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Chapter 1

R statistical software and
review

The purpose of this chapter is to discuss R in the context of a quick review of

the topics we covered last semester in ADA11.

1.1 R

R is a programming language for programming, data management, and statis-

tical analysis. So many people have written “An Introduction to R”, that I

refer you to the course website2 for links to tutorials. I encourage you to learn

R by (1) running the commands in the tutorials, (2) looking at the help for

the commands (e.g., ?mean), and (3) trying things on your own as you become

curious. Make mistakes, figure out why some things don’t work the way you

expect, and keep trying. Persistence wins the day with programming (as does

asking and searching for help).

R is more difficult to master (though, more rewarding) than some statis-

tical packages (such as Minitab) for the following reasons: (1) R does not, in

general, provide a point-and-click environment for statistical analysis. Rather,

1http://statacumen.com/teaching/ada1/
2http://statacumen.com/teaching/ada2/
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4 Ch 1: R statistical software and review

R uses syntax-based programs (i.e., code) to define, transform, and read data,

and to define the procedures for analyzing data. (2) R does not really have a

spreadsheet environment for data management. Rather, data are entered di-

rectly within an R program, read from a file, or imported from a spreadsheet.

All manipulation, transformation, and selection of data is coded in the R pro-

gram. Well done, this means that all the steps of the analysis are available to

be repeatable and understood.
Take a minute to install the packages we’ll need this semester by executing

the following commands in R.
#### Install packages needed this semester

ADA2.package.list <- c("BSDA", "Hmisc", "MASS", "NbClust",

"aod", "candisc", "car", "cluster",

"ellipse", "ggplot2", "gridExtra", "klaR",

"leaps", "lsmeans", "moments", "multcomp",

"mvnormtest", "nortest", "plyr", "popbio",

"reshape", "reshape2", "scatterplot3d", "vcd",

"vioplot", "xtable")

install.packages(ADA2.package.list)

1.2 ADA1 Ch 0: R warm-up

This example illustrates several strategies for data summarization and analysis.

The data for this example are from 15 turkeys raised on farms in either Virginia

or Wisconsin.

You should use help to get more information on the functions demonstrated

here. Many of the lines in the program have comments, which helps anyone

reading the program to more easily follow the logic. I strongly recommend

commenting any line of code that isn’t absolutely obvious what is being done

and why it is being done. I also recommend placing comments before blocks of

code in order to describe what the code below is meant to do.
#### Example: Turkey, R warm-up

# Read the data file from the website and learn some functions

# filename

fn.data <- "http://statacumen.com/teach/ADA2/ADA2_notes_Ch01_turkey.csv"

# read file and assign data to turkey variable

turkey <- read.csv(fn.data)
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1.2: ADA1 Ch 0: R warm-up 5

# examine the structure of the dataset, is it what you expected?

# a data.frame containing integers, numbers, and factors

str(turkey)

## 'data.frame': 15 obs. of 3 variables:

## $ age : int 28 20 32 25 23 22 29 27 28 26 ...

## $ weight: num 13.3 8.9 15.1 13.8 13.1 10.4 13.1 12.4 13.2 11.8 ...

## $ orig : Factor w/ 2 levels "va","wi": 1 1 1 2 2 1 1 1 1 1 ...

# print dataset to screen

turkey

## age weight orig

## 1 28 13.3 va

## 2 20 8.9 va

## 3 32 15.1 va

## 4 25 13.8 wi

## 5 23 13.1 wi

## 6 22 10.4 va

## 7 29 13.1 va

## 8 27 12.4 va

## 9 28 13.2 va

## 10 26 11.8 va

## 11 21 11.5 wi

## 12 31 16.6 wi

## 13 27 14.2 wi

## 14 29 15.4 wi

## 15 30 15.9 wi

# Note: to view the age variable (column), there's a few ways to do that

turkey$age # name the variable

## [1] 28 20 32 25 23 22 29 27 28 26 21 31 27 29 30

turkey[, 1] # give the column number

## [1] 28 20 32 25 23 22 29 27 28 26 21 31 27 29 30

turkey[, "age"] # give the column name

## [1] 28 20 32 25 23 22 29 27 28 26 21 31 27 29 30

# and the structure is a vector

str(turkey$age)

## int [1:15] 28 20 32 25 23 22 29 27 28 26 ...

# let's create an additional variable for later

# gt25mo will be a variable indicating whether the age is greater than 25 months

turkey$gt25mo <- (turkey$age > 25)

# now we also have a Boolean (logical) column

str(turkey)

## 'data.frame': 15 obs. of 4 variables:

## $ age : int 28 20 32 25 23 22 29 27 28 26 ...

## $ weight: num 13.3 8.9 15.1 13.8 13.1 10.4 13.1 12.4 13.2 11.8 ...

## $ orig : Factor w/ 2 levels "va","wi": 1 1 1 2 2 1 1 1 1 1 ...

## $ gt25mo: logi TRUE FALSE TRUE FALSE FALSE FALSE ...
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6 Ch 1: R statistical software and review

# there are a couple ways of subsetting the rows

turkey[(turkey$gt25mo == TRUE),] # specify the rows

## age weight orig gt25mo

## 1 28 13.3 va TRUE

## 3 32 15.1 va TRUE

## 7 29 13.1 va TRUE

## 8 27 12.4 va TRUE

## 9 28 13.2 va TRUE

## 10 26 11.8 va TRUE

## 12 31 16.6 wi TRUE

## 13 27 14.2 wi TRUE

## 14 29 15.4 wi TRUE

## 15 30 15.9 wi TRUE

subset(turkey, gt25mo == FALSE) # use subset() to select the data.frame records

## age weight orig gt25mo

## 2 20 8.9 va FALSE

## 4 25 13.8 wi FALSE

## 5 23 13.1 wi FALSE

## 6 22 10.4 va FALSE

## 11 21 11.5 wi FALSE

Analyses can be then done on the entire dataset, or repeated for all subsets
of a variable in the dataset.
# summaries of each variable in the entire dataset,

summary(turkey)

## age weight orig gt25mo

## Min. :20.00 Min. : 8.90 va:8 Mode :logical

## 1st Qu.:24.00 1st Qu.:12.10 wi:7 FALSE:5

## Median :27.00 Median :13.20 TRUE :10

## Mean :26.53 Mean :13.25 NA's :0

## 3rd Qu.:29.00 3rd Qu.:14.65

## Max. :32.00 Max. :16.60

# or summarize by a variable in the dataset.

by(turkey, turkey$orig, summary)

## turkey$orig: va

## age weight orig gt25mo

## Min. :20.00 Min. : 8.90 va:8 Mode :logical

## 1st Qu.:25.00 1st Qu.:11.45 wi:0 FALSE:2

## Median :27.50 Median :12.75 TRUE :6

## Mean :26.50 Mean :12.28 NA's :0

## 3rd Qu.:28.25 3rd Qu.:13.22

## Max. :32.00 Max. :15.10

## ----------------------------------------------------

## turkey$orig: wi

## age weight orig gt25mo

## Min. :21.00 Min. :11.50 va:0 Mode :logical

## 1st Qu.:24.00 1st Qu.:13.45 wi:7 FALSE:3
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1.3: ADA1 Chapters 2, 4, 6: Estimation in one-sample problems 7

## Median :27.00 Median :14.20 TRUE :4

## Mean :26.57 Mean :14.36 NA's :0

## 3rd Qu.:29.50 3rd Qu.:15.65

## Max. :31.00 Max. :16.60

1.3 ADA1 Chapters 2, 4, 6: Estimation in
one-sample problems

Plot the weights by origin.
#### Example: Turkey, Chapters 2, 4, 6
# subset the data for convenience
turkeyva <- subset(turkey, orig == "va")
turkeywi <- subset(turkey, orig == "wi")

library(ggplot2)
# Histogram overlaid with kernel density curve
p11 <- ggplot(turkeyva, aes(x = weight))

# Histogram with density instead of count on y-axis
p11 <- p11 + geom_histogram(aes(y=..density..)

, binwidth=2
, colour="black", fill="white")

# Overlay with transparent density plot
p11 <- p11 + geom_density(alpha=0.1, fill="#FF6666")
p11 <- p11 + geom_rug()

# violin plot
p12 <- ggplot(turkeyva, aes(x = "weight", y = weight))
p12 <- p12 + geom_violin(fill = "gray50")
p12 <- p12 + geom_boxplot(width = 0.2, alpha = 3/4)
p12 <- p12 + coord_flip()

# boxplot
p13 <- ggplot(turkeyva, aes(x = "weight", y = weight))
p13 <- p13 + geom_boxplot()
p13 <- p13 + coord_flip()

library(gridExtra)
#grid.arrange(p11, p12, p13, ncol=1, main="Turkey weights for origin va")
## add grobs = list(), and main= becomes top=
grid.arrange(grobs = list(p11, p12, p13), ncol=1, top="Turkey weights for origin va")

# Histogram overlaid with kernel density curve
p21 <- ggplot(turkeywi, aes(x = weight))

# Histogram with density instead of count on y-axis
p21 <- p21 + geom_histogram(aes(y=..density..)

, binwidth=2
, colour="black", fill="white")

# Overlay with transparent density plot
p21 <- p21 + geom_density(alpha=0.1, fill="#FF6666")
p21 <- p21 + geom_rug()

# violin plot
p22 <- ggplot(turkeywi, aes(x = "weight", y = weight))
p22 <- p22 + geom_violin(fill = "gray50")
p22 <- p22 + geom_boxplot(width = 0.2, alpha = 3/4)
p22 <- p22 + coord_flip()

# boxplot
p23 <- ggplot(turkeywi, aes(x = "weight", y = weight))
p23 <- p23 + geom_boxplot()
p23 <- p23 + coord_flip()

library(gridExtra)
grid.arrange(grobs = list(p21, p22, p23), ncol=1, top="Turkey weights for origin wi")
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8 Ch 1: R statistical software and review
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Check normality of each sample graphically with with bootstrap sampling
distribution and normal quantile plot and formally with normality tests.
# a function to compare the bootstrap sampling distribution with
# a normal distribution with mean and SEM estimated from the data
bs.one.samp.dist <- function(dat, N = 1e4) {

n <- length(dat);
# resample from data
sam <- matrix(sample(dat, size = N * n, replace = TRUE), ncol=N);
# draw a histogram of the means
sam.mean <- colMeans(sam);
# save par() settings
old.par <- par(no.readonly = TRUE)
# make smaller margins
par(mfrow=c(2,1), mar=c(3,2,2,1), oma=c(1,1,1,1))
# Histogram overlaid with kernel density curve
hist(dat, freq = FALSE, breaks = 6

, main = "Plot of data with smoothed density curve")
points(density(dat), type = "l")
rug(dat)

hist(colMeans(sam), freq = FALSE, breaks = 25
, main = "Bootstrap sampling distribution of the mean"
, xlab = paste("Data: n =", n

, ", mean =", signif(mean(dat), digits = 5)
, ", se =", signif(sd(dat)/sqrt(n)), digits = 5))

# overlay a density curve for the sample means
points(density(sam.mean), type = "l")
# overlay a normal distribution, bold and red
x <- seq(min(sam.mean), max(sam.mean), length = 1000)
points(x, dnorm(x, mean = mean(dat), sd = sd(dat)/sqrt(n))

, type = "l", lwd = 2, col = "red")
# place a rug of points under the plot
rug(sam.mean)
# restore par() settings
par(old.par)

}

# Bootstrap sampling distribution

bs.one.samp.dist(turkeyva$weight)

bs.one.samp.dist(turkeywi$weight)
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1.3: ADA1 Chapters 2, 4, 6: Estimation in one-sample problems 9
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Plot of data with smoothed density curve
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# normal quantile-quantile (QQ) plot of each orig sample

library(car)

# qq plot

# las = 1 : turns labels on y-axis to read horizontally

# id.n = n : labels n most extreme observations, and outputs to console

# id.cex = 1 : is the size of those labels

# lwd = 1 : line width

qqPlot(turkeyva$weight, las = 1, id.n = 0, id.cex = 1, lwd = 1

, main="QQ Plot, turkey origin va")

qqPlot(turkeywi$weight, las = 1, id.n = 0, id.cex = 1, lwd = 1

, main="QQ Plot, turkey origin wi")
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# Normality tests

# VA

shapiro.test(turkeyva$weight)

##

## Shapiro-Wilk normality test

##

## data: turkeyva$weight

## W = 0.95414, p-value = 0.7528

library(nortest)

ad.test(turkeyva$weight)

##

## Anderson-Darling normality test

##

## data: turkeyva$weight

## A = 0.283, p-value = 0.5339

# lillie.test(turkeyva£weight)

cvm.test(turkeyva$weight)

##

## Cramer-von Mises normality test

##

## data: turkeyva$weight

## W = 0.050135, p-value = 0.4642

# WI

shapiro.test(turkeywi$weight)

##

## Shapiro-Wilk normality test
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##

## data: turkeywi$weight

## W = 0.97326, p-value = 0.9209

library(nortest)

ad.test(turkeywi$weight)

## Error in ad.test(turkeywi$weight): sample size must be greater than 7

# lillie.test(turkeywi£weight)

cvm.test(turkeywi$weight)

## Error in cvm.test(turkeywi$weight): sample size must be greater than 7

## Note: The errors above are expected.

Because we do not have any serious departures from normality (the data are

consistent with being normal, as well as the sampling distribution of the mean)

the t-test is appropriate. We will also look at a couple nonparametric methods.
# Is the average turkey weight 12 lbs?

# t-tests of the mean

# VA

t.summary <- t.test(turkeyva$weight, mu = 12)

t.summary

##

## One Sample t-test

##

## data: turkeyva$weight

## t = 0.40582, df = 7, p-value = 0.697

## alternative hypothesis: true mean is not equal to 12

## 95 percent confidence interval:

## 10.67264 13.87736

## sample estimates:

## mean of x

## 12.275

# WI

t.summary <- t.test(turkeywi$weight, mu = 12)

t.summary

##

## One Sample t-test

##

## data: turkeywi$weight

## t = 3.5442, df = 6, p-value = 0.01216

## alternative hypothesis: true mean is not equal to 12

## 95 percent confidence interval:

## 12.72978 15.98450

## sample estimates:

## mean of x

## 14.35714
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# Sign test for the median

# VA

library(BSDA)

SIGN.test(turkeyva$weight, md=12)

##

## One-sample Sign-Test

##

## data: turkeyva$weight

## s = 5, p-value = 0.7266

## alternative hypothesis: true median is not equal to 12

## 95 percent confidence interval:

## 9.9125 13.8850

## sample estimates:

## median of x

## 12.75

## Conf.Level L.E.pt U.E.pt

## Lower Achieved CI 0.9297 10.4000 13.300

## Interpolated CI 0.9500 9.9125 13.885

## Upper Achieved CI 0.9922 8.9000 15.100

# WI

SIGN.test(turkeywi$weight, md=12)

##

## One-sample Sign-Test

##

## data: turkeywi$weight

## s = 6, p-value = 0.125

## alternative hypothesis: true median is not equal to 12

## 95 percent confidence interval:

## 12.00286 16.38000

## sample estimates:

## median of x

## 14.2

## Conf.Level L.E.pt U.E.pt

## Lower Achieved CI 0.8750 13.1000 15.90

## Interpolated CI 0.9500 12.0029 16.38

## Upper Achieved CI 0.9844 11.5000 16.60

# Wilcoxon sign-rank test for the median (or mean, since symmetric assumption)

# VA

# with continuity correction in the normal approximation for the p-value

wilcox.test(turkeyva$weight, mu=12, conf.int=TRUE)

## Warning in wilcox.test.default(turkeyva$weight, mu = 12, conf.int = TRUE): cannot compute

exact p-value with ties

## Warning in wilcox.test.default(turkeyva$weight, mu = 12, conf.int = TRUE): cannot compute

exact confidence interval with ties

##
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## Wilcoxon signed rank test with continuity correction

##

## data: turkeyva$weight

## V = 21.5, p-value = 0.674

## alternative hypothesis: true location is not equal to 12

## 95 percent confidence interval:

## 10.40005 14.09997

## sample estimates:

## (pseudo)median

## 12.47331

# without continuity correction

wilcox.test(turkeyva$weight, mu=12, conf.int=TRUE, correct=FALSE)

## Warning in wilcox.test.default(turkeyva$weight, mu = 12, conf.int = TRUE, : cannot compute

exact p-value with ties

## Warning in wilcox.test.default(turkeyva$weight, mu = 12, conf.int = TRUE, : cannot compute

exact confidence interval with ties

##

## Wilcoxon signed rank test

##

## data: turkeyva$weight

## V = 21.5, p-value = 0.6236

## alternative hypothesis: true location is not equal to 12

## 95 percent confidence interval:

## 10.64999 13.75002

## sample estimates:

## (pseudo)median

## 12.47331

# WI

# with continuity correction in the normal approximation for the p-value

wilcox.test(turkeywi$weight, mu=12, conf.int=TRUE)

##

## Wilcoxon signed rank test

##

## data: turkeywi$weight

## V = 27, p-value = 0.03125

## alternative hypothesis: true location is not equal to 12

## 95 percent confidence interval:

## 12.65 16.00

## sample estimates:

## (pseudo)median

## 14.375

# without continuity correction

wilcox.test(turkeywi$weight, mu=12, conf.int=TRUE, correct=FALSE)

##

## Wilcoxon signed rank test

##

## data: turkeywi$weight
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## V = 27, p-value = 0.03125

## alternative hypothesis: true location is not equal to 12

## 95 percent confidence interval:

## 12.65 16.00

## sample estimates:

## (pseudo)median

## 14.375

1.4 ADA1 Chapters 3, 4, 6: Two-sample
inferences

Presume it is of interest to compare the center of the weight distributions be-

tween the origins. There are many ways to plot the data for visual comparisons.
#### Example: Turkey, Chapters 3, 4, 6

# stripchart (dotplot) using ggplot

library(ggplot2)

p1 <- ggplot(turkey, aes(x = weight, y = orig))

p1 <- p1 + geom_point(position = position_jitter(h=0.1))

p1 <- p1 + labs(title = "Dotplot with position jitter")

# boxplot

p2 <- ggplot(turkey, aes(x = orig, y = weight))

p2 <- p2 + geom_boxplot()

# add a "+" at the mean

p2 <- p2 + stat_summary(fun.y = mean, geom = "point", shape = 3, size = 2)

p2 <- p2 + geom_point()

p2 <- p2 + coord_flip()

p2 <- p2 + labs(title = "Boxplot with mean (+) and points")

# histogram using ggplot

p3 <- ggplot(turkey, aes(x = weight))

p3 <- p3 + geom_histogram(binwidth = 2)

p3 <- p3 + geom_rug()

p3 <- p3 + facet_grid(orig ~ .)

p3 <- p3 + labs(title = "Histogram with facets")

p4 <- ggplot(turkey, aes(x = weight, fill=orig))

p4 <- p4 + geom_histogram(binwidth = 2, alpha = 0.5, position="identity")

p4 <- p4 + geom_rug(aes(colour = orig))

p4 <- p4 + labs(title = "Histogram with opacity (alpha)")

p5 <- ggplot(turkey, aes(x = weight, fill=orig))

p5 <- p5 + geom_histogram(binwidth = 2, alpha = 1, position="dodge")
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p5 <- p5 + geom_rug(aes(colour = orig))

p5 <- p5 + labs(title = "Histogram with dodge")

library(gridExtra)

grid.arrange(grobs = list(p1, p2, p3, p4, p5), ncol=2, nrow=3

, top="Turkey weights compared by origin")
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Using the two-sample t-test, first check the normality assumptions of the
sampling distribution of the mean difference between the populations.
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# a function to compare the bootstrap sampling distribution
# of the difference of means from two samples with
# a normal distribution with mean and SEM estimated from the data
bs.two.samp.diff.dist <- function(dat1, dat2, N = 1e4) {

n1 <- length(dat1);
n2 <- length(dat2);
# resample from data
sam1 <- matrix(sample(dat1, size = N * n1, replace = TRUE), ncol=N);
sam2 <- matrix(sample(dat2, size = N * n2, replace = TRUE), ncol=N);
# calculate the means and take difference between populations
sam1.mean <- colMeans(sam1);
sam2.mean <- colMeans(sam2);
diff.mean <- sam1.mean - sam2.mean;
# save par() settings
old.par <- par(no.readonly = TRUE)
# make smaller margins
par(mfrow=c(3,1), mar=c(3,2,2,1), oma=c(1,1,1,1))
# Histogram overlaid with kernel density curve
hist(dat1, freq = FALSE, breaks = 6

, main = paste("Sample 1", "\n"
, "n =", n1
, ", mean =", signif(mean(dat1), digits = 5)
, ", sd =", signif(sd(dat1), digits = 5))

, xlim = range(c(dat1, dat2)))
points(density(dat1), type = "l")
rug(dat1)

hist(dat2, freq = FALSE, breaks = 6
, main = paste("Sample 2", "\n"

, "n =", n2
, ", mean =", signif(mean(dat2), digits = 5)
, ", sd =", signif(sd(dat2), digits = 5))

, xlim = range(c(dat1, dat2)))
points(density(dat2), type = "l")
rug(dat2)

hist(diff.mean, freq = FALSE, breaks = 25
, main = paste("Bootstrap sampling distribution of the difference in means", "\n"

, "mean =", signif(mean(diff.mean), digits = 5)
, ", se =", signif(sd(diff.mean), digits = 5)))

# overlay a density curve for the sample means
points(density(diff.mean), type = "l")
# overlay a normal distribution, bold and red
x <- seq(min(diff.mean), max(diff.mean), length = 1000)
points(x, dnorm(x, mean = mean(diff.mean), sd = sd(diff.mean))

, type = "l", lwd = 2, col = "red")
# place a rug of points under the plot
rug(diff.mean)
# restore par() settings
par(old.par)

}

bs.two.samp.diff.dist(turkeyva$weight, turkeywi$weight)
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Two-sample t-test is appropriate since the bootstrap sampling distribution
of the difference in means is approximately normal. This is the most powerful
test and detects a difference at a 0.05 significance level.
# Two-sample t-test

## Equal variances

# var.equal = FALSE is the default

# two-sample t-test specifying two separate vectors

t.summary.eqvar <- t.test(turkeyva$weight, turkeywi$weight, var.equal = TRUE)

t.summary.eqvar

##

## Two Sample t-test

##

## data: turkeyva$weight and turkeywi$weight

## t = -2.1796, df = 13, p-value = 0.04827

## alternative hypothesis: true difference in means is not equal to 0

## 95 percent confidence interval:

## -4.14595971 -0.01832601

## sample estimates:

## mean of x mean of y

## 12.27500 14.35714

# two-sample t-test with unequal variances (Welch = Satterthwaite)

# specified using data.frame and a formula, HeadBreadth by Group

t.summary.uneqvar <- t.test(weight ~ orig, data = turkey, var.equal = FALSE)

t.summary.uneqvar

##

## Welch Two Sample t-test

##

## data: weight by orig
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## t = -2.1929, df = 12.956, p-value = 0.04717

## alternative hypothesis: true difference in means is not equal to 0

## 95 percent confidence interval:

## -4.13407696 -0.03020875

## sample estimates:

## mean in group va mean in group wi

## 12.27500 14.35714

(Wilcoxon-)Mann-Whitney two-sample test is appropriate because the shapes
of the two distributions are similar, though their locations are different. This is
a less powerful test, but doesn’t require normality, and fails to detect a difference
at a 0.05 significance level.
# with continuity correction in the normal approximation for the p-value

wilcox.test(turkeyva$weight, turkeywi$weight, conf.int=TRUE)

## Warning in wilcox.test.default(turkeyva$weight, turkeywi$weight, conf.int = TRUE): cannot

compute exact p-value with ties

## Warning in wilcox.test.default(turkeyva$weight, turkeywi$weight, conf.int = TRUE): cannot

compute exact confidence intervals with ties

##

## Wilcoxon rank sum test with continuity correction

##

## data: turkeyva$weight and turkeywi$weight

## W = 11.5, p-value = 0.06384

## alternative hypothesis: true location shift is not equal to 0

## 95 percent confidence interval:

## -4.19994493 0.09993686

## sample estimates:

## difference in location

## -2.152771

# without continuity correction

wilcox.test(turkeyva$weight, turkeywi$weight, conf.int=TRUE, correct=FALSE)

## Warning in wilcox.test.default(turkeyva$weight, turkeywi$weight, conf.int = TRUE, : cannot

compute exact p-value with ties

## Warning in wilcox.test.default(turkeyva$weight, turkeywi$weight, conf.int = TRUE, : cannot

compute exact confidence intervals with ties

##

## Wilcoxon rank sum test

##

## data: turkeyva$weight and turkeywi$weight

## W = 11.5, p-value = 0.05598

## alternative hypothesis: true location shift is not equal to 0

## 95 percent confidence interval:

## -4.100049e+00 1.445586e-05

## sample estimates:

## difference in location

## -2.152771
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1.5 ADA1 Chapters 5, 4, 6: One-way ANOVA

The Waste Run-up data3 refer to five suppliers of the Levi-Strauss clothing

manufacturing plant in Albuquerque. The firm’s quality control department

collects weekly data on percent-age waste (run-up) relative to what can be

achieved by computer layouts of patterns on cloth. It is possible to have negative

values, which indicate that the plant employees beat the computer in controlling

waste. Under question are differences among the five supplier plants (PT1, . . . ,

PT5).
#### Example: Waste Run-up, Chapters 5, 4, 6

# convert to a data.frame by reading the text table

waste <- read.table(text = "

PT1 PT2 PT3 PT4 PT5

1.2 16.4 12.1 11.5 24.0

10.1 -6.0 9.7 10.2 -3.7

-2.0 -11.6 7.4 3.8 8.2

1.5 -1.3 -2.1 8.3 9.2

-3.0 4.0 10.1 6.6 -9.3

-0.7 17.0 4.7 10.2 8.0

3.2 3.8 4.6 8.8 15.8

2.7 4.3 3.9 2.7 22.3

-3.2 10.4 3.6 5.1 3.1

-1.7 4.2 9.6 11.2 16.8

2.4 8.5 9.8 5.9 11.3

0.3 6.3 6.5 13.0 12.3

3.5 9.0 5.7 6.8 16.9

-0.8 7.1 5.1 14.5 NA

19.4 4.3 3.4 5.2 NA

2.8 19.7 -0.8 7.3 NA

13.0 3.0 -3.9 7.1 NA

42.7 7.6 0.9 3.4 NA

1.4 70.2 1.5 0.7 NA

3.0 8.5 NA NA NA

2.4 6.0 NA NA NA

1.3 2.9 NA NA NA

", header=TRUE)

waste

## PT1 PT2 PT3 PT4 PT5

## 1 1.2 16.4 12.1 11.5 24.0

3From http://lib.stat.cmu.edu/DASL/Stories/wasterunup.html, the Data and Story Library
(DASL, pronounced “dazzle”) is an online library of datafiles and stories that illustrate the use of basic
statistics methods. “Waste Run-up” dataset from L. Koopmans, Introduction to Contemporary Statistical
Methods, Duxbury Press, 1987, p. 86.
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## 2 10.1 -6.0 9.7 10.2 -3.7

## 3 -2.0 -11.6 7.4 3.8 8.2

## 4 1.5 -1.3 -2.1 8.3 9.2

## 5 -3.0 4.0 10.1 6.6 -9.3

## 6 -0.7 17.0 4.7 10.2 8.0

## 7 3.2 3.8 4.6 8.8 15.8

## 8 2.7 4.3 3.9 2.7 22.3

## 9 -3.2 10.4 3.6 5.1 3.1

## 10 -1.7 4.2 9.6 11.2 16.8

## 11 2.4 8.5 9.8 5.9 11.3

## 12 0.3 6.3 6.5 13.0 12.3

## 13 3.5 9.0 5.7 6.8 16.9

## 14 -0.8 7.1 5.1 14.5 NA

## 15 19.4 4.3 3.4 5.2 NA

## 16 2.8 19.7 -0.8 7.3 NA

## 17 13.0 3.0 -3.9 7.1 NA

## 18 42.7 7.6 0.9 3.4 NA

## 19 1.4 70.2 1.5 0.7 NA

## 20 3.0 8.5 NA NA NA

## 21 2.4 6.0 NA NA NA

## 22 1.3 2.9 NA NA NA

library(reshape2)

waste.long <- melt(waste,

# id.vars: ID variables

# all variables to keep but not split apart on

# id.vars=NULL,

# measure.vars: The source columns

# (if unspecified then all other variables are measure.vars)

# measure.vars = c("PT1","PT2","PT3","PT4","PT5"),

# variable.name: Name of the destination column identifying each

# original column that the measurement came from

variable.name = "plant",

# value.name: column name for values in table

value.name = "runup",

# remove the NA values

na.rm = TRUE

)

## No id variables; using all as measure variables

str(waste.long)

## 'data.frame': 95 obs. of 2 variables:

## $ plant: Factor w/ 5 levels "PT1","PT2","PT3",..: 1 1 1 1 1 1 1 1 1 1 ...

## $ runup: num 1.2 10.1 -2 1.5 -3 -0.7 3.2 2.7 -3.2 -1.7 ...

head(waste.long)

## plant runup

## 1 PT1 1.2

## 2 PT1 10.1

## 3 PT1 -2.0
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## 4 PT1 1.5

## 5 PT1 -3.0

## 6 PT1 -0.7

tail(waste.long)

## plant runup

## 96 PT5 22.3

## 97 PT5 3.1

## 98 PT5 16.8

## 99 PT5 11.3

## 100 PT5 12.3

## 101 PT5 16.9

# Calculate the mean, sd, n, and se for the plants

# The plyr package is an advanced way to apply a function to subsets of data

# "Tools for splitting, applying and combining data"

library(plyr)

# ddply "dd" means the input and output are both data.frames

waste.summary <- ddply(waste.long,

"plant",

function(X) {
data.frame( m = mean(X$runup),

s = sd(X$runup),

n = length(X$runup)

)

}
)

# standard errors

waste.summary$se <- waste.summary$s/sqrt(waste.summary$n)

waste.summary$moe <- qt(1 - 0.05 / 2, df = waste.summary$n - 1) * waste.summary$se

# individual confidence limits

waste.summary$ci.l <- waste.summary$m - waste.summary$moe

waste.summary$ci.u <- waste.summary$m + waste.summary$moe

waste.summary

## plant m s n se moe ci.l

## 1 PT1 4.522727 10.032041 22 2.1388383 4.447958 0.07476963

## 2 PT2 8.831818 15.353467 22 3.2733701 6.807346 2.02447241

## 3 PT3 4.831579 4.403162 19 1.0101547 2.122256 2.70932276

## 4 PT4 7.489474 3.657093 19 0.8389946 1.762662 5.72681139

## 5 PT5 10.376923 9.555030 13 2.6500884 5.774047 4.60287651

## ci.u

## 1 8.970685

## 2 15.639164

## 3 6.953835

## 4 9.252136

## 5 16.150970
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# Plot the data using ggplot

library(ggplot2)

p <- ggplot(waste.long, aes(x = plant, y = runup))

# plot a reference line for the global mean (assuming no groups)

p <- p + geom_hline(aes(yintercept = 0),

colour = "black", linetype = "solid", size = 0.2, alpha = 0.3)

p <- p + geom_hline(aes(yintercept = mean(runup)),

colour = "black", linetype = "dashed", size = 0.3, alpha = 0.5)

# boxplot, size=.75 to stand out behind CI

p <- p + geom_boxplot(size = 0.75, alpha = 0.5)

# points for observed data

p <- p + geom_point(position = position_jitter(w = 0.05, h = 0), alpha = 0.5)

# diamond at mean for each group

p <- p + stat_summary(fun.y = mean, geom = "point", shape = 18, size = 6,

colour = "red", alpha = 0.8)

# confidence limits based on normal distribution

p <- p + stat_summary(fun.data = "mean_cl_normal", geom = "errorbar",

width = .2, colour = "red", alpha = 0.8)

p <- p + labs(title = "Plant Run-up waste relative to computer layout")

p <- p + ylab("Run-up waste")

print(p)
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The outliers here suggest the ANOVA is not an appropriate model. The
normality tests below suggest the distributions for the first two plants are not
normal.
by(waste.long$runup, waste.long$plant, ad.test)

## waste.long$plant: PT1

##

## Anderson-Darling normality test

##

## data: dd[x, ]
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## A = 2.8685, p-value = 1.761e-07

##

## ----------------------------------------------------

## waste.long$plant: PT2

##

## Anderson-Darling normality test

##

## data: dd[x, ]

## A = 2.5207, p-value = 1.334e-06

##

## ----------------------------------------------------

## waste.long$plant: PT3

##

## Anderson-Darling normality test

##

## data: dd[x, ]

## A = 0.23385, p-value = 0.7624

##

## ----------------------------------------------------

## waste.long$plant: PT4

##

## Anderson-Darling normality test

##

## data: dd[x, ]

## A = 0.12363, p-value = 0.9834

##

## ----------------------------------------------------

## waste.long$plant: PT5

##

## Anderson-Darling normality test

##

## data: dd[x, ]

## A = 0.27445, p-value = 0.6004

For review purposes, I’ll fit the ANOVA, but we would count on the following
nonparametric method for inference.
fit.w <- aov(runup ~ plant, data = waste.long)

summary(fit.w)

## Df Sum Sq Mean Sq F value Pr(>F)

## plant 4 451 112.73 1.16 0.334

## Residuals 90 8749 97.21

fit.w

## Call:

## aov(formula = runup ~ plant, data = waste.long)

##

## Terms:

## plant Residuals

## Sum of Squares 450.921 8749.088
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## Deg. of Freedom 4 90

##

## Residual standard error: 9.859619

## Estimated effects may be unbalanced

# all pairwise comparisons among plants

# Fisher's LSD (FSD) uses "none"

pairwise.t.test(waste.long$runup, waste.long$plant,

pool.sd = TRUE, p.adjust.method = "none")

##

## Pairwise comparisons using t tests with pooled SD

##

## data: waste.long$runup and waste.long$plant

##

## PT1 PT2 PT3 PT4

## PT2 0.151 - - -

## PT3 0.921 0.198 - -

## PT4 0.339 0.665 0.408 -

## PT5 0.093 0.655 0.122 0.418

##

## P value adjustment method: none

# Tukey 95% Individual p-values

TukeyHSD(fit.w)

## Tukey multiple comparisons of means

## 95% family-wise confidence level

##

## Fit: aov(formula = runup ~ plant, data = waste.long)

##

## $plant

## diff lwr upr p adj

## PT2-PT1 4.3090909 -3.966713 12.584895 0.5976181

## PT3-PT1 0.3088517 -8.287424 8.905127 0.9999769

## PT4-PT1 2.9667464 -5.629529 11.563022 0.8718682

## PT5-PT1 5.8541958 -3.747712 15.456104 0.4408168

## PT3-PT2 -4.0002392 -12.596515 4.596036 0.6946720

## PT4-PT2 -1.3423445 -9.938620 7.253931 0.9924515

## PT5-PT2 1.5451049 -8.056803 11.147013 0.9915352

## PT4-PT3 2.6578947 -6.247327 11.563116 0.9203538

## PT5-PT3 5.5453441 -4.334112 15.424800 0.5251000

## PT5-PT4 2.8874494 -6.992007 12.766906 0.9258057

# Bonferroni 95% Individual p-values

# All Pairwise Comparisons among Levels of waste

pairwise.t.test(waste.long$runup, waste.long$plant,

pool.sd = TRUE, p.adjust.method = "bonf")

