cleaning_with_R.pdf
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1. Raw data
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2. Technically correct data

3. Consistent data

4. Statistical results

5. Formatted output

Each box represents data in a certain state while each arrow represents the

activities needed to get from one state to the other.

1. Raw Data The data “as is” may lack headers, contain wrong data types

(e.g., numbers stored as strings), wrong category labels, unknown or unex-

pected character encoding and so on. Reading such files into an R data.frame

directly is either difficult or impossible without some sort of preprocessing.

2. Technically correct data The data can be read into an R data.frame,

with correct names, types and labels, without further trouble. However, that

does not mean that the values are error-free or complete.

For example, an age variable may be reported negative, an under-aged person

may be registered to possess a driver’s license, or data may simply be missing.

Such inconsistencies obviously depend on the subject matter that the data

pertains to, and they should be ironed out before valid statistical inference

from such data can be produced.

3. Consistent data The data is ready for statistical inference. It is the

data that most statistical theories use as a starting point. Ideally, such the-

ories can still be applied without taking previous data cleaning steps into
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396 Ch 11: Data Cleaning

account. In practice however, data cleaning methods like imputation of miss-

ing values will influence statistical results and so must be accounted for in

the following analyses or interpretation thereof.

4. Statistical results The results of the analysis have been produced and

can be stored for reuse.

5. Formatted output The results in tables and figures ready to include

in statistical reports or publications.

Best practice Store the input data for each stage (raw, technically correct,

consistent, results, and formatted) separately for reuse. Each step between the

stages may be performed by a separate R script for reproducibility.

11.2 R background review

11.2.1 Variable types

The most basic variable in R is a vector. An R vector is a sequence of values of

the same type. All basic operations in R act on vectors (think of the element-

wise arithmetic, for example). The basic types in R are as follows.

numeric Numeric data (approximations of the real numbers)

integer Integer data (whole numbers)

factor Categorical data (simple classifications, like gender)

ordered Ordinal data (ordered classifications, like educational level)

character Character data (strings)

raw Binary data (rarely used)
All basic operations in R work element-wise on vectors where the shortest ar-
gument is recycled if necessary. Why does the following code work the way it
does?
# vectors have variables of _one_ type

c(1, 2, "three")

## [1] "1" "2" "three"

# shorter arguments are recycled

(1:3) * 2
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## [1] 2 4 6

(1:4) * c(1, 2)

## [1] 1 4 3 8

# warning! (why?)

(1:4) * (1:3)

## Warning in (1:4) * (1:3): longer object length is not a multiple of shorter object length

## [1] 1 4 9 4

11.2.2 Special values and value-checking functions

Below are the definitions and some illustrations of the special values NA, NULL,

±Inf, and NaN.

� NA Stands for “not available”. NA is a placeholder for a missing value.

All basic operations in R handle NA without crashing and mostly return

NA as an answer whenever one of the input arguments is NA. If you

understand NA, you should be able to predict the result of the following

R statements.
NA + 1

sum(c(NA, 1, 2))

median(c(NA, 1, 2, 3), na.rm = TRUE)

length(c(NA, 2, 3, 4))

3 == NA

NA == NA

TRUE | NA

# use is.na() to detect NAs

is.na(c(1, NA, 3))

� NULL Think of NULL as the empty set from mathematics; it has no class
(its class is NULL) and has length 0 so it does not take up any space in a
vector.
length(c(1, 2, NULL, 4))

sum(c(1, 2, NULL, 4))

x <- NULL

length(x)

c(x, 2)

# use is.null() to detect NULL variables

is.null(x)

� Inf Stands for “infinity” and only applies to vectors of class numeric (not
integer). Technically, Inf is a valid numeric that results from calculations
like division of a number by zero. Since Inf is a numeric, operations be-
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tween Inf and a finite numeric are well-defined and comparison operators
work as expected.
pi/0

2 * Inf

Inf - 1e+10

Inf + Inf

3 < -Inf

Inf == Inf

# use is.infinite() to detect Inf variables

is.infinite(-Inf)