##

## Pairwise comparisons using t tests with pooled SD

##

## data: waste.long$runup and waste.long$plant
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##

## PT1 PT2 PT3 PT4

## PT2 1.00 - - -

## PT3 1.00 1.00 - -

## PT4 1.00 1.00 1.00 -

## PT5 0.93 1.00 1.00 1.00

##

## P value adjustment method: bonferroni

The residuals show many outliers
# QQ plot

par(mfrow=c(1,1))

library(car)

qqPlot(fit.w$residuals, las = 1, id.n = 10, id.cex = 1, lwd = 1

, main="QQ Plot of residuals")

## 41 18 25 93 15 24 90 89 96 38

## 95 94 1 2 93 3 4 92 91 90
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Kruskal-Wallis ANOVA is a non-parametric method for testing the hypoth-
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esis of equal population medians against the alternative that not all population

medians are equal. It’s still not perfect here because the distributional shapes

are not all the same, but it is a better alternative than the ANOVA.
# KW ANOVA

fit.wk <- kruskal.test(runup ~ plant, data = waste.long)

fit.wk

##

## Kruskal-Wallis rank sum test

##

## data: runup by plant

## Kruskal-Wallis chi-squared = 15.319, df = 4, p-value =

## 0.004084

# Bonferroni 95% pairwise comparisions with continuity correction

# in the normal approximation for the p-value

for (i1.pt in 1:4) {
for (i2.pt in (i1.pt+1):5) {

wt <- wilcox.test(waste[,names(waste)[i1.pt]], waste[,names(waste)[i2.pt]]

, conf.int=TRUE, conf.level = 1 - 0.05/choose(5,2))

cat(names(waste)[i1.pt], names(waste)[i2.pt])

print(wt)

}
}
## Warning in wilcox.test.default(waste[, names(waste)[i1.pt]], waste[, names(waste)[i2.pt]],

: cannot compute exact p-value with ties

## Warning in wilcox.test.default(waste[, names(waste)[i1.pt]], waste[, names(waste)[i2.pt]],

: cannot compute exact confidence intervals with ties

## PT1 PT2

## Wilcoxon rank sum test with continuity correction

##

## data: waste[, names(waste)[i1.pt]] and waste[, names(waste)[i2.pt]]

## W = 131.5, p-value = 0.009813

## alternative hypothesis: true location shift is not equal to 0

## 99.5 percent confidence interval:

## -8.299958 1.599947

## sample estimates:

## difference in location

## -4.399951

## Warning in wilcox.test.default(waste[, names(waste)[i1.pt]], waste[, names(waste)[i2.pt]],

: cannot compute exact p-value with ties

## Warning in wilcox.test.default(waste[, names(waste)[i1.pt]], waste[, names(waste)[i2.pt]],

: cannot compute exact confidence intervals with ties

## PT1 PT3

## Wilcoxon rank sum test with continuity correction

##

## data: waste[, names(waste)[i1.pt]] and waste[, names(waste)[i2.pt]]

## W = 141.5, p-value = 0.07978
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## alternative hypothesis: true location shift is not equal to 0

## 99.5 percent confidence interval:

## -6.900028 2.700029

## sample estimates:

## difference in location

## -2.500047

## Warning in wilcox.test.default(waste[, names(waste)[i1.pt]], waste[, names(waste)[i2.pt]],

: cannot compute exact p-value with ties

## Warning in wilcox.test.default(waste[, names(waste)[i1.pt]], waste[, names(waste)[i2.pt]],

: cannot compute exact confidence intervals with ties

## PT1 PT4

## Wilcoxon rank sum test with continuity correction

##

## data: waste[, names(waste)[i1.pt]] and waste[, names(waste)[i2.pt]]

## W = 85, p-value = 0.001241

## alternative hypothesis: true location shift is not equal to 0

## 99.5 percent confidence interval:

## -8.900056 -1.099910

## sample estimates:

## difference in location

## -5.300051

## Warning in wilcox.test.default(waste[, names(waste)[i1.pt]], waste[, names(waste)[i2.pt]],

: cannot compute exact p-value with ties

## Warning in wilcox.test.default(waste[, names(waste)[i1.pt]], waste[, names(waste)[i2.pt]],

: cannot compute exact confidence intervals with ties

## PT1 PT5

## Wilcoxon rank sum test with continuity correction

##

## data: waste[, names(waste)[i1.pt]] and waste[, names(waste)[i2.pt]]

## W = 76, p-value = 0.02318

## alternative hypothesis: true location shift is not equal to 0

## 99.5 percent confidence interval:

## -15.50007 3.60001

## sample estimates:

## difference in location

## -8.703538

## Warning in wilcox.test.default(waste[, names(waste)[i1.pt]], waste[, names(waste)[i2.pt]],

: cannot compute exact p-value with ties

## Warning in wilcox.test.default(waste[, names(waste)[i1.pt]], waste[, names(waste)[i2.pt]],

: cannot compute exact confidence intervals with ties

## PT2 PT3

## Wilcoxon rank sum test with continuity correction

##

## data: waste[, names(waste)[i1.pt]] and waste[, names(waste)[i2.pt]]

## W = 238, p-value = 0.4562

## alternative hypothesis: true location shift is not equal to 0

## 99.5 percent confidence interval:

## -3.50007 7.20000
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## sample estimates:

## difference in location

## 1.352784

## Warning in wilcox.test.default(waste[, names(waste)[i1.pt]], waste[, names(waste)[i2.pt]],

: cannot compute exact p-value with ties

## Warning in wilcox.test.default(waste[, names(waste)[i1.pt]], waste[, names(waste)[i2.pt]],

: cannot compute exact confidence intervals with ties

## PT2 PT4

## Wilcoxon rank sum test with continuity correction

##

## data: waste[, names(waste)[i1.pt]] and waste[, names(waste)[i2.pt]]

## W = 186, p-value = 0.5563

## alternative hypothesis: true location shift is not equal to 0

## 99.5 percent confidence interval:

## -5.900014 3.800023

## sample estimates:

## difference in location

## -1.099914

## Warning in wilcox.test.default(waste[, names(waste)[i1.pt]], waste[, names(waste)[i2.pt]],

: cannot compute exact p-value with ties

## Warning in wilcox.test.default(waste[, names(waste)[i1.pt]], waste[, names(waste)[i2.pt]],

: cannot compute exact confidence intervals with ties

## PT2 PT5

## Wilcoxon rank sum test with continuity correction

##

## data: waste[, names(waste)[i1.pt]] and waste[, names(waste)[i2.pt]]

## W = 99, p-value = 0.1375

## alternative hypothesis: true location shift is not equal to 0

## 99.5 percent confidence interval:

## -13.100001 7.400037

## sample estimates:

## difference in location

## -4.630905

## Warning in wilcox.test.default(waste[, names(waste)[i1.pt]], waste[, names(waste)[i2.pt]],

: cannot compute exact p-value with ties

## Warning in wilcox.test.default(waste[, names(waste)[i1.pt]], waste[, names(waste)[i2.pt]],

: cannot compute exact confidence intervals with ties

## PT3 PT4

## Wilcoxon rank sum test with continuity correction

##

## data: waste[, names(waste)[i1.pt]] and waste[, names(waste)[i2.pt]]

## W = 117, p-value = 0.06583

## alternative hypothesis: true location shift is not equal to 0

## 99.5 percent confidence interval:

## -6.800001 1.699976

## sample estimates:

## difference in location

## -2.400038
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##

## PT3 PT5

## Wilcoxon rank sum test

##

## data: waste[, names(waste)[i1.pt]] and waste[, names(waste)[i2.pt]]

## W = 67, p-value = 0.03018

## alternative hypothesis: true location shift is not equal to 0

## 99.5 percent confidence interval:

## -13.4 1.7

## sample estimates:

## difference in location

## -6.6

## Warning in wilcox.test.default(waste[, names(waste)[i1.pt]], waste[, names(waste)[i2.pt]],

: cannot compute exact p-value with ties

## Warning in wilcox.test.default(waste[, names(waste)[i1.pt]], waste[, names(waste)[i2.pt]],

: cannot compute exact confidence intervals with ties

## PT4 PT5

## Wilcoxon rank sum test with continuity correction

##

## data: waste[, names(waste)[i1.pt]] and waste[, names(waste)[i2.pt]]

## W = 82, p-value = 0.1157

## alternative hypothesis: true location shift is not equal to 0

## 99.5 percent confidence interval:

## -11.099965 4.799945

## sample estimates:

## difference in location

## -4.000035

1.6 ADA1 Chapter 7: Categorical data anal-
ysis

Returning to the turkey dataset, below is the cross-classification of orig by

gt25mo.
#### Example: Turkey, Chapter 7

# create a frequency table from two columns of categorical data

xt <- xtabs( ~ orig + gt25mo, data = turkey)

# display the table

xt

## gt25mo

## orig FALSE TRUE

## va 2 6

## wi 3 4

# summary from xtabs() is the same as chisq.test() without continuity correction
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summary(xt)

## Call: xtabs(formula = ~orig + gt25mo, data = turkey)

## Number of cases in table: 15

## Number of factors: 2

## Test for independence of all factors:

## Chisq = 0.5357, df = 1, p-value = 0.4642

## Chi-squared approximation may be incorrect

# same as xtabs()

x.summary <- chisq.test(xt, correct=FALSE)

## Warning in chisq.test(xt, correct = FALSE): Chi-squared approximation may be incorrect

x.summary

##

## Pearson's Chi-squared test

##

## data: xt

## X-squared = 0.53571, df = 1, p-value = 0.4642

# the default is to perform Yates' continuity correction

chisq.test(xt)

## Warning in chisq.test(xt): Chi-squared approximation may be incorrect

##

## Pearson's Chi-squared test with Yates' continuity correction

##

## data: xt

## X-squared = 0.033482, df = 1, p-value = 0.8548

# Fisher's exact test

fisher.test(xt)

##

## Fisher's Exact Test for Count Data

##

## data: xt

## p-value = 0.6084

## alternative hypothesis: true odds ratio is not equal to 1

## 95 percent confidence interval:

## 0.02687938 6.23767632

## sample estimates:

## odds ratio

## 0.4698172

A mosaic plot is for categorical data. Area represents frequency. The de-

fault shading is a good start, since colors only appear when there’s evidence

of association related to those cell values. In our example, there’s insufficient

evidence for association, so the default shading is all gray.
library(vcd) # for mosaic()

# shading based on significance relative to appropriate chi-square distribution
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mosaic(xt, shade=TRUE)

# you can define your own interpolated shading

mosaic(xt, shade=TRUE, gp_args = list(interpolate = seq(.1,.2,.05)))
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From the chisq.test() above, we make a table to summarize important

values from that analysis and compare the observed and expected frequencies

in plots.
# use output in x.summary and create table

x.table <- data.frame(obs = x.summary$observed

, exp = x.summary$expected

, res = x.summary$residuals

, chisq = x.summary$residuals^2

, stdres = x.summary$stdres)

## Warning in data.frame(obs = x.summary$observed, exp = x.summary$expected, : row names

were found from a short variable and have been discarded

# There are duplicate row and col identifiers in this x.table

# because we're creating vectors from a two-way table

# and columns identifying row and col names are automatically added.

# Can you figure out the naming scheme?

x.table

## obs.orig obs.gt25mo obs.Freq exp.FALSE exp.TRUE res.orig res.gt25mo

## 1 va FALSE 2 2.666667 5.333333 va FALSE

## 2 wi FALSE 3 2.333333 4.666667 wi FALSE

## 3 va TRUE 6 2.666667 5.333333 va TRUE

## 4 wi TRUE 4 2.333333 4.666667 wi TRUE

## res.Freq chisq.orig chisq.gt25mo chisq.Freq stdres.orig

## 1 -0.4082483 va FALSE 0.16666667 va
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## 2 0.4364358 wi FALSE 0.19047619 wi

## 3 0.2886751 va TRUE 0.08333333 va

## 4 -0.3086067 wi TRUE 0.09523810 wi

## stdres.gt25mo stdres.Freq

## 1 FALSE -0.7319251

## 2 FALSE 0.7319251

## 3 TRUE 0.7319251

## 4 TRUE -0.7319251

# create a single column with a joint cell name

x.table$cellname <- paste(as.character(x.table$obs.orig)

, as.character(x.table$obs.gt25mo)

, sep="_")

# expected frequencies in a single column

x.table$exp <- c(x.table$exp.FALSE[1:2], x.table$exp.TRUE[3:4])

# create a simpler name for the obs, res, chisq, stdres

x.table$obs <- x.table$obs.Freq

x.table$res <- x.table$res.Freq

x.table$chisq <- x.table$chisq.Freq

x.table$stdres <- x.table$stdres.Freq

# include only the "cleaned" columns

x.table <- subset(x.table, select = c(cellname, obs, exp, res, chisq, stdres))

x.table

## cellname obs exp res chisq stdres

## 1 va_FALSE 2 2.666667 -0.4082483 0.16666667 -0.7319251

## 2 wi_FALSE 3 2.333333 0.4364358 0.19047619 0.7319251

## 3 va_TRUE 6 5.333333 0.2886751 0.08333333 0.7319251

## 4 wi_TRUE 4 4.666667 -0.3086067 0.09523810 -0.7319251

# reshape the data for plotting

library(reshape2)

x.table.obsexp <- melt(x.table,

# id.vars: ID variables

# all variables to keep but not split apart on

id.vars=c("cellname"),

# measure.vars: The source columns

# (if unspecified then all other variables are measure.vars)

measure.vars = c("obs", "exp"),

# variable.name: Name of the destination column identifying each

# original column that the measurement came from

variable.name = "stat",

# value.name: column name for values in table

value.name = "value"

)

x.table.obsexp

## cellname stat value

## 1 va_FALSE obs 2.000000

## 2 wi_FALSE obs 3.000000
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## 3 va_TRUE obs 6.000000

## 4 wi_TRUE obs 4.000000

## 5 va_FALSE exp 2.666667

## 6 wi_FALSE exp 2.333333

## 7 va_TRUE exp 5.333333

## 8 wi_TRUE exp 4.666667

Plot observed vs expected frequencies, and the contribution to chi-square
statistic sorted decending.
# Observed vs Expected counts

library(ggplot2)

p <- ggplot(x.table.obsexp, aes(x = cellname, fill = stat, weight=value))

p <- p + geom_bar(position="dodge")

p <- p + labs(title = "Observed and Expected frequencies")

p <- p + xlab("Age category (years)")

print(p)

# Contribution to chi-sq

# pull out only the cellname and chisq columns

x.table.chisq <- x.table[, c("cellname","chisq")]

# reorder the cellname categories to be descending relative to the chisq statistic

x.table.chisq$cellname <- with(x.table, reorder(cellname, -chisq))

p <- ggplot(x.table.chisq, aes(x = cellname, weight = chisq))

p <- p + geom_bar()

p <- p + labs(title = "Contribution to Chi-sq statistic")

p <- p + xlab("Sorted cellname category (years)")

p <- p + ylab("Contribution")

print(p)
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1.7 ADA1 Chapter 8: Correlation and re-
gression

Rocket Propellant Data A rocket motor is manufactured by bonding an

igniter propellant and a sustainer propellant together inside a metal housing.

The shear strength of the bond between the two types of propellant is an

important quality characteristic. It is suspected that shear strength is related

to the age in weeks of the batch of sustainer propellant. Twenty observations

on these two characteristics are given below. The first column is shear strength

in psi, the second is age of propellant in weeks.
#### Example: Rocket, Chapter 8

fn.data <- "http://statacumen.com/teach/ADA2/ADA2_notes_Ch01_rocket.dat"

# this file uses spaces as delimiters, so use read.table()

rocket <- read.table(fn.data, header = TRUE)

rocket$id <- 1:nrow(rocket) # add an id variable to identify observations

str(rocket)

## 'data.frame': 20 obs. of 3 variables:

## $ shearpsi: num 2159 1678 2316 2061 2208 ...

## $ agewks : num 15.5 23.8 8 17 5.5 ...

## $ id : int 1 2 3 4 5 6 7 8 9 10 ...

head(rocket)
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## shearpsi agewks id

## 1 2158.70 15.50 1

## 2 1678.15 23.75 2

## 3 2316.00 8.00 3

## 4 2061.30 17.00 4

## 5 2207.50 5.50 5

## 6 1708.30 19.00 6

# ggplot: Plot the data with linear regression fit and confidence bands

library(ggplot2)

p <- ggplot(rocket, aes(x = agewks, y = shearpsi, label = id))

p <- p + geom_point()

# plot labels next to points

p <- p + geom_text(hjust = 0.5, vjust = -0.5)

# plot regression line and confidence band

p <- p + geom_smooth(method = lm)

print(p)
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The data are reasonably linear, so fit the regression.
# fit the simple linear regression model

lm.shearpsi.agewks <- lm(shearpsi ~ agewks, data = rocket)

# use summary() to get t-tests of parameters (slope, intercept)

summary(lm.shearpsi.agewks)

##

## Call:

## lm(formula = shearpsi ~ agewks, data = rocket)

##

## Residuals:

## Min 1Q Median 3Q Max

## -215.98 -50.68 28.74 66.61 106.76

##
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## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 2627.822 44.184 59.48 < 2e-16 ***

## agewks -37.154 2.889 -12.86 1.64e-10 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 96.11 on 18 degrees of freedom

## Multiple R-squared: 0.9018,Adjusted R-squared: 0.8964

## F-statistic: 165.4 on 1 and 18 DF, p-value: 1.643e-10

Plot diagnostics.
# plot diagnistics

par(mfrow=c(2,3))

plot(lm.shearpsi.agewks, which = c(1,4,6))

# residuals vs weight

plot(rocket$agewks, lm.shearpsi.agewks$residuals, main="Residuals vs agewks")

# horizontal line at zero

abline(h = 0, col = "gray75")

# Normality of Residuals

library(car)

qqPlot(lm.shearpsi.agewks$residuals, las = 1, id.n = 3, main="QQ Plot")

## 5 6 1

## 1 2 20

# residuals vs order of data

plot(lm.shearpsi.agewks$residuals, main="Residuals vs Order of data")

# horizontal line at zero

abline(h = 0, col = "gray75")
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The relationship between shear strength and age is fairly linear with pre-

dicted shear strength decreasing as the age of the propellant increases. The

fitted LS line is

Predicted shear strength = 2627.8− 37.2 Age.

The test for H0 : β1 = 0 (zero slope for the population regression line) is

highly significant: p-value< 0.0001. Also note that R2 = 0.9018 so the linear

relationship between shear strength and age explains about 90% of the variation

in shear strength.

The data plot and residual information identify observations 5 and 6 as

potential outliers (r5 = −2.38, r6 = −2.32). The predicted values for these

observations are much greater than the observed shear strengths. These same

observations appear as potential outliers in the normal scores plot and the plot

of ri against Ŷi. Observations 5 and 6 also have the largest influence on the

analysis; see the Cook’s distance values.

A sensible next step would be to repeat the analysis holding out the most

influential case, observation 5. It should be somewhat clear that the influence
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of case 6 would increase dramatically once case 5 is omitted from the analysis.

Since both cases have essentially the same effect on the positioning of the LS

line, I will assess the impact of omitting both simultaneously.

Before we hold out these cases, how do you think the LS line will change?

My guess is these cases are pulling the LS line down, so the intercept of the LS

line should increase once these cases are omitted. Holding out either case 5 or 6

would probably also affect the slope, but my guess is that when they are both

omitted the slope will change little. (Is this my experience speaking, or have I

already seen the output? Both.) What will happen to R2 when we delete these

points?

Exclude observations 5 and 6 and redo the analysis.
# exclude observations 5 and 6

rocket56 <- rocket[-c(5,6), ]

head(rocket56)

## shearpsi agewks id

## 1 2158.70 15.50 1

## 2 1678.15 23.75 2

## 3 2316.00 8.00 3

## 4 2061.30 17.00 4

## 7 1784.70 24.00 7

## 8 2575.00 2.50 8

# ggplot: Plot the data with linear regression fit and confidence bands

library(ggplot2)

p <- ggplot(rocket56, aes(x = agewks, y = shearpsi, label = id))

p <- p + geom_point()

# plot labels next to points

p <- p + geom_text(hjust = 0.5, vjust = -0.5)

# plot regression line and confidence band

p <- p + geom_smooth(method = lm)

print(p)
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The data are reasonably linear, so fit the regression.
# fit the simple linear regression model

lm.shearpsi.agewks <- lm(shearpsi ~ agewks, data = rocket56)

# use summary() to get t-tests of parameters (slope, intercept)

summary(lm.shearpsi.agewks)

##

## Call:

## lm(formula = shearpsi ~ agewks, data = rocket56)

##

## Residuals:

## Min 1Q Median 3Q Max

## -118.07 -35.67 11.31 44.75 83.98

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 2658.973 30.533 87.08 < 2e-16 ***

## agewks -37.694 1.979 -19.05 2.02e-12 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 62.97 on 16 degrees of freedom

## Multiple R-squared: 0.9578,Adjusted R-squared: 0.9551

## F-statistic: 362.9 on 1 and 16 DF, p-value: 2.023e-12

Plot diagnostics.
# plot diagnistics

par(mfrow=c(2,3))

plot(lm.shearpsi.agewks, which = c(1,4,6))

# residuals vs weight

plot(rocket56$agewks, lm.shearpsi.agewks$residuals, main="Residuals vs agewks")
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# horizontal line at zero

abline(h = 0, col = "gray75")

# Normality of Residuals

library(car)

qqPlot(lm.shearpsi.agewks$residuals, las = 1, id.n = 3, main="QQ Plot")

## 12 20 2

## 1 2 3

# residuals vs order of data

plot(lm.shearpsi.agewks$residuals, main="Residuals vs Order of data")

# horizontal line at zero

abline(h = 0, col = "gray75")
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Some summaries for the complete analysis, and when cases 5 and 6 are held

out, are given below. The summaries lead to the following conclusions:

1. Holding out cases 5 and 6 has little effect on the estimated LS line. Pre-

dictions of shear strength are slightly larger after holding out these two

cases (recall that intercept increased, but slope was roughly the same!)

2. Holding out these two cases decreases σ̂ considerably, and leads to a

modest increase in R2. The complete data set will give wider CI and

prediction intervals than the analysis which deletes case 5 and 6 because
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σ̂ decreases when these points are omitted.

3. Once these cases are held out, the normal scores plot and plot of the

studentized residuals against fitted values shows no significant problems.

One observation has a large Cook’s D but does not appear to be extremely

influential.

Without any substantive reason to explain the low shear strengths for cases

5 and 6, I am hesitant to delete either case from the analysis. I feel relatively

confident that including these cases will not seriously limit the use of the model.

Feature Full data Omit 5 and 6

b0 2627.82 2658.97

b1 −37.15 −37.69

R2 0.9018 0.9578

σ̂ 96.10 62.96

p-val for H0 : β1 = 0 0.0001 0.0001

Here is a comparison of the predicted or fitted values for selected observa-

tions in the data set, based on the two fits.

Observation Actual Shear Strength Pred, full Pred, omit 5,6

1 2159 2052 2075

2 1678 1745 1764

4 2061 1996 2018

8 2575 2535 2565

10 2257 2219 2244

15 1765 1810 1830

18 2201 2163 2188

20 1754 1829 1849

Review complete

Now that we’re warmed up, let’s dive into new material!
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Chapter 2

Introduction to Multiple
Linear Regression

In multiple linear regression, a linear combination of two or more pre-

dictor variables (xs) is used to explain the variation in a response. In essence,

the additional predictors are used to explain the variation in the response not

explained by a simple linear regression fit.

2.1 Indian systolic blood pressure example

Anthropologists conducted a study1 to determine the long-term effects of an

environmental change on systolic blood pressure. They measured the blood

pressure and several other characteristics of 39 Indians who migrated from a

very primitive environment high in the Andes into the mainstream of Peruvian

society at a lower altitude. All of the Indians were males at least 21 years of

age, and were born at a high altitude.
#### Example: Indian

# filename

fn.data <- "http://statacumen.com/teach/ADA2/ADA2_notes_Ch02_indian.dat"

indian <- read.table(fn.data, header=TRUE)

# examine the structure of the dataset, is it what you expected?

# a data.frame containing integers, numbers, and factors

1This problem is from the Minitab handbook.
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46 Ch 2: Introduction to Multiple Linear Regression

str(indian)

## 'data.frame': 39 obs. of 11 variables:

## $ id : int 1 2 3 4 5 6 7 8 9 10 ...

## $ age : int 21 22 24 24 25 27 28 28 31 32 ...

## $ yrmig: int 1 6 5 1 1 19 5 25 6 13 ...

## $ wt : num 71 56.5 56 61 65 62 53 53 65 57 ...

## $ ht : int 1629 1569 1561 1619 1566 1639 1494 1568 1540 1530 ...

## $ chin : num 8 3.3 3.3 3.7 9 3 7.3 3.7 10.3 5.7 ...

## $ fore : num 7 5 1.3 3 12.7 3.3 4.7 4.3 9 4 ...

## $ calf : num 12.7 8 4.3 4.3 20.7 5.7 8 0 10 6 ...

## $ pulse: int 88 64 68 52 72 72 64 80 76 60 ...

## $ sysbp: int 170 120 125 148 140 106 120 108 124 134 ...

## $ diabp: int 76 60 75 120 78 72 76 62 70 64 ...

# Description of variables

# id = individual id

# age = age in years yrmig = years since migration

# wt = weight in kilos ht = height in mm

# chin = chin skin fold in mm fore = forearm skin fold in mm

# calf = calf skin fold in mm pulse = pulse rate-beats/min

# sysbp = systolic bp diabp = diastolic bp

## print dataset to screen

#indian
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id age yrmig wt ht chin fore calf pulse sysbp diabp
1 1 21 1 71.00 1629 8.00 7.00 12.70 88 170 76
2 2 22 6 56.50 1569 3.30 5.00 8.00 64 120 60
3 3 24 5 56.00 1561 3.30 1.30 4.30 68 125 75
4 4 24 1 61.00 1619 3.70 3.00 4.30 52 148 120
5 5 25 1 65.00 1566 9.00 12.70 20.70 72 140 78
6 6 27 19 62.00 1639 3.00 3.30 5.70 72 106 72
7 7 28 5 53.00 1494 7.30 4.70 8.00 64 120 76
8 8 28 25 53.00 1568 3.70 4.30 0.00 80 108 62
9 9 31 6 65.00 1540 10.30 9.00 10.00 76 124 70

10 10 32 13 57.00 1530 5.70 4.00 6.00 60 134 64
11 11 33 13 66.50 1622 6.00 5.70 8.30 68 116 76
12 12 33 10 59.10 1486 6.70 5.30 10.30 73 114 74
13 13 34 15 64.00 1578 3.30 5.30 7.00 88 130 80
14 14 35 18 69.50 1645 9.30 5.00 7.00 60 118 68
15 15 35 2 64.00 1648 3.00 3.70 6.70 60 138 78
16 16 36 12 56.50 1521 3.30 5.00 11.70 72 134 86
17 17 36 15 57.00 1547 3.00 3.00 6.00 84 120 70
18 18 37 16 55.00 1505 4.30 5.00 7.00 64 120 76
19 19 37 17 57.00 1473 6.00 5.30 11.70 72 114 80
20 20 38 10 58.00 1538 8.70 6.00 13.00 64 124 64
21 21 38 18 59.50 1513 5.30 4.00 7.70 80 114 66
22 22 38 11 61.00 1653 4.00 3.30 4.00 76 136 78
23 23 38 11 57.00 1566 3.00 3.00 3.00 60 126 72
24 24 39 21 57.50 1580 4.00 3.00 5.00 64 124 62
25 25 39 24 74.00 1647 7.30 6.30 15.70 64 128 84
26 26 39 14 72.00 1620 6.30 7.70 13.30 68 134 92
27 27 41 25 62.50 1637 6.00 5.30 8.00 76 112 80
28 28 41 32 68.00 1528 10.00 5.00 11.30 60 128 82
29 29 41 5 63.40 1647 5.30 4.30 13.70 76 134 92
30 30 42 12 68.00 1605 11.00 7.00 10.70 88 128 90
31 31 43 25 69.00 1625 5.00 3.00 6.00 72 140 72
32 32 43 26 73.00 1615 12.00 4.00 5.70 68 138 74
33 33 43 10 64.00 1640 5.70 3.00 7.00 60 118 66
34 34 44 19 65.00 1610 8.00 6.70 7.70 74 110 70
35 35 44 18 71.00 1572 3.00 4.70 4.30 72 142 84
36 36 45 10 60.20 1534 3.00 3.00 3.30 56 134 70
37 37 47 1 55.00 1536 3.00 3.00 4.00 64 116 54
38 38 50 43 70.00 1630 4.00 6.00 11.70 72 132 90
39 39 54 40 87.00 1542 11.30 11.70 11.30 92 152 88

A question we consider concerns the long term effects of an environmental

change on the systolic blood pressure. In particular, is there a relationship

between the systolic blood pressure and how long the Indians lived in their

new environment as measured by the fraction of their life spent in the new

environment.
# Create the "fraction of their life" variable

# yrage = years since migration divided by age

indian$yrage <- indian$yrmig / indian$age

# continuous color for wt

# ggplot: Plot the data with linear regression fit and confidence bands

library(ggplot2)

p <- ggplot(indian, aes(x = yrage, y = sysbp, label = id))

p <- p + geom_point(aes(colour=wt), size=2)

# plot labels next to points
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p <- p + geom_text(hjust = 0.5, vjust = -0.5, alpha = 0.25, colour = 2)

# plot regression line and confidence band

p <- p + geom_smooth(method = lm)

p <- p + labs(title="Indian sysbp by yrage with continuous wt")

print(p)

# categorical color for wt

indian$wtcat <- rep(NA, nrow(indian))

indian$wtcat <- "M" # init as medium

indian$wtcat[(indian$wt < 60)] <- "L" # update low

indian$wtcat[(indian$wt >= 70)] <- "H" # update high

# define as a factor variable with a specific order

indian$wtcat <- ordered(indian$wtcat, levels=c("L", "M", "H"))

#

library(ggplot2)

p <- ggplot(indian, aes(x = yrage, y = sysbp, label = id))

p <- p + geom_point(aes(colour=wtcat, shape=wtcat), size=2)

library(R.oo) # for ascii code lookup

p <- p + scale_shape_manual(values=charToInt(sort(unique(indian$wtcat))))

# plot regression line and confidence band

p <- p + geom_smooth(method = lm)

p <- p + labs(title="Indian sysbp by yrage with categorical wt")

print(p)
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Fit the simple linear regression model reporting the ANOVA table (“Terms”)
and parameter estimate table (“Coefficients”).
# fit the simple linear regression model

lm.sysbp.yrage <- lm(sysbp ~ yrage, data = indian)

# use Anova() from library(car) to get ANOVA table (Type 3 SS, df)

library(car)

Anova(lm.sysbp.yrage, type=3)

## Anova Table (Type III tests)

##

## Response: sysbp
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## Sum Sq Df F value Pr(>F)

## (Intercept) 178221 1 1092.9484 < 2e-16 ***

## yrage 498 1 3.0544 0.08881 .

## Residuals 6033 37

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# use summary() to get t-tests of parameters (slope, intercept)

summary(lm.sysbp.yrage)

##

## Call:

## lm(formula = sysbp ~ yrage, data = indian)

##

## Residuals:

## Min 1Q Median 3Q Max

## -17.161 -10.987 -1.014 6.851 37.254

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 133.496 4.038 33.060 <2e-16 ***

## yrage -15.752 9.013 -1.748 0.0888 .

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 12.77 on 37 degrees of freedom

## Multiple R-squared: 0.07626,Adjusted R-squared: 0.05129

## F-statistic: 3.054 on 1 and 37 DF, p-value: 0.08881

A plot above of systolic blood pressure against yrage fraction suggests a

weak linear relationship. Nonetheless, consider fitting the regression model

sysbp = β0 + β1 yrage + ε.

The least squares line (already in the plot) is given by

ŝysbp = 133.5 +−15.75 yrage,

and suggests that average systolic blood pressure decreases as the fraction of

life spent in modern society increases. However, the t-test of H0 : β1 = 0

is not significant at the 5% level (p-value=0.08881). That is, the weak linear

relationship observed in the data is not atypical of a population where there is

no linear relationship between systolic blood pressure and the fraction of life

spent in a modern society.
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Even if this test were significant, the small value of R2 = 0.07626 suggests

that yrage fraction does not explain a substantial amount of the variation in

the systolic blood pressures. If we omit the individual with the highest blood

pressure then the relationship would be weaker.

2.1.1 Taking Weight Into Consideration

At best, there is a weak relationship between systolic blood pressure and the

yrage fraction. However, it is usually accepted that systolic blood pressure and

weight are related. A natural way to take weight into consideration is to include

wt (weight) and yrage fraction as predictors of systolic blood pressure in the

multiple regression model:

sysbp = β0 + β1 yrage + β2 wt + ε.

As in simple linear regression, the model is written in the form:

Response = Mean of Response + Residual,

so the model implies that that average systolic blood pressure is a linear combi-

nation of yrage fraction and weight. As in simple linear regression, the standard

multiple regression analysis assumes that the responses are normally distributed

with a constant variance σ2. The parameters of the regression model β0, β1,

β2, and σ2 are estimated by least squares (LS).

Here is the multiple regression model with yrage and wt (weight) as predic-

tors. Add wt to the right hand side of the previous formula statement.
# fit the multiple linear regression model, (" + wt" added)

lm.sysbp.yrage.wt <- lm(sysbp ~ yrage + wt, data = indian)

library(car)

Anova(lm.sysbp.yrage.wt, type=3)

## Anova Table (Type III tests)

##

## Response: sysbp

## Sum Sq Df F value Pr(>F)

## (Intercept) 1738.2 1 18.183 0.0001385 ***

## yrage 1314.7 1 13.753 0.0006991 ***

## wt 2592.0 1 27.115 7.966e-06 ***
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## Residuals 3441.4 36

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

summary(lm.sysbp.yrage.wt)

##

## Call:

## lm(formula = sysbp ~ yrage + wt, data = indian)

##

## Residuals:

## Min 1Q Median 3Q Max

## -18.4330 -7.3070 0.8963 5.7275 23.9819

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 60.8959 14.2809 4.264 0.000138 ***

## yrage -26.7672 7.2178 -3.708 0.000699 ***

## wt 1.2169 0.2337 5.207 7.97e-06 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 9.777 on 36 degrees of freedom

## Multiple R-squared: 0.4731,Adjusted R-squared: 0.4438

## F-statistic: 16.16 on 2 and 36 DF, p-value: 9.795e-06

2.1.2 Important Points to Notice About the Regres-
sion Output

1. The LS estimates of the intercept and the regression coefficient for yrage

fraction, and their standard errors, change from the simple linear model

to the multiple regression model. For the simple linear regression:

ŝysbp = 133.50− 15.75 yrage.

For the multiple regression model:

ŝysbp = 60.89− 26.76 yrage + 1.21 wt.

2. Looking at the ANOVA tables for the simple linear and the multiple

regression models we see that the Regression (model) df has increased

from 1 to 2 (2=number of predictor variables) and the Residual (error)

UNM, Stat 428/528 ADA2



52 Ch 2: Introduction to Multiple Linear Regression

df has decreased from 37 to 36 (=n− 1− number of predictors). Adding

a predictor increases the Regression df by 1 and decreases the Residual

df by 1.

3. The Residual SS decreases by 6033.37− 3441.36 = 2592.01 upon adding

the weight term. The Regression SS increased by 2592.01 upon adding

the weight term term to the model. The Total SS does not depend on the

number of predictors so it stays the same. The Residual SS, or the part of

the variation in the response unexplained by the regression model, never

increases when new predictors are added. (You can’t add a predictor and

explain less variation.)

4. The proportion of variation in the response explained by the regression

model:

R2 = Regression SS/Total SS

never decreases when new predictors are added to a model. The R2 for

the simple linear regression was 0.076, whereas

R2 = 3090.08/6531.44 = 0.473

for the multiple regression model. Adding the weight variable to the

model increases R2 by 40%. That is, weight explains 40% of the variation

in systolic blood pressure not already explained by fraction.