� NaN Stands for “not a number”. This is generally the result of a calculation
of which the result is unknown, but it is surely not a number. In particular
operations like 0/0, Inf − Inf and Inf/Inf result in NaN. Technically,
NaN is of class numeric, which may seem odd since it is used to indicate
that something is not numeric. Computations involving numbers and NaN
always result in NaN.
NaN + 1

exp(NaN)

# use is.nan() to detect NULL variables

is.nan(0/0)

Note that is.finite() checks a numeric vector for the occurrence of any
non-numerical or special values.
is.finite(c(1, NA, 2, Inf, 3, -Inf, 4, NULL, 5, NaN, 6))

## [1] TRUE FALSE TRUE FALSE TRUE FALSE TRUE TRUE FALSE TRUE

11.3 From raw to technically correct data

11.3.1 Technically correct data

Limiting ourselves to “rectangular” data sets read from a text-based format,

technically correct data in R

1. is stored in a data.frame with suitable columns names, and

2. each column of the data.frame is of the R type that adequately represents

the value domain.

The second demand implies that numeric data should be stored as numeric or

integer, textual data should be stored as character and categorical data should

be stored as a factor or ordered vector, with the appropriate levels.
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Best practice Whenever you need to read data from a foreign file format,

like a spreadsheet or proprietary statistical software that uses undisclosed file

formats, make that software responsible for exporting the data to an open

format that can be read by R.

11.3.2 Reading text data into an R data.frame

In the following, we assume that the text-files we are reading contain data of at

most one unit per line. The number of attributes, their format and separation

symbols in lines containing data may differ over the lines. This includes files in

fixed-width or csv-like format, but excludes XML-like storage formats.

Reading text

read.table() and similar functions below will read a text file and return a

data.frame.

Best practice. A freshly read data.frame should always be inspected with

functions like head(), str(), and summary().

The read.table() function is the most flexible function to read tabular data

that is stored in a textual format. The other read-functions below all even-

tually use read.table() with some fixed parameters and possibly after some

preprocessing. Specifically

� read.csv() for comma separated values with period as decimal separator.

� read.csv2() for semicolon separated values with comma as decimal sepa-

rator.

� read.delim() tab-delimited files with period as decimal separator.

� read.delim2() tab-delimited files with comma as decimal separator.

� read.fwf() data with a predetermined number of bytes per column.

Additional optional arguments include:
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Argument Description

header Does the first line contain column names?

col.names character vector with column names.

na.string Which strings should be considered NA?

colClasses character vector with the types of columns. Will

coerce the columns to the specified types.

stringsAsFactors If TRUE, converts all character vectors into factor vec-

tors.

sep Field separator.

Except for read.table() and read.fwf(), each of the above functions assumes
by default that the first line in the text file contains column headers. The
following demonstrates this on the following text file.
21,6.0

42,5.9

18,5.7*

21,NA

Read the file with defaults, then specifying necessary options.
fn.data <- "http://statacumen.com/teach/ADA2/ADA2_notes_Ch18_unnamed.txt"

# first line is erroneously interpreted as column names

person <- read.csv(fn.data)

person

## X21 X6.0

## 1 42 5.9

## 2 18 5.7*

## 3 21 <NA>

# instead, use header = FALSE and specify the column names

person <- read.csv(file = fn.data

, header = FALSE

, col.names = c("age", "height")

)

person

## age height

## 1 21 6.0

## 2 42 5.9

## 3 18 5.7*

## 4 21 <NA>

If colClasses is not specified by the user, read.table() will try to determine
the column types. Although this may seem convenient, it is noticeably slower for
larger files (say, larger than a few MiB) and it may yield unexpected results. For
example, in the above script, one of the rows contains a malformed numerical
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variable (5.7*), causing R to interpret the whole column as a text variable.
Moreover, by default text variables are converted to factor, so we are now stuck
with a height variable expressed as levels in a categorical variable:
str(person)

## 'data.frame': 4 obs. of 2 variables:

## $ age : int 21 42 18 21

## $ height: Factor w/ 3 levels "5.7*","5.9","6.0": 3 2 1 NA

As an alternative, columns can be read in as character by setting stringsAsFactors=FALSE.
Next, one of the as.-functions can be applied to convert to the desired type, as
shown below.
person <- read.csv(file = fn.data

, header = FALSE

, col.names = c("age", "height")

, stringsAsFactors = FALSE)

person

## age height

## 1 21 6.0

## 2 42 5.9

## 3 18 5.7*

## 4 21 <NA>

person$height <- as.numeric(person$height)

## Warning: NAs introduced by coercion

person

## age height

## 1 21 6.0

## 2 42 5.9

## 3 18 NA

## 4 21 NA

Now, everything is read in and the height column is translated to numeric,

with the exception of the row containing 5.7*. Moreover, since we now get a

warning instead of an error, a script containing this statement will continue to

run, albeit with less data to analyse than it was supposed to. It is of course up

to the programmer to check for these extra NA’s and handle them appropriately.

11.4 Type conversion

Converting a variable from one type to another is called coercion. The reader
is probably familiar with R’s basic coercion functions, but as a reference they
are listed here.
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as.numeric

as.integer

as.character

as.logical

as.factor

as.ordered

Each of these functions takes an R object and tries to convert it to the class
specified behind the “as.”. By default, values that cannot be converted to the
specified type will be converted to a NA value while a warning is issued.
as.numeric(c("7", "7*", "7.0", "7,0"))

## Warning: NAs introduced by coercion

## [1] 7 NA 7 NA

In the remainder of this section we introduce R’s typing and storage system

and explain the difference between R types and classes. After that we discuss

date conversion.

11.4.1 Introduction to R’s typing system

Everything in R is an object. An object is a container of data endowed with
a label describing the data. Objects can be created, destroyed, or overwritten
on-the-fly by the user. The function class returns the class label of an R object.

class(c("abc", "def"))

## [1] "character"

class(1:10)

## [1] "integer"

class(c(pi, exp(1)))

## [1] "numeric"

class(factor(c("abc", "def")))

## [1] "factor"

# all columns in a data.frame

sapply(dalton.df, class)

## name birth death

## "character" "numeric" "numeric"

For the user of R these class labels are usually enough to handle R objects in
R scripts. Under the hood, the basic R objects are stored as C structures as C
is the language in which R itself has been written. The type of C structure that
is used to store a basic type can be found with the typeof function. Compare
the results below with those in the previous code snippet.
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typeof(c("abc", "def"))

## [1] "character"

typeof(1:10)

## [1] "integer"

typeof(c(pi, exp(1)))

## [1] "double"

typeof(factor(c("abc", "def")))

## [1] "integer"

Note that the type of an R object of class numeric is double. The term

double refers to double precision, which is a standard way for lower-level com-

puter languages such as C to store approximations of real numbers. Also, the

type of an object of class factor is integer. The reason is that R saves memory

(and computational time!) by storing factor values as integers, while a trans-

lation table between factor and integers are kept in memory. Normally, a user

should not have to worry about these subtleties, but there are exceptions (the

homework includes an example of the subtleties).

In short, one may regard the class of an object as the object’s type from

the user’s point of view while the type of an object is the way R looks at the

object. It is important to realize that R’s coercion functions are fundamentally

functions that change the underlying type of an object and that class changes

are a consequence of the type changes.

11.4.2 Recoding factors

In R, the value of categorical variables is stored in factor variables. A factor is an
integer vector endowed with a table specifying what integer value corresponds
to what level. The values in this translation table can be requested with the
levels function.
f <- factor(c("a", "b", "a", "a", "c"))

f

## [1] a b a a c

## Levels: a b c

levels(f)

## [1] "a" "b" "c"

as.numeric(f)
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## [1] 1 2 1 1 3

You may need to create a translation table by hand. For example, suppose
we read in a vector where 1 stands for male, 2 stands for female and 0 stands for
unknown. Conversion to a factor variable can be done as in the example below.
# example:

gender <- c(2, 1, 1, 2, 0, 1, 1)

gender

## [1] 2 1 1 2 0 1 1

# recoding table, stored in a simple vector

recode <- c(male = 1, female = 2)

recode

## male female

## 1 2

gender <- factor(gender, levels = recode, labels = names(recode))

gender

## [1] female male male female <NA> male male

## Levels: male female

Note that we do not explicitly need to set NA as a label. Every integer

value that is encountered in the first argument, but not in the levels argument

will be regarded missing.
Levels in a factor variable have no natural ordering. However in multivariate