5. The estimated variability about the regression line

Residual MS = σ̂2

decreased dramatically after adding the weight effect. For the simple

linear regression model σ̂2 = 163.06, whereas σ̂2 = 95.59 for the multiple

regression model. This suggests that an important predictor has been

added to model.

6. The F -statistic for the multiple regression model

Fobs = Regression MS/Residual MS = 1545.04/95.59 = 16.163

(which is compared to a F -table with 2 and 36 df ) tests H0 : β1 = β2 = 0

against HA : not H0. This is a test of no relationship between the average
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systolic blood pressure and fraction and weight, assuming the relationship

is linear. If this test is significant, then either fraction or weight, or both,

are important for explaining the variation in systolic blood pressure.

7. Given the model

sysbp = β0 + β1 yrage + β2 wt + ε,

we are interested in testing H0 : β2 = 0 against HA : β2 6= 0. The

t-statistic for this test

tobs =
b2 − 0

SE(b2)
=

1.217

0.234
= 5.207

is compared to a t-critical value with Residual df = 36. The test gives a p-

value of < 0.0001, which suggests β2 6= 0. The t-test of H0 : β2 = 0 in the

multiple regression model tests whether adding weight to the simple linear

regression model explains a significant part of the variation in systolic

blood pressure not explained by yrage fraction. In some sense, the t-test

of H0 : β1 = 0 will be significant if the increase in R2 (or decrease in

Residual SS) obtained by adding weight to this simple linear regression

model is substantial. We saw a big increase in R2, which is deemed

significant by the t-test. A similar interpretation is given to the t-test for

H0 : β1 = 0.

8. The t-tests for β0 = 0 and β1 = 0 are conducted, assessed, and interpreted

in the same manner. The p-value for testing H0 : β0 = 0 is 0.0001,

whereas the p-value for testing H0 : β1 = 0 is 0.0007. This implies that

fraction is important in explaining the variation in systolic blood pressure

after weight is taken into consideration (by including weight in the model

as a predictor).

9. We compute CIs for the regression parameters in the usual way: bi +

tcritSE(bi), where tcrit is the t-critical value for the corresponding CI level

with df = Residual df.
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2.1.3 Understanding the Model

The t-test for H0 : β1 = 0 is highly significant (p-value=0.0007), which implies

that fraction is important in explaining the variation in systolic blood pressure

after weight is taken into consideration (by including weight in the

model as a predictor). Weight is called a suppressor variable. Ignoring

weight suppresses the relationship between systolic blood pressure and yrage

fraction.

The implications of this analysis are enormous! Essentially, the

correlation between a predictor and a response says very little about the im-

portance of the predictor in a regression model with one or more additional

predictors. This conclusion also holds in situations where the correlation is

high, in the sense that a predictor that is highly correlated with the response

may be unimportant in a multiple regression model once other predictors are

included in the model. In multiple regression “everything depends on every-

thing else.”

I will try to convince you that this was expected, given the plot of systolic

blood pressure against fraction. This plot used a weight category variable

wtcat L, M, or H as a plotting symbol. The relationship between systolic blood

pressure and fraction is fairly linear within each weight category, and stronger

than when we ignore weight. The slopes in the three groups are negative and

roughly constant.

To see why yrage fraction is an important predictor after taking weight into

consideration, let us return to the multiple regression model. The model implies

that the average systolic blood pressure is a linear combination of yrage fraction

and weight:

ŝysbp = β0 + β1 yrage + β2 wt.

For each fixed weight, the average systolic blood pressure is linearly related

to yrage fraction with a constant slope β1, independent of weight. A similar

interpretation holds if we switch the roles of yrage fraction and weight. That is,

if we fix the value of fraction, then the average systolic blood pressure is linearly

related to weight with a constant slope β2, independent of yrage fraction.
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To see this point, suppose that the LS estimates of the regression parameters

are the true values

ŝysbp = 60.89− 26.76 yrage + 1.21 wt.

If we restrict our attention to 50kg Indians, the average systolic blood pressure

as a function of fraction is

ŝysbp = 60.89− 26.76 yrage + 1.21(50) = 121.39− 26.76 yrage.

For 60kg Indians,

ŝysbp = 60.89− 26.76 yrage + 1.21(60) = 133.49− 26.76 yrage.

Hopefully the pattern is clear: the average systolic blood pressure decreases

by 26.76 for each increase of 1 on fraction, regardless of one’s weight. If we vary

weight over its range of values, we get a set of parallel lines (i.e., equal slopes)

when we plot average systolic blood pressure as a function of yrage fraction.

The intercept increases by 1.21 for each increase of 1kg in weight.
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Similarly, if we plot the average systolic blood pressure as a function of

weight, for several fixed values of fraction, we see a set of parallel lines with

slope 26.76, and intercepts decreasing by 26.76 for each increase of 1 in fraction.
# ggplot: Plot the data with linear regression fit and confidence bands

library(ggplot2)

p <- ggplot(indian, aes(x = wt, y = sysbp, label = id))

p <- p + geom_point(aes(colour=yrage), size=2)

# plot labels next to points

p <- p + geom_text(hjust = 0.5, vjust = -0.5, alpha = 0.25, colour = 2)

# plot regression line and confidence band

p <- p + geom_smooth(method = lm)

p <- p + labs(title="Indian sysbp by wt with continuous yrage")

print(p)
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If we had more data we could check the model by plotting systolic blood

pressure against fraction, broken down by individual weights. The plot should

show a fairly linear relationship between systolic blood pressure and fraction,

with a constant slope across weights. I grouped the weights into categories

because of the limited number of observations. The same phenomenon should

approximately hold, and it does. If the slopes for the different weight groups

changed drastically with weight, but the relationships were linear, we would

need to include an interaction or product variable wt× yrage in the model,
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in addition to weight and yrage fraction. This is probably not warranted here.

A final issue that I wish to address concerns the interpretation of the es-

timates of the regression coefficients in a multiple regression model. For the

fitted model

ŝysbp = 60.89− 26.76 yrage + 1.21 wt

our interpretation is consistent with the explanation of the regression model

given above. For example, focus on the yrage fraction coefficient. The negative

coefficient indicates that the predicted systolic blood pressure decreases as yrage

fraction increases holding weight constant. In particular, the predicted

systolic blood pressure decreases by 26.76 for each unit increase in fraction,

holding weight constant at any value. Similarly, the predicted systolic blood

pressure increases by 1.21 for each unit increase in weight, holding yrage fraction

constant at any level.

This example was meant to illustrate multiple regression. A more complete

analysis of the data, including diagnostics, will be given later.

2.2 GCE exam score example

The data below are selected from a larger collection of data referring to candi-

dates for the General Certificate of Education (GCE) who were being considered

for a special award. Here, Y denotes the candidate’s total mark, out of 1000,

in the GCE exam, while X1 is the candidate’s score in the compulsory part of

the exam, which has a maximum score of 200 of the 1000 points on the exam.

X2 denotes the candidates’ score, out of 100, in a School Certificate English

Language paper taken on a previous occasion.
#### Example: GCE

fn.data <- "http://statacumen.com/teach/ADA2/ADA2_notes_Ch02_gce.dat"

gce <- read.table(fn.data, header=TRUE)

str(gce)

## 'data.frame': 15 obs. of 3 variables:

## $ y : int 476 457 540 551 575 698 545 574 645 690 ...

## $ x1: int 111 92 90 107 98 150 118 110 117 114 ...

## $ x2: int 68 46 50 59 50 66 54 51 59 80 ...
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## print dataset to screen

#gce

y x1 x2
1 476 111 68
2 457 92 46
3 540 90 50
4 551 107 59
5 575 98 50
6 698 150 66
7 545 118 54
8 574 110 51
9 645 117 59

10 690 114 80
11 634 130 57
12 637 118 51
13 390 91 44
14 562 118 61
15 560 109 66

A goal here is to compute a multiple regression of Y on X1 and X2, and

make the necessary tests to enable you to comment intelligently on the extent

to which current performance in the compulsory test (X1) may be used to

predict aggregate performance on the GCE exam (Y ), and on whether previous

performance in the School Certificate English Language (X2) has any predictive

value independently of what has already emerged from the current performance

in the compulsory papers.

I will lead you through a number of steps to help you answer this question.

Let us answer the following straightforward questions.

1. Plot Y against X1 and X2 individually, and comment on the form (i.e.,

linear, non-linear, logarithmic, etc.), strength, and direction of the rela-

tionships.

2. Plot X1 against X2 and comment on the form, strength, and direction of

the relationship.

3. Compute the correlation between all pairs of variables. Do the correlations

appear sensible, given the plots?
library(ggplot2)

#suppressMessages(suppressWarnings(library(GGally)))

library(GGally)

#p <- ggpairs(gce)

# put scatterplots on top so y axis is vertical

p <- ggpairs(gce, upper = list(continuous = "points")

, lower = list(continuous = "cor")

)
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print(p)

# detach package after use so reshape2 works (old reshape (v.1) conflicts)

#detach("package:GGally", unload=TRUE)

#detach("package:reshape", unload=TRUE)
y

x1
x2

y x1 x2
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# correlation matrix and associated p-values testing "H0: rho == 0"

library(Hmisc)

rcorr(as.matrix(gce))

## y x1 x2

## y 1.00 0.73 0.55

## x1 0.73 1.00 0.51

## x2 0.55 0.51 1.00

##

## n= 15

##

##

## P

## y x1 x2
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## y 0.0020 0.0346

## x1 0.0020 0.0527

## x2 0.0346 0.0527

In parts 4 through 9, ignore the possibility that Y , X1 or X2 might ideally

need to be transformed.

4. Which of X1 and X2 explains a larger proportion of the variation in Y ?

Which would appear to be a better predictor of Y ? (Explain).
Model Y = β0 + β1X1 + ε:
# y ~ x1

lm.y.x1 <- lm(y ~ x1, data = gce)

library(car)

Anova(lm.y.x1, type=3)

## Anova Table (Type III tests)

##

## Response: y

## Sum Sq Df F value Pr(>F)

## (Intercept) 4515 1 1.246 0.284523

## x1 53970 1 14.895 0.001972 **

## Residuals 47103 13

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

summary(lm.y.x1)

##

## Call:

## lm(formula = y ~ x1, data = gce)

##

## Residuals:

## Min 1Q Median 3Q Max

## -97.858 -33.637 -0.034 48.507 111.327

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 128.548 115.160 1.116 0.28452

## x1 3.948 1.023 3.859 0.00197 **

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 60.19 on 13 degrees of freedom

## Multiple R-squared: 0.534,Adjusted R-squared: 0.4981

## F-statistic: 14.9 on 1 and 13 DF, p-value: 0.001972

Plot diagnostics.
# plot diagnistics

par(mfrow=c(2,3))
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plot(lm.y.x1, which = c(1,4,6))

plot(gce$x1, lm.y.x1$residuals, main="Residuals vs x1")

# horizontal line at zero

abline(h = 0, col = "gray75")

# Normality of Residuals

library(car)

qqPlot(lm.y.x1$residuals, las = 1, id.n = 3, main="QQ Plot")

## 10 13 1

## 15 1 2

# residuals vs order of data

plot(lm.y.x1$residuals, main="Residuals vs Order of data")

# horizontal line at zero

abline(h = 0, col = "gray75")

500 550 600 650 700

−
10

0
−

50
0

50
10

0

Fitted values

R
es

id
ua

ls

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Residuals vs Fitted

10

13 1

2 4 6 8 10 12 14

0.
0

0.
1

0.
2

0.
3

0.
4

Obs. number

C
oo

k'
s 

di
st

an
ce

Cook's distance
13

63

0.
0

0.
1

0.
2

0.
3

0.
4

Leverage  hii

C
oo

k'
s 

di
st

an
ce

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

0 0.1 0.2 0.3 0.4 0.5

0

0.5

11.52

Cook's dist vs Leverage  hii (1 − hii)
13

63

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

90 100 110 120 130 140 150

−
10

0
−

50
0

50
10

0

Residuals vs x1

gce$x1

lm
.y

.x
1$

re
si

du
al

s

−1 0 1

−100

−50

0

50

100

QQ Plot

norm quantiles

lm
.y

.x
1$

re
si

du
al

s

●

●

●

● ●

●

●

● ●

●

●

● ●
●

●10

13 1 ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

2 4 6 8 10 12 14

−
10

0
−

50
0

50
10

0

Residuals vs Order of data

Index

lm
.y

.x
1$

re
si

du
al

s

Model Y = β0 + β1X2 + ε:
# y ~ x2

lm.y.x2 <- lm(y ~ x2, data = gce)

library(car)

Anova(lm.y.x2, type=3)

## Anova Table (Type III tests)

##

## Response: y

## Sum Sq Df F value Pr(>F)

## (Intercept) 32656 1 6.0001 0.02924 *

## x2 30321 1 5.5711 0.03455 *
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## Residuals 70752 13

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

summary(lm.y.x2)

##

## Call:

## lm(formula = y ~ x2, data = gce)

##

## Residuals:

## Min 1Q Median 3Q Max

## -143.770 -37.725 7.103 54.711 99.276

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 291.586 119.038 2.45 0.0292 *

## x2 4.826 2.045 2.36 0.0346 *

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 73.77 on 13 degrees of freedom

## Multiple R-squared: 0.3,Adjusted R-squared: 0.2461

## F-statistic: 5.571 on 1 and 13 DF, p-value: 0.03455

# plot diagnistics
par(mfrow=c(2,3))
plot(lm.y.x2, which = c(1,4,6))

plot(gce$x2, lm.y.x2$residuals, main="Residuals vs x2")
# horizontal line at zero
abline(h = 0, col = "gray75")

# Normality of Residuals
library(car)
qqPlot(lm.y.x2$residuals, las = 1, id.n = 3, main="QQ Plot")

## 1 13 12
## 1 2 15

# residuals vs order of data
plot(lm.y.x2$residuals, main="Residuals vs Order of data")

# horizontal line at zero
abline(h = 0, col = "gray75")
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Answer: R2 is 0.53 for the model with X1 and 0.30 with X2. Equivilantly,

the Model SS is larger for X1 (53970) than for X2 (30321). Thus, X1

appears to be a better predictor of Y than X2.

5. Consider 2 simple linear regression models for predicting Y , one with

X1 as a predictor, and the other with X2 as the predictor. Do X1 and

X2 individually appear to be important for explaining the variation in

Y ? (i.e., test that the slopes of the regression lines are zero). Which, if

any, of the output, support, or contradicts, your answer to the previous

question?

Answer: The model with X1 has a t-statistic of 3.86 with an associated

p-value of 0.0020, while X2 has a t-statistic of 2.36 with an associated p-

value of 0.0346. Both predictors explain a significant amount of variability

in Y . This is consistant with part (4).

6. Fit the multiple regression model

Y = β0 + β1X1 + β2X2 + ε.

Test H0 : β1 = β2 = 0 at the 5% level. Describe in words what this test

is doing, and what the results mean here.
Model Y = β0 + β1X1 + β2X2 + ε:
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# y ~ x1 + x2

lm.y.x1.x2 <- lm(y ~ x1 + x2, data = gce)

library(car)

Anova(lm.y.x1.x2, type=3)

## Anova Table (Type III tests)

##

## Response: y

## Sum Sq Df F value Pr(>F)

## (Intercept) 1571 1 0.4396 0.51983

## x1 27867 1 7.7976 0.01627 *

## x2 4218 1 1.1802 0.29866

## Residuals 42885 12

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

summary(lm.y.x1.x2)

##

## Call:

## lm(formula = y ~ x1 + x2, data = gce)

##

## Residuals:

## Min 1Q Median 3Q Max

## -113.201 -29.605 -6.198 56.247 66.285

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 81.161 122.406 0.663 0.5198

## x1 3.296 1.180 2.792 0.0163 *

## x2 2.091 1.925 1.086 0.2987

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 59.78 on 12 degrees of freedom

## Multiple R-squared: 0.5757,Adjusted R-squared: 0.505

## F-statistic: 8.141 on 2 and 12 DF, p-value: 0.005835

Diagnostic plots suggest the residuals are roughly normal with no sub-
stantial outliers, though the Cook’s distance is substantially larger for
observation 10. We may wish to fit the model without observation 10 to
see whether conclusions change.
# plot diagnistics
par(mfrow=c(2,3))
plot(lm.y.x1.x2, which = c(1,4,6))

plot(gce$x1, lm.y.x1.x2$residuals, main="Residuals vs x1")
# horizontal line at zero
abline(h = 0, col = "gray75")

plot(gce$x2, lm.y.x1.x2$residuals, main="Residuals vs x2")
# horizontal line at zero
abline(h = 0, col = "gray75")
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# Normality of Residuals
library(car)
qqPlot(lm.y.x1.x2$residuals, las = 1, id.n = 3, main="QQ Plot")

## 1 13 5
## 1 2 15

## residuals vs order of data
#plot(lm.y.x1.x2£residuals, main="Residuals vs Order of data")
# # horizontal line at zero
# abline(h = 0, col = "gray75")
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Answer: The ANOVA table reports an F -statistic of 8.14 with associated

p-value of 0.0058 indicating that the regression model with both X1 and

X2 explains significantly more variability in Y than a model with the in-

tercept, alone. That is, X1 and X2 explain variability in Y together. This

does not tell us which of or whether X1 or X2 are individually important

(recall the results of the Indian systolic blood pressure example).

7. In the multiple regression model, test H0 : β1 = 0 and H0 : β2 = 0

individually. Describe in words what these tests are doing, and what the

results mean here.

Answer: Each hypothesis is testing, conditional on all other predictors

being in the model, whether the addition of the predictor being tested

explains significantly more variability in Y than without it.

For H0 : β1 = 0, the t-statistic is 2.79 with an associated p-value of
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0.0163. Thus, we reject H0 in favor of the alternative that the slope is

statistically significantly different from 0 conditional on X2 being in the

model. That is, X1 explains significantly more variability in Y given that

X2 is already in the model.

For H0 : β2 = 0, the t-statistic is 1.09 with an associated p-value of

0.2987. Thus, we fail to reject H0 concluding that there is insufficient

evidence that the slope is different from 0 conditional on X1 being in the

model. That is, X2 does not explain significantly more variability in Y

given that X1 is already in the model.

8. How does the R2 from the multiple regression model compare to the R2

from the individual simple linear regressions? Is what you are seeing here

appear reasonable, given the tests on the individual coefficients?

Answer: The R2 for the model with only X1 is 0.5340, only X2 is 0.3000,

and both X1 and X2 is 0.5757. There is only a very small increase in R2

from the model with only X1 when X2 is added, which is consistent with

X2 not being important given that X1 is already in the model.

9. Do your best to answer the question posed above, in the paragraph after

the data “A goal . . . ”. Provide an equation (LS) for predicting Y .

Answer: Yes, we’ve seen that X1 may be used to predict Y , and that

X2 does not explain significantly more variability in the model with X1.

Thus, the preferred model has only X1:

ŷ = 128.55 + 3.95X1.

2.2.1 Some Comments on GCE Analysis

I will give you my thoughts on these data, and how I would attack this problem,

keeping the ultimate goal in mind. I will examine whether transformations of

the data are appropriate, and whether any important conclusions are dramati-

cally influenced by individual observations. I will use some new tools to attack

this problem, and will outline how they are used.

The plot of GCE (Y ) against COMP (X1) is fairly linear, but the trend in
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the plot of GCE (Y ) against SCEL (X2) is less clear. You might see a non-

linear trend here, but the relationship is not very strong. When I assess plots I

try to not allow a few observations affect my perception of trend, and with this

in mind, I do not see any strong evidence at this point to transform any of the

variables.

One difficulty that we must face when building a multiple regression model

is that these two-dimensional (2D) plots of a response against individual pre-

dictors may have little information about the appropriate scales for a multiple

regression analysis. In particular, the 2D plots only tell us whether we need to

transform the data in a simple linear regression analysis. If a 2D plot shows

a strong non-linear trend, I would do an analysis using the suggested transfor-

mations, including any other effects that are important. However, it might be

that no variables need to be transformed in the multiple regression model.

The partial regression residual plot, or added variable plot, is a graph-

ical tool that provides information about the need for transformations in a mul-

tiple regression model. The following reg procedure generates diagnostics and

the partial residual plots for each predictor in the multiple regression model

that has COMP and SCEL as predictors of GCE.
library(car)

avPlots(lm.y.x1.x2, id.n=3)
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Added−Variable Plots

The partial regression residual plot compares the residuals from two model
fits. First, we “adjust” Y for all the other predictors in the model except the
selected one. Then, we “adjust” the selected variable Xsel for all the other pre-
dictors in the model. Lastly, plot the residuals from these two models against
each other to see what relationship still exists between Y and Xsel after ac-
counting for their relationships with the other predictors.
# function to create partial regression plot

partial.regression.plot <- function (y, x, sel, ...) {
m <- as.matrix(x[, -sel])

# residuals of y regressed on all x's except "sel"

y1 <- lm(y ~ m)$res

# residuals of x regressed on all other x's

x1 <- lm(x[, sel] ~ m)$res

# plot residuals of y vs residuals of x

plot( y1 ~ x1, main="Partial regression plot", ylab="y | others", ...)

# add grid

grid(lty = "solid")

# add red regression line

abline(lm(y1 ~ x1), col = "red", lwd = 2)

}

par(mfrow=c(1, 2))

partial.regression.plot(gce$y, cbind(gce$x1, gce$x2), 1, xlab="x1 | others")

partial.regression.plot(gce$y, cbind(gce$x1, gce$x2), 2, xlab="x2 | others")
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The first partial regression residual plot for COMP, given below, “adjusts”

GCE (Y ) and COMP (X1) for their common dependence on all the other

predictors in the model (only SCEL (X2) here). This plot tells us whether we

need to transform COMP in the multiple regression model, and whether any

observations are influencing the significance of COMP in the fitted model. A

roughly linear trend suggests that no transformation of COMP is warranted.

The positive relationship seen here is consistent with the coefficient of COMP

being positive in the multiple regression model. The partial residual plot for

COMP shows little evidence of curvilinearity, and much less so than the original

2D plot of GCE against COMP. This indicates that there is no strong evidence

for transforming COMP in a multiple regression model that includes SCEL.

Although SCEL appears to somewhat useful as a predictor of GCE on it’s

own, the multiple regression output indicates that SCEL does not explain a

significant amount of the variation in GCE, once the effect of COMP has been

taken into account. Put another way, previous performance in the School Cer-

tificate English Language (X2) has little predictive value independently of what

has already emerged from the current performance in the compulsory papers

(X1 or COMP). This conclusion is consistent with the fairly weak linear rela-

tionship between GCE against SCEL seen in the second partial residual plot.
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Do diagnostics suggest any deficiencies associated with this conclusion? The

partial residual plot of SCEL highlights observation 10, which has the largest

value of Cook’s distance in the multiple regression model. If we visually hold

observation 10 out from this partial residual plot, it would appear that the

relationship observed in this plot would weaken. This suggests that observation

10 is actually enhancing the significance of SCEL in the multiple regression

model. That is, the p-value for testing the importance of SCEL in the multiple

regression model would be inflated by holding out observation 10. The following

output confirms this conjecture. The studentized residuals, Cook’s distances

and partial residual plots show no serious deficiencies.
Model Y = β0 + β1X1 + β2X2 + ε, excluding observation 10:

gce10 <- gce[-10,]

# y ~ x1 + x2

lm.y10.x1.x2 <- lm(y ~ x1 + x2, data = gce10)

library(car)

Anova(lm.y10.x1.x2, type=3)

## Anova Table (Type III tests)

##

## Response: y

## Sum Sq Df F value Pr(>F)

## (Intercept) 5280 1 1.7572 0.211849

## x1 37421 1 12.4540 0.004723 **

## x2 747 1 0.2486 0.627870

## Residuals 33052 11

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

summary(lm.y10.x1.x2)

##

## Call:

## lm(formula = y ~ x1 + x2, data = gce10)

##

## Residuals:

## Min 1Q Median 3Q Max

## -99.117 -30.319 4.661 37.416 64.803

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 159.461 120.295 1.326 0.21185

## x1 4.241 1.202 3.529 0.00472 **

## x2 -1.280 2.566 -0.499 0.62787

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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##

## Residual standard error: 54.82 on 11 degrees of freedom

## Multiple R-squared: 0.6128,Adjusted R-squared: 0.5424

## F-statistic: 8.706 on 2 and 11 DF, p-value: 0.005413

# plot diagnistics
par(mfrow=c(2,3))
plot(lm.y10.x1.x2, which = c(1,4,6))

plot(gce10$x1, lm.y10.x1.x2$residuals, main="Residuals vs x1")
# horizontal line at zero
abline(h = 0, col = "gray75")

plot(gce10$x2, lm.y10.x1.x2$residuals, main="Residuals vs x2")
# horizontal line at zero
abline(h = 0, col = "gray75")

# Normality of Residuals
library(car)
qqPlot(lm.y10.x1.x2$residuals, las = 1, id.n = 3, main="QQ Plot")

## 13 1 9
## 1 2 14

## residuals vs order of data
#plot(lm.y10.x1.x2£residuals, main="Residuals vs Order of data")
# # horizontal line at zero
# abline(h = 0, col = "gray75")
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library(car)

avPlots(lm.y10.x1.x2, id.n=3)
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What are my conclusions? It would appear that SCEL (X2) is not a useful

predictor in the multiple regression model. For simplicity, I would likely use

a simple linear regression model to predict GCE (Y ) from COMP (X1) only.

The diagnostic analysis of the model showed no serious deficiencies.

Prof. Erik B. Erhardt



Chapter 3

A Taste of Model
Selection for Multiple
Regression

3.1 Model

Given data on a response variable Y and k predictor variables X1, X2, . . . , Xk,

we wish to develop a regression model to predict Y . Assuming that the collec-

tion of variables is measured on the correct scale, and that the candidate list of

predictors includes all the important predictors, the most general model is

Y = β0 + β1X1 + · · · + βkXk + ε.

In most problems one or more of the predictors can be eliminated from this

general or full model without (much) loss of information. We want to identify

the important predictors, or equivalently, eliminate the predictors that are not

very useful for explaining the variation in Y (conditional on the other predictors

in the model).

We will study several automated methods for model selection, which,

given a specific criterion for selecting a model, gives the best predictors. Be-

fore applying any of the methods, you should plot Y against each predictor

UNM, Stat 428/528 ADA2



74 Ch 3: A Taste of Model Selection for Multiple Regression

X1, X2, . . . , Xk to see whether transformations are needed. If a transformation

of Xi is suggested, include the transformation along with the original Xi in

the candidate list. Note that you can transform the predictors differently, for

example, log(X1) and
√
X2. However, if several transformations are suggested

for the response, then you should consider doing one analysis for each suggested

response scale before deciding on the final scale.

At this point, I will only consider the backward elimination method.

Other approaches will be addressed later this semester.

3.2 Backward Elimination

The backward elimination procedure deletes unimportant variables, one at a

time, starting from the full model. The steps is the procedure are:

1. Fit the full model

Y = β0 + β1X1 + · · · + βkXk + ε.

2. Find the variable which when omitted from the full model (1) reduces R2

the least, or equivalently, increases the Residual SS the least. This is the

variable that gives the largest p-value for testing an individual regression

coefficient H0 : βi = 0 for i > 0. Suppose this variable is Xk. If you

reject H0, stop and conclude that the full model is best. If you do not

reject H0, delete Xk from the full model, giving the new full model

Y = β0 + β1X1 + · · · + βk−1Xk−1 + ε.

Repeat steps 1 and 2 sequentially until no further predictors can be

deleted.

In backward elimination we isolate the least important predictor left in the

model, and check whether it is important. If not, delete it and repeat the

process. Otherwise, stop. A 0.10 significance level is common to use for this

strategy.
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Epidemiologists use a slightly different approach to building models. They

argue strongly for the need to always include confounding variables in a

model, regardless of their statistical significance. I will briefly discuss this issue,

but you should recognize that there is no universally accepted best approach

to building models. A related issue is that several sets of predictors might

give nearly identical fits and predictions to those obtained using any model

selection method. This should not be too surprising because predictors are often

correlated with each other. However, this should make us question whether one

could ever completely unravel which variables are important (and which are

not) for predicting a response.

3.2.1 Maximum likelihood and AIC/BIC

The Akaike information criterion (AIC) and Bayesian informa-

tion criterion (BIC) are related penalized-likelihood criteria of the relative

goodness-of-fit of a statistical model to the observed data. For model selection,

a parsimonious model minimizes (one of) these quantities, where the penalty

term is larger in BIC (k ln(n)) than in AIC (2k). They are defined as

AIC = −2 ln(L) + 2k and

BIC = −2 ln(L) + k ln(n)

where n is the number of observations, k is the number of model parameters,

and L is the maximized value of the likelihood function for the estimated model.

Maximum-likelihood estimation (MLE) applied to a data set and given a

statistical model, estimates the model’s parameters (βs and σ2 in regression).

MLE finds the particular parametric values that make the observed data the

most probable given the model. That is, it selects the set of values of the model

parameters that maximizes the likelihood function.

In practice, start with a set of candidate models, and then find the models’

corresponding AIC/BIC values. There will almost always be information lost

due to using one of the candidate models to represent the “true” (unknown)

model. We choose the model that minimizes the (estimated) information loss
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(the Kullback-Leibler divergence of the “true” unknown model represented with

a candidate model).

The penalty discourages overfitting. Increasing the number of free param-

eters in the model will always improve the goodness-of-fit, regardless of the

number of free parameters in the data-generating process. In the spirit of Oc-

cam’s razor, the principle of parsimony, economy, or succinctness, the penalty

helps balance the complexity of the model (low) with its ability to describe the

data (high).

There are many methods for model selection. AIC or BIC are good tools for

helping to choose among candidate models. A model selected by BIC will tend

to have fewer parameters than one selected by AIC. Ultimately, you have to

choose a model. I think of automated model selection as a starting point among

the models I ultimately consider, and I may decide upon a different model than

AIC, BIC, or another method.

3.3 Example: Peru Indian blood pressure

I will illustrate backward elimination on the Peru Indian data, using systolic

blood pressure (sysbp) as the response, and seven candidate predictors: wt =

weight in kilos; ht = height in mm; chin = chin skin fold in mm; fore = forearm

skin fold in mm; calf = calf skin fold in mm; pulse = pulse rate-beats/min,

and yrage = fraction.

The program given below generates simple summary statistics and plots.

The plots do not suggest any apparent transformations of the response or the

predictors, so we will analyze the data using the given scales. The correlations

between the response and each potential predictor indicate that predictors are

generally not highly correlated with each other (a few are).
#### Example: Indian

# filename

fn.data <- "http://statacumen.com/teach/ADA2/ADA2_notes_Ch02_indian.dat"

indian <- read.table(fn.data, header=TRUE)

# Create the "fraction of their life" variable
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# yrage = years since migration divided by age

indian$yrage <- indian$yrmig / indian$age

# subset of variables we want in our model

indian2 <- subset(indian, select=c("sysbp", "wt", "ht", "chin"

, "fore", "calf", "pulse", "yrage")

)

str(indian2)

## 'data.frame': 39 obs. of 8 variables:

## $ sysbp: int 170 120 125 148 140 106 120 108 124 134 ...

## $ wt : num 71 56.5 56 61 65 62 53 53 65 57 ...

## $ ht : int 1629 1569 1561 1619 1566 1639 1494 1568 1540 1530 ...

## $ chin : num 8 3.3 3.3 3.7 9 3 7.3 3.7 10.3 5.7 ...

## $ fore : num 7 5 1.3 3 12.7 3.3 4.7 4.3 9 4 ...

## $ calf : num 12.7 8 4.3 4.3 20.7 5.7 8 0 10 6 ...

## $ pulse: int 88 64 68 52 72 72 64 80 76 60 ...

## $ yrage: num 0.0476 0.2727 0.2083 0.0417 0.04 ...

# Description of variables

# id = individual id

# age = age in years yrmig = years since migration

# wt = weight in kilos ht = height in mm

# chin = chin skin fold in mm fore = forearm skin fold in mm

# calf = calf skin fold in mm pulse = pulse rate-beats/min

# sysbp = systolic bp diabp = diastolic bp

## print dataset to screen

#indian2

library(ggplot2)

#suppressMessages(suppressWarnings(library(GGally)))

library(GGally)

#p <- ggpairs(indian2)

# put scatterplots on top so y axis is vertical

p <- ggpairs(indian2, upper = list(continuous = "points")

, lower = list(continuous = "cor")

)

print(p)

# detach package after use so reshape2 works (old reshape (v.1) conflicts)

#detach("package:GGally", unload=TRUE)

#detach("package:reshape", unload=TRUE)
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# correlation matrix and associated p-values testing "H0: rho == 0"

library(Hmisc)

rcorr(as.matrix(indian2))

## sysbp wt ht chin fore calf pulse yrage

## sysbp 1.00 0.52 0.22 0.17 0.27 0.25 0.13 -0.28

## wt 0.52 1.00 0.45 0.56 0.54 0.39 0.31 0.29

## ht 0.22 0.45 1.00 -0.01 -0.07 0.00 0.00 0.05

## chin 0.17 0.56 -0.01 1.00 0.64 0.52 0.22 0.12

## fore 0.27 0.54 -0.07 0.64 1.00 0.74 0.42 0.03

## calf 0.25 0.39 0.00 0.52 0.74 1.00 0.21 -0.11
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## pulse 0.13 0.31 0.00 0.22 0.42 0.21 1.00 0.21

## yrage -0.28 0.29 0.05 0.12 0.03 -0.11 0.21 1.00

##

## n= 39

##

##

## P

## sysbp wt ht chin fore calf pulse yrage

## sysbp 0.0007 0.1802 0.3003 0.0936 0.1236 0.4211 0.0888

## wt 0.0007 0.0040 0.0002 0.0003 0.0136 0.0548 0.0702

## ht 0.1802 0.0040 0.9619 0.6767 0.9863 0.9858 0.7570

## chin 0.3003 0.0002 0.9619 0.0000 0.0008 0.1708 0.4665

## fore 0.0936 0.0003 0.6767 0.0000 0.0000 0.0075 0.8656

## calf 0.1236 0.0136 0.9863 0.0008 0.0000 0.1995 0.4933

## pulse 0.4211 0.0548 0.9858 0.1708 0.0075 0.1995 0.1928

## yrage 0.0888 0.0702 0.7570 0.4665 0.8656 0.4933 0.1928

Below I fit the linear model with all the selected main effects.
# fit full model

lm.indian2.full <- lm(sysbp ~ wt + ht + chin + fore + calf + pulse + yrage

, data = indian2)

library(car)

Anova(lm.indian2.full, type=3)

## Anova Table (Type III tests)

##

## Response: sysbp

## Sum Sq Df F value Pr(>F)

## (Intercept) 389.46 1 3.8991 0.0572767 .

## wt 1956.49 1 19.5874 0.0001105 ***

## ht 131.88 1 1.3203 0.2593289

## chin 186.85 1 1.8706 0.1812390

## fore 27.00 1 0.2703 0.6068061

## calf 2.86 1 0.0287 0.8666427

## pulse 14.61 1 0.1463 0.7046990

## yrage 1386.76 1 13.8835 0.0007773 ***

## Residuals 3096.45 31

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

summary(lm.indian2.full)

##

## Call:

## lm(formula = sysbp ~ wt + ht + chin + fore + calf + pulse + yrage,

## data = indian2)

##

## Residuals:

## Min 1Q Median 3Q Max

## -14.3993 -5.7916 -0.6907 6.9453 23.5771
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##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 106.45766 53.91303 1.975 0.057277 .

## wt 1.71095 0.38659 4.426 0.000111 ***

## ht -0.04533 0.03945 -1.149 0.259329

## chin -1.15725 0.84612 -1.368 0.181239

## fore -0.70183 1.34986 -0.520 0.606806

## calf 0.10357 0.61170 0.169 0.866643

## pulse 0.07485 0.19570 0.383 0.704699

## yrage -29.31810 7.86839 -3.726 0.000777 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 9.994 on 31 degrees of freedom

## Multiple R-squared: 0.5259,Adjusted R-squared: 0.4189

## F-statistic: 4.913 on 7 and 31 DF, p-value: 0.0008079

Remarks on Step 0: The full model has 7 predictors so REG df = 7. The

F -test in the full model ANOVA table (F = 4.91 with p-value = 0.0008) tests

the hypothesis that the regression coefficient for each predictor variable is zero.

This test is highly significant, indicating that one or more of the predictors is

important in the model.

In the ANOVA table, the F -value column gives the square of the t-statistic

(from the parameter [Coefficients] estimate table) for testing the significance of

the individual predictors in the full model (conditional on all other predictors

being in the model). The p-value is the same whether the t-statistic or F -value

is shown.

The least important variable in the full model, as judged by the p-value,

is calf skin fold. This variable, upon omission, reduces R2 the least, or equiv-

alently, increases the Residual SS the least. The p-value of 0.87 exceeds the

default 0.10 cut-off, so calf will be the first to be omitted from the model.

Below, we will continue in this way. After deleting calf, the six predictor

model can be fitted. Manually, you can find that at least one of the predictors

left is important, as judged by the overall F -test p-value. The least important

predictor left is pulse. This variable is omitted from the model because the

p-value for including it exceeds the 0.10 threshold.
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This is repeated until all predictors remain significant at a 0.10 significance

level.
# model reduction using update() and subtracting (removing) model terms

lm.indian2.red <- lm.indian2.full;

# remove calf

lm.indian2.red <- update(lm.indian2.red, ~ . - calf ); summary(lm.indian2.red);

##

## Call:

## lm(formula = sysbp ~ wt + ht + chin + fore + pulse + yrage, data = indian2)

##

## Residuals:

## Min 1Q Median 3Q Max

## -14.6993 -5.3152 -0.7725 7.2966 23.7240

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 106.13739 53.05581 2.000 0.053993 .

## wt 1.70900 0.38051 4.491 8.65e-05 ***

## ht -0.04478 0.03871 -1.157 0.256008

## chin -1.14165 0.82823 -1.378 0.177635

## fore -0.56731 1.07462 -0.528 0.601197

## pulse 0.07103 0.19142 0.371 0.713018

## yrage -29.54000 7.63983 -3.867 0.000509 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 9.841 on 32 degrees of freedom

## Multiple R-squared: 0.5255,Adjusted R-squared: 0.4365

## F-statistic: 5.906 on 6 and 32 DF, p-value: 0.0003103

# remove pulse

lm.indian2.red <- update(lm.indian2.red, ~ . - pulse); summary(lm.indian2.red);

##

## Call:

## lm(formula = sysbp ~ wt + ht + chin + fore + yrage, data = indian2)

##

## Residuals:

## Min 1Q Median 3Q Max

## -14.6147 -5.9803 -0.2065 6.6755 24.9269

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 110.27872 51.18665 2.154 0.038601 *

## wt 1.71825 0.37470 4.586 6.22e-05 ***

## ht -0.04504 0.03820 -1.179 0.246810

## chin -1.17716 0.81187 -1.450 0.156514

## fore -0.43385 0.99933 -0.434 0.667013
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## yrage -28.98171 7.39172 -3.921 0.000421 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 9.712 on 33 degrees of freedom

## Multiple R-squared: 0.5234,Adjusted R-squared: 0.4512

## F-statistic: 7.249 on 5 and 33 DF, p-value: 0.0001124

# remove fore

lm.indian2.red <- update(lm.indian2.red, ~ . - fore ); summary(lm.indian2.red);

##

## Call:

## lm(formula = sysbp ~ wt + ht + chin + yrage, data = indian2)

##

## Residuals:

## Min 1Q Median 3Q Max

## -15.1030 -6.3484 0.2834 6.7766 24.8883

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 104.52292 48.84627 2.140 0.039629 *

## wt 1.64631 0.33203 4.958 1.94e-05 ***

## ht -0.03957 0.03563 -1.111 0.274530

## chin -1.31083 0.74220 -1.766 0.086348 .

## yrage -28.32580 7.14879 -3.962 0.000361 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 9.595 on 34 degrees of freedom

## Multiple R-squared: 0.5207,Adjusted R-squared: 0.4643

## F-statistic: 9.235 on 4 and 34 DF, p-value: 3.661e-05

# remove ht

lm.indian2.red <- update(lm.indian2.red, ~ . - ht ); summary(lm.indian2.red);

##

## Call:

## lm(formula = sysbp ~ wt + chin + yrage, data = indian2)

##

## Residuals:

## Min 1Q Median 3Q Max

## -16.6382 -6.6316 0.4521 6.3593 24.2086

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 52.9092 15.0895 3.506 0.001266 **

## wt 1.4407 0.2766 5.209 8.51e-06 ***

## chin -1.0135 0.6945 -1.459 0.153407

## yrage -27.3522 7.1185 -3.842 0.000491 ***

## ---
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## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 9.627 on 35 degrees of freedom

## Multiple R-squared: 0.5033,Adjusted R-squared: 0.4608

## F-statistic: 11.82 on 3 and 35 DF, p-value: 1.684e-05

# remove chin

lm.indian2.red <- update(lm.indian2.red, ~ . - chin ); summary(lm.indian2.red);

##

## Call:

## lm(formula = sysbp ~ wt + yrage, data = indian2)

##

## Residuals:

## Min 1Q Median 3Q Max

## -18.4330 -7.3070 0.8963 5.7275 23.9819

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 60.8959 14.2809 4.264 0.000138 ***

## wt 1.2169 0.2337 5.207 7.97e-06 ***

## yrage -26.7672 7.2178 -3.708 0.000699 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 9.777 on 36 degrees of freedom

## Multiple R-squared: 0.4731,Adjusted R-squared: 0.4438

## F-statistic: 16.16 on 2 and 36 DF, p-value: 9.795e-06

# all are significant, stop.

# final model: sysbp ~ wt + yrage

lm.indian2.final <- lm.indian2.red

AIC/BIC automated model selection The AIC/BIC strategy is more

commonly used for model selection, though resulting models are usually the

same as the method described above. I use the step() function to perform

backward selection using the AIC criterion (and give code for the BIC) then

make some last-step decisions. Note that because the BIC has a larger penalty,

it arrives at my chosen model directly.
At each step, the predictors are ranked (least significant to most significant)

and then a decision of whether to keep the top predictor is made. <none>
represents the current model.
## AIC

# option: test="F" includes additional information

# for parameter estimate tests that we're familiar with
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# option: for BIC, include k=log(nrow( [data.frame name] ))

lm.indian2.red.AIC <- step(lm.indian2.full, direction="backward", test="F")

## Start: AIC=186.6

## sysbp ~ wt + ht + chin + fore + calf + pulse + yrage

##

## Df Sum of Sq RSS AIC F value Pr(>F)

## - calf 1 2.86 3099.3 184.64 0.0287 0.8666427

## - pulse 1 14.61 3111.1 184.79 0.1463 0.7046990

## - fore 1 27.00 3123.4 184.94 0.2703 0.6068061

## - ht 1 131.88 3228.3 186.23 1.3203 0.2593289

## <none> 3096.4 186.60

## - chin 1 186.85 3283.3 186.89 1.8706 0.1812390

## - yrage 1 1386.76 4483.2 199.04 13.8835 0.0007773 ***

## - wt 1 1956.49 5052.9 203.70 19.5874 0.0001105 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Step: AIC=184.64

## sysbp ~ wt + ht + chin + fore + pulse + yrage

##

## Df Sum of Sq RSS AIC F value Pr(>F)

## - pulse 1 13.34 3112.6 182.81 0.1377 0.7130185

## - fore 1 26.99 3126.3 182.98 0.2787 0.6011969

## - ht 1 129.56 3228.9 184.24 1.3377 0.2560083

## <none> 3099.3 184.64

## - chin 1 184.03 3283.3 184.89 1.9000 0.1776352

## - yrage 1 1448.00 4547.3 197.59 14.9504 0.0005087 ***

## - wt 1 1953.77 5053.1 201.70 20.1724 8.655e-05 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Step: AIC=182.81

## sysbp ~ wt + ht + chin + fore + yrage

##

## Df Sum of Sq RSS AIC F value Pr(>F)

## - fore 1 17.78 3130.4 181.03 0.1885 0.667013

## - ht 1 131.12 3243.8 182.42 1.3902 0.246810

## <none> 3112.6 182.81

## - chin 1 198.30 3310.9 183.22 2.1023 0.156514

## - yrage 1 1450.02 4562.7 195.72 15.3730 0.000421 ***

## - wt 1 1983.51 5096.2 200.03 21.0290 6.219e-05 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Step: AIC=181.03

## sysbp ~ wt + ht + chin + yrage

##

## Df Sum of Sq RSS AIC F value Pr(>F)
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## - ht 1 113.57 3244.0 180.42 1.2334 0.2745301

## <none> 3130.4 181.03

## - chin 1 287.20 3417.6 182.45 3.1193 0.0863479 .

## - yrage 1 1445.52 4575.9 193.84 15.7000 0.0003607 ***

## - wt 1 2263.64 5394.1 200.25 24.5857 1.945e-05 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Step: AIC=180.42

## sysbp ~ wt + chin + yrage

##

## Df Sum of Sq RSS AIC F value Pr(>F)

## <none> 3244.0 180.42

## - chin 1 197.37 3441.4 180.72 2.1295 0.1534065

## - yrage 1 1368.44 4612.4 192.15 14.7643 0.0004912 ***

## - wt 1 2515.33 5759.3 200.81 27.1384 8.512e-06 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# BIC (not shown)

# step(lm.indian2.full, direction="backward", test="F", k=log(nrow(indian2)))

Remark on Summary Table: The partial R2 is the reduction in R2

achieved by omitting variables sequentially.

The backward elimination procedure eliminates five variables from the full

model, in the following order: calf skin fold calf, pulse rate pulse, forearm

skin fold fore, height ht, and chin skin fold chin. The model selected by

backward elimination includes two predictors: weight wt and fraction yrage. As

we progress from the full model to the selected model, R2 decreases as follows:

0.53, 0.53, 0.52, 0.52, 0.50, and 0.47. The decrease is slight across this spectrum

of models.

Using a mechanical approach, we are led to a model with weight and years

by age fraction as predictors of systolic blood pressure. At this point we should

closely examine this model.

3.3.1 Analysis for Selected Model

The summaries and diagnostics for the selected model follow.
Model sysbp = β0 + β1 wt + β2 yrage + ε:
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library(car)

Anova(lm.indian2.final, type=3)

## Anova Table (Type III tests)

##

## Response: sysbp

## Sum Sq Df F value Pr(>F)

## (Intercept) 1738.2 1 18.183 0.0001385 ***

## wt 2592.0 1 27.115 7.966e-06 ***

## yrage 1314.7 1 13.753 0.0006991 ***

## Residuals 3441.4 36

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

summary(lm.indian2.final)

##

## Call:

## lm(formula = sysbp ~ wt + yrage, data = indian2)

##

## Residuals:

## Min 1Q Median 3Q Max

## -18.4330 -7.3070 0.8963 5.7275 23.9819

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 60.8959 14.2809 4.264 0.000138 ***

## wt 1.2169 0.2337 5.207 7.97e-06 ***

## yrage -26.7672 7.2178 -3.708 0.000699 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 9.777 on 36 degrees of freedom

## Multiple R-squared: 0.4731,Adjusted R-squared: 0.4438

## F-statistic: 16.16 on 2 and 36 DF, p-value: 9.795e-06

Comments on the diagnostic plots below.

1. The individual with the highest systolic blood pressure (case 1) has a

large studentized residual ri and the largest Cook’s Di.

2. Except for case 1, the rankit plot and the plot of the studentized residuals

against the fitted values show no gross abnormalities.

3. The plots of studentized residuals against the individual predictors show

no patterns. The partial residual plots show roughly linear trends. These

plots collectively do not suggest the need to transform either of the pre-

dictors. Although case 1 is prominent in the partial residual plots, it does
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not appear to be influencing the significance of these predictors.
# plot diagnistics
par(mfrow=c(2,3))
plot(lm.indian2.final, which = c(1,4,6))

plot(indian2$wt, lm.indian2.final$residuals, main="Residuals vs wt")
# horizontal line at zero
abline(h = 0, col = "gray75")

plot(indian2$yrage, lm.indian2.final$residuals, main="Residuals vs yrage")
# horizontal line at zero
abline(h = 0, col = "gray75")

# Normality of Residuals
library(car)
qqPlot(lm.indian2.final$residuals, las = 1, id.n = 3, main="QQ Plot")

## 1 34 11
## 39 1 2

## residuals vs order of data
#plot(lm.indian2.final£residuals, main="Residuals vs Order of data")
# # horizontal line at zero
# abline(h = 0, col = "gray75")
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Recall that the partial regression residual plot for weight, given below, ad-

justs systolic blood pressure and weight for their common dependence on all

the other predictors in the model (only years by age fraction here). This plot

tells us whether we need to transform weight in the multiple regression model,

and whether any observations are influencing the significance of weight in the

fitted model. A roughly linear trend, as seen here, suggests that no transfor-
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88 Ch 3: A Taste of Model Selection for Multiple Regression

mation of weight is warranted. The positive relationship seen here is consistent

with the coefficient of weight being positive in the multiple regression model.

The partial residual plot for fraction exhibits a stronger relationship than

is seen in the earlier 2D plot of systolic blood pressure against year by age

fraction. This means that fraction is more useful as a predictor after taking an

individual’s weight into consideration.
library(car)

avPlots(lm.indian2.final, id.n=3)
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Added−Variable Plots

Model selection methods can be highly influenced by outliers and influential

cases. We should hold out case 1, and rerun the backward procedure to see

whether case 1 unduly influenced the selection of the two predictor model. If

we hold out case 1, we find that the model with weight and fraction as predictors

is suggested again. After holding out case 1, there are no large residuals, no

extremely influential points, or any gross abnormalities in plots. The R2 for

the selected model is now R2 = 0.408. This decrease in R2 should have been

anticipated. Why?1

The two analyses suggest that the “best model” for predicting systolic blood

1Obs 1 increases the SST, but greatly increases model relationship so greatly increases SSR.
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3.4: Example: Dennis Cook’s Rat Data 89

pressure is

sysbp = β0 + β1 wt + β2 yrage + ε.

Should case 1 be deleted? I have not fully explored this issue, but I will note

that eliminating this case does have a significant impact on the estimates of the

regression coefficients, and on predicted values. What do you think?

3.4 Example: Dennis Cook’s Rat Data

This example illustrates the importance of a careful diagnostic analysis.

An experiment was conducted to investigate the amount of a particular drug

present in the liver of a rat. Nineteen (19) rats were randomly selected, weighed,

placed under light ether anesthesia and given an oral dose of the drug. Because

it was felt that large livers would absorb more of a given dose than small livers,

the actual dose an animal received was approximately determined as 40mg of

the drug per kilogram of body weight. (Liver weight is known to be strongly

related to body weight.) After a fixed length of time, each rat was sacrificed,

the liver weighed, and the percent of the dose in the liver determined.

The experimental hypothesis was that, for the method of determining the

dose, there is no relationship between the percentage of dose in the liver (Y )

and the body weight, liver weight, and relative dose.
#### Example: Rat liver

fn.data <- "http://statacumen.com/teach/ADA2/ADA2_notes_Ch03_ratliver.csv"

ratliver <- read.csv(fn.data)

ratliver <- ratliver[,c(4,1,2,3)] # reorder columns so response is the first

str(ratliver)

## 'data.frame': 19 obs. of 4 variables:

## $ y : num 0.42 0.25 0.56 0.23 0.23 0.32 0.37 0.41 0.33 0.38 ...

## $ bodywt : int 176 176 190 176 200 167 188 195 176 165 ...

## $ liverwt: num 6.5 9.5 9 8.9 7.2 8.9 8 10 8 7.9 ...

## $ dose : num 0.88 0.88 1 0.88 1 0.83 0.94 0.98 0.88 0.84 ...
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90 Ch 3: A Taste of Model Selection for Multiple Regression

y bodywt liverwt dose
1 0.42 176 6.50 0.88
2 0.25 176 9.50 0.88
3 0.56 190 9.00 1.00
4 0.23 176 8.90 0.88
5 0.23 200 7.20 1.00
6 0.32 167 8.90 0.83
7 0.37 188 8.00 0.94
8 0.41 195 10.00 0.98
9 0.33 176 8.00 0.88

10 0.38 165 7.90 0.84
11 0.27 158 6.90 0.80
12 0.36 148 7.30 0.74
13 0.21 149 5.20 0.75
14 0.28 163 8.40 0.81
15 0.34 170 7.20 0.85
16 0.28 186 6.80 0.94
17 0.30 146 7.30 0.73
18 0.37 181 9.00 0.90
19 0.46 149 6.40 0.75

library(ggplot2)

#suppressMessages(suppressWarnings(library(GGally)))

library(GGally)

#p <- ggpairs(ratliver)

# put scatterplots on top so y axis is vertical

p <- ggpairs(ratliver, upper = list(continuous = "points")

, lower = list(continuous = "cor")

)

print(p)

# detach package after use so reshape2 works (old reshape (v.1) conflicts)

#detach("package:GGally", unload=TRUE)

#detach("package:reshape", unload=TRUE)
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The correlation between Y and each predictor is small, as expected.
# correlation matrix and associated p-values testing "H0: rho == 0"

library(Hmisc)

rcorr(as.matrix(ratliver))

## y bodywt liverwt dose

## y 1.00 0.15 0.20 0.23

## bodywt 0.15 1.00 0.50 0.99

## liverwt 0.20 0.50 1.00 0.49

## dose 0.23 0.99 0.49 1.00

##

## n= 19

##

##

## P

## y bodywt liverwt dose

## y 0.5370 0.4038 0.3488

## bodywt 0.5370 0.0293 0.0000

## liverwt 0.4038 0.0293 0.0332

## dose 0.3488 0.0000 0.0332
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Below I fit the linear model with all the selected main effects.
# fit full model

lm.ratliver.full <- lm(y ~ bodywt + liverwt + dose, data = ratliver)

library(car)

Anova(lm.ratliver.full, type=3)

## Anova Table (Type III tests)

##

## Response: y

## Sum Sq Df F value Pr(>F)

## (Intercept) 0.011157 1 1.8676 0.19188

## bodywt 0.042408 1 7.0988 0.01768 *

## liverwt 0.004120 1 0.6897 0.41930

## dose 0.044982 1 7.5296 0.01507 *

## Residuals 0.089609 15

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

summary(lm.ratliver.full)

##

## Call:

## lm(formula = y ~ bodywt + liverwt + dose, data = ratliver)

##

## Residuals:

## Min 1Q Median 3Q Max

## -0.100557 -0.063233 0.007131 0.045971 0.134691

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 0.265922 0.194585 1.367 0.1919

## bodywt -0.021246 0.007974 -2.664 0.0177 *

## liverwt 0.014298 0.017217 0.830 0.4193

## dose 4.178111 1.522625 2.744 0.0151 *

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.07729 on 15 degrees of freedom

## Multiple R-squared: 0.3639,Adjusted R-squared: 0.2367

## F-statistic: 2.86 on 3 and 15 DF, p-value: 0.07197

The backward elimination procedure selects weight and dose as predictors.
The p-values for testing the importance of these variables, when added last to
this two predictor model, are small, 0.019 and 0.015.
lm.ratliver.red.AIC <- step(lm.ratliver.full, direction="backward", test="F")

## Start: AIC=-93.78

## y ~ bodywt + liverwt + dose

##

## Df Sum of Sq RSS AIC F value Pr(>F)
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## - liverwt 1 0.004120 0.093729 -94.924 0.6897 0.41930

## <none> 0.089609 -93.778

## - bodywt 1 0.042408 0.132017 -88.416 7.0988 0.01768 *

## - dose 1 0.044982 0.134591 -88.049 7.5296 0.01507 *

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Step: AIC=-94.92

## y ~ bodywt + dose

##

## Df Sum of Sq RSS AIC F value Pr(>F)

## <none> 0.093729 -94.924

## - bodywt 1 0.039851 0.133580 -90.192 6.8027 0.01902 *

## - dose 1 0.043929 0.137658 -89.621 7.4989 0.01458 *

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

lm.ratliver.final <- lm.ratliver.red.AIC

This cursory analysis leads to a conclusion that a combination of dose and

body weight is associated with Y , but that neither of these predictors is impor-

tant of its own (low correlations with Y ). Although this commonly happens in

regression problems, it is somewhat paradoxical here because dose was approx-

imately a multiple of body weight, so to a first approximation, these predictors

are linearly related and so only one of them should be needed in a linear re-

gression model. Note that the correlation between dose and body weight is

0.99.

The apparent paradox can be resolved only with a careful diagnostic

analysis! For the model with dose and body weight as predictors, there are no

cases with large |ri| values, but case 3 has a relatively large Cook’s D value.
# plot diagnistics
par(mfrow=c(2,3))
plot(lm.ratliver.final, which = c(1,4,6))

plot(ratliver$bodywt, lm.ratliver.final$residuals, main="Residuals vs bodywt")
# horizontal line at zero
abline(h = 0, col = "gray75")

plot(ratliver$dose, lm.ratliver.final$residuals, main="Residuals vs dose")
# horizontal line at zero
abline(h = 0, col = "gray75")

# Normality of Residuals
library(car)
qqPlot(lm.ratliver.final$residuals, las = 1, id.n = 3, main="QQ Plot")

## 19 13 1
## 19 1 18

## residuals vs order of data
#plot(lm.ratliver.final£residuals, main="Residuals vs Order of data")
# # horizontal line at zero
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# abline(h = 0, col = "gray75")
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Further, the partial residual plot for bodywt clearly highlights case 3. With-

out this case we would see roughly a random scatter of points, suggesting that

body weight is unimportant after taking dose into consideration. The impor-

tance of body weight as a predictor in the multiple regression model is due

solely to the placement of case 3. The partial residual plot for dose gives the

same message.
library(car)

avPlots(lm.ratliver.final, id.n=3)
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Added−Variable Plots

Removing case 3 If we delete this case and redo the analysis we find, as

expected, no important predictors of Y . The output below shows that the back-

ward elimination removes each predictor from the model. Thus, the apparent

relationship between Y and body weight and dose in the initial analysis can be

ascribed to Case 3 alone. Can you see this case in the plots?
# remove case 3

ratliver3 <- ratliver[-3,]

# fit full model

lm.ratliver3.full <- lm(y ~ bodywt + liverwt + dose, data = ratliver3)

lm.ratliver3.red.AIC <- step(lm.ratliver3.full, direction="backward", test="F")

## Start: AIC=-88.25

## y ~ bodywt + liverwt + dose

##

## Df Sum of Sq RSS AIC F value Pr(>F)

## - dose 1 0.00097916 0.086696 -90.043 0.1599 0.6953

## - bodywt 1 0.00105871 0.086776 -90.026 0.1729 0.6838

## - liverwt 1 0.00142114 0.087138 -89.951 0.2321 0.6374

## <none> 0.085717 -88.247

##

## Step: AIC=-90.04

## y ~ bodywt + liverwt

##

## Df Sum of Sq RSS AIC F value Pr(>F)
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## - bodywt 1 0.00035562 0.087052 -91.969 0.0615 0.8075

## - liverwt 1 0.00082681 0.087523 -91.872 0.1431 0.7106

## <none> 0.086696 -90.043

##

## Step: AIC=-91.97

## y ~ liverwt

##

## Df Sum of Sq RSS AIC F value Pr(>F)

## - liverwt 1 0.00050917 0.087561 -93.864 0.0936 0.7636

## <none> 0.087052 -91.969

##

## Step: AIC=-93.86

## y ~ 1

All variables are omitted!

In his text2, Weisberg writes: The careful analyst must now try to un-

derstand exactly why the third case is so influential. Inspection of the data

indicates that this rat with weight 190g, was reported to have received a full

dose of 1.000, which was a larger dose than it should have received according

to the rule for assigning doses, see scatterplot below (e.g., rat 8 with a weight

of 195g got a lower dose of 0.98).
# ggplot: Plot the data with linear regression fit and confidence bands

library(ggplot2)

p <- ggplot(ratliver, aes(x = bodywt, y = dose, label = 1:nrow(ratliver)))

# plot regression line and confidence band

p <- p + geom_smooth(method = lm)

p <- p + geom_point(alpha=1/3)

# plot labels next to points

p <- p + geom_text(hjust = 0.5, vjust = -0.5, alpha = 0.25, colour = 2)

p <- p + labs(title="Rat liver dose by bodywt: rat 3 overdosed")

print(p)

2Applied Linear Regression, 3rd Ed. by Sanford Weisberg, published by Wiley/Interscience in 2005
(ISBN 0-471-66379-4)
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Rat liver dose by bodywt: rat 3 overdosed

A number of causes for the result found in the first analysis are possible: (1)

the dose or weight recorded for case 3 was in error, so the case should probably

be deleted from the analysis, or (2) the regression fit in the second analysis is

not appropriate except in the region defined by the 18 points excluding case

3. It is possible that the combination of dose and rat weight chosen was fortu-

itous, and that the lack of relationship found would not persist for any other

combinations of them, since inclusion of a data point apparently taken under

different conditions leads to a different conclusion. This suggests the need for

collection of additional data, with dose determined by some rule other than a

constant proportion of weight.

I hope the point of this analysis is clear! What have we learned from

this analysis?
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Chapter 4

One Factor Designs and
Extensions

This section describes an experimental design to compare the effectiveness of

four insecticides to eradicate beetles. The primary interest is determining which

treatment is most effective, in the sense of providing the lowest typical survival

time.

In a completely randomized design (CRD), the scientist might select

a sample of genetically identical beetles for the experiment, and then randomly

assign a predetermined number of beetles to the treatment groups (insecticides).

The sample sizes for the groups need not be equal. A power analysis is often

conducted to determine sample sizes for the treatments. For simplicity, assume

that 48 beetles will be used in the experiment, with 12 beetles assigned to each

group.

After assigning the beetles to the four groups, the insecticide is applied

(uniformly to all experimental units or beetles), and the individual survival

times recorded. A natural analysis of the data collected from this one factor

design would be to compare the survival times using a one-way ANOVA.

There are several important controls that should be built into this exper-

iment. The same strain of beetles should be used to ensure that the four

treatment groups are alike as possible, so that differences in survival times are

attributable to the insecticides, and not due to genetic differences among bee-
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tles. Other factors that may influence the survival time, say the concentration

of the insecticide or the age of the beetles, would be held constant, or fixed by

the experimenter, if possible. Thus, the same concentration would be used with

the four insecticides.

In complex experiments, there are always potential influences that are not

realized or are thought to be unimportant that you do not or can not control.

The randomization of beetles to groups ensures that there is no systematic

dependence of the observed treatment differences on the uncontrolled influences.

This is extremely important in studies where genetic and environmental influ-

ences can not be easily controlled (as in humans, more so than in bugs or mice).

The randomization of beetles to insecticides tends to diffuse or greatly reduce

the effect of the uncontrolled influences on the comparison of insecticides, in

the sense that these effects become part of the uncontrolled or error variation

of the experiment.

In summary, an experiment is to impose a treatment on experimental

units to observe a response. Randomization and carefully controlling factors

are important considerations.

Suppose yij is the response for the jth experimental unit in the ith treat-

ment group, where i = 1, 2, . . . , I . The statistical model for a completely

randomized one-factor design that leads to a one-way ANOVA is given

by:

yij = µi + eij,

where µi is the (unknown) population mean for all potential responses to the

ith treatment, and eij is the residual or deviation of the response from the

population mean. The responses within and across treatments are assumed to

be independent, normal random variables with constant variance.

For the insecticide experiment, yij is the survival time for the jth beetle

given the ith insecticide, where i = 1, 2, 3, 4 and j = 1, 2, . . . , 12. The ran-

dom selection of beetles coupled with the randomization of beetles to groups

ensures the independence assumptions. The assumed population distributions

of responses for the I = 4 insecticides can be represented as follows:
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Insecticide 1

Insecticide 2

Insecticide 3

Insecticide 4

Let

µ =
1

I

∑
i

µi

be the grand mean, or average of the population means. Let

αi = µi − µ

be the ith group treatment effect. The treatment effects are constrained

to add to zero, α1 + α2 + · · · + αI = 0, and measure the difference between

the treatment population means and the grand mean. Given this notation, the

one-way ANOVA model is

yij = µ + αi + eij.

The model specifies that the

Response = Grand Mean + Treatment Effect + Residual.

An hypothesis of interest is whether the population means are equal: H0 :

µ1 = · · · = µI , which is equivalent to the hypothesis of no treatment effects:

H0 : α1 = · · · = αI = 0. If H0 is true, then the one-way model is

yij = µ + eij,
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where µ is the common population mean. You know how to test H0 and do

multiple comparisons of the treatments, so I will not review this material.

Most texts use treatment effects to specify ANOVA models, a convention

that I will also follow. A difficulty with this approach is that the treatment

effects must be constrained to be uniquely estimable from the data (because the

I population means µi are modeled in terms of I + 1 parameters: µi = µ+αi).

An infinite number of constraints can be considered each of which gives the

same structure on the population means. The standard constraint where the

treatment effects sum to zero was used above, but many statistical packages,

impose the constraint αI = 0 (or sometimes α1 = 0). Although estimates of

treatment effects depend on which constraint is chosen, the null and alternative

models used with the ANOVA F -test, and pairwise comparisons of treatment

effects, do not. I will downplay the discussion of estimating treatment effects

to minimize problems.
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Chapter 5

Paired Experiments and
Randomized Block
Experiments

A randomized block design is often used instead of a completely random-

ized design in studies where there is extraneous variation among the exper-

imental units that may influence the response. A significant amount of the

extraneous variation may be removed from the comparison of treatments by

partitioning the experimental units into fairly homogeneous subgroups or

blocks.

For example, suppose you are interested in comparing the effectiveness of

four antibiotics for a bacterial infection. The recovery time after administering

an antibiotic may be influenced by a patient’s general health, the extent of their

infection, or their age. Randomly allocating experimental subjects to the treat-

ments (and then comparing them using a one-way ANOVA) may produce one

treatment having a “favorable” sample of patients with features that naturally

lead to a speedy recovery. Alternatively, if the characteristics that affect the

recovery time are spread across treatments, then the variation within samples

due to these uncontrolled features can dominate the effects of the treatment,

leading to an inconclusive result.
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A better way to design this experiment would be to block the subjects

into groups of four patients who are alike as possible on factors other than

the treatment that influence the recovery time. The four treatments are then

randomly assigned to the patients (one per patient) within a block, and the

recovery time measured. The blocking of patients usually produces a more

sensitive comparison of treatments than does a completely randomized design

because the variation in recovery times due to the blocks is eliminated from the

comparison of treatments.

A randomized block design is a paired experiment when two treatments

are compared. The usual analysis for a paired experiment is a parametric or

non-parametric paired comparison.

Randomized block (RB) designs were developed to account for soil fertility

gradients in agricultural experiments. The experimental field would be sepa-

rated into strips (blocks) of fairly constant fertility. Each strip is partitioned

into equal size plots. The treatments, say varieties of corn, are randomly as-

signed to the plots, with each treatment occurring the same number of times

(usually once) per block. All other factors that are known to influence the

response would be controlled or fixed by the experimenter. For example, when

comparing the mean yields, each plot would receive the same type and amount

of fertilizer and the same irrigation plan.

The discussion will be limited to randomized block experiments with one

factor. Two or more factors can be used with a randomized block design.

For example, the agricultural experiment could be modified to compare four

combinations of two corn varieties and two levels of fertilizer in each block

instead of the original four varieties. In certain experiments, each experimental

unit receives each treatment. The experimental units are “natural” blocks for

the analysis.

Example: Comparison of Treatments for Itching Ten1 male vol-

unteers between 20 and 30 years old were used as a study group to compare

1Beecher, 1959
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seven treatments (5 drugs, a placebo, and no drug) to relieve itching. Each

subject was given a different treatment on seven study days. The time ordering

of the treatments was randomized across days. Except on the no-drug day, the

subjects were given the treatment intravenously, and then itching was induced

on their forearms using an effective itch stimulus called cowage. The subjects

recorded the duration of itching, in seconds. The data are given in the table

below. From left to right the drugs are: papaverine, morphine, aminophylline,

pentobarbitol, tripelenamine.

The volunteers in the study were treated as blocks in the analysis. At best,

the volunteers might be considered a representative sample of males between

the ages of 20 and 30. This limits the extent of inferences from the experiment.

The scientists can not, without sound medical justification, extrapolate the

results to children or to senior citizens.
#### Example: Itching

itch <- read.csv("http://statacumen.com/teach/ADA2/ADA2_notes_Ch05_itch.csv")

Patient Nodrug Placebo Papv Morp Amino Pento Tripel
1 1 174 263 105 199 141 108 141
2 2 224 213 103 143 168 341 184
3 3 260 231 145 113 78 159 125
4 4 255 291 103 225 164 135 227
5 5 165 168 144 176 127 239 194
6 6 237 121 94 144 114 136 155
7 7 191 137 35 87 96 140 121
8 8 100 102 133 120 222 134 129
9 9 115 89 83 100 165 185 79

10 10 189 433 237 173 168 188 317

5.1 Analysis of a Randomized Block Design

Assume that you designed a randomized block experiment with I blocks and

J treatments, where each treatment occurs once in each block. Let yij be

the response for the jth treatment within the ith block. The model for the

experiment is

yij = µij + eij,
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where µij is the population mean response for the jth treatment in the ith block

and eij is the deviation of the response from the mean. The population means

are assumed to satisfy the additive model

µij = µ + αi + βj

where µ is a grand mean, αi is the effect for the ith block, and βj is the effect for

the jth treatment. The responses are assumed to be independent across blocks,

normally distributed and with constant variance. The randomized block model

does not require the observations within a block to be independent, but does

assume that the correlation between responses within a block is identical for

each pair of treatments.

The model is sometimes written as

Response = Grand Mean + Treatment Effect + Block Effect + Residual.

Given the data, let ȳi· be the ith block sample mean (the average of the

responses in the ith block), ȳ·j be the jth treatment sample mean (the average

of the responses on the jth treatment), and ȳ·· be the average response of all

IJ observations in the experiment.

An ANOVA table for the randomized block experiment partitions the Model

SS into SS for Blocks and Treatments.
Source df SS MS

Blocks I − 1 J
∑

i(ȳi· − ȳ··)2

Treats J − 1 I
∑

j(ȳ·j − ȳ··)2

Error (I − 1)(J − 1)
∑

ij(yij − ȳi· − ȳ·j + ȳ··)
2

Total IJ − 1
∑

ij(yij − ȳ··)2.
A primary interest is testing whether the treatment effects are zero: H0 :

β1 = · · · = βJ = 0. The treatment effects are zero if in each block the

population mean responses are identical for each treatment. A formal test

of no treatment effects is based on the p-value from the F-statistic Fobs =

MS Treat/MS Error. The p-value is evaluated in the usual way (i.e., as an

upper tail area from an F-distribution with J − 1 and (I − 1)(J − 1) df.) This

H0 is rejected when the treatment averages ȳ·j vary significantly relative to the

error variation.
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A test for no block effects (H0 : α1 = · · · = αI = 0) is often a secondary

interest, because, if the experiment is designed well, the blocks will be, by

construction, noticeably different. There are no block effects if the population

mean response for an arbitrary treatment is identical across blocks. A formal

test of no block effects is based on the p-value from the the F -statistic Fobs =

MS Blocks/MS Error. This H0 is rejected when the block averages ȳi· vary

significantly relative to the error variation.