(regression) analyses it can be beneficial to fix one of the levels as the reference
level. R’s standard multivariate routines (lm, glm) use the first level as reference
level. The relevel function allows you to determine which level comes first.
gender <- relevel(gender, ref = "female")

gender

## [1] female male male female <NA> male male

## Levels: female male

Levels can also be reordered, depending on the mean value of another vari-
able, for example:
age <- c(27, 52, 65, 34, 89, 45, 68)

gender <- reorder(gender, age)

gender

## [1] female male male female <NA> male male

## attr(,"scores")

## female male

## 30.5 57.5

## Levels: female male

Here, the means are added as a named vector attribute to gender. It can
be removed by setting that attribute to NULL.
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attr(gender, "scores") <- NULL

gender

## [1] female male male female <NA> male male

## Levels: female male

11.4.3 Converting dates

The base R installation has three types of objects to store a time instance:

Date, POSIXlt, and POSIXct. The Date object can only be used to store dates,

the other two store date and/or time. Here, we focus on converting text to

POSIXct objects since this is the most portable way to store such information.

Under the hood, a POSIXct object stores the number of seconds that have

passed since January 1, 1970 00:00. Such a storage format facilitates the calcu-

lation of durations by subtraction of two POSIXct objects.
When a POSIXct object is printed, R shows it in a human-readable calen-

der format. For example, the command Sys.time() returns the system time
provided by the operating system in POSIXct format.
current_time <- Sys.time()

class(current_time)

## [1] "POSIXct" "POSIXt"

current_time

## [1] "2015-08-29 16:20:25 MDT"

Here, Sys.time() uses the time zone that is stored in the locale settings of

the machine running R.

Converting from a calender time to POSIXct and back is not entirely trivial,

since there are many idiosyncrasies to handle in calender systems. These include

leap days, leap seconds, daylight saving times, time zones and so on. Converting

from text to POSIXct is further complicated by the many textual conventions of

time/date denotation. For example, both 28 September 1976 and 1976/09/28

indicate the same day of the same year. Moreover, the name of the month (or

weekday) is language-dependent, where the language is again defined in the

operating system’s locale settings.
The lubridate package contains a number of functions facilitating the con-

version of text to POSIXct dates. As an example, consider the following code.
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library(lubridate)

dates <- c("15/02/2013"

, "15 Feb 13"

, "It happened on 15 02 '13")

dmy(dates)

## [1] "2013-02-15 UTC" "2013-02-15 UTC" "2013-02-15 UTC"

Here, the function dmy assumes that dates are denoted in the order day-

month-year and tries to extract valid dates. Note that the code above will

only work properly in locale settings where the name of the second month

is abbreviated to Feb. This holds for English or Dutch locales, but fails for

example in a French locale (Fevrier).
There are similar functions for all permutations of d, m, and y. Explicitly,

all of the following functions exist.
dmy()

dym()

mdy()

myd()

ydm()

ymd()

So once it is known in what order days, months and years are denoted,

extraction is very easy.

Note It is not uncommon to indicate years with two numbers, leaving out the
indication of century. Recently in R, 00-69 was interpreted as 2000-2069 and
70-99 as 1970-1999; this behaviour is according to the 2008 POSIX standard,
but one should expect that this interpretation changes over time. Currently all
are now 2000-2099.
dmy("01 01 68")

## [1] "2068-01-01 UTC"

dmy("01 01 69")

## [1] "2069-01-01 UTC"

dmy("01 01 90")

## [1] "2090-01-01 UTC"

dmy("01 01 00")

## [1] "2000-01-01 UTC"

It should be noted that lubridate (as well as R’s base functionality) is only
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capable of converting certain standard notations. For example, the following

notation does not convert.
dmy("15 Febr. 2013")

## Warning: All formats failed to parse. No formats found.

## [1] NA

The standard notations that can be recognized by R, either using lubridate

or R’s built-in functionality are shown below. The complete list can be found by

typing ?strptime in the R console. These are the day, month, and year formats

recognized by R.
Code Description Example

%a Abbreviated weekday name in the current locale. Mon

%A Full weekday name in the current locale. Monday

%b Abbreviated month name in the current locale. Sep

%B Full month name in the current locale. September

%m Month number (01-12) 09

%d Day of the month as decimal number (01-31). 28

%y Year without century (00-99) 13

%Y Year including century. 2013

Here, the names of (abbreviated) week or month names that are sought for in

the text depend on the locale settings of the machine that is running R.