The randomized block model is easily fitted in the lm() function. Before

illustrating the analysis on the itching data, let me mention five important

points about randomized block analyses:

1. The F -test p-value for comparing J = 2 treatments is identical to the

p-value for comparing the two treatments using a paired t-test.

2. The Block SS plus the Error SS is the Error SS from a one-way ANOVA

comparing the J treatments. If the Block SS is large relative to the Error

SS from the two-factor model, then the experimenter has eliminated a

substantial portion of the variation that is used to assess the differences

among the treatments. This leads to a more sensitive comparison of

treatments than would have been obtained using a one-way ANOVA.

3. The RB model is equivalent to an additive or no interaction model for a

two-factor experiment, where the blocks are levels of one of the factors.

The analysis of a randomized block experiment under this model is the

same analysis used for a two-factor experiment with no replication (one

observation per cell). We will discuss the two-factor design soon.

4. Under the sum constraint on the parameters (i.e.,
∑

i αi =
∑

j βj = 0),

the estimates of the grand mean, block effects, and treatment effects are

µ̂ = ȳ··, α̂i = ȳi· − ȳ··, and β̂j = ȳ·j − ȳ··, respectively. The estimated

mean response for the (i, j)th cell is µ̂ij = µ̂ + α̂i + β̂j = ȳi· + ȳ·j − ȳ··.
5. The F -test for comparing treatments is appropriate when the responses

within a block have the same correlation. This is a reasonable working

assumption in many analyses. A multivariate repeated measures model

can be used to compare treatments when the constant correlation assump-
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tion is unrealistic, for example when the same treatment is given to an

individual over time.

RB Analysis of the Itching Data First we reshape the data to long
format so each observation is its own row in the data.frame and indexed by the
Patient and Treatment variables.
library(reshape2)

itch.long <- melt(itch

, id.vars = "Patient"

, variable.name = "Treatment"

, value.name = "Seconds"

)

str(itch.long)

## 'data.frame': 70 obs. of 3 variables:

## $ Patient : int 1 2 3 4 5 6 7 8 9 10 ...

## $ Treatment: Factor w/ 7 levels "Nodrug","Placebo",..: 1 1 1 1 1 1 1 1 1 1 ...

## $ Seconds : int 174 224 260 255 165 237 191 100 115 189 ...

head(itch.long, 3)

## Patient Treatment Seconds

## 1 1 Nodrug 174

## 2 2 Nodrug 224

## 3 3 Nodrug 260

tail(itch.long, 3)

## Patient Treatment Seconds

## 68 8 Tripel 129

## 69 9 Tripel 79

## 70 10 Tripel 317

# make Patient a factor variable

itch.long$Patient <- factor(itch.long$Patient)

str(itch.long)

## 'data.frame': 70 obs. of 3 variables:

## $ Patient : Factor w/ 10 levels "1","2","3","4",..: 1 2 3 4 5 6 7 8 9 10 ...

## $ Treatment: Factor w/ 7 levels "Nodrug","Placebo",..: 1 1 1 1 1 1 1 1 1 1 ...

## $ Seconds : int 174 224 260 255 165 237 191 100 115 189 ...

As a first step, I made side-by-side boxplots of the itching durations across

treatments. The boxplots are helpful for informally comparing treatments and

visualizing the data. The differences in the level of the boxplots will usually

be magnified by the F -test for comparing treatments because the variability

within the boxplots includes block differences which are moved from the Error

SS to the Block SS. The plot also includes the 10 Patients with lines connecting
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their measurements to see how common the treatment differences were over

patients. I admit, this plot is a little too busy.

Each of the five drugs appears to have an effect, compared to the placebo

and to no drug. Papaverine appears to be the most effective drug. The placebo

and no drug have similar medians. The relatively large spread in the placebo

group suggests that some patients responded adversely to the placebo compared

to no drug, whereas others responded positively.
# Plot the data using ggplot
library(ggplot2)
p <- ggplot(itch.long, aes(x = Treatment, y = Seconds))
# plot a reference line for the global mean (assuming no groups)
p <- p + geom_hline(aes(yintercept = 0),

colour = "black", linetype = "solid", size = 0.2, alpha = 0.3)
p <- p + geom_hline(aes(yintercept = mean(Seconds)),

colour = "black", linetype = "dashed", size = 0.3, alpha = 0.5)
# colored line for each patient
p <- p + geom_line(aes(group = Patient, colour = Patient), alpha = 0.5)
# boxplot, size=.75 to stand out behind CI
p <- p + geom_boxplot(size = 0.75, alpha = 0.5)
# points for observed data
p <- p + geom_point(aes(colour = Patient))
# diamond at mean for each group
p <- p + stat_summary(fun.y = mean, geom = "point", shape = 18, size = 6,

alpha = 0.5)
# confidence limits based on normal distribution
p <- p + stat_summary(fun.data = "mean_cl_normal", geom = "errorbar",

width = .2, aes(colour=Treatment), alpha = 0.8)
p <- p + labs(title = "Comparison of Treatments for Itching, Treatment means")
p <- p + ylab("Duration of itching (seconds)")
# removes legend
p <- p + theme(legend.position="none")
print(p)
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Comparison of Treatments for Itching, Treatment means

To fit the RB model in lm(), you need to specify blocks (Patient) and

treatments (Treatment) as factor variables, and include each to the right of

the tilde symbol in the formula statement. The response variable Seconds

appears to the left of the tilde.
lm.s.t.p <- lm(Seconds ~ Treatment + Patient, data = itch.long)

library(car)

Anova(lm.s.t.p, type=3)

## Anova Table (Type III tests)

##

## Response: Seconds

## Sum Sq Df F value Pr(>F)

## (Intercept) 155100 1 50.1133 3.065e-09 ***

## Treatment 53013 6 2.8548 0.017303 *

## Patient 103280 9 3.7078 0.001124 **

## Residuals 167130 54

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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summary(lm.s.t.p)

##

## Call:

## lm(formula = Seconds ~ Treatment + Patient, data = itch.long)

##

## Residuals:

## Min 1Q Median 3Q Max

## -81.286 -34.800 -8.393 30.900 148.914

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 188.286 26.598 7.079 3.07e-09 ***

## TreatmentPlacebo 13.800 24.880 0.555 0.58141

## TreatmentPapv -72.800 24.880 -2.926 0.00501 **

## TreatmentMorp -43.000 24.880 -1.728 0.08965 .

## TreatmentAmino -46.700 24.880 -1.877 0.06592 .

## TreatmentPento -14.500 24.880 -0.583 0.56245

## TreatmentTripel -23.800 24.880 -0.957 0.34303

## Patient2 35.000 29.737 1.177 0.24436

## Patient3 -2.857 29.737 -0.096 0.92381

## Patient4 38.429 29.737 1.292 0.20176

## Patient5 11.714 29.737 0.394 0.69518

## Patient6 -18.571 29.737 -0.625 0.53491

## Patient7 -46.286 29.737 -1.557 0.12543

## Patient8 -27.286 29.737 -0.918 0.36292

## Patient9 -45.000 29.737 -1.513 0.13604

## Patient10 82.000 29.737 2.758 0.00793 **

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 55.63 on 54 degrees of freedom

## Multiple R-squared: 0.4832,Adjusted R-squared: 0.3397

## F-statistic: 3.367 on 15 and 54 DF, p-value: 0.00052

The order to look at output follows the hierarchy of multi-parameter tests

down to single-parameter tests.

1. The F-test at the bottom of the summary() tests for both no block effects

and no treatment effects. If there are no block effects and no tretment

effects then the mean itching time is independent of treatment and pa-

tients. The p-value of 0.0005 strongly suggests that the population mean

itching times are not all equal.

2. The ANOVA table at top from Anova() partitions the Model SS into the

SS for Blocks (Patients) and Treatments. The Mean Squares, F-statistics,
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and p-values for testing these effects are given. For a RB design with the

same number of responses per block (i.e., no missing data), the Type

I and Type III SS are identical, and correspond to the formulas given

earlier. The distinction between Type I and Type III SS is important

for unbalanced problems, an issue we discuss later. The F -tests show

significant differences among the treatments (p-value=0.017) and among

patients (p-value=0.001).

3. The individual parameter (coefficient) estimates in the summary() are likely

of less interest since they test differences from the baseline group, only.

The multiple comparisons in the next section will indicate which factor

levels are different from others.

Multiple comparisons Multiple comparison and contrasts are not typi-

cally straightforward in R, though some newer packages are helping make them

easier. Below I show one way that I think is relatively easy.

The package multcomp is used to specify which factor to perform multiple

comparisons over and which p-value adjustment method to use. Below I use

Tukey adjustments, first.
# multcomp has functions for multiple comparisons

library(multcomp)

# Use the ANOVA object and run a "General Linear Hypothesis Test"

# specifying a linfct (linear function) to be tested.

# The mpc (multiple comparison) specifies the factor and method.

# Here: correcting over Treatment using Tukey contrast corrections.

glht.itch.t <- glht(aov(lm.s.t.p), linfct = mcp(Treatment = "Tukey"))

summary(glht.itch.t)

##

## Simultaneous Tests for General Linear Hypotheses

##

## Multiple Comparisons of Means: Tukey Contrasts

##

##

## Fit: aov(formula = lm.s.t.p)

##

## Linear Hypotheses:

## Estimate Std. Error t value Pr(>|t|)

## Placebo - Nodrug == 0 13.80 24.88 0.555 0.9978

## Papv - Nodrug == 0 -72.80 24.88 -2.926 0.0699 .
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## Morp - Nodrug == 0 -43.00 24.88 -1.728 0.6003

## Amino - Nodrug == 0 -46.70 24.88 -1.877 0.5038

## Pento - Nodrug == 0 -14.50 24.88 -0.583 0.9971

## Tripel - Nodrug == 0 -23.80 24.88 -0.957 0.9610

## Papv - Placebo == 0 -86.60 24.88 -3.481 0.0162 *

## Morp - Placebo == 0 -56.80 24.88 -2.283 0.2710

## Amino - Placebo == 0 -60.50 24.88 -2.432 0.2054

## Pento - Placebo == 0 -28.30 24.88 -1.137 0.9135

## Tripel - Placebo == 0 -37.60 24.88 -1.511 0.7370

## Morp - Papv == 0 29.80 24.88 1.198 0.8920

## Amino - Papv == 0 26.10 24.88 1.049 0.9398

## Pento - Papv == 0 58.30 24.88 2.343 0.2434

## Tripel - Papv == 0 49.00 24.88 1.969 0.4456

## Amino - Morp == 0 -3.70 24.88 -0.149 1.0000

## Pento - Morp == 0 28.50 24.88 1.146 0.9108

## Tripel - Morp == 0 19.20 24.88 0.772 0.9867

## Pento - Amino == 0 32.20 24.88 1.294 0.8516

## Tripel - Amino == 0 22.90 24.88 0.920 0.9676

## Tripel - Pento == 0 -9.30 24.88 -0.374 0.9998

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## (Adjusted p values reported -- single-step method)

With summary(), the p-value adjustment can be coerced into one of several

popular methods, such as Bonferroni. Notice that the significance is lower

(larger p-value) for Bonferroni below than Tukey above. Note comment at

bottom of output that “(Adjusted p values reported -- bonferroni

method)”. Passing the summary to plot() will create a plot of the pairwise

intervals for difference between factor levels.

Recall how the Bonferroni correction works. A comparison of c pairs

of levels from one factor having a family error rate of 0.05 or less is attained

by comparing pairs of treatments at the 0.05/c level. Using this criteria, the

population mean response for factor levels (averaged over the other factor) are

significantly different if the p-value for the test is 0.05/c or less. The out-

put actually adjusts the p-values by reporting p-value×c, so that the reported

adjusted p-value can be compared to the 0.05 significance level.
summary(glht.itch.t, test = adjusted("bonferroni"))

##

## Simultaneous Tests for General Linear Hypotheses

##

## Multiple Comparisons of Means: Tukey Contrasts
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##

##

## Fit: aov(formula = lm.s.t.p)

##

## Linear Hypotheses:

## Estimate Std. Error t value Pr(>|t|)

## Placebo - Nodrug == 0 13.80 24.88 0.555 1.000

## Papv - Nodrug == 0 -72.80 24.88 -2.926 0.105

## Morp - Nodrug == 0 -43.00 24.88 -1.728 1.000

## Amino - Nodrug == 0 -46.70 24.88 -1.877 1.000

## Pento - Nodrug == 0 -14.50 24.88 -0.583 1.000

## Tripel - Nodrug == 0 -23.80 24.88 -0.957 1.000

## Papv - Placebo == 0 -86.60 24.88 -3.481 0.021 *

## Morp - Placebo == 0 -56.80 24.88 -2.283 0.554

## Amino - Placebo == 0 -60.50 24.88 -2.432 0.386

## Pento - Placebo == 0 -28.30 24.88 -1.137 1.000

## Tripel - Placebo == 0 -37.60 24.88 -1.511 1.000

## Morp - Papv == 0 29.80 24.88 1.198 1.000

## Amino - Papv == 0 26.10 24.88 1.049 1.000

## Pento - Papv == 0 58.30 24.88 2.343 0.479

## Tripel - Papv == 0 49.00 24.88 1.969 1.000

## Amino - Morp == 0 -3.70 24.88 -0.149 1.000

## Pento - Morp == 0 28.50 24.88 1.146 1.000

## Tripel - Morp == 0 19.20 24.88 0.772 1.000

## Pento - Amino == 0 32.20 24.88 1.294 1.000

## Tripel - Amino == 0 22.90 24.88 0.920 1.000

## Tripel - Pento == 0 -9.30 24.88 -0.374 1.000

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## (Adjusted p values reported -- bonferroni method)

# plot the summary

op <- par(no.readonly = TRUE) # the whole list of settable par's.

# make wider left margin to fit contrast labels

par(mar = c(5, 10, 4, 2) + 0.1) # order is c(bottom, left, top, right)

# plot bonferroni-corrected difference intervals

plot(summary(glht.itch.t, test = adjusted("bonferroni"))

, sub="Bonferroni-adjusted Treatment contrasts")

par(op) # reset plotting options
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Bonferroni−adjusted Treatment contrasts
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The Bonferroni comparisons for Treatment suggest that papaverine induces

a lower mean itching time than placebo. All the other comparisons of treatments

are insignificant. The comparison of Patient blocks is of less interest.

### Code for the less interesting contrasts.
### Testing multiple factors may be of interest in other problems.
### Note that the first block of code below corrects the p-values
### for all the tests done for both factors together,
### that is, the Bonferroni-corrected significance level is (alpha / (t + p))
### where t = number of treatment comparisons
### and p = number of patient comparisons.

# # correcting over Treatment and Patient
# glht.itch.tp <- glht(aov(lm.s.t.p), linfct = mcp(Treatment = "Tukey"
# , Patient = "Tukey"))
# summary(glht.itch.tp, test = adjusted("bonferroni"))
# plot(summary(glht.itch.tp, test = adjusted("bonferroni")))

# # correcting over Patient, only
# glht.itch.p <- glht(aov(lm.s.t.p), linfct = mcp(Patient = "Tukey"))
# summary(glht.itch.p, test = adjusted("bonferroni"))
# plot(summary(glht.itch.p, test = adjusted("bonferroni")))
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Diagnostic Analysis for the RB Analysis A diagnostic analysis of

ANOVA-type models, including the RB model, is easily performed using the

lm() output. The normal quantile (or QQ-plot) shows the residual distribution

is slightly skewed to the right, in part, due to three cases that are not fitted

well by the model (the outliers in the boxplots). Except for these cases, which

are also the most influential cases (Cook’s distance), the plot of the studentized

residuals against fitted values shows no gross abnormalities.
# plot diagnistics
par(mfrow=c(2,3))
plot(lm.s.t.p, which = c(1,4,6))

plot(itch.long$Treatment, lm.s.t.p$residuals, main="Residuals vs Treatment")
# horizontal line at zero
abline(h = 0, col = "gray75")

plot(itch.long$Patient, lm.s.t.p$residuals, main="Residuals vs Patient")
# horizontal line at zero
abline(h = 0, col = "gray75")

# Normality of Residuals
library(car)
qqPlot(lm.s.t.p$residuals, las = 1, id.n = 3, main="QQ Plot")

## 20 52 48
## 70 69 68

## residuals vs order of data
#plot(lm.s.t.p£residuals, main="Residuals vs Order of data")
# # horizontal line at zero
# abline(h = 0, col = "gray75")
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Although the F -test for comparing treatments is not overly sensitive to

modest deviations from normality, I will present a non-parametric analysis as

a backup, to see whether similar conclusions are reached about the treatments.

Non-parametric Analysis of a RB Experiment Milton Friedman

developed a non-parametric test for comparing treatments in an unreplicated

randomized block design where the normality assumption may be violated. An

unreplicated complete block design has exactly one observation in y for each

combination of levels of groups and blocks. The null hypothesis is that apart

from an effect of blocks, the location parameter of y is the same in each of the

groups.

The output suggests significant differences among treatments, which sup-

ports the earlier conclusion.
# Friedman test for differences between groups conditional on blocks.

# The formula is of the form a ~ b | c,

# where a, b and c give the data values (a)

# and corresponding groups (b) and blocks (c), respectively.

friedman.test(Seconds ~ Treatment | Patient, data = itch.long)

##

## Friedman rank sum test

##

## data: Seconds and Treatment and Patient

## Friedman chi-squared = 14.887, df = 6, p-value = 0.02115

# Quade test is very similar to the Friedman test (compare the help pages).

quade.test(Seconds ~ Treatment | Patient, data = itch.long)

##

## Quade test

##

## data: Seconds and Treatment and Patient

## Quade F = 3.7321, num df = 6, denom df = 54, p-value =

## 0.003542
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5.2 Extending the One-Factor Design to Mul-
tiple Factors

The CRD (completely randomized design) for comparing insecticides below

varies the levels of one factor (insecticide), while controlling other factors that

influence survival time. The inferences from the one-way ANOVA apply to bee-

tles with a given age from the selected strain that might be given the selected

concentration of the insecticides. Any generalization of the conclusions to other

situations must be justified scientifically, typically through further experimen-

tation.

There are several ways to broaden the scope of the study. For example,

several strains of beetles or several concentrations of the insecticide might be

used. For simplicity, consider a simple two-factor experiment where three con-

centrations (Low, Medium, and High) are applied with each of the four insec-

ticides. This is a completely crossed two-factor experiment where each of

the 4 × 3 = 12 combinations of the two factors (insecticide and dose) are in-

cluded in the comparison of survival times. With this experiment, the scientist

can compare insecticides, compare concentrations, and check for an interaction

between dose and insecticide.

Assuming that 48 beetles are available, the scientist would randomly assign

them to the 12 experimental groups, giving prespecified numbers of beetles to

the 12 groups. For simplicity, assume that the experiment is balanced, that

is, the same number of beetles (4) is assigned to each group (12×4 = 48). This

is a CRD with two factors.

5.2.1 Example: Beetle insecticide two-factor design

The data below were collected using the experimental design just described.

The table gives survival times of groups of four beetles randomly allocated to

twelve treatment groups obtained by crossing the levels of four insecticides (A,

B, C, D) at each of three concentrations of the insecticides (1=Low, 2=Medium,
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3=High). This is a balanced 4-by-3 factorial design (two-factor design) that

is replicated four times. The unit of measure for the survival times is 10 hours,

that is, 0.3 is a survival time of 3 hours.
#### Example: Beetles

beetles <- read.table("http://statacumen.com/teach/ADA2/ADA2_notes_Ch05_beetles.dat"

, header = TRUE)

# make dose a factor variable and label the levels

beetles$dose <- factor(beetles$dose, labels = c("low","medium","high"))

dose insecticide t1 t2 t3 t4
1 low A 0.3100 0.4500 0.4600 0.4300
2 low B 0.8200 1.1000 0.8800 0.7200
3 low C 0.4300 0.4500 0.6300 0.7600
4 low D 0.4500 0.7100 0.6600 0.6200
5 medium A 0.3600 0.2900 0.4000 0.2300
6 medium B 0.9200 0.6100 0.4900 1.2400
7 medium C 0.4400 0.3500 0.3100 0.4000
8 medium D 0.5600 1.0200 0.7100 0.3800
9 high A 0.2200 0.2100 0.1800 0.2300

10 high B 0.3000 0.3700 0.3800 0.2900
11 high C 0.2300 0.2500 0.2400 0.2200
12 high D 0.3000 0.3600 0.3100 0.3300

First we reshape the data to long format so each observation is its own row
in the data.frame and indexed by the dose and insecticide variables.
library(reshape2)

beetles.long <- melt(beetles

, id.vars = c("dose", "insecticide")

, variable.name = "number"

, value.name = "hours10"

)

str(beetles.long)

## 'data.frame': 48 obs. of 4 variables:

## $ dose : Factor w/ 3 levels "low","medium",..: 1 1 1 1 2 2 2 2 3 3 ...

## $ insecticide: Factor w/ 4 levels "A","B","C","D": 1 2 3 4 1 2 3 4 1 2 ...

## $ number : Factor w/ 4 levels "t1","t2","t3",..: 1 1 1 1 1 1 1 1 1 1 ...

## $ hours10 : num 0.31 0.82 0.43 0.45 0.36 0.92 0.44 0.56 0.22 0.3 ...

head(beetles.long)

## dose insecticide number hours10

## 1 low A t1 0.31

## 2 low B t1 0.82

## 3 low C t1 0.43

## 4 low D t1 0.45

## 5 medium A t1 0.36

Prof. Erik B. Erhardt



5.2: Extending the One-Factor Design to Multiple Factors 121

## 6 medium B t1 0.92

The basic unit of analysis is the cell means, which are the averages of

the 4 observations in each of the 12 treatment combinations. For example,

in the table below, the sample mean survival for the 4 beetles given a low

dose (dose=1) of insecticide A is 0.413. From the cell means we obtain the

dose and insecticide marginal means by averaging over the levels of the

other factor. For example, the marginal mean for insecticide A is the average

of the cell means for the 3 treatment combinations involving insecticide A:

0.314 = (0.413 + 0.320 + 0.210)/3.

Cell Means Dose

Insecticide 1 2 3 Insect marg

A 0.413 0.320 0.210 0.314

B 0.880 0.815 0.335 0.677

C 0.568 0.375 0.235 0.393

D 0.610 0.668 0.325 0.534

Dose marg 0.618 0.544 0.277 0.480

Because the experiment is balanced, a marginal mean is the average of all

observations that receive a given treatment. For example, the marginal mean

for insecticide A is the average survival time for the 16 beetles given insecticide

A.

Looking at the table of means, the insecticides have noticeably different

mean survival times averaged over doses, with insecticide A having the lowest

mean survival time averaged over doses. Similarly, higher doses tend to produce

lower survival times. A more formal approach to analyzing the table of means

is given in the next section.

5.2.2 The Interaction Model for a Two-Factor Ex-
periment

Assume that you designed a balanced two-factor experiment withK responses

at each combination of the I levels of factor 1 (F1) with the J levels of factor
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2 (F2). The total number of responses is KIJ , or K times the IJ treatment

combinations.

Let yijk be the kth response at the ith level of F1 and the jth level of F2.

A generic model for the experiment expresses yijk as a mean response plus a

residual:

yijk = µij + eijk,

where µij is the population mean response for the treatment defined by the ith

level of F1 combined with the jth level of F2. As in a one-way ANOVA, the

responses within and across treatment groups are assumed to be independent,

normally distributed, and have constant variance.

The interaction model expresses the population means as

µij = µ + αi + βj + (αβ)ij,

where µ is a grand mean, αi is the effect for the ith level of F1, βj is the effect

for the jth level of F2, and (αβ)ij is the interaction between the ith level of F1

and the jth level of F2. (Note that (αβ) is an individual term distinct from α

and β, (αβ) is not their product.) The model is often written

yijk = µ + αi + βj + (αβ)ij + eijk,

meaning

Response = Grand Mean + F1 effect + F2 effect + F1-by-F2 interaction +

Residual.

The additive model having only main effects, no interaction terms, is

yijk = µ + αi + βj + eijk, meaning

Response = Grand Mean + F1 effect + F2 effect + Residual.

The effects of F1 and F2 on the mean are additive.

Defining effects from cell means

The effects that define the population means and the usual hypotheses of in-

terest can be formulated from the table of population means, given here.
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Level of F2

Level of F1 1 2 · · · J F1 marg

1 µ11 µ12 · · · µ1J µ̄1·
2 µ21 µ22 · · · µ2J µ̄2·
... ... ... ... ... ...

I µI1 µI2 · · · µIJ µ̄I·
F2 marg µ̄·1 µ̄·2 · · · µ̄·J µ̄··

The F1 marginal population means are averages within rows (over columns)

of the table:

µ̄i· =
1

J

∑
c

µic.

The F2 marginal population means are averages within columns (over rows):

µ̄·j =
1

I

∑
r

µrj.

The overall or grand population mean is the average of the cell means

µ̄·· =
1

IJ

∑
rc

µrc =
1

I

∑
i

µ̄i· =
1

J

∑
j

µ̄·j.

Using this notation, the effects in the interaction model are µ = µ̄··, αi =

µ̄i·− µ̄··, βj = µ̄·j − µ̄··, and (αβ)ij = µij − µ̄i·− µ̄·j + µ̄··. The effects sum to

zero: ∑
i

αi =
∑
j

βj =
∑
ij

(αβ)ij = 0,

and satisfy µij = µ+αi +βj + (αβ)ij (i.e., cell mean is sum of effects) required

under the model.

The F1 and F2 effects are analogous to treatment effects in a one-factor

experiment, except that here the treatment means are averaged over the levels

of the other factor. The interaction effect will be interpreted later.

UNM, Stat 428/528 ADA2



124 Ch 5: Paired Experiments and Randomized Block Experiments

Estimating effects from the data

Let

ȳij =
1

K

∑
k

yijk and s2
ij

be the sample mean and variance, respectively, for the K responses at the ith

level of F1 and the jth level of F2. Inferences about the population means are

based on the table of sample means:

Level of F2

Level of F1 1 2 · · · J F1 marg

1 ȳ11 ȳ12 · · · ȳ1J ȳ1·
2 ȳ21 ȳ22 · · · ȳ2J ȳ2·
... ... ... ... ... ...

I ȳI1 ȳI2 · · · ȳIJ ȳI·
F2 marg ȳ·1 ȳ·2 · · · ȳ·J ȳ··

The F1 marginal sample means are averages within rows of the table:

ȳi· =
1

J

∑
c

ȳic.

The F2 marginal sample means are averages within columns:

ȳ·j =
1

I

∑
r

ȳrj.

Finally, ȳ·· is the average of the cell sample means:

ȳ·· =
1

IJ

∑
ij

ȳij =
1

I

∑
i

ȳi· =
1

J

∑
j

ȳ·j.

The sample sizes in each of the IJ treatment groups are equal (K), so ȳi·
is the sample average of all responses at the ith level of F1, ȳ·j is the sample

average of all responses at the jth level of F2, and ȳ·· is the average response in

the experiment.
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Under the interaction model, the estimated population mean for the (i, j)th

cell is the observed cell mean: µ̂ij = ȳij. This can be partitioned into estimated

effects

µ̂ = ȳ·· the estimated grand mean

α̂i = ȳi· − ȳ·· the estimated F1 effect i = 1, 2, . . . , I

β̂j = ȳ·j − ȳ·· the estimated F2 effect j = 1, 2, . . . , J

(̂αβ)ij = ȳij − ȳi· − ȳ·j + ȳ·· the estimated cell interaction (5.1)

that satisfy

µ̂ij = µ̂ + α̂i + β̂j + (̂αβ)ij.

The ANOVA table

The ANOVA table for a balanced two-factor design decomposes the total vari-

ation in the data, as measured by the Total SS, into components that measure

the variation of marginal sample means for F1 and F2 (the F1 SS and F2 SS), a

component that measures the degree to which the factors interact (the F1-by-

F2 Interaction SS), and a component that pools the sample variances across the

IJ samples (the Error SS). Each SS has a df, given in the following ANOVA

table. As usual, the MS for each source of variation is the corresponding SS

divided by the df. The MS Error estimates the common population variance

for the IJ treatments.

Source df SS MS

F1 I − 1 KJ
∑

i(ȳi· − ȳ··)2 MS F1=SS/df

F2 J − 1 KI
∑

j(ȳ·j − ȳ··)2 MS F2=SS/df

Interaction (I − 1)(J − 1) K
∑

ij(yij − ȳi· − ȳ·j + ȳ··)
2 MS Inter=SS/df

Error IJ(K − 1) (K − 1)
∑

ij s
2
ij MSE=SS/df

Total IJK − 1
∑

ijk(yijk − ȳ··)2.

The standard tests in the two-factor analysis, and their interpretations are:
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The test of no F1 effect: H0 : α1 = · · · = αI = 0 is equivalent to

testing H0 : µ̄1· = µ̄2· = · · · = µ̄I·. The absence of an F1 effect implies that

each level of F1 has the same population mean response when the means

are averaged over levels of F2. The test for no F1 effect is based on

MS F1/MS Error, which is compared to the upper tail of an F-distribution

with numerator and denominator df of I − 1 and IJ(K − 1), respectively.

H0 is rejected when the F1 marginal means ȳi· vary significantly relative to

the within sample variation. Equivalently, H0 is rejected when the sum of

squared F1 effects (between sample variation) is large relative to the within

sample variation.

The test of no F2 effect: H0 : β1 = · · · = βJ = 0 is equivalent to

testing H0 : µ̄·1 = µ̄·2 = · · · = µ̄·J . The absence of a F2 effect implies

that each level of F2 has the same population mean response when the

means are averaged over levels of F1. The test for no F2 effect is

based on MS F2/MS Error, which is compared to an F-distribution with

numerator and denominator df of J − 1 and IJ(K − 1), respectively. H0

is rejected when the F2 marginal means ȳ·j vary significantly relative to the

within sample variation. Equivalently, H0 is rejected when the sum of squared

F2 effects (between sample variation) is large relative to the within sample

variation.

The test of no interaction: H0 : (αβ)ij = 0 for all i and j is based on

MS Interact/MS Error, which is compared to an F-distribution with numer-

ator and denominator df of (I − 1)(J − 1) and IJ(K − 1), respectively.

The interaction model places no restrictions on the population means µij.

Since the population means can be arbitrary, the interaction model can be

viewed as a one factor model with IJ treatments. One connection between the

two ways of viewing the two-factor analysis is that the F1, F2, and Interaction

SS for the two-way interaction model sum to the Treatment or Model SS for

comparing the IJ treatments. The Error SS for the two-way interaction model

is identical to the Error SS for a one-way ANOVA of the IJ treatments. An

overall test of no differences in the IJ population means is part of the two-way
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analysis.

I always summarize the data using the cell and marginal means instead of the

estimated effects, primarily because means are the basic building blocks for the

analysis. My discussion of the model and tests emphasizes both approaches to

help you make the connection with the two ways this material is often presented

in texts.

Understanding interaction

To understand interaction, suppose you (conceptually) plot the means in each

row of the population table, giving what is known as the population mean

profile plot. The F1 marginal population means average the population means

within the F1 profiles. At each F2 level, the F2 marginal mean averages the

population cell means across F1 profiles.

No interaction is present if the plot has perfectly parallel F1 profiles, as
in the plot below for a 3 × 5 experiment. The levels of F1 and F2 do not
interact. That is,

parallel profiles ⇔ µij − µhj is independent of j for each i and h

difference between levels of F1 does not depend on level of F2

⇔ µij − µ̄i· = µhj − µ̄h· for all i, j, h

difference between level of F2 j and F2 mean does not depend on level of F1

⇔ µij − µ̄i· = µ̄·j − µ̄·· for all i, j

difference between level of F2 j and F2 mean is the same for all levels of F1

⇔ µij − µ̄i· − µ̄·j + µ̄·· = 0 for all i, j

interaction effect is 0

⇔ (αβ)ij = 0 for all i, j

interaction effect is 0

⇔ no interaction term in model.
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Interaction is present if the profiles are not perfectly parallel. An ex-

ample of a profile plot for two-factor experiment (3×5) with interaction is given

below.
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The roles of F1 and F2 can be reversed in these plots without changing the

assessment of a presence or absence of interaction. It is often helpful to view

the interaction plot from both perspectives.

A qualitative check for interaction can be based on the sample means

profile plot, but keep in mind that profiles of sample means are never perfectly

parallel even when the factors do not interact in the population. The Interaction

SS measures the extent of non-parallelism in the sample mean profiles. In

particular, the Interaction SS is zero when the sample mean profiles are perfectly

parallel because (̂αβ)ij = 0 for all i and j.

5.2.3 Example: Survival Times of Beetles

First we generate cell means and a sample means profile plot (interaction plot)

for the beetle experiment. The ddply() function was used to obtain the 12

treatment cell means. Three variables were needed to represent each response

in the data set: dose (1-3, categorical), insecticide (A-D, categorical), and time

(the survival time).
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As noted earlier, the insecticides have noticeably different mean survival

times averaged over doses, with insecticide A having the lowest mean. Similarly,

higher doses tend to produce lower survival times. The sample means profile

plot shows some evidence of interaction.
library(plyr)

# Calculate the cell means for each (dose, insecticide) combination

mean(beetles.long[, "hours10"])

## [1] 0.479375

beetles.mean <- ddply(beetles.long, .(), summarise, m = mean(hours10))

beetles.mean

## .id m

## 1 <NA> 0.479375

beetles.mean.d <- ddply(beetles.long, .(dose), summarise, m = mean(hours10))

beetles.mean.d

## dose m

## 1 low 0.617500

## 2 medium 0.544375

## 3 high 0.276250

beetles.mean.i <- ddply(beetles.long, .(insecticide), summarise, m = mean(hours10))

beetles.mean.i

## insecticide m

## 1 A 0.3141667

## 2 B 0.6766667

## 3 C 0.3925000

## 4 D 0.5341667

beetles.mean.di <- ddply(beetles.long, .(dose,insecticide), summarise, m = mean(hours10))

beetles.mean.di

## dose insecticide m

## 1 low A 0.4125

## 2 low B 0.8800

## 3 low C 0.5675

## 4 low D 0.6100

## 5 medium A 0.3200

## 6 medium B 0.8150

## 7 medium C 0.3750

## 8 medium D 0.6675

## 9 high A 0.2100

## 10 high B 0.3350

## 11 high C 0.2350

## 12 high D 0.3250

# Interaction plots, ggplot

p <- ggplot(beetles.long, aes(x = dose, y = hours10, colour = insecticide, shape = insecticide))
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p <- p + geom_hline(aes(yintercept = 0), colour = "black"

, linetype = "solid", size = 0.2, alpha = 0.3)

p <- p + geom_boxplot(alpha = 0.25, outlier.size=0.1)

p <- p + geom_point(alpha = 0.5, position=position_dodge(width=0.75))

p <- p + geom_point(data = beetles.mean.di, aes(y = m), size = 4)

p <- p + geom_line(data = beetles.mean.di, aes(y = m, group = insecticide), size = 1.5)

p <- p + labs(title = "Beetles interaction plot, insecticide by dose")

print(p)

p <- ggplot(beetles.long, aes(x = insecticide, y = hours10, colour = dose, shape = dose))

p <- p + geom_hline(aes(yintercept = 0), colour = "black"

, linetype = "solid", size = 0.2, alpha = 0.3)

p <- p + geom_boxplot(alpha = 0.25, outlier.size=0.1)

p <- p + geom_point(alpha = 0.5, position=position_dodge(width=0.75))

p <- p + geom_point(data = beetles.mean.di, aes(y = m), size = 4)

p <- p + geom_line(data = beetles.mean.di, aes(y = m, group = dose), size = 1.5)

p <- p + labs(title = "Beetles interaction plot, dose by insecticide")

print(p)
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# Interaction plots, base graphics

interaction.plot(beetles.long$dose, beetles.long$insecticide, beetles.long$hours10

, main = "Beetles interaction plot, insecticide by dose")

interaction.plot(beetles.long$insecticide, beetles.long$dose, beetles.long$hours10

, main = "Beetles interaction plot, dose by insecticide")
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In the lm() function below we specify a first-order model with interac-

tions, including the main effects and two-way interactions. The interaction

between dose and insecticide is indicated with dose:insecticide. The short-

hand dose*insecticide expands to “dose + insecticide + dose:insecticide”

for this first-order model.