If you know the textual format that is used to describe a date in the input,

you may want to use R’s core functionality to convert from text to POSIXct. This

can be done with the as.POSIXct function. It takes as arguments a character

vector with time/date strings and a string describing the format.
dates <- c("15-9-2009", "16-07-2008", "17 12-2007", "29-02-2011")

as.POSIXct(dates, format = "%d-%m-%Y")

## [1] "2009-09-15 MDT" "2008-07-16 MDT" NA

## [4] NA

In the format string, date and time fields are indicated by a letter preceded

by a percent sign (%). Basically, such a %-code tells R to look for a range of

substrings. For example, the %d indicator makes R look for numbers 1-31 where

precursor zeros are allowed, so 01, 02, . . . , 31 are recognized as well. Strings

that are not in the exact format specified by the format argument (like the third
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string in the above example) will not be converted by as.POSIXct. Impossible

dates, such as the leap day in the fourth date above are also not converted.

Finally, to convert dates from POSIXct back to character, one may use the

format function that comes with base R. It accepts a POSIXct date/time object

and an output format string.
mybirth <- dmy("28 Sep 1976")

format(mybirth, format = "I was born on %B %d, %Y")

## [1] "I was born on September 28, 1976"

11.5 From technically correct data to con-
sistent data

Consistent data are technically correct data that are fit for statistical analysis.

They are data in which missing values, special values, (obvious) errors and

outliers are either removed, corrected, or imputed. The data are consistent

with constraints based on real-world knowledge about the subject that the

data describe.

Consistency can be understood to include in-record consistency, mean-

ing that no contradictory information is stored in a single record, and cross-

record consistency, meaning that statistical summaries of different variables

do not conflict with each other. Finally, one can include cross-dataset consis-

tency, meaning that the dataset that is currently analyzed is consistent with

other datasets pertaining to the same subject matter. In this tutorial we mainly

focus on methods dealing with in-record consistency, with the exception of

outlier handling which can be considered a cross-record consistency issue.

The process towards consistent data always involves the following three

steps.

� Detection of an inconsistency. That is, one establishes which con-

straints are violated. For example, an age variable is constrained to non-

negative values.
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� Selection of the field or fields causing the inconsistency. This is

trivial in the case of a univariate demand as in the previous step, but may

be more cumbersome when cross-variable relations are expected to hold.

For example the marital status of a child must be unmarried. In the case

of a violation it is not immediately clear whether age, marital status, or

both are wrong.

� Correction of the fields that are deemed erroneous by the selec-

tion method. This may be done through deterministic (model-based) or

stochastic methods.

For many data correction methods these steps are not necessarily neatly sepa-

rated.

First, we introduce a number of techniques dedicated to the detection of

errors and the selection of erroneous fields. If the field selection procedure is

performed separately from the error detection procedure, it is generally referred

to as error localization. Next, we describe techniques that implement cor-

rection methods based on “direct rules” or “deductive correction”. In these

techniques, erroneous values are replaced by better ones by directly deriving

them from other values in the same record. Finally, we give an overview of

some commonly used imputation techniques that are available in R.

11.5.1 Detection and localization of errors

This section details a number of techniques to detect univariate and multivariate

constraint violations.

Missing values

A missing value, represented by NA in R, is a placeholder for a datum of which

the type is known but its value isn’t. Therefore, it is impossible to perform

statistical analysis on data where one or more values in the data are missing.

One may choose to either omit elements from a dataset that contain missing
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values or to impute a value, but missingness is something to be dealt with prior

to any analysis.