The F -test at the bottom of the summary() tests for no differences among the

population mean survival times for the 12 dose and insecticide combinations.

The p-value of < 0.0001 strongly suggests that the population mean survival

times are not all equal.

The next summary at the top gives two partitionings of the one-way ANOVA

Treatment SS into the SS for Dose, Insecticide, and the Dose by Insecticide in-

teraction. The Mean Squares, F-statistics and p-values for testing these effects

are given. The p-values for the F-statistics indicate that the dose and insecti-

cide effects are significant at the 0.01 level. The F-test for no dose by insecticide

interaction is not significant at the 0.10 level (p-value=0.112). Thus, the in-

teraction seen in the profile plot of the sample means might be due solely to

chance or sampling variability.
lm.h.d.i.di <- lm(hours10 ~ dose + insecticide + dose:insecticide

, data = beetles.long)

# lm.h.d.i.di <- lm(hours10 ~ dose*insecticide, data = beetles.long) # equivalent
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library(car)

Anova(lm.h.d.i.di, type=3)

## Anova Table (Type III tests)

##

## Response: hours10

## Sum Sq Df F value Pr(>F)

## (Intercept) 0.68063 1 30.6004 2.937e-06 ***

## dose 0.08222 2 1.8482 0.1721570

## insecticide 0.45395 3 6.8031 0.0009469 ***

## dose:insecticide 0.25014 6 1.8743 0.1122506

## Residuals 0.80072 36

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

summary(lm.h.d.i.di)

##

## Call:

## lm(formula = hours10 ~ dose + insecticide + dose:insecticide,

## data = beetles.long)

##

## Residuals:

## Min 1Q Median 3Q Max

## -0.32500 -0.04875 0.00500 0.04312 0.42500

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 0.41250 0.07457 5.532 2.94e-06 ***

## dosemedium -0.09250 0.10546 -0.877 0.3862

## dosehigh -0.20250 0.10546 -1.920 0.0628 .

## insecticideB 0.46750 0.10546 4.433 8.37e-05 ***

## insecticideC 0.15500 0.10546 1.470 0.1503

## insecticideD 0.19750 0.10546 1.873 0.0692 .

## dosemedium:insecticideB 0.02750 0.14914 0.184 0.8547

## dosehigh:insecticideB -0.34250 0.14914 -2.297 0.0276 *

## dosemedium:insecticideC -0.10000 0.14914 -0.671 0.5068

## dosehigh:insecticideC -0.13000 0.14914 -0.872 0.3892

## dosemedium:insecticideD 0.15000 0.14914 1.006 0.3212

## dosehigh:insecticideD -0.08250 0.14914 -0.553 0.5836

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.1491 on 36 degrees of freedom

## Multiple R-squared: 0.7335,Adjusted R-squared: 0.6521

## F-statistic: 9.01 on 11 and 36 DF, p-value: 1.986e-07

Since the interaction is not significant, I’ll drop the interaction term and fit

the additive model with main effects only. I update the model by removing the
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interaction term.
lm.h.d.i <- update(lm.h.d.i.di, ~ . - dose:insecticide )

library(car)

Anova(lm.h.d.i, type=3)

## Anova Table (Type III tests)

##

## Response: hours10

## Sum Sq Df F value Pr(>F)

## (Intercept) 1.63654 1 65.408 4.224e-10 ***

## dose 1.03301 2 20.643 5.704e-07 ***

## insecticide 0.92121 3 12.273 6.697e-06 ***

## Residuals 1.05086 42

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

summary(lm.h.d.i)

##

## Call:

## lm(formula = hours10 ~ dose + insecticide, data = beetles.long)

##

## Residuals:

## Min 1Q Median 3Q Max

## -0.25167 -0.09625 -0.01490 0.06177 0.49833

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 0.45229 0.05592 8.088 4.22e-10 ***

## dosemedium -0.07313 0.05592 -1.308 0.19813

## dosehigh -0.34125 0.05592 -6.102 2.83e-07 ***

## insecticideB 0.36250 0.06458 5.614 1.43e-06 ***

## insecticideC 0.07833 0.06458 1.213 0.23189

## insecticideD 0.22000 0.06458 3.407 0.00146 **

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.1582 on 42 degrees of freedom

## Multiple R-squared: 0.6503,Adjusted R-squared: 0.6087

## F-statistic: 15.62 on 5 and 42 DF, p-value: 1.123e-08

The Bonferroni multiple comparisons indicate which treatment effects are

different.
# Testing multiple factors is of interest here.

# Note that the code below corrects the p-values

# for all the tests done for both factors together,

# that is, the Bonferroni-corrected significance level is (alpha / (d + i))

# where d = number of dose comparisons

# and i = number of insecticide comparisons.
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# correcting over dose and insecticide

glht.beetle.di <- glht(aov(lm.h.d.i), linfct = mcp(dose = "Tukey"

, insecticide = "Tukey"))

summary(glht.beetle.di, test = adjusted("bonferroni"))

##

## Simultaneous Tests for General Linear Hypotheses

##

## Multiple Comparisons of Means: Tukey Contrasts

##

##

## Fit: aov(formula = lm.h.d.i)

##

## Linear Hypotheses:

## Estimate Std. Error t value Pr(>|t|)

## dose: medium - low == 0 -0.07313 0.05592 -1.308 1.000000

## dose: high - low == 0 -0.34125 0.05592 -6.102 2.55e-06 ***

## dose: high - medium == 0 -0.26812 0.05592 -4.794 0.000186 ***

## insecticide: B - A == 0 0.36250 0.06458 5.614 1.28e-05 ***

## insecticide: C - A == 0 0.07833 0.06458 1.213 1.000000

## insecticide: D - A == 0 0.22000 0.06458 3.407 0.013134 *

## insecticide: C - B == 0 -0.28417 0.06458 -4.400 0.000653 ***

## insecticide: D - B == 0 -0.14250 0.06458 -2.207 0.295702

## insecticide: D - C == 0 0.14167 0.06458 2.194 0.304527

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## (Adjusted p values reported -- bonferroni method)

# plot the summary

op <- par(no.readonly = TRUE) # the whole list of settable par's.

# make wider left margin to fit contrast labels

par(mar = c(5, 10, 4, 2) + 0.1) # order is c(bottom, left, top, right)

# plot bonferroni-corrected difference intervals

plot(summary(glht.beetle.di, test = adjusted("bonferroni"))

, sub="Bonferroni-adjusted Treatment contrasts")

par(op) # reset plotting options
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Interpretation of the Dose and Insecticide Effects

The interpretation of the dose and insecticide main effects depends on whether

interaction is present. The distinction is important, so I will give both inter-

pretations to emphasize the differences. Given the test for interaction, I would

likely summarize the main effects assuming no interaction.
The average survival time decreases as the dose increases, with estimated

mean survival times of 0.618, 0.544, and 0.276, respectively. A Bonferroni
comparison shows that the population mean survival time for the high dose
(averaged over insecticides) is significantly less than the population mean sur-
vival times for the low and medium doses (averaged over insecticides). The two
lower doses are not significantly different from each other. This leads to two
dose groups:
Dose: 1=Low 2=Med 3=Hig
Marg Mean: 0.618 0.544 0.276
Groups: ------------ -----

If dose and insecticide interact, you can conclude that beetles given a high

dose of the insecticide typically survive for shorter periods of time averaged
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over insecticides. You can not, in general, conclude that the highest dose

yields the lowest survival time regardless of insecticide. For example, the

difference in the medium and high dose marginal means (0.544 - 0.276 = 0.268)

estimates the typical decrease in survival time achieved by using the high dose

instead of the medium dose, averaged over insecticides. If the two factors

interact, then the difference in mean times between the medium and high doses

on a given insecticide may be significantly greater than 0.268, significantly less

than 0.268, or even negative. In the latter case the medium dose would be

better than the high dose for the given insecticide, even though the high dose

gives better performance averaged over insecticides. An interaction forces you

to use the cell means to decide which combination of dose and insecticide gives

the best results (and the multiple comparisons as they were done above do not

give multiple comparisons of cell means; a single factor variable combining both

factors would need to be created). Of course, our profile plot tells us that this

hypothetical situation is probably not tenable here, but it could be so when a

significant interaction is present.

If dose and insecticide do not interact, then the difference in marginal

dose means averaged over insecticides also estimates the difference in population

mean survival times between two doses, regardless of the insecticide. This

follows from the parallel profiles definition of no interaction. Thus, the difference

in the medium and high dose marginal means (0.544 - 0.276 = 0.268) estimates

the expected decrease in survival time anticipated from using the high dose

instead of the medium dose, regardless of the insecticide (and hence also

when averaged over insecticides). A practical implication of no interaction is

that you can conclude that the high dose is best, regardless of the insecticide

used. The difference in marginal means for two doses estimates the difference

in average survival expected, regardless of the insecticide.

An ordering of the mean survival times on the four insecticides (averaged

over the three doses) is given below. Three groups are obtained from the Bon-

ferroni comparisons, with any two insecticides separated by one or more other

insecticides in the ordered string having significantly different mean survival
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times averaged over doses.

If interaction is present, you can conclude that insecticide A is no better

than C, but significantly better than B or D, when performance is averaged

over doses. If the interaction is absent, then A is not significantly better

than C, but is significantly better than B or D, regardless of the dose.

Furthermore, for example, the difference in marginal means for insecticides B

and A of 0.677 - 0.314 = 0.363 is the expected decrease in survival time from

using A instead of B, regardless of dose. This is also the expected decrease in

survival times when averaged over doses.

Insect: B D C A
Marg Mean: 0.677 0.534 0.393 0.314
Groups: ------------

------------
------------

5.2.4 Example: Output voltage for batteries

The maximum output voltage for storage batteries is thought to be influenced

by the temperature in the location at which the battery is operated and the

material used in the plates. A scientist designed a two-factor study to examine

this hypothesis, using three temperatures (50, 65, 80), and three materials for

the plates (1, 2, 3). Four batteries were tested at each of the 9 combinations

of temperature and material type. The maximum output voltage was recorded

for each battery. This is a balanced 3-by-3 factorial experiment with four

observations per treatment.
#### Example: Output voltage for batteries

battery <- read.table("http://statacumen.com/teach/ADA2/ADA2_notes_Ch05_battery.dat"

, header = TRUE)

battery$material <- factor(battery$material)

battery$temp <- factor(battery$temp)
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material temp v1 v2 v3 v4
1 1 50 130 155 74 180
2 1 65 34 40 80 75
3 1 80 20 70 82 58
4 2 50 150 188 159 126
5 2 65 136 122 106 115
6 2 80 25 70 58 45
7 3 50 138 110 168 160
8 3 65 174 120 150 139
9 3 80 96 104 82 60

library(reshape2)

battery.long <- melt(battery

, id.vars = c("material", "temp")

, variable.name = "battery"

, value.name = "maxvolt"

)

str(battery.long)

## 'data.frame': 36 obs. of 4 variables:

## $ material: Factor w/ 3 levels "1","2","3": 1 1 1 2 2 2 3 3 3 1 ...

## $ temp : Factor w/ 3 levels "50","65","80": 1 2 3 1 2 3 1 2 3 1 ...

## $ battery : Factor w/ 4 levels "v1","v2","v3",..: 1 1 1 1 1 1 1 1 1 2 ...

## $ maxvolt : int 130 34 20 150 136 25 138 174 96 155 ...

The overall F -test at the bottom indicates at least one parameter in the

model is significant. The two-way ANOVA table indicates that the main effect

of temperature and the interaction are significant at the 0.05 level, the main

effect of material is not.
lm.m.m.t.mt <- lm(maxvolt ~ material*temp, data = battery.long)

library(car)

Anova(lm.m.m.t.mt, type=3)

## Anova Table (Type III tests)

##

## Response: maxvolt

## Sum Sq Df F value Pr(>F)

## (Intercept) 72630 1 107.5664 6.456e-11 ***

## material 886 2 0.6562 0.5268904

## temp 15965 2 11.8223 0.0002052 ***

## material:temp 9614 4 3.5595 0.0186112 *

## Residuals 18231 27

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

summary(lm.m.m.t.mt)

##
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## Call:

## lm(formula = maxvolt ~ material * temp, data = battery.long)

##

## Residuals:

## Min 1Q Median 3Q Max

## -60.750 -14.625 1.375 17.938 45.250

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 134.75 12.99 10.371 6.46e-11 ***

## material2 21.00 18.37 1.143 0.263107

## material3 9.25 18.37 0.503 0.618747

## temp65 -77.50 18.37 -4.218 0.000248 ***

## temp80 -77.25 18.37 -4.204 0.000257 ***

## material2:temp65 41.50 25.98 1.597 0.121886

## material3:temp65 79.25 25.98 3.050 0.005083 **

## material2:temp80 -29.00 25.98 -1.116 0.274242

## material3:temp80 18.75 25.98 0.722 0.476759

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 25.98 on 27 degrees of freedom

## Multiple R-squared: 0.7652,Adjusted R-squared: 0.6956

## F-statistic: 11 on 8 and 27 DF, p-value: 9.426e-07

The cell means plots of the material profiles have different slopes, which is

consistent with the presence of a temperature-by-material interaction.
library(plyr)

# Calculate the cell means for each (material, temp) combination

battery.mean <- ddply(battery.long, .(), summarise, m = mean(maxvolt))

battery.mean

## .id m

## 1 <NA> 105.5278

battery.mean.m <- ddply(battery.long, .(material), summarise, m = mean(maxvolt))

battery.mean.m

## material m

## 1 1 83.16667

## 2 2 108.33333

## 3 3 125.08333

battery.mean.t <- ddply(battery.long, .(temp), summarise, m = mean(maxvolt))

battery.mean.t

## temp m

## 1 50 144.83333

## 2 65 107.58333

## 3 80 64.16667

battery.mean.mt <- ddply(battery.long, .(material,temp), summarise, m = mean(maxvolt))
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battery.mean.mt

## material temp m

## 1 1 50 134.75

## 2 1 65 57.25

## 3 1 80 57.50

## 4 2 50 155.75

## 5 2 65 119.75

## 6 2 80 49.50

## 7 3 50 144.00

## 8 3 65 145.75

## 9 3 80 85.50

# Interaction plots, ggplot

p <- ggplot(battery.long, aes(x = material, y = maxvolt, colour = temp, shape = temp))

p <- p + geom_hline(aes(yintercept = 0), colour = "black"

, linetype = "solid", size = 0.2, alpha = 0.3)

p <- p + geom_boxplot(alpha = 0.25, outlier.size=0.1)

p <- p + geom_point(alpha = 0.5, position=position_dodge(width=0.75))

p <- p + geom_point(data = battery.mean.mt, aes(y = m), size = 4)

p <- p + geom_line(data = battery.mean.mt, aes(y = m, group = temp), size = 1.5)

p <- p + labs(title = "Battery interaction plot, temp by material")

print(p)

p <- ggplot(battery.long, aes(x = temp, y = maxvolt, colour = material, shape = material))

p <- p + geom_hline(aes(yintercept = 0), colour = "black"

, linetype = "solid", size = 0.2, alpha = 0.3)

p <- p + geom_boxplot(alpha = 0.25, outlier.size=0.1)

p <- p + geom_point(alpha = 0.5, position=position_dodge(width=0.75))

p <- p + geom_point(data = battery.mean.mt, aes(y = m), size = 4)

p <- p + geom_line(data = battery.mean.mt, aes(y = m, group = material), size = 1.5)

p <- p + labs(title = "Battery interaction plot, material by temp")

print(p)
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The Bonferroni multiple comparisons may be inappropriate because of co-

variate interactions. That is, interactions make the main effects less meaningful

(or their interpretation unclear) since the change in response when one factor

is changed depends on what the second factor is.

The significant interaction between temperature and material implies that

you can not directly conclude that batteries stored at 50 degrees have the

highest average output regardless of the material. Nor can you directly conclude

that material 3 has a higher average output than material 1 regardless of the

temperature. You can only conclude that the differences are significant when

averaged over the levels of the other factor.
# correcting over temp

glht.battery.t <- glht(aov(lm.m.m.t.mt), linfct = mcp(temp = "Tukey"))

## Warning in mcp2matrix(model, linfct = linfct): covariate interactions found -- default

contrast might be inappropriate

summary(glht.battery.t, test = adjusted("bonferroni"))

##

## Simultaneous Tests for General Linear Hypotheses

##

## Multiple Comparisons of Means: Tukey Contrasts

##

##

## Fit: aov(formula = lm.m.m.t.mt)

##
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## Linear Hypotheses:

## Estimate Std. Error t value Pr(>|t|)

## 65 - 50 == 0 -77.50 18.37 -4.218 0.000744 ***

## 80 - 50 == 0 -77.25 18.37 -4.204 0.000772 ***

## 80 - 65 == 0 0.25 18.37 0.014 1.000000

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## (Adjusted p values reported -- bonferroni method)

# plot bonferroni-corrected difference intervals

plot(summary(glht.battery.t, test = adjusted("bonferroni"))

, sub="Bonferroni-adjusted Treatment contrasts")

Bonferroni−adjusted Treatment contrasts

−100 −50 0 50

80 − 65

80 − 50

65 − 50 (

(

(

)

)

)

●

●

●

95% family−wise confidence level

Linear Function

The Bonferroni comparisons indicate that the population mean max voltage
for the three temperatures averaged over material types decreases as the
temperature increases:

Temp: 80 65 50
Marg mean: 64.17 107.58 144.83

Group: ------------- ------

However, you can compare materials at each temperature, and you can com-

pare temperatures for each material. At individual temperatures, material 2

and 3 (or 1 and 2) might be significantly different even though they are not

significantly different when averaged over temperatures. For example, material

2 might produce a significantly higher average output than the other two ma-

terial types at 50 degrees. This comparison of cell means is relevant if you are

interested in using the batteries at 50 degrees! Comparing cell means is possible

using “lsmeans”, a point I will return to later.
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5.2.5 Checking assumptions in a two-factor experi-
ment

The normality and constant variance assumptions for a two-factor design can be

visually checked using side-by-side boxplots (as was produced in the ggplot()

interaction plots) and residual plots. Another useful tool for checking constant

variances is to plot the sample deviations for each group against the group

means.

Let us check the distributional assumptions for the insecticide experiment.

The sampling design suggests that the independence assumptions are reason-

able. The group sample sizes are small, so the residual plots are likely to be

more informative than the side-by-side boxplots and the plot of the standard

deviations.

The code below generates plots and summary statistics for the survival

times. I used ddply() to store the means ȳij and standard deviations sij for

the 12 treatment combinations. The diagnostic plots we’ve been using for lm()

displays residual plots. Only the relevant output is presented.

The set of box plots (each representing 4 points) for each insecticide/dose

combination indicates both that means and standard deviations of treatments

seem different. Also, there appears to be less variability for dose=3 (high) than

for doses 1 and 2 in the table; the model assumes that variability is the same

and does not depend on treatment. The plot of the standard deviation vs mean

shows an increasing trend.
#### Example: Beetles, checking assumptions

# boxplots, ggplot

p <- ggplot(beetles.long, aes(x = dose, y = hours10, colour = insecticide))

p <- p + geom_boxplot()

print(p)

# mean vs sd plot

library(plyr)

# means and standard deviations for each dose/interaction cell

beetles.meansd.di <- ddply(beetles.long, .(dose,insecticide), summarise

, m = mean(hours10), s = sd(hours10))

beetles.meansd.di

## dose insecticide m s
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## 1 low A 0.4125 0.06946222

## 2 low B 0.8800 0.16083117

## 3 low C 0.5675 0.15671099

## 4 low D 0.6100 0.11284207

## 5 medium A 0.3200 0.07527727

## 6 medium B 0.8150 0.33630343

## 7 medium C 0.3750 0.05686241

## 8 medium D 0.6675 0.27097048

## 9 high A 0.2100 0.02160247

## 10 high B 0.3350 0.04654747

## 11 high C 0.2350 0.01290994

## 12 high D 0.3250 0.02645751

p <- ggplot(beetles.meansd.di, aes(x = m, y = s, shape = dose, colour = insecticide))

p <- p + geom_point(size=4)

p <- p + labs(title = "Beetles standard deviation vs mean")

print(p)
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Diagnostic plots show the following features. The normal quantile plot

shows an “S” shape rather than a straight line, suggesting the residuals are not

normal, but have higher kurtosis (more peaky) than a normal distribution. The

residuals vs the fitted (predicted) values show that the higher the predicted value

the more variability (horn shaped). The plot of the Cook’s distances indicate

a few influential observations.
# interaction model
lm.h.d.i.di <- lm(hours10 ~ dose*insecticide, data = beetles.long)

# plot diagnistics
par(mfrow=c(2,3))
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plot(lm.h.d.i.di, which = c(1,4,6))

plot(beetles.long$dose, lm.h.d.i.di$residuals, main="Residuals vs dose")
# horizontal line at zero
abline(h = 0, col = "gray75")

plot(beetles.long$insecticide, lm.h.d.i.di$residuals, main="Residuals vs insecticide")
# horizontal line at zero
abline(h = 0, col = "gray75")

# Normality of Residuals
library(car)
qqPlot(lm.h.d.i.di$residuals, las = 1, id.n = 3, main="QQ Plot")

## 42 20 30
## 48 47 1

## residuals vs order of data
#plot(lm.h.d.i.di£residuals, main="Residuals vs Order of data")
# # horizontal line at zero
# abline(h = 0, col = "gray75")
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Survival times are usually right skewed, with the spread or variability in the

distribution increasing as the mean or median increases. Ideally, the distribu-

tions should be symmetric, normal, and the standard deviation should be fairly

constant across groups.

The boxplots (note the ordering) and the plot of the sij against ȳij show

the tendency for the spread to increase with the mean. This is reinforced by

the residual plot, where the variability increases as the predicted values (the
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cell means under the two-factor interaction model) increase.

As noted earlier, the QQ-plot of the studentized residuals is better suited to

examine normality here than the boxplots which are constructed from 4 obser-

vations. Not surprisingly, the boxplots do not suggest non-normality. Looking

at the QQ-plot we clearly see evidence of non-normality.

5.2.6 A Remedy for Non-Constant Variance

A plot of cell standard deviations against the cell means is sometimes used

as a diagnostic tool for suggesting transformations of the data. Here are some

suggestions for transforming non-negative measurements to make the variability

independent of the mean (i.e., stabilize the variance). The transformations also

tend to reduce skewness, if present (and may induce skewness if absent!). As

an aside, some statisticians prefer to plot the IQR against the median to get a

more robust view of the dependence of spread on typical level because sij and

ȳij are sensitive to outliers.

1. If sij increases linearly with ȳij, use a log transformation of the response.

2. If sij increases as a quadratic function of ȳij, use a reciprocal (inverse)

transformation of the response.

3. If sij increases as a square root function of ȳij, use a square root trans-

formation of the response.

4. If sij is roughly independent of ȳij, do not transform the response. This

idea does not require the response to be non-negative!

A logarithmic transformation or a reciprocal (inverse) transformation of the

survival times might help to stabilize the variance. The survival time distribu-

tions are fairly symmetric, so these nonlinear transformations may destroy the

symmetry. As a first pass, I will consider the reciprocal transformation because

the inverse survival time has a natural interpretation as the dying rate. For

example, if you survive 2 hours, then 1/2 is the proportion of your remaining

lifetime expired in the next hour. The unit of time is actually 10 hours, so

0.1/time is the actual rate. The 0.1 scaling factor has no effect on the analysis

provided you appropriately rescale the results on the mean responses.
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Create the rate variable.
#### Example: Beetles, non-constant variance

# create the rate variable (1/hours10)

beetles.long$rate <- 1/beetles.long$hours10

Redo the analysis replacing hours10 by rate.

The standard deviations of rate appear much more similar than those of

time did.
# boxplots, ggplot

p <- ggplot(beetles.long, aes(x = dose, y = rate, colour = insecticide))

p <- p + geom_boxplot()

print(p)

# mean vs sd plot

library(plyr)

# means and standard deviations for each dose/interaction cell

beetles.meansd.di.rate <- ddply(beetles.long, .(dose,insecticide), summarise

, m = mean(rate), s = sd(rate))

beetles.meansd.di.rate

## dose insecticide m s

## 1 low A 2.486881 0.4966627

## 2 low B 1.163464 0.1994976

## 3 low C 1.862724 0.4893774

## 4 low D 1.689682 0.3647127

## 5 medium A 3.268470 0.8223269

## 6 medium B 1.393392 0.5531885

## 7 medium C 2.713919 0.4175138

## 8 medium D 1.701534 0.7019053

## 9 high A 4.802685 0.5296355

## 10 high B 3.028973 0.4214358

## 11 high C 4.264987 0.2348115

## 12 high D 3.091805 0.2440546

p <- ggplot(beetles.meansd.di.rate, aes(x = m, y = s, shape = dose

, colour = insecticide))

p <- p + geom_point(size=4)

p <- p + labs(title = "Beetles standard deviation vs mean")

print(p)
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The profile plots and ANOVA table indicate that the main effects are sig-

nificant but the interaction is not.
library(plyr)
# Calculate the cell means for each (dose, insecticide) combination
beetles.mean <- ddply(beetles.long, .(), summarise, m = mean(rate))
beetles.mean

## .id m
## 1 <NA> 2.622376

beetles.mean.d <- ddply(beetles.long, .(dose), summarise, m = mean(rate))
beetles.mean.d

## dose m
## 1 low 1.800688
## 2 medium 2.269329
## 3 high 3.797112

beetles.mean.i <- ddply(beetles.long, .(insecticide), summarise, m = mean(rate))
beetles.mean.i

## insecticide m
## 1 A 3.519345
## 2 B 1.861943
## 3 C 2.947210
## 4 D 2.161007

beetles.mean.di <- ddply(beetles.long, .(dose,insecticide), summarise, m = mean(rate))
beetles.mean.di

## dose insecticide m
## 1 low A 2.486881
## 2 low B 1.163464
## 3 low C 1.862724
## 4 low D 1.689682
## 5 medium A 3.268470
## 6 medium B 1.393392
## 7 medium C 2.713919
## 8 medium D 1.701534
## 9 high A 4.802685
## 10 high B 3.028973
## 11 high C 4.264987
## 12 high D 3.091805

# Interaction plots, ggplot

p <- ggplot(beetles.long, aes(x = dose, y = rate, colour = insecticide, shape = insecticide))
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p <- p + geom_hline(aes(yintercept = 0), colour = "black"
, linetype = "solid", size = 0.2, alpha = 0.3)

p <- p + geom_boxplot(alpha = 0.25, outlier.size=0.1)
p <- p + geom_point(alpha = 0.5, position=position_dodge(width=0.75))
p <- p + geom_point(data = beetles.mean.di, aes(y = m), size = 4)
p <- p + geom_line(data = beetles.mean.di, aes(y = m, group = insecticide), size = 1.5)
p <- p + labs(title = "Beetles interaction plot, insecticide by dose")
print(p)

p <- ggplot(beetles.long, aes(x = insecticide, y = rate, colour = dose, shape = dose))
p <- p + geom_hline(aes(yintercept = 0), colour = "black"

, linetype = "solid", size = 0.2, alpha = 0.3)
p <- p + geom_boxplot(alpha = 0.25, outlier.size=0.1)
p <- p + geom_point(alpha = 0.5, position=position_dodge(width=0.75))
p <- p + geom_point(data = beetles.mean.di, aes(y = m), size = 4)
p <- p + geom_line(data = beetles.mean.di, aes(y = m, group = dose), size = 1.5)
p <- p + labs(title = "Beetles interaction plot, dose by insecticide")
print(p)
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lm.r.d.i.di <- lm(rate ~ dose*insecticide, data = beetles.long) # equivalent

library(car)

Anova(lm.r.d.i.di, type=3)

## Anova Table (Type III tests)

##

## Response: rate

## Sum Sq Df F value Pr(>F)

## (Intercept) 24.7383 1 103.0395 4.158e-12 ***

## dose 11.1035 2 23.1241 3.477e-07 ***

## insecticide 3.5723 3 4.9598 0.005535 **

## dose:insecticide 1.5708 6 1.0904 0.386733

## Residuals 8.6431 36

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

summary(lm.r.d.i.di)

##
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## Call:

## lm(formula = rate ~ dose * insecticide, data = beetles.long)

##

## Residuals:

## Min 1Q Median 3Q Max

## -0.76847 -0.29642 -0.06914 0.25458 1.07936

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 2.48688 0.24499 10.151 4.16e-12 ***

## dosemedium 0.78159 0.34647 2.256 0.030252 *

## dosehigh 2.31580 0.34647 6.684 8.56e-08 ***

## insecticideB -1.32342 0.34647 -3.820 0.000508 ***

## insecticideC -0.62416 0.34647 -1.801 0.080010 .

## insecticideD -0.79720 0.34647 -2.301 0.027297 *

## dosemedium:insecticideB -0.55166 0.48999 -1.126 0.267669

## dosehigh:insecticideB -0.45030 0.48999 -0.919 0.364213

## dosemedium:insecticideC 0.06961 0.48999 0.142 0.887826

## dosehigh:insecticideC 0.08646 0.48999 0.176 0.860928

## dosemedium:insecticideD -0.76974 0.48999 -1.571 0.124946

## dosehigh:insecticideD -0.91368 0.48999 -1.865 0.070391 .

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.49 on 36 degrees of freedom

## Multiple R-squared: 0.8681,Adjusted R-squared: 0.8277

## F-statistic: 21.53 on 11 and 36 DF, p-value: 1.289e-12

Drop the nonsignificant interaction term.
lm.r.d.i <- update(lm.r.d.i.di, ~ . - dose:insecticide)

library(car)

Anova(lm.r.d.i, type=3)

## Anova Table (Type III tests)

##

## Response: rate

## Sum Sq Df F value Pr(>F)

## (Intercept) 58.219 1 239.399 < 2.2e-16 ***

## dose 34.877 2 71.708 2.865e-14 ***

## insecticide 20.414 3 27.982 4.192e-10 ***

## Residuals 10.214 42

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

summary(lm.r.d.i)

##

## Call:

## lm(formula = rate ~ dose + insecticide, data = beetles.long)

##
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## Residuals:

## Min 1Q Median 3Q Max

## -0.82757 -0.37619 0.02116 0.27568 1.18153

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 2.6977 0.1744 15.473 < 2e-16 ***

## dosemedium 0.4686 0.1744 2.688 0.01026 *

## dosehigh 1.9964 0.1744 11.451 1.69e-14 ***

## insecticideB -1.6574 0.2013 -8.233 2.66e-10 ***

## insecticideC -0.5721 0.2013 -2.842 0.00689 **

## insecticideD -1.3583 0.2013 -6.747 3.35e-08 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.4931 on 42 degrees of freedom

## Multiple R-squared: 0.8441,Adjusted R-squared: 0.8255

## F-statistic: 45.47 on 5 and 42 DF, p-value: 6.974e-16

Unlike the original analysis, the residual plots do not show any gross devi-

ations from assumptions. Also, no case seems relatively influential.
# plot diagnistics
par(mfrow=c(2,3))
plot(lm.r.d.i, which = c(1,4,6))

plot(beetles.long$dose, lm.r.d.i$residuals, main="Residuals vs dose")
# horizontal line at zero
abline(h = 0, col = "gray75")

plot(beetles.long$insecticide, lm.r.d.i$residuals, main="Residuals vs insecticide")
# horizontal line at zero
abline(h = 0, col = "gray75")

# Normality of Residuals
library(car)
qqPlot(lm.r.d.i$residuals, las = 1, id.n = 3, main="QQ Plot")

## 41 4 33
## 48 47 46

## residuals vs order of data
#plot(lm.r.d.i£residuals, main="Residuals vs Order of data")
# # horizontal line at zero
# abline(h = 0, col = "gray75")
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Bonferroni multiple comparisons imply differences about the mean rates.
# Testing multiple factors is of interest here.

# Note that the code below corrects the p-values

# for all the tests done for both factors together,

# that is, the Bonferroni-corrected significance level is (alpha / (d + i))

# where d = number of dose comparisons

# and i = number of insecticide comparisons.

# correcting over dose and insecticide

glht.beetle.di.rate <- glht(aov(lm.r.d.i), linfct = mcp(dose = "Tukey"

, insecticide = "Tukey"))

summary(glht.beetle.di.rate, test = adjusted("bonferroni"))

##

## Simultaneous Tests for General Linear Hypotheses

##

## Multiple Comparisons of Means: Tukey Contrasts

##

##

## Fit: aov(formula = lm.r.d.i)

##

## Linear Hypotheses:

## Estimate Std. Error t value Pr(>|t|)

## dose: medium - low == 0 0.4686 0.1744 2.688 0.09236 .

## dose: high - low == 0 1.9964 0.1744 11.451 1.52e-13 ***

## dose: high - medium == 0 1.5278 0.1744 8.763 4.46e-10 ***
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## insecticide: B - A == 0 -1.6574 0.2013 -8.233 2.39e-09 ***

## insecticide: C - A == 0 -0.5721 0.2013 -2.842 0.06203 .

## insecticide: D - A == 0 -1.3583 0.2013 -6.747 3.01e-07 ***

## insecticide: C - B == 0 1.0853 0.2013 5.391 2.67e-05 ***

## insecticide: D - B == 0 0.2991 0.2013 1.485 1.00000

## insecticide: D - C == 0 -0.7862 0.2013 -3.905 0.00302 **

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## (Adjusted p values reported -- bonferroni method)

par(mfrow=c(1,1))

# plot the summary

op <- par(no.readonly = TRUE) # the whole list of settable par's.

# make wider left margin to fit contrast labels

par(mar = c(5, 10, 4, 2) + 0.1) # order is c(bottom, left, top, right)

# plot bonferroni-corrected difference intervals

plot(summary(glht.beetle.di.rate, test = adjusted("bonferroni"))

, sub="Bonferroni-adjusted Treatment contrasts")

par(op) # reset plotting options
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Comments on the Two Analyses of Survival Times

The effects of the transformation are noticeable. For example, the comparisons

among doses and insecticides are less sensitive (differences harder to distinguish)

on the original scale (look at the Bonferroni groupings). A comparison of the

interaction p-values and profile plots for the two analyses suggests that the

transformation eliminates much of the observed interaction between the main

effects. Although the interaction in the original analysis was not significant at

the 10% level (p-value=0.112), the small sample sizes suggest that power for

detecting interaction might be low. To be on the safe side, one might interpret

the main effects in the original analysis as if an interaction were present. This

need appears to be less pressing with the rates.

The statistical assumptions are reasonable for an analysis of the rates. I

think that the simplicity of the main effects interpretation is a strong motivating

factor for preferring the analysis of the transformed data to the original analysis.

You might disagree, especially if you believe that the original time scale is most

relevant for analysis.

Given the suitability of the inverse transformation, I did not consider the

logarithmic transformation.

5.3 Multiple comparisons: balanced (means)
vs unbalanced (lsmeans)

The lsmeans provides a way to compare cell means (combinations of factors),

something that is not possible directly with glht(), which compares marginal

means.

Using the battery example, we compare the multiple comparison methods

using means (glht()) and lsmeans2 (lsmeans()). When there are only main

effects, the two methods agree.

2lsmeans is a package written by Russell V. Lenth, PhD of UNM 1975, and well-known for his online
power calculators.
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#### Multiple comparisons

#### Example: Battery

# fit additive (main effects) model (same as before)

lm.m.m.t <- lm(maxvolt ~ material + temp, data = battery.long)

### comparing means (must be balanced or have only one factor)

# correcting over temp

glht.battery.t <- glht(aov(lm.m.m.t), linfct = mcp(temp = "Tukey"))

summary(glht.battery.t, test = adjusted("bonferroni"))

##

## Simultaneous Tests for General Linear Hypotheses

##

## Multiple Comparisons of Means: Tukey Contrasts

##

##

## Fit: aov(formula = lm.m.m.t)

##

## Linear Hypotheses:

## Estimate Std. Error t value Pr(>|t|)

## 65 - 50 == 0 -37.25 12.24 -3.044 0.01417 *

## 80 - 50 == 0 -80.67 12.24 -6.593 6.89e-07 ***

## 80 - 65 == 0 -43.42 12.24 -3.548 0.00377 **

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## (Adjusted p values reported -- bonferroni method)

### comparing lsmeans (may be unbalanced)

library(lsmeans)

## compare levels of main effects

# temp

lsmeans(lm.m.m.t, list(pairwise ~ temp), adjust = "bonferroni")

## $`lsmeans of temp`

## temp lsmean SE df lower.CL upper.CL

## 50 144.83333 8.65164 31 127.18820 162.4785

## 65 107.58333 8.65164 31 89.93820 125.2285

## 80 64.16667 8.65164 31 46.52153 81.8118

##

## Results are averaged over the levels of: material

## Confidence level used: 0.95

##

## $`pairwise differences of contrast`

## contrast estimate SE df t.ratio p.value

## 50 - 65 37.25000 12.23527 31 3.044 0.0142

## 50 - 80 80.66667 12.23527 31 6.593 <.0001

## 65 - 80 43.41667 12.23527 31 3.548 0.0038

##

## Results are averaged over the levels of: material

## P value adjustment: bonferroni method for 3 tests
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When there are model interactions, the comparisons of the main effects are

inappropriate, and give different results depending on the method of compari-

son.
# fit interaction model (same as before)

lm.m.m.t.mt <- lm(maxvolt ~ material*temp, data = battery.long)

### comparing means (must be balanced or have only one factor)

# correcting over temp

glht.battery.t <- glht(aov(lm.m.m.t.mt), linfct = mcp(temp = "Tukey"))

## Warning in mcp2matrix(model, linfct = linfct): covariate interactions found -- default

contrast might be inappropriate

summary(glht.battery.t, test = adjusted("bonferroni"))

##

## Simultaneous Tests for General Linear Hypotheses

##

## Multiple Comparisons of Means: Tukey Contrasts

##

##

## Fit: aov(formula = lm.m.m.t.mt)

##

## Linear Hypotheses:

## Estimate Std. Error t value Pr(>|t|)

## 65 - 50 == 0 -77.50 18.37 -4.218 0.000744 ***

## 80 - 50 == 0 -77.25 18.37 -4.204 0.000772 ***

## 80 - 65 == 0 0.25 18.37 0.014 1.000000

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## (Adjusted p values reported -- bonferroni method)

### comparing lsmeans (may be unbalanced)

library(lsmeans)

## compare levels of main effects

# temp

lsmeans(lm.m.m.t.mt, list(pairwise ~ temp), adjust = "bonferroni")

## NOTE: Results may be misleading due to involvement in interactions

## $`lsmeans of temp`

## temp lsmean SE df lower.CL upper.CL

## 50 144.83333 7.501183 27 129.44218 160.22449

## 65 107.58333 7.501183 27 92.19218 122.97449

## 80 64.16667 7.501183 27 48.77551 79.55782

##

## Results are averaged over the levels of: material

## Confidence level used: 0.95

##

## $`pairwise differences of contrast`

## contrast estimate SE df t.ratio p.value

## 50 - 65 37.25000 10.60827 27 3.511 0.0048
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## 50 - 80 80.66667 10.60827 27 7.604 <.0001

## 65 - 80 43.41667 10.60827 27 4.093 0.0010

##

## Results are averaged over the levels of: material

## P value adjustment: bonferroni method for 3 tests

When there are model interactions and you want to compare cell means,

levels of one factor at each level of another factor separately, then you must use

lsmeans().
# fit interaction model (same as before)

lm.m.m.t.mt <- lm(maxvolt ~ material*temp, data = battery.long)

### comparing lsmeans (may be unbalanced)

library(lsmeans)

## compare levels of one factor at each level of another factor separately

# material at levels of temp

lsmeans(lm.m.m.t.mt, list(pairwise ~ material | temp), adjust = "bonferroni")

## $`lsmeans of material | temp`

## temp = 50:

## material lsmean SE df lower.CL upper.CL

## 1 134.75 12.99243 27 108.09174 161.40826

## 2 155.75 12.99243 27 129.09174 182.40826

## 3 144.00 12.99243 27 117.34174 170.65826

##

## temp = 65:

## material lsmean SE df lower.CL upper.CL

## 1 57.25 12.99243 27 30.59174 83.90826

## 2 119.75 12.99243 27 93.09174 146.40826

## 3 145.75 12.99243 27 119.09174 172.40826

##

## temp = 80:

## material lsmean SE df lower.CL upper.CL

## 1 57.50 12.99243 27 30.84174 84.15826

## 2 49.50 12.99243 27 22.84174 76.15826

## 3 85.50 12.99243 27 58.84174 112.15826

##

## Confidence level used: 0.95

##

## $`pairwise differences of contrast, temp | temp`

## temp = 50:

## contrast estimate SE df t.ratio p.value

## 1 - 2 -21.00 18.37407 27 -1.143 0.7893

## 1 - 3 -9.25 18.37407 27 -0.503 1.0000

## 2 - 3 11.75 18.37407 27 0.639 1.0000

##

## temp = 65:

## contrast estimate SE df t.ratio p.value
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## 1 - 2 -62.50 18.37407 27 -3.402 0.0063

## 1 - 3 -88.50 18.37407 27 -4.817 0.0001

## 2 - 3 -26.00 18.37407 27 -1.415 0.5055

##

## temp = 80:

## contrast estimate SE df t.ratio p.value

## 1 - 2 8.00 18.37407 27 0.435 1.0000

## 1 - 3 -28.00 18.37407 27 -1.524 0.4175

## 2 - 3 -36.00 18.37407 27 -1.959 0.1814

##

## P value adjustment: bonferroni method for 3 tests

# temp at levels of material

lsmeans(lm.m.m.t.mt, list(pairwise ~ temp | material), adjust = "bonferroni")

## $`lsmeans of temp | material`

## material = 1:

## temp lsmean SE df lower.CL upper.CL

## 50 134.75 12.99243 27 108.09174 161.40826

## 65 57.25 12.99243 27 30.59174 83.90826

## 80 57.50 12.99243 27 30.84174 84.15826

##

## material = 2:

## temp lsmean SE df lower.CL upper.CL

## 50 155.75 12.99243 27 129.09174 182.40826

## 65 119.75 12.99243 27 93.09174 146.40826

## 80 49.50 12.99243 27 22.84174 76.15826

##

## material = 3:

## temp lsmean SE df lower.CL upper.CL

## 50 144.00 12.99243 27 117.34174 170.65826

## 65 145.75 12.99243 27 119.09174 172.40826

## 80 85.50 12.99243 27 58.84174 112.15826

##

## Confidence level used: 0.95

##

## $`pairwise differences of contrast, material | material`

## material = 1:

## contrast estimate SE df t.ratio p.value

## 50 - 65 77.50 18.37407 27 4.218 0.0007

## 50 - 80 77.25 18.37407 27 4.204 0.0008

## 65 - 80 -0.25 18.37407 27 -0.014 1.0000

##

## material = 2:

## contrast estimate SE df t.ratio p.value

## 50 - 65 36.00 18.37407 27 1.959 0.1814

## 50 - 80 106.25 18.37407 27 5.783 <.0001

## 65 - 80 70.25 18.37407 27 3.823 0.0021

##

## material = 3:
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## contrast estimate SE df t.ratio p.value

## 50 - 65 -1.75 18.37407 27 -0.095 1.0000

## 50 - 80 58.50 18.37407 27 3.184 0.0109

## 65 - 80 60.25 18.37407 27 3.279 0.0086

##

## P value adjustment: bonferroni method for 3 tests

Finally, an important point demonstrated in the next section is that the

cell and marginal averages given by the means and lsmeans methods agree

here for the main effects model because the design is balanced. For unbalanced

designs with two or more factors, lsmeans and means compute different av-

erages. I will argue that lsmeans are the appropriate averages for unbalanced

analyses. You should use the means statement with caution — it is OK for

balanced or unbalanced one-factor designs, and for the balanced two-factor de-

signs (including the RB) that we have discussed.

5.4 Unbalanced Two-Factor Designs and Anal-
ysis

Sample sizes are usually unequal, or unbalanced, for the different treatment

groups in an experiment. Although this has no consequence on the specification

of a model, you have to be more careful with the analysis of unbalanced

experiments that have two or more factors. With unbalanced designs, the

Type I and Type III SS differ, as do the main effect averages given by means

and lsmeans. Inferences might critically depend on which summaries are used.

I will use the following example to emphasize the differences between the types

of SS and averages.

5.4.1 Example: Rat insulin

The experiment consists of measuring insulin levels in rats a certain length

of time after a fixed dose of insulin was injected into their jugular or portal

veins. This is a two-factor study with two vein types (jugular, portal) and
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three time levels (0, 30, and 60). An unusual feature of this experiment is that

the rats used in the six vein and time combinations are distinct. I will fit a two-

factor interaction model, which assumes that the responses are independent

within and across treatments (other models may be preferred). The design is

unbalanced, with sample sizes varying from 3 to 12.

An alternative experimental design might randomly assign rats to the two

vein groups, and then measure the insulin levels of each rat at the three time

points. Depending on the questions of interest, you could compare veins using a

one-way MANOVA, or use other multivariate techniques that allow correlated

responses within rats.
#### Example: Rat insulin

rat <- read.table("http://statacumen.com/teach/ADA2/ADA2_notes_Ch05_ratinsulin.dat"

, header = TRUE)

# make time a factor variable and label the levels

rat$time<- factor(rat$time)

str(rat)

## 'data.frame': 48 obs. of 3 variables:

## $ vein : Factor w/ 2 levels "j","p": 1 1 1 1 1 1 1 1 1 1 ...

## $ time : Factor w/ 3 levels "0","30","60": 1 1 1 1 1 2 2 2 2 2 ...

## $ insulin: int 18 36 12 24 43 61 116 63 132 68 ...

head(rat, 3)

## vein time insulin

## 1 j 0 18

## 2 j 0 36

## 3 j 0 12

tail(rat, 3)

## vein time insulin

## 46 p 60 105

## 47 p 60 71

## 48 p 60 83

It appears the standard deviation increases with the mean.
# boxplots, ggplot

p <- ggplot(rat, aes(x = time, y = insulin, colour = vein))

p <- p + geom_boxplot()

print(p)

# mean vs sd plot

library(plyr)

# means and standard deviations for each time/interaction cell

rat.meansd.tv <- ddply(rat, .(time,vein), summarise
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, m = mean(insulin), s = sd(insulin), n = length(insulin))

rat.meansd.tv

## time vein m s n

## 1 0 j 26.60000 12.75931 5

## 2 0 p 81.91667 27.74710 12

## 3 30 j 79.50000 36.44585 6

## 4 30 p 172.90000 76.11753 10

## 5 60 j 61.33333 62.51666 3

## 6 60 p 128.50000 49.71830 12

p <- ggplot(rat.meansd.tv, aes(x = m, y = s, shape = time, colour = vein, label=n))

p <- p + geom_point(size=4)

# labels are sample sizes

p <- p + geom_text(hjust = 0.5, vjust = -0.5)

p <- p + labs(title = "Rats standard deviation vs mean")

print(p)
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We take the log of insulin to correct the problem. The variances are more

constant now, except for one sample with only 3 observations which has a larger

standard deviation than the others, but because this is based on such a small

sample size, it’s not of much concern.
rat$loginsulin <- log(rat$insulin)

# boxplots, ggplot

p <- ggplot(rat, aes(x = time, y = loginsulin, colour = vein))

p <- p + geom_boxplot()

print(p)
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# mean vs sd plot

library(plyr)

# means and standard deviations for each time/interaction cell

rat.meansd.tv <- ddply(rat, .(time,vein), summarise

, m = mean(loginsulin)

, s = sd(loginsulin)

, n = length(loginsulin))

rat.meansd.tv

## time vein m s n

## 1 0 j 3.179610 0.5166390 5

## 2 0 p 4.338230 0.4096427 12

## 3 30 j 4.286804 0.4660571 6

## 4 30 p 5.072433 0.4185221 10

## 5 60 j 3.759076 1.0255165 3

## 6 60 p 4.785463 0.3953252 12

p <- ggplot(rat.meansd.tv, aes(x = m, y = s, shape = time, colour = vein, label=n))

p <- p + geom_point(size=4)

# labels are sample sizes

p <- p + geom_text(hjust = 0.5, vjust = -0.5)

p <- p + labs(title = "Rats standard deviation vs mean")

print(p)
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Type I and Type III SS

We can request ANOVA tables including Type I or Type III SS3 for each effect

in a model. The Type I SS is the sequential reduction in Error SS achieved

when an effect is added to a model that includes only the prior effects listed in

the model statement. The Type III SS are more difficult to define explicitly,

but they roughly correspond to the reduction in Error SS achieved when an

effect is added last to the model.

Type I SS and Type III SS are equal for balanced designs and for one-

way ANOVA, but are typically different for unbalanced designs, where there is

no unique way to define the SS for an effect. The problem here is similar to

multiple regression, where the SS for a predictor X is the decrease in Residual

SS when X is added to a model. This SS is not unique because the change in

the Residual SS depends on which predictors are included in the model prior to

X . In a regression analysis, the standard tests for effects in a model are based

on Type III SS and not on the Type I SS.

For the insulin analysis, the Type I and Type III interaction SS are identical

because this effect was added last to the model statement. The Type I and

III SS for the main effects are not equal. Also note that the Type I SS for the

main effects and interaction add to the model SS, but the Type III SS do not.

Looking at the output, we see the Type I and Type III SS are different,

except for the interaction term.
lm.i.t.v.tv <- lm(loginsulin ~ time*vein, data = rat

, contrasts = list(time = contr.sum, vein = contr.sum))

## CRITICAL!!! Unbalanced design warning.

## The contrast statement above must be included identifying

## each main effect with "contr.sum" in order for the correct

## Type III SS to be computed.

## See http://goanna.cs.rmit.edu.au/~fscholer/anova.php

library(car)

# type I SS (intercept SS not shown)

summary(aov(lm.i.t.v.tv))

## Df Sum Sq Mean Sq F value Pr(>F)

## time 2 5.450 2.725 12.18 6.74e-05 ***

## vein 1 9.321 9.321 41.66 8.82e-08 ***

3For the ugly details, see http://goanna.cs.rmit.edu.au/~fscholer/anova.php.
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## time:vein 2 0.259 0.130 0.58 0.565

## Residuals 42 9.399 0.224

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# type III SS

Anova(lm.i.t.v.tv, type=3)

## Anova Table (Type III tests)

##

## Response: loginsulin

## Sum Sq Df F value Pr(>F)

## (Intercept) 668.54 1 2987.5842 < 2.2e-16 ***

## time 6.18 2 13.7996 2.475e-05 ***

## vein 9.13 1 40.7955 1.101e-07 ***

## time:vein 0.26 2 0.5797 0.5645

## Residuals 9.40 42

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Because the profile plot lines all seem parallel, and because of the interaction

Type III SS p-value above, it appears there is not sufficient evidence for a vein-

by-time interaction. For now we’ll keep the interaction in the model for the

purpose of discussing differences between means and lsmeans and Type I and

Type III SS.
# calculate means for plot

library(plyr)

rat.mean.tv <- ddply(rat, .(time,vein), summarise, m = mean(loginsulin))

# Interaction plots, ggplot

p <- ggplot(rat, aes(x = time, y = loginsulin, colour = vein, shape = vein))

p <- p + geom_hline(aes(yintercept = 0), colour = "black"

, linetype = "solid", size = 0.2, alpha = 0.3)

p <- p + geom_boxplot(alpha = 0.25, outlier.size=0.1)

p <- p + geom_point(alpha = 0.5, position=position_dodge(width=0.75))

p <- p + geom_point(data = rat.mean.tv, aes(y = m), size = 4)

p <- p + geom_line(data = rat.mean.tv, aes(y = m, group = vein), size = 1.5)

p <- p + labs(title = "Rats interaction plot, vein by time")

print(p)

p <- ggplot(rat, aes(x = vein, y = loginsulin, colour = time, shape = time))

p <- p + geom_hline(aes(yintercept = 0), colour = "black"

, linetype = "solid", size = 0.2, alpha = 0.3)

p <- p + geom_boxplot(alpha = 0.25, outlier.size=0.1)

p <- p + geom_point(alpha = 0.5, position=position_dodge(width=0.75))

p <- p + geom_point(data = rat.mean.tv, aes(y = m), size = 4)

p <- p + geom_line(data = rat.mean.tv, aes(y = m, group = time), size = 1.5)
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p <- p + labs(title = "Rats interaction plot, time by vein")

print(p)
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Means versus lsmeans

The lsmeans (sometimes called adjusted means) for a single factor is an

arithmetic average of cell means. For example, the mean responses in the jugular

vein at times 0, 30, and 60 are 3.18, 4.29, and 3.76, respectively. The lsmeans

for the jugular vein is thus 3.74 = (3.18 + 4.29 + 3.76)/3. This average gives

equal weight to the 3 times even though the sample sizes at these times differ

(5, 6, and 3). The means of 3.78 for the jugular is the average of the 14 jugular

responses, ignoring time. If the cell sample sizes were equal, the lsmeans and

means averages would agree.

The means and lsmeans for individual cells (i.e., for the 6 vein*time

combinations) are identical, and equal to cell means.
#### lsmeans

library(plyr)

# unbalanced, don't match

rat.mean.t <- ddply(rat, .(time), summarise, m = mean(loginsulin))

rat.mean.t

## time m
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## 1 0 3.997460

## 2 30 4.777822

## 3 60 4.580186

library(lsmeans)

lsmeans(lm.i.t.v.tv, list(pairwise ~ time), adjust = "bonferroni")

## NOTE: Results may be misleading due to involvement in interactions

## $`lsmeans of time`

## time lsmean SE df lower.CL upper.CL

## 0 3.758920 0.1258994 42 3.504845 4.012996

## 30 4.679619 0.1221403 42 4.433130 4.926108

## 60 4.272270 0.1526754 42 3.964158 4.580381

##

## Results are averaged over the levels of: vein

## Confidence level used: 0.95

##

## $`pairwise differences of contrast`

## contrast estimate SE df t.ratio p.value

## 0 - 30 -0.9206985 0.1754107 42 -5.249 <.0001

## 0 - 60 -0.5133494 0.1978900 42 -2.594 0.0390

## 30 - 60 0.4073491 0.1955199 42 2.083 0.1300

##

## Results are averaged over the levels of: vein

## P value adjustment: bonferroni method for 3 tests

# unbalanced, don't match

rat.mean.v <- ddply(rat, .(vein), summarise, m = mean(loginsulin))

rat.mean.v

## vein m

## 1 j 3.778293

## 2 p 4.712019

# compare jugular mean above (3.778) with the lsmeans average below (3.742)

(3.179610 + 4.286804 + 3.759076)/3

## [1] 3.74183

lsmeans(lm.i.t.v.tv, list(pairwise ~ vein), adjust = "bonferroni")

## NOTE: Results may be misleading due to involvement in interactions

## $`lsmeans of vein`

## vein lsmean SE df lower.CL upper.CL

## j 3.741830 0.13192664 42 3.475592 4.008069

## p 4.732042 0.08142689 42 4.567716 4.896369

##

## Results are averaged over the levels of: time

## Confidence level used: 0.95

##

## $`pairwise differences of contrast`

## contrast estimate SE df t.ratio p.value

## j - p -0.9902121 0.1550322 42 -6.387 <.0001

##
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## Results are averaged over the levels of: time

# unbalanced, but highest-order interaction cell means will match

rat.mean.tv <- ddply(rat, .(time,vein), summarise, m = mean(loginsulin))

rat.mean.tv

## time vein m

## 1 0 j 3.179610

## 2 0 p 4.338230

## 3 30 j 4.286804

## 4 30 p 5.072433

## 5 60 j 3.759076

## 6 60 p 4.785463

lsmeans(lm.i.t.v.tv, list(pairwise ~ time | vein), adjust = "bonferroni")

## $`lsmeans of time | vein`

## vein = j:

## time lsmean SE df lower.CL upper.CL

## 0 3.179610 0.2115533 42 2.752678 3.606542

## 30 4.286804 0.1931208 42 3.897071 4.676538

## 60 3.759076 0.2731141 42 3.207910 4.310243

##

## vein = p:

## time lsmean SE df lower.CL upper.CL

## 0 4.338230 0.1365570 42 4.062647 4.613814

## 30 5.072433 0.1495908 42 4.770547 5.374320

## 60 4.785463 0.1365570 42 4.509880 5.061047

##

## Confidence level used: 0.95

##

## $`pairwise differences of contrast, vein | vein`

## vein = j:

## contrast estimate SE df t.ratio p.value

## 0 - 30 -1.1071941 0.2864445 42 -3.865 0.0011

## 0 - 60 -0.5794659 0.3454650 42 -1.677 0.3027

## 30 - 60 0.5277282 0.3344951 42 1.578 0.3664

##

## vein = p:

## contrast estimate SE df t.ratio p.value

## 0 - 30 -0.7342029 0.2025468 42 -3.625 0.0023

## 0 - 60 -0.4472330 0.1931208 42 -2.316 0.0766

## 30 - 60 0.2869699 0.2025468 42 1.417 0.4917

##

## P value adjustment: bonferroni method for 3 tests

lsmeans(lm.i.t.v.tv, list(pairwise ~ vein | time), adjust = "bonferroni")

## $`lsmeans of vein | time`

## time = 0:

## vein lsmean SE df lower.CL upper.CL

## j 3.179610 0.2115533 42 2.752678 3.606542
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## p 4.338230 0.1365570 42 4.062647 4.613814

##

## time = 30:

## vein lsmean SE df lower.CL upper.CL

## j 4.286804 0.1931208 42 3.897071 4.676538

## p 5.072433 0.1495908 42 4.770547 5.374320

##

## time = 60:

## vein lsmean SE df lower.CL upper.CL

## j 3.759076 0.2731141 42 3.207910 4.310243

## p 4.785463 0.1365570 42 4.509880 5.061047

##

## Confidence level used: 0.95

##

## $`pairwise differences of contrast, time | time`

## time = 0:

## contrast estimate SE df t.ratio p.value

## j - p -1.1586202 0.2517988 42 -4.601 <.0001

##

## time = 30:

## contrast estimate SE df t.ratio p.value

## j - p -0.7856289 0.2442807 42 -3.216 0.0025

##

## time = 60:

## contrast estimate SE df t.ratio p.value

## j - p -1.0263873 0.3053508 42 -3.361 0.0017

For completeness, these diagnostic plots are mostly fine, though the plot of

the Cook’s distances indicate a couple influential observations.
# interaction model
lm.i.t.v.tv <- lm(loginsulin ~ time*vein, data = rat

, contrasts = list(time = contr.sum, vein = contr.sum))

# plot diagnistics
par(mfrow=c(2,3))
plot(lm.i.t.v.tv, which = c(1,4,6))

plot(rat$time, lm.i.t.v.tv$residuals, main="Residuals vs time")
# horizontal line at zero
abline(h = 0, col = "gray75")

plot(rat$vein, lm.i.t.v.tv$residuals, main="Residuals vs vein")
# horizontal line at zero
abline(h = 0, col = "gray75")

# Normality of Residuals
library(car)
qqPlot(lm.i.t.v.tv$residuals, las = 1, id.n = 3, main="QQ Plot")

## 13 12 17
## 48 1 2

## residuals vs order of data
#plot(lm.i.t.v.tv£residuals, main="Residuals vs Order of data")
# # horizontal line at zero
# abline(h = 0, col = "gray75")
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Should I use means or lsmeans, Type I or Type III SS? Use

lsmeans and Type III SS.

Regardless of whether the design is balanced, the basic building blocks for

a two-factor analysis are cell means, and the marginal means, defined as the

average of the cell means over the levels of the other factor.

The F -statistics based on Type III SSs are appropriate for unbalanced two-

factor designs because they test the same hypotheses that were considered in

balanced designs. That is, the Type III F -tests on the main effects check for

equality in population means averaged over levels of the other factor. The Type

III F -test for no interaction checks for parallel profiles. Given that the Type

III F -tests for the main effects check for equal population cell means averaged

over the levels of the other factor, multiple comparisons for main effects should

be based on lsmeans.

The Type I SS and F -tests and the multiple comparisons based on means

should be ignored because they do not, in general, test meaningful hypothe-
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ses. The problem with using the means output is that the experimenter has

fixed the sample sizes for a two-factor experiment, so comparisons of means,

which ignore the second factor, introduces a potential bias due to choice of sam-

ple sizes. Put another way, any differences seen in the means in the jugular

and portal could be solely due to the sample sizes used in the experiment and

not due to differences in the veins.

Focusing on the Type III SS, the F -tests indicate that the vein and time

effects are significant, but that the interaction is not significant. The jugular

and portal profiles are reasonably parallel, which is consistent with a lack of

interaction. What can you conclude from the lsmeans comparisons of veins

and times?

Answer: significant differences between veins, and between times 0 and 30.
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5.5 Writing factor model equations and in-
terpretting coefficients

This section is an exercise in writing statistical factor models, plotting predicted

values, and interpretting model coefficients. You’ll need pen (preferrably multi-

colored) and paper.

In class I’ll discuss indicator variables and writing these models. Together,

we’ll plot the model predicted values, write the model for each factor combina-

tion, and indicate the β coefficients on the plot (βs are vertical differences)4.

From the exercise, I hope that coefficient interpretation will become clear. As-

sume a balanced design with ni observations for each treatment combination.

5.5.1 One-way ANOVA, 1 factor with 3 levels

1. Write ANOVA factor model (general and indicator-variables)

2. Write model for each factor level with βs and predicted values

3. Plot the predicted values on axes

4. Label the βs on the plot

5. Calculate marginal and grand means in table and label in plot

Level 1 2 3

ŷ 5 4 6

5.5.2 Two-way ANOVA, 2 factors with 3 and 2 lev-
els, additive model

1. Write two-way ANOVA factor model (general and indicator-variables)

2. Write model for each factor level with βs and predicted values

3. Plot the predicted values on axes

4. Label the βs on the plot

5. Calculate marginal and grand means in table and label in plot

4Please attempt by hand before looking at the solutions at http://statacumen.com/teach/ADA2/

ADA2_05_PairedAndBlockDesigns_CoefScan.pdf.
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ŷ Factor 1

Factor 2 1 2 3

1 5 4 6

2 8 7 9

5.5.3 Two-way ANOVA, 2 factors with 3 and 2 lev-
els, interaction model

1. Write two-way ANOVA factor model (general and indicator-variables)

2. Write model for each factor level with βs and predicted values

3. Plot the predicted values on axes

4. Label the βs on the plot

5. Calculate marginal and grand means in table and label in plot

ŷ Factor 1

Factor 2 1 2 3

1 5 4 6

2 8 10 3

UNM, Stat 428/528 ADA2



Chapter 6

A Short Discussion of
Observational Studies

“Thou shall adjust for what thou can not control.”

In most scientific studies, the groups being compared do not consist of identi-

cal experimental units that have been randomly assigned to receive a treatment.

Instead, the groups might be extremely heterogeneous on factors that might be

related to a specific response on which you wish to compare the groups. In-

ferences about the nature of differences among groups in such observational

studies can be flawed if this heterogeneity is ignored in the statistical analysis.

The following problem emphasizes the care that is needed when analyzing

observational studies, and highlights the distinction between the means

and lsmeans output for a two-way table. The data are artificial, but the

conclusions are consistent with an interesting analysis conducted by researchers

at Sandia National Laboratories.

A representative sample of 550 high school seniors was selected in 1970. A

similar sample of 550 was selected in 1990. The final SAT scores (on a 1600

point scale) were obtained for each student1.

1The fake-data example in this chapter is similar to a real-world SAT example illustrated in this
paper: “Minority Contributions to the SAT Score Turnaround: An Example of Simpson’s Paradox” by
Howard Wainer, Journal of Educational Statistics, Vol. 11, No. 4 (Winter, 1986), pp. 239–244 http:

//www.jstor.org/stable/1164696.
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The boxplots for the two samples show heavy-tailed distributions with sim-

ilar spreads. Given the large sample sizes, the F -test comparing populations is

approximately valid even though the population distributions are non-normal.
#### Example: SAT

sat <- read.table("http://statacumen.com/teach/ADA2/ADA2_notes_Ch06_sat.dat", header = TRUE)

sat$year <- factor(sat$year)

sat$eth <- factor(sat$eth )

# calculate means by year (also calculated below to illustrate lsmeans())

library(plyr)

sat.mean.y <- ddply(sat, .(year), summarise, m = mean(grade))

# Interaction plots, ggplot
p <- ggplot(sat, aes(x = year, y = grade))
p <- p + geom_boxplot(alpha = 0.5)
p <- p + geom_point(position = position_jitter(w = 0.1, h = 0), colour="gray25", size=1, alpha = 0.2)
p <- p + geom_point(data = sat.mean.y, aes(y = m), size = 4)
#p <- p + geom_line(data = sat.mean.y, aes(y = m), size = 1.5)
p <- p + labs(title = "SAT scores by year")
print(p)
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A simple analysis might compare the average SAT scores for the two years,

to see whether students are scoring higher, lower, or about the same, over time.

The one-way lsmeans and means breakdowns of the SAT scores are identical;

the average SAT scores for 1970 and 1990 are 892.8 and 882.2, respectively.

The one-way ANOVA, combined with the observed averages, indicates that
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the typical SAT score has decreased significantly (10.7 points) over the 20 year

period.
lm.g.y <- lm(grade ~ year, data = sat

, contrasts = list(year = contr.sum))

library(car)

# type III SS

Anova(lm.g.y, type=3)

## Anova Table (Type III tests)

##

## Response: grade

## Sum Sq Df F value Pr(>F)

## (Intercept) 866418325 1 1.7076e+06 < 2.2e-16 ***

## year 31410 1 6.1904e+01 8.591e-15 ***

## Residuals 557117 1098

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

library(plyr)

# balanced with respect to year, so means and lsmeans match

sat.mean.y <- ddply(sat, .(year), summarise, m = mean(grade))

sat.mean.y

## year m

## 1 1970 892.8418

## 2 1990 882.1545

library(lsmeans)

lsmeans(lm.g.y, list(pairwise ~ year), adjust = "bonferroni")

## $`lsmeans of year`

## year lsmean SE df lower.CL upper.CL

## 1970 892.8418 0.9604853 1098 890.9572 894.7264

## 1990 882.1545 0.9604853 1098 880.2700 884.0391

##

## Confidence level used: 0.95

##

## $`pairwise differences of contrast`

## contrast estimate SE df t.ratio p.value

## 1970 - 1990 10.68727 1.358331 1098 7.868 <.0001

Should we be alarmed? Should we be concerned that students entering

college have fewer skills than students 20 years ago? Should we be pumping

billions of dollars into the bloated bureaucracies of our public school systems

with the hope that a few of these dollars might be put to good use in programs

to enhance performance? This is the consensus among some people in the

know, all of whom wax eloquently about the impending inability of the U.S. to

compete in the new global economy.
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The SAT study is not a well-designed experiment, where a scientist has con-

trolled all the factors that might affect the response (the SAT score) other than

the treatment (the year). Even without these controls, there is no randomiza-

tion of treatments to students selected from a target population.

The SAT study is an observational study of two distinct populations.

The observed differences in SAT scores may indeed be due to a decrease in

performance. The differences might also be due to factors that make the two

populations incomparable for assessing changes in performance over time.

My hypothetical populations have students from two ethnic groups (1 and

2). If you construct box-plots of the SAT scores for the four combinations of

ethnicity and year, you see that the typical SAT score within each ethnic group

has increased over time, whereas the typical SAT score ignoring ethnicity

decreased over time. Is this a paradox, and what are appropriate conclusions

in the analysis?
sat.mean.ye <- ddply(sat, .(year,eth), summarise, m = mean(grade))
sat.mean.ye

## year eth m
## 1 1970 1 899.712
## 2 1970 2 824.140
## 3 1990 1 948.560
## 4 1990 2 875.514

# Interaction plots, ggplot
library(ggplot2)
p <- ggplot(sat, aes(x = year, y = grade, colour = eth, shape = eth))
p <- p + geom_boxplot(alpha = 0.5, outlier.size=0.5)
p <- p + geom_point(data = sat.mean.ye, aes(y = m), size = 4)
p <- p + geom_line(data = sat.mean.ye, aes(y = m, group = eth), size = 1.5)
p <- p + labs(title = "SAT interaction plot, eth by year")
print(p)

#p <- ggplot(sat, aes(x = eth, y = grade, colour = year, shape = year))
#p <- p + geom_boxplot(alpha = 0.5, outlier.size=0.5)
#p <- p + geom_point(data = sat.mean.ye, aes(y = m), size = 4)
#p <- p + geom_line(data = sat.mean.ye, aes(y = m, group = year), size = 1.5)
#p <- p + labs(title = "SAT interaction plot, year by eth")
#print(p)
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SAT interaction plot, eth by year

I fit a two-factor model with year and ethnicity effects plus an interaction.