In practice, analysts, but also commonly used numerical software may con-

fuse a missing value with a default value or category. For instance, in Excel

2010, the result of adding the contents of a field containing the number 1 with

an empty field results in 1. This behaviour is most definitely unwanted since

Excel silently imputes “0” where it should have said something along the lines

of “unable to compute”. It should be up to the analyst to decide how empty val-

ues are handled, since a default imputation may yield unexpected or erroneous

results for reasons that are hard to trace.

Another commonly encountered mistake is to confuse an NA in categorical

data with the category unknown. If unknown is indeed a category, it should

be added as a factor level so it can be appropriately analyzed. Consider as an

example a categorical variable representing place of birth. Here, the category

unknown means that we have no knowledge about where a person is born. In

contrast, NA indicates that we have no information to determine whether the

birth place is known or not.

The behaviour of R’s core functionality is completely consistent with the

idea that the analyst must decide what to do with missing data. A common

choice, namely “leave out records with missing data” is supported by many

base functions through the na.rm option.
age <- c(23, 16, NA)

mean(age)

## [1] NA

mean(age, na.rm = TRUE)

## [1] 19.5

Functions such as sum(), prod(), quantile(), sd(), and so on all have this

option. Functions implementing bivariate statistics such as cor() and cov()

offer options to include complete or pairwise complete values.

Besides the is.na() function, that was already mentioned previously, R

comes with a few other functions facilitating NA handling. The complete.cases()

function detects rows in a data.frame that do not contain any missing value.
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Recall the person data set example from earlier.
print(person)

## age height

## 1 21 6.0

## 2 42 5.9

## 3 18 NA

## 4 21 NA

complete.cases(person)

## [1] TRUE TRUE FALSE FALSE

The resulting logical can be used to remove incomplete records from the

data.frame. Alternatively the na.omit() function, does the same.
persons_complete <- na.omit(person)

persons_complete

## age height

## 1 21 6.0

## 2 42 5.9

na.action(persons_complete)

## 3 4

## 3 4

## attr(,"class")

## [1] "omit"

The result of the na.omit() function is a data.frame where incomplete rows

have been deleted. The row.names of the removed records are stored in an

attribute called na.action.

Note. It may happen that a missing value in a data set means 0 or Not

applicable. If that is the case, it should be explicitly imputed with that value,

because it is not unknown, but was coded as empty.

Special values

As explained previously, numeric variables are endowed with several formalized

special values including ±Inf, NA, and NaN. Calculations involving special values

often result in special values, and since a statistical statement about a real-world

phenomenon should never include a special value, it is desirable to handle special

values prior to analysis. For numeric variables, special values indicate values
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that are not an element of the mathematical set of real numbers. The function

is.finite() determines which values are “regular” values.
is.finite(c(1, Inf, NaN, NA))

## [1] TRUE FALSE FALSE FALSE

This function accepts vectorial input. With little effort we can write a

function that may be used to check every numerical column in a data.frame.
f.is.special <- function(x) {

if (is.numeric(x)) {
return(!is.finite(x))

} else {
return(is.na(x))

}
}
person

## age height

## 1 21 6.0

## 2 42 5.9

## 3 18 NA

## 4 21 NA

sapply(person, f.is.special)

## age height

## [1,] FALSE FALSE

## [2,] FALSE FALSE

## [3,] FALSE TRUE

## [4,] FALSE TRUE

Here, the f.is.special() function is applied to each column of person using

sapply(). f.is.special() checks its input vector for numerical special values if

the type is numeric, otherwise it only checks for NA.

11.5.2 Edit rules for detecting obvious inconsisten-
cies

An obvious inconsistency occurs when a record contains a value or combination

of values that cannot correspond to a real-world situation. For example, a

person’s age cannot be negative, a man cannot be pregnant and an under-aged

person cannot possess a drivers license.

Such knowledge can be expressed as rules or constraints. In data editing
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literature these rules are referred to as edit rules or edits, in short. Checking for

obvious inconsistencies can be done straightforwardly in R using logical indices

and recycling. For example, to check which elements of x obey the rule ‘x must

be non negative’ one simply uses the following.
x_nonnegative <- (x >= 0)

However, as the number of variables increases, the number of rules may

increase rapidly and it may be beneficial to manage the rules separate from

the data. Moreover, since multivariate rules may be interconnected by common

variables, deciding which variable or variables in a record cause an inconsistency

may not be straightforward.

The editrules package allows one to define rules on categorical, numerical

or mixed-type data sets which each record must obey. Furthermore, editrules

can check which rules are obeyed or not and allows one to find the minimal

set of variables to adapt so that all rules can be obeyed. The package also

implements a number of basic rule operations allowing users to test rule sets

for contradictions and certain redundancies.

As an example, we will work with a small file containing the following data.
age,agegroup,height,status,yearsmarried

21,adult,6.0,single,-1

2,child,3,married, 0

18,adult,5.7,married, 20

221,elderly, 5,widowed, 2

34,child, -7,married, 3

We read this data into a variable called people and define some restrictions

on age using editset().
fn.data <- "http://statacumen.com/teach/ADA2/ADA2_notes_Ch18_people.txt"

people <- read.csv(fn.data)

people

## age agegroup height status yearsmarried

## 1 21 adult 6.0 single -1

## 2 2 child 3.0 married 0

## 3 18 adult 5.7 married 20

## 4 221 elderly 5.0 widowed 2

## 5 34 child -7.0 married 3

library(editrules)

E <- editset(c("age >=0", "age <= 150"))
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E

##

## Edit set:

## num1 : 0 <= age

## num2 : age <= 150

The editset() function parses the textual rules and stores them in an

editset object. Each rule is assigned a name according to it’s type (numeric,

categorical, or mixed) and a number. The data can be checked against these

rules with the violatedEdits() function. Record 4 contains an error according

to one of the rules: an age of 221 is not allowed.
violatedEdits(E, people)

## edit

## record num1 num2

## 1 FALSE FALSE

## 2 FALSE FALSE

## 3 FALSE FALSE

## 4 FALSE TRUE

## 5 FALSE FALSE

violatedEdits() returns a logical array indicating for each row of the data,

which rules are violated. The number and type of rules applying to a data set

usually quickly grow with the number of variables. With editrules, users may

read rules, specified in a limited R-syntax, directly from a text file using the

editfile() function. As an example consider the contents of the following text

file (note, you can’t include braces in your if() statement).
# numerical rules

age >= 0

height > 0

age <= 150

age > yearsmarried

# categorical rules

status %in% c("married", "single", "widowed")

agegroup %in% c("child", "adult", "elderly")

if ( status == "married" ) agegroup %in% c("adult","elderly")

# mixed rules

if ( status %in% c("married","widowed")) age - yearsmarried >= 17

if ( age < 18 ) agegroup == "child"

if ( age >= 18 && age <65 ) agegroup == "adult"

if ( age >= 65 ) agegroup == "elderly"
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There are rules pertaining to purely numerical, purely categorical and rules

pertaining to both data types. Moreover, there are univariate as well as mul-

tivariate rules. Comments are written behind the usual # character. The rule

set can be read as follows.
fn.data <- "http://statacumen.com/teach/ADA2/ADA2_notes_Ch18_edits.txt"

E <- editfile(fn.data)

E

##

## Data model:

## dat6 : agegroup %in% c('adult', 'child', 'elderly')

## dat7 : status %in% c('married', 'single', 'widowed')

##

## Edit set:

## num1 : 0 <= age

## num2 : 0 < height

## num3 : age <= 150

## num4 : yearsmarried < age

## cat5 : if( agegroup == 'child' ) status != 'married'

## mix6 : if( age < yearsmarried + 17 ) !( status %in% c('married', 'widowed') )

## mix7 : if( age < 18 ) !( agegroup %in% c('adult', 'elderly') )

## mix8 : if( 18 <= age & age < 65 ) !( agegroup %in% c('child', 'elderly') )

## mix9 : if( 65 <= age ) !( agegroup %in% c('adult', 'child') )

Since rules may pertain to multiple variables, and variables may occur in sev-

eral rules (e.g., the age variable in the current example), there is a dependency

between rules and variables. It can be informative to show these dependencies

in a graph using the plot function. Below the graph plot shows the interconnec-

tion of restrictions. Blue circles represent variables and yellow boxes represent

restrictions. The lines indicate which restrictions pertain to what variables.
op <- par(no.readonly = TRUE) # save plot settings

par(mfrow=c(1,1), mar = c(0,0,0,0))

plot(E)

par(op) # restore plot settings
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As the number of rules grows, looking at the full array produced by violatedEdits()

becomes cumbersome. For this reason, editrules offers methods to summarize

or visualize the result.
ve <- violatedEdits(E, people)

summary(ve)

## Edit violations, 5 observations, 0 completely missing (0%):

##

## editname freq rel

## cat5 2 40%

## mix6 2 40%

## num2 1 20%

## num3 1 20%

## num4 1 20%

## mix8 1 20%

##

## Edit violations per record:

##

## errors freq rel

## 0 1 20%

## 1 1 20%

## 2 2 40%

## 3 1 20%

plot(ve)
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Here, the edit labeled cat5 is violated by two records (20% of all records).

Violated edits are sorted from most to least often violated. The plot visualizes

the same information.

Error localization

The interconnectivity of edits is what makes error localization difficult. For

example, the graph above shows that a record violating edit num4 may contain

an error in age and/or yrsmr (years married). Suppose that we alter age so that

num4 is not violated anymore. We then run the risk of violating up to six other

edits containing age.

If we have no other information available but the edit violations, it makes

sense to minimize the number of fields being altered. This principle, commonly
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referred to as the principle of Fellegi and Holt, is based on the idea that er-

rors occur relatively few times and when they do, they occur randomly across

variables. Over the years several algorithms have been developed to solve this

minimization problem of which two have been implemented in editrules. The

localizeErrors() function provides access to this functionality.

As an example we take two records from the people dataset from the previous

subsection.
id <- c(2, 5)

people[id, ]

## age agegroup height status yearsmarried

## 2 2 child 3 married 0

## 5 34 child -7 married 3

violatedEdits(E, people[id, ])

## edit

## record num1 num2 num3 num4 dat6 dat7 cat5 mix6 mix7 mix8

## 2 FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE

## 5 FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE

## edit

## record mix9

## 2 FALSE

## 5 FALSE

Record 2 violates mix6 while record 5 violates edits num2, cat5, and mix8.

We use localizeErrors(), with a mixed-integer programming (MIP) approach

to find the minimal set of variables to adapt.
le <- localizeErrors(E, people[id, ], method = "mip")

le$adapt

## age agegroup height status yearsmarried

## 1 FALSE FALSE FALSE TRUE FALSE

## 2 FALSE TRUE TRUE FALSE FALSE

Here, the le object contains some processing metadata and a logical array

labeled adapt which indicates the minimal set of variables to be altered in each

record. It can be used in correction and imputation procedures for filling in

valid values. Such procedures are not part of editrules, but for demonstration

purposes we will manually fill in new values showing that the solution computed

by localizeErrors() indeed allows one to repair records to full compliance with

all edit rules.
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people[2, "status"] <- "single"

people[5, "height"] <- 7

people[5, "agegroup"] <- "adult"

summary(violatedEdits(E, people[id, ]))

## No violations detected, 0 checks evaluated to NA

## NULL

The behaviour of localizeErrors() can be tuned with various options. It

is possible to supply a confidence weight for each variable allowing for fine

grained control on which values should be adapted. It is also possible to choose

a branch-and-bound based solver (instead of the MIP solver used here), which

is typically slower but allows for more control.

11.5.3 Correction

Correction methods aim to fix inconsistent observations by altering invalid val-

ues in a record based on information from valid values. Depending on the

method this is either a single-step procedure or a two-step procedure where

first, an error localization method is used to empty certain fields, followed by

an imputation step.

In some cases, the cause of errors in data can be determined with enough

certainty so that the solution is almost automatically known. In recent years,

several such methods have been developed and implemented in the deducorrect

package.

For the purposes of ADA1, we will manually correct errors, either by replac-

ing values or by excluding observations.
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