The two-factor model gives a method to compare the SAT scores over time,

after adjusting for the effect of ethnicity on performance. The F -test for

comparing years adjusts for ethnicity because it is based on comparing the

average SAT scores across years after averaging the cell means over ethnicities,

thereby eliminating from the comparison of years any effects due to changes in

the ethnic composition of the populations. The two-way analysis is preferable

to the unadjusted one-way analysis which ignores ethnicity.
lm.g.y.e.ye <- lm(grade ~ year * eth, data = sat

, contrasts = list(year = contr.sum, eth = contr.sum))

## CRITICAL!!! Unbalanced design warning.

## The contrast statement above must be included identifying

## each main effect with "contr.sum" in order for the correct

## Type III SS to be computed.

## See http://goanna.cs.rmit.edu.au/~fscholer/anova.php

library(car)

# type III SS

Anova(lm.g.y.e.ye, type=3)

## Anova Table (Type III tests)

##

## Response: grade
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## Sum Sq Df F value Pr(>F)

## (Intercept) 286085884 1 5.7022e+06 < 2e-16 ***

## year 228283 1 4.5501e+03 < 2e-16 ***

## eth 501984 1 1.0005e+04 < 2e-16 ***

## year:eth 145 1 2.8904e+00 0.08939 .

## Residuals 54988 1096

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The year and ethnicity main effects are significant in the two factor model,

but the interaction is not. The marginal lsmeans indicate that the average

SAT score increased significantly over time when averaged over ethnicities. This

is consistent with the cell mean SAT scores increasing over time within each

ethnic group. Given the lack of a significant interaction, the expected increase

in SAT scores from 1970 to 1990 within each ethnic group is the difference

in marginal averages: 912.0 - 861.9 = 50.1.
library(plyr)

# unbalanced, don't match (lsmeans is correct)

sat.mean.y <- ddply(sat, .(year), summarise, m = mean(grade))

sat.mean.y

## year m

## 1 1970 892.8418

## 2 1990 882.1545

library(lsmeans)

lsmeans(lm.g.y.e.ye, list(pairwise ~ year), adjust = "bonferroni")

## NOTE: Results may be misleading due to involvement in interactions

## $`lsmeans of year`

## year lsmean SE df lower.CL upper.CL

## 1970 861.926 0.5253021 1096 860.8953 862.9567

## 1990 912.037 0.5253021 1096 911.0063 913.0677

##

## Results are averaged over the levels of: eth

## Confidence level used: 0.95

##

## $`pairwise differences of contrast`

## contrast estimate SE df t.ratio p.value

## 1970 - 1990 -50.111 0.7428893 1096 -67.454 <.0001

##

## Results are averaged over the levels of: eth

# unbalanced, don't match (lsmeans is correct)

sat.mean.e <- ddply(sat, .(eth), summarise, m = mean(grade))

sat.mean.e

## eth m
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## 1 1 904.1527

## 2 2 870.8436

lsmeans(lm.g.y.e.ye, list(pairwise ~ eth), adjust = "bonferroni")

## NOTE: Results may be misleading due to involvement in interactions

## $`lsmeans of eth`

## eth lsmean SE df lower.CL upper.CL

## 1 924.136 0.5253021 1096 923.1053 925.1667

## 2 849.827 0.5253021 1096 848.7963 850.8577

##

## Results are averaged over the levels of: year

## Confidence level used: 0.95

##

## $`pairwise differences of contrast`

## contrast estimate SE df t.ratio p.value

## 1 - 2 74.309 0.7428893 1096 100.027 <.0001

##

## Results are averaged over the levels of: year

# unbalanced, but highest-order interaction cell means will match

sat.mean.ye <- ddply(sat, .(year,eth), summarise, m = mean(grade))

sat.mean.ye

## year eth m

## 1 1970 1 899.712

## 2 1970 2 824.140

## 3 1990 1 948.560

## 4 1990 2 875.514

lsmeans(lm.g.y.e.ye, list(pairwise ~ year | eth), adjust = "bonferroni")

## $`lsmeans of year | eth`

## eth = 1:

## year lsmean SE df lower.CL upper.CL

## 1970 899.712 0.3167691 1096 899.0905 900.3335

## 1990 948.560 1.0017118 1096 946.5945 950.5255

##

## eth = 2:

## year lsmean SE df lower.CL upper.CL

## 1970 824.140 1.0017118 1096 822.1745 826.1055

## 1990 875.514 0.3167691 1096 874.8925 876.1355

##

## Confidence level used: 0.95

##

## $`pairwise differences of contrast, eth | eth`

## eth = 1:

## contrast estimate SE df t.ratio p.value

## 1970 - 1990 -48.848 1.050604 1096 -46.495 <.0001

##

## eth = 2:

## contrast estimate SE df t.ratio p.value

## 1970 - 1990 -51.374 1.050604 1096 -48.899 <.0001
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lsmeans(lm.g.y.e.ye, list(pairwise ~ eth | year), adjust = "bonferroni")

## $`lsmeans of eth | year`

## year = 1970:

## eth lsmean SE df lower.CL upper.CL

## 1 899.712 0.3167691 1096 899.0905 900.3335

## 2 824.140 1.0017118 1096 822.1745 826.1055

##

## year = 1990:

## eth lsmean SE df lower.CL upper.CL

## 1 948.560 1.0017118 1096 946.5945 950.5255

## 2 875.514 0.3167691 1096 874.8925 876.1355

##

## Confidence level used: 0.95

##

## $`pairwise differences of contrast, year | year`

## year = 1970:

## contrast estimate SE df t.ratio p.value

## 1 - 2 75.572 1.050604 1096 71.932 <.0001

##

## year = 1990:

## contrast estimate SE df t.ratio p.value

## 1 - 2 73.046 1.050604 1096 69.528 <.0001

As noted in the insulin analysis, the marginal lsmeans and means are

different for unbalanced two-factor analyses. The marginal means ignore the

levels of the other factors when averaging responses. The marginal lsmeans are

averages of cell means over the levels of the other factor. Thus, for example, the

1970 mean SAT score of 892.8 is the average of the 550 scores selected that year.

The 1970 lsmeans SAT score of 861.9 is midway between the average 1970

SAT scores for the two ethnic groups: 861.9 = (899.7 + 824.1)/2. Hopefully,

this discussion also clarifies why the year marginal means are identical in the

one and two-factor analyses, but the year lsmeans are not.

The 1970 and 1990 marginal means estimate the typical SAT score ignoring

all factors that may influence performance. These marginal averages are not

relevant for understanding any trends in performance over time because they

do not account for changes in the composition of the population that may be

related to performance.

The average SAT scores (ignoring ethnicity) decreased from 1970 to 1990

because the ethnic composition of the student population changed. Ten out of
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every eleven students sampled in 1970 were from the first ethnic group. Only

one out of eleven students sampled in 1990 was from this group. Students in

the second ethnic group are underachievers, but they are becoming a larger

portion of the population over time. The decrease in average (means) perfor-

mance inferred from comparing 1970 to 1990 is confounded with the increased

representation of the underachievers over time. Once ethnicity was taken into

consideration, the typical SAT scores were shown to have increased, rather than

decreased.

In summary, the one-way analysis ignoring ethnicity is valid, and allows you

to conclude that the typical SAT score has decreased over time, but it does

not provide any insight into the nature of the changes that have occurred. A

two-factor analysis backed up with a comparison of the marginal lsmeans is

needed to compare performances over time, adjusting for the changes in ethnic

composition.

The Sandia study reached the same conclusion. The Sandia team showed

that the widely reported decreases in SAT scores over time are due to changes

in the ethnic distribution of the student population over time, with individuals

in historically underachieving ethnic groups becoming a larger portion of the

student population over time.

A more complete analysis of the SAT study would adjust the SAT scores

to account for other potential confounding factors, such as sex, and differences

due to the number of times the exam was taken. These confounding effects are

taken into consideration by including them as effects in the model.

The interpretation of the results from an observational study with several

effects of interest, and several confounding variables, is greatly simplified by

eliminating the insignificant effects from the model. For example, the year by

ethnicity interaction in the SAT study might be omitted from the model to

simplify interpretation. The year effects would then be estimated after fitting a

two-way additive model with year and ethnicity effects only. The same approach

is sometimes used with designed experiments, say the insulin study that we

analyzed earlier.
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An important caveat The ideas that we discussed on the design and

analysis of experiments and observational studies are universal. They apply

regardless of whether you are analyzing categorical data, counts, or measure-

ments.
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Chapter 7

Analysis of Covariance:
Comparing Regression
Lines

Suppose that you are interested in comparing the typical lifetime (hours) of two

tool types (A and B). A simple analysis of the data given below would consist of

making side-by-side boxplots followed by a two-sample test of equal means (or

medians). The standard two-sample test using the pooled variance estimator is

a special case of the one-way ANOVA with two groups. The summaries suggest

that the distribution of lifetimes for the tool types are different. In the output

below, µi is population mean lifetime for tool type i (i = A,B).
#### Example: Tool lifetime

tools <- read.table("http://statacumen.com/teach/ADA2/ADA2_notes_Ch07_tools.dat"

, header = TRUE)

str(tools)

## 'data.frame': 20 obs. of 3 variables:

## $ lifetime: num 18.7 14.5 17.4 14.5 13.4 ...

## $ rpm : int 610 950 720 840 980 530 680 540 890 730 ...

## $ type : Factor w/ 2 levels "A","B": 1 1 1 1 1 1 1 1 1 1 ...
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lifetime rpm type
1 18.7300 610 A
2 14.5200 950 A
3 17.4300 720 A
4 14.5400 840 A
5 13.4400 980 A
6 24.3900 530 A
7 13.3400 680 A
8 22.7100 540 A
9 12.6800 890 A

10 19.3200 730 A

lifetime rpm type
11 30.1600 670 B
12 27.0900 770 B
13 25.4000 880 B
14 26.0500 1000 B
15 33.4900 760 B
16 35.6200 590 B
17 26.0700 910 B
18 36.7800 650 B
19 34.9500 810 B
20 43.6700 500 B

library(ggplot2)
p <- ggplot(tools, aes(x = type, y = lifetime))
# plot a reference line for the global mean (assuming no groups)
p <- p + geom_hline(aes(yintercept = mean(lifetime)),

colour = "black", linetype = "dashed", size = 0.3, alpha = 0.5)
# boxplot, size=.75 to stand out behind CI
p <- p + geom_boxplot(size = 0.75, alpha = 0.5)
# points for observed data
p <- p + geom_point(position = position_jitter(w = 0.05, h = 0), alpha = 0.5)
# diamond at mean for each group
p <- p + stat_summary(fun.y = mean, geom = "point", shape = 18, size = 6,

colour="red", alpha = 0.8)
# confidence limits based on normal distribution
p <- p + stat_summary(fun.data = "mean_cl_normal", geom = "errorbar",

width = .2, colour="red", alpha = 0.8)
p <- p + labs(title = "Tool type lifetime") + ylab("lifetime (hours)")
p <- p + coord_flip()
print(p)

A

B

20 30 40
lifetime (hours)

ty
pe

Tool type lifetime

A two sample t-test comparing mean lifetimes of tool types indicates a

difference between means.
t.summary <- t.test(lifetime ~ type, data = tools)

t.summary

##

## Welch Two Sample t-test

##
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## data: lifetime by type

## t = -6.435, df = 15.93, p-value = 8.422e-06

## alternative hypothesis: true difference in means is not equal to 0

## 95 percent confidence interval:

## -19.70128 -9.93472

## sample estimates:

## mean in group A mean in group B

## 17.110 31.928

This comparison is potentially misleading because the samples are not com-

parable. A one-way ANOVA is most appropriate for designed experiments

where all the factors influencing the response, other than the treatment (tool

type), are fixed by the experimenter. The tools were operated at different

speeds. If speed influences lifetime, then the observed differences in lifetimes

could be due to differences in speeds at which the two tool types were operated.

Fake example For example, suppose speed is inversely related to lifetime

of the tool. Then, the differences seen in the boxplots above could be due to

tool type B being operated at lower speeds than tool type A. To see how this

is possible, consider the data plot given below, where the relationship between

lifetime and speed is identical in each sample. A simple linear regression model

relating hours to speed, ignoring tool type, fits the data exactly, yet the lifetime

distributions for the tool types, ignoring speed, differ dramatically. (The data

were generated to fall exactly on a straight line). The regression model indicates

that you would expect identical mean lifetimes for tool types A and B, if they

were, or could be, operated at identical speeds. This is not exactly what happens

in the actual data. However, I hope the point is clear.
#### Example: Tools, fake
toolsfake <- read.table("http://statacumen.com/teach/ADA2/ADA2_notes_Ch07_toolsfake.dat"

, header = TRUE)
library(ggplot2)
p <- ggplot(toolsfake, aes(x = speed, y = hours, colour = type, shape = type))
p <- p + geom_point(size=4)

library(R.oo) # for ascii code lookup
p <- p + scale_shape_manual(values=charToInt(sort(unique(toolsfake$type))))

p <- p + labs(title="Fake tools data, hours by speed with categorical type")
print(p)
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As noted in the Chapter 6 SAT example, you should be wary of group

comparisons where important factors that influence the response have not been

accounted for or controlled. In the SAT example, the differences in scores were

affected by a change in the ethnic composition over time. A two-way ANOVA

with two factors, time and ethnicity, gave the most sensible analysis.

For the tool lifetime problem, you should compare groups (tools) after ad-

justing the lifetimes to account for the influence of a measurement variable,

speed. The appropriate statistical technique for handling this problem is called

analysis of covariance (ANCOVA).
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7.1 ANCOVA

A natural way to account for the effect of speed is through a multiple regression

model with lifetime as the response and two predictors, speed and tool type.

A binary categorical variable, here tool type, is included in the model as a

dummy variable or indicator variable (a {0, 1} variable).

Consider the model

Tool lifetime = β0 + β1 typeB + β2 rpm + e,

where typeB is 0 for type A tools, and 1 for type B tools. For type A tools, the

model simplifies to:

Tool lifetime = β0 + β1(0) + β2 rpm + e

= β0 + β2 rpm + e.

For type B tools, the model simplifies to:

Tool lifetime = β0 + β1(1) + β2 rpm + e

= (β0 + β1) + β2 rpm + e.

This ANCOVA model fits two regression lines, one for each tool type, but

restricts the slopes of the regression lines to be identical. To see this, let us

focus on the interpretation of the regression coefficients. For the ANCOVA

model,

β2 = slope of population regression lines for tool types A and B.

and

β0 = intercept of population regression line for tool A (called the reference

group).

Given that

β0 + β1 = intercept of population regression line for tool B,

it follows that

β1 = difference between tool B and tool A intercepts.
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A picture of the population regression lines for one version of the model is given

below.

Speed
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An important feature of the ANCOVA model is that β1 measures the dif-

ference in mean response for the tool types, regardless of the speed. A test

of H0 : β1 = 0 is the primary interest, and is interpreted as a comparison

of the tool types, after adjusting or allowing for the speeds at

which the tools were operated.

The ANCOVA model is plausible. The relationship between lifetime and

speed is roughly linear within tool types, with similar slopes but unequal in-

tercepts across groups. The plot of the studentized residuals against the fitted

values shows no gross abnormalities, but suggests that the variability about the

regression line for tool type A is somewhat smaller than the variability for tool

type B. The model assumes that the variability of the responses is the same for

each group. The QQ-plot does not show any gross deviations from a straight

line.
#### Example: Tool lifetime
library(ggplot2)
p <- ggplot(tools, aes(x = rpm, y = lifetime, colour = type, shape = type))
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p <- p + geom_point(size=4)
library(R.oo) # for ascii code lookup
p <- p + scale_shape_manual(values=charToInt(sort(unique(tools$type))))

p <- p + geom_smooth(method = lm, se = FALSE)
p <- p + labs(title="Tools data, lifetime by rpm with categorical type")
print(p)
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Tools data, lifetime by rpm with categorical type

lm.l.r.t <- lm(lifetime ~ rpm + type, data = tools)

#library(car)

#Anova(aov(lm.l.r.t), type=3)

summary(lm.l.r.t)

##

## Call:

## lm(formula = lifetime ~ rpm + type, data = tools)

##

## Residuals:

## Min 1Q Median 3Q Max

## -5.5527 -1.7868 -0.0016 1.8395 4.9838
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##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 36.98560 3.51038 10.536 7.16e-09 ***

## rpm -0.02661 0.00452 -5.887 1.79e-05 ***

## typeB 15.00425 1.35967 11.035 3.59e-09 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 3.039 on 17 degrees of freedom

## Multiple R-squared: 0.9003,Adjusted R-squared: 0.8886

## F-statistic: 76.75 on 2 and 17 DF, p-value: 3.086e-09

# plot diagnostics
par(mfrow=c(2,3))
plot(lm.l.r.t, which = c(1,4,6), pch=as.character(tools$type))

plot(tools$rpm, lm.l.r.t$residuals, main="Residuals vs rpm", pch=as.character(tools$type))
# horizontal line at zero
abline(h = 0, col = "gray75")

plot(tools$type, lm.l.r.t$residuals, main="Residuals vs type")
# horizontal line at zero
abline(h = 0, col = "gray75")

# Normality of Residuals
library(car)
qqPlot(lm.l.r.t$residuals, las = 1, id.n = 3, main="QQ Plot", pch=as.character(tools$type))

## 7 20 19
## 1 20 19

## residuals vs order of data
#plot(lm.l.r.t£residuals, main="Residuals vs Order of data")
# # horizontal line at zero
# abline(h = 0, col = "gray75")
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The fitted relationship for the combined data set is

Predicted Lifetime = 36.99 + 15.00 typeB− 0.0266 rpm.

Assigning the LS estimates to the appropriate parameters, the fitted relation-

ships for the two tool types must be, for tool type B:

Predicted Lifetime = (36.99 + 15.00)− 0.0266 rpm

= 51.99− 0.0266 rpm,

and for tool type A:

Predicted Lifetime = 36.99− 0.0266 rpm.

The t-test of H0 : β1 = 0 checks whether the intercepts for the population

regression lines are equal, assuming equal slopes. The t-test p-value < 0.0001

suggests that the population regression lines for tools A and B have unequal

intercepts. The LS lines indicate that the average lifetime of either type tool

decreases by 0.0266 hours for each increase in 1 RPM. Regardless of the lathe
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speed, the model predicts that type B tools will last 15 hours longer (i.e., the

regression coefficient for the typeB predictor) than type A tools. Summarizing

this result another way, the t-test suggests that there is a significant difference

between the lifetimes of the two tool types, after adjusting for the effect of the

speeds at which the tools were operated. The estimated difference in average

lifetime is 15 hours, regardless of the lathe speed.

7.2 Generalizing the ANCOVA Model to
Allow Unequal Slopes

I will present a flexible approach for checking equal slopes and equal intercepts

in ANCOVA-type models. The algorithm also provides a way to build regression

models in studies where the primary interest is comparing the regression lines

across groups rather than comparing groups after adjusting for a regression

effect. The approach can be applied to an arbitrary number of groups and

predictors. For simplicity, I will consider a problem with three groups and a

single regression effect.

The data1 below are the IQ scores of identical twins, one raised in a fos-

ter home (IQF) and the other raised by natural parents (IQN). The 27 pairs

are divided into three groups by social status of the natural parents (H=high,

M=medium, L=low). I will examine the regression of IQF on IQN for each of

the three social classes.

There is no a priori reason to assume that the regression lines for the three

groups have equal slopes or equal interepts. These are, however, reasonable

hypotheses to examine. The easiest way to check these hypotheses is to fit a

multiple regression model to the combined data set, and check whether certain

carefully defined regression effects are zero. The most general model has six

parameters, and corresponds to fitting a simple linear regression model to the

three groups separately (3× 2 = 6).

1The data were originally analyzed by Sir Cyril Burt.
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Two indicator variables are needed to uniquely identify each observation by

social class. For example, let I1 = 1 for H status families and I1 = 0 otherwise,

and let I2 = 1 for M status families and I2 = 0 otherwise. The indicators I1

and I2 jointly assume 3 values:

Status I1 I2

L 0 0

M 0 1

H 1 0

Given the indicators I1 and I2 and the predictor IQN, define two interaction

or product effects: I1 × IQN and I2 × IQN.

7.2.1 Unequal slopes ANCOVA model

The most general model allows separate slopes and intercepts for each group:

IQF = β0 + β1I1 + β2I2 + β3 IQN + β4I1 IQN + β5I2 IQN + e. (7.1)

This model is best understood by considering the three status classes sepa-

rately. If status = L, then I1 = I2 = 0. For these families

IQF = β0 + β3 IQN + e.

If status = M, then I1 = 0 and I2 = 1. For these families

IQF = β0 + β2(1) + β3 IQN + β5 IQN + e

= (β0 + β2) + (β3 + β5) IQN + e.

Finally, if status = H, then I1 = 1 and I2 = 0. For these families

IQF = β0 + β1(1) + β3 IQN + β4 IQN + e

= (β0 + β1) + (β3 + β4) IQN + e.

The regression coefficients β0 and β3 are the intercept and slope for the L

status population regression line. The other parameters measure differences

in intercepts and slopes across the three groups, using L status families as a

baseline or reference group. In particular:
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β1 = difference between the intercepts of the H and L population regression

lines.

β2 = difference between the intercepts of the M and L population regression

lines.

β4 = difference between the slopes of the H and L population regression lines.

β5 = difference between the slopes of the M and L population regression

lines.

The plot gives a possible picture of the population regression lines corre-

sponding to the general model (7.1).
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We fit the general model to the twins data.
#### Example: Twins

twins <- read.table("http://statacumen.com/teach/ADA2/ADA2_notes_Ch07_twins.dat"

, header = TRUE)

# set "L" as baseline level

twins$status <- relevel(twins$status, "L")

str(twins)

## 'data.frame': 27 obs. of 3 variables:

## $ IQF : int 82 80 88 108 116 117 132 71 75 93 ...

## $ IQN : int 82 90 91 115 115 129 131 78 79 82 ...
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## $ status: Factor w/ 3 levels "L","H","M": 2 2 2 2 2 2 2 3 3 3 ...

library(ggplot2)
p <- ggplot(twins, aes(x = IQN, y = IQF, colour = status, shape = status))
p <- p + geom_point(size=4)

library(R.oo) # for ascii code lookup
p <- p + scale_shape_manual(values=charToInt(sort(unique(twins$status))))

p <- p + geom_smooth(method = lm, se = FALSE)
p <- p + labs(title="Twins data, IQF by IQN with categorical status")

# equal axes since x- and y-variables are same quantity
dat.range <- range(twins[,c("IQF","IQN")])
p <- p + xlim(dat.range) + ylim(dat.range) + coord_equal(ratio=1)

print(p)
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Twins data, IQF by IQN with categorical status

lm.f.n.s.ns <- lm(IQF ~ IQN*status, data = twins)

library(car)

Anova(aov(lm.f.n.s.ns), type=3)

## Anova Table (Type III tests)

##

## Response: IQF

## Sum Sq Df F value Pr(>F)

## (Intercept) 11.61 1 0.1850 0.6715

## IQN 1700.39 1 27.1035 3.69e-05 ***

## status 8.99 2 0.0716 0.9311
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## IQN:status 0.93 2 0.0074 0.9926

## Residuals 1317.47 21

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

summary(lm.f.n.s.ns)

##

## Call:

## lm(formula = IQF ~ IQN * status, data = twins)

##

## Residuals:

## Min 1Q Median 3Q Max

## -14.479 -5.248 -0.155 4.582 13.798

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 7.20461 16.75126 0.430 0.672

## IQN 0.94842 0.18218 5.206 3.69e-05 ***

## statusH -9.07665 24.44870 -0.371 0.714

## statusM -6.38859 31.02087 -0.206 0.839

## IQN:statusH 0.02914 0.24458 0.119 0.906

## IQN:statusM 0.02414 0.33933 0.071 0.944

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 7.921 on 21 degrees of freedom

## Multiple R-squared: 0.8041,Adjusted R-squared: 0.7574

## F-statistic: 17.24 on 5 and 21 DF, p-value: 8.31e-07

# plot diagnostics
par(mfrow=c(2,3))
plot(lm.f.n.s.ns, which = c(1,4,6), pch=as.character(twins$status))

plot(twins$IQN, lm.f.n.s.ns$residuals, main="Residuals vs IQN", pch=as.character(twins$status))
# horizontal line at zero
abline(h = 0, col = "gray75")

plot(twins$status, lm.f.n.s.ns$residuals, main="Residuals vs status")
# horizontal line at zero
abline(h = 0, col = "gray75")

# Normality of Residuals
library(car)
qqPlot(lm.f.n.s.ns$residuals, las = 1, id.n = 3, main="QQ Plot", pch=as.character(twins$status))

## 27 24 23
## 1 27 26

## residuals vs order of data
#plot(lm.f.n.s.ns£residuals, main="Residuals vs Order of data")
# # horizontal line at zero
# abline(h = 0, col = "gray75")
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The natural way to express the fitted model is to give separate prediction

equations for the three status groups. Here is an easy way to get the separate

fits. For the general model (7.1), the predicted IQF satisfies

Predicted IQF = (Intercept + Coeff for Status Indicator)

+ (Coeff for Status Product Effect + Coeff for IQN)× IQN.

For the baseline group, use 0 as the coefficients for the status indicator and

product effect.

Thus, for the baseline group with status = L,

Predicted IQF = 7.20 + 0 + (0.948 + 0) IQN

= 7.20 + 0.948 IQN.

For the M status group with indicator I2 and product effect I2 × IQN:

Predicted IQF = 7.20− 6.39 + (0.948 + 0.024) IQN

= 0.81 + 0.972 IQN.
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For the H status group with indicator I1 and product effect I1 × IQN:

Predicted IQF = 7.20− 9.08 + (0.948 + 0.029) IQN

= −1.88 + 0.977 IQN.

The LS lines are identical to separately fitting simple linear regressions to the

three groups.

7.2.2 Equal slopes ANCOVA model

There are three other models of potential interest besides the general model.

The equal slopes ANCOVA model

IQF = β0 + β1I1 + β2I2 + β3 IQN + e

is a special case of (7.1) with β4 = β5 = 0 (no interaction). In the ANCOVA

model, β3 is the slope for all three regression lines. The other parameters

have the same interpretation as in the general model (7.1), see the plot above.

Output from the ANCOVA model is given below.
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lm.f.n.s <- lm(IQF ~ IQN + status, data = twins)

library(car)

Anova(aov(lm.f.n.s), type=3)

## Anova Table (Type III tests)

##

## Response: IQF

## Sum Sq Df F value Pr(>F)

## (Intercept) 18.2 1 0.3181 0.5782

## IQN 4674.7 1 81.5521 5.047e-09 ***

## status 175.1 2 1.5276 0.2383

## Residuals 1318.4 23

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

summary(lm.f.n.s)

##

## Call:

## lm(formula = IQF ~ IQN + status, data = twins)

##

## Residuals:

## Min 1Q Median 3Q Max

## -14.8235 -5.2366 -0.1111 4.4755 13.6978

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 5.6188 9.9628 0.564 0.578

## IQN 0.9658 0.1069 9.031 5.05e-09 ***

## statusH -6.2264 3.9171 -1.590 0.126

## statusM -4.1911 3.6951 -1.134 0.268

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 7.571 on 23 degrees of freedom

## Multiple R-squared: 0.8039,Adjusted R-squared: 0.7784

## F-statistic: 31.44 on 3 and 23 DF, p-value: 2.604e-08

For the ANCOVA model, the predicted IQF for the three groups satisfies

Predicted IQF = (Intercept + Coeff for Status Indicator)

+(Coeff for IQN)× IQN.

As with the general model, use 0 as the coefficients for the status indicator and

product effect for the baseline group.

For L status families:

Predicted IQF = 5.62 + 0.966 IQN,

Prof. Erik B. Erhardt



7.2: Generalizing the ANCOVA Model to Allow Unequal Slopes 203

for M status:

Predicted IQF = 5.62− 4.19 + 0.966 IQN

= 1.43 + 0.966 IQN,

and for H status:

Predicted IQF = 5.62− 6.23 + 0.966 IQN

= −0.61 + 0.966 IQN.

7.2.3 Equal slopes and equal intercepts ANCOVA
model

The model with equal slopes and equal intercepts

IQF = β0 + β3 IQN + e

is a special case of the ANCOVA model with β1 = β2 = 0. This model does

not distinguish among social classes. The common intercept and slope for the

social classes are β0 and β3, respectively.

The predicted IQF for this model is

IQF = 9.21 + 0.901 IQN

for each social class.
lm.f.n <- lm(IQF ~ IQN, data = twins)

#library(car)

#Anova(aov(lm.f.n), type=3)

summary(lm.f.n)

##

## Call:

## lm(formula = IQF ~ IQN, data = twins)

##

## Residuals:

## Min 1Q Median 3Q Max

## -11.3512 -5.7311 0.0574 4.3244 16.3531

##
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## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 9.20760 9.29990 0.990 0.332

## IQN 0.90144 0.09633 9.358 1.2e-09 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 7.729 on 25 degrees of freedom

## Multiple R-squared: 0.7779,Adjusted R-squared: 0.769

## F-statistic: 87.56 on 1 and 25 DF, p-value: 1.204e-09

7.2.4 No slopes, but intercepts ANCOVA model

The model with no predictor (IQN) effects

IQF = β0 + β1I1 + β2I2 + e

is a special case of the ANCOVA model with β3 = 0. In this model, social status

has an effect on IQF but IQN does not. This model of parallel regression

lines with zero slopes is identical to a one-way ANOVA model for the three

social classes, where the intercepts play the role of the population means, see

the plot below.
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For the ANOVA model, the predicted IQF for the three groups satisfies

Predicted IQF = Intercept + Coeff for Status Indicator

Again, use 0 as the coefficients for the baseline status indicator.

For L status families:

Predicted IQF = 93.71,

for M status:

Predicted IQF = 93.71− 4.88

= 88.83,

and for H status:

Predicted IQF = 93.71 + 9.57

= 103.28.

The predicted IQFs are the mean IQFs for the three groups.
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lm.f.s <- lm(IQF ~ status, data = twins)

library(car)

Anova(aov(lm.f.s), type=3)

## Anova Table (Type III tests)

##

## Response: IQF

## Sum Sq Df F value Pr(>F)

## (Intercept) 122953 1 492.3772 <2e-16 ***

## status 732 2 1.4648 0.2511

## Residuals 5993 24

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

summary(lm.f.s)

##

## Call:

## lm(formula = IQF ~ status, data = twins)

##

## Residuals:

## Min 1Q Median 3Q Max

## -30.714 -12.274 2.286 12.500 28.714

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 93.714 4.223 22.190 <2e-16 ***

## statusH 9.571 7.315 1.308 0.203

## statusM -4.881 7.711 -0.633 0.533

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 15.8 on 24 degrees of freedom

## Multiple R-squared: 0.1088,Adjusted R-squared: 0.03452

## F-statistic: 1.465 on 2 and 24 DF, p-value: 0.2511

7.3 Relating Models to Two-Factor ANOVA

Recall the multiple regression formulation of the general model (7.1):

IQF = β0 + β1I1 + β2I2 + β3 IQN + β4I1 IQN + β5I2 IQN + e. (7.2)

If you think of β0 as a grand mean, β1I1 +β2I2 as the status effect (i.e., the two

indicators I1 and I2 allow you to differentiate among social classes), β3 IQN as

the IQN effect and β4I1 IQN+β5I2 IQN as the status by IQN interaction, then
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you can represent the model as

IQF = Grand Mean + Status Effect + IQN effect (7.3)

+Status×IQN interaction + Residual.

This representation has the same form as a two-factor ANOVA model with

interaction, except that IQN is a quantitative effect rather than a qualitative

(i.e., categorical) effect. The general model has the same structure as a two-

factor interaction ANOVA model because the plot of the population means

allows non-parallel profiles. However, the general model is a special case of the

two-factor interaction ANOVA model because it restricts the means to change

linearly with IQN.

The ANCOVA model has main effects for status and IQN but no interaction:

IQF = Grand Mean + Status Effect + IQN effect + Residual. (7.4)

The ANCOVA model is a special case of the additive two-factor ANOVA model

because the plot of the population means has parallel profiles, but is not equiv-

alent to the additive two-factor ANOVA model.

The model with equal slopes and intercepts has no main effect for status

nor an interaction between status and IQN:

IQF = Grand Mean + IQN effect + Residual. (7.5)

The one-way ANOVA model has no main effect for IQN nor an interaction

between status and IQN:

IQF = Grand Mean + Status Effect + Residual. (7.6)

I will expand on these ideas later, as they are useful for understanding the

connections between regression and ANOVA models.

7.4 Choosing Among Models

I will suggest a backward sequential method to select which of models (7.1),

(7.4), and (7.5) fits best. You would typically be interested in the one-way
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ANOVA model (7.6) only when the effect of IQN was negligible.

Step 1: Fit the full model (7.1) and test the hypothesis of equal slopes

H0 : β4 = β5 = 0. (aside: t-tests are used to test either β4 = 0 or β5 = 0.)

To test H0, eliminate the predictor variables I1 IQN and I2 IQN associated

with β4 and β5 from the full model (7.1). Then fit the reduced model (7.4)

with equal slopes. Reject H0 : β4 = β5 = 0 if the increase in the Residual SS

obtained by deleting I1 IQN and I2 IQN from the full model is significant.

Formally, compute the F -statistic:

Fobs =
(ERROR SS for reduced model − ERROR SS for full model)/2

ERROR MS for full model

and compare it to an upper-tail critical value for an F -distribution with 2

and df degrees of freedom, where df is the Residual df for the full model.

The F -test is a direct extension of the single degree-of-freedom F -tests in

the stepwise fits. A p-value for F -test is obtained from library(car) with

Anova(aov(LMOBJECT), type=3) for the interaction. If H0 is rejected, stop and

conclude that the population regression lines have different slopes (and then

I do not care whether the intercepts are equal). Otherwise, proceed to step

2.

Step 2: Fit the equal slopes or ANCOVA model (7.4) and test for equal

intercepts H0 : β1 = β2 = 0. Follow the procedure outlined in Step 1,

treating the ANCOVA model as the full model and the model IQF = β0 +

β3 IQN + e with equal slopes and intercepts as the reduced model. See the

intercept term using library(car) with Anova(aov(LMOBJECT), type=3). If H0

is rejected, conclude that that population regression lines are parallel with

unequal intercepts. Otherwise, conclude that regression lines are identical.

Step 3: Estimate the parameters under the appropriate model, and conduct

a diagnostic analysis. Summarize the fitted model by status class.

A comparison of regression lines across k > 3 groups requires k−1 indicator

variables to define the groups, and k − 1 interaction variables, assuming the

model has a single predictor. The comparison of models mimics the discussion

above, except that the numerator of the F -statistic is divided by k− 1 instead
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of 2, and the numerator df for the F -test is k − 1 instead of 2. If k = 2, the

F -tests for comparing the three models are equivalent to t−tests given with the

parameter estimates summary. For example, recall how you tested for equal

intercepts in the tools problems.

The plot of the twins data shows fairly linear relationships within each social

class. The linear relationships appear to have similar slopes and similar inter-

cepts. The p-value for testing the hypothesis that the slopes of the population

regression lines are equal is essentially 1. The observed data are consistent with

the reduced model of equal slopes.

The p-value for comparing the model of equal slopes and equal intercepts

to the ANCOVA model is 0.238, so there is insufficient evidence to reject the

reduced model with equal slopes and intercepts. The estimated regression line,

regardless of social class, is:

Predicted IQF = 9.21 + 0.901*IQN.

There are no serious inadequacies with this model, based on a diagnostic anal-

ysis (not shown).

An interpretation of this analysis is that the natural parents’ social class has

no impact on the relationship between the IQ scores of identical twins raised

apart. What other interesting features of the data would be interesting to

explore? For example, what values of the intercept and slope of the population

regression line are of intrinsic interest?

7.4.1 Simultaneous testing of regression parameters

In the twins example, we have this full interaction model,

IQF = β0 + β1I1 + β2I2 + β3 IQN + β4I1 IQN + β5I2 IQN + e, (7.7)

where I1 = 1 indicates H, and I2 = 1 indicates M, and L is the baseline status.

Consider these two specific hypotheses:

1. H0 : equal regression lines for status M and L

2. H0 : equal regression lines for status M and H
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That is, the intercept and slope for the regression lines are equal for the pairs

of status groups.

First, it is necessary to formulate these hypotheses in terms of testable

parameters. That is, find the β values that make the null hypothesis true in

terms of the model equation.

1. H0 : β2 = 0 and β5 = 0

2. H0 : β1 = β2 and β4 = β5

Using linear model theory, there are methods for testing these multiple-parameter

hypothesis tests.

One strategy is to use the Wald test of null hypothesis rβ˜ = r˜, where r is a

matrix of contrast coefficients (typically +1 or −1), β˜ is our vector of regression

β coefficients, and r˜ is a hypothesized vector of what the linear system rβ˜ equals.

For our first hypothesis test, the linear system we’re testing in matrix notation

is

[
0 0 1 0 0 0

0 0 0 0 0 1

]


β0

β1

β2

β3

β4

β5


=

[
0

0

]
.

Let’s go about testing another hypothesis, first, using the Wald test, then

we’ll test our two simultaneous hypotheses above.

� H0 : equal slopes for all status groups

� H0 : β4 = β5 = 0
lm.f.n.s.ns <- lm(IQF ~ IQN*status, data = twins)

library(car)

Anova(aov(lm.f.n.s.ns), type=3)

## Anova Table (Type III tests)

##

## Response: IQF

## Sum Sq Df F value Pr(>F)

## (Intercept) 11.61 1 0.1850 0.6715

## IQN 1700.39 1 27.1035 3.69e-05 ***
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## status 8.99 2 0.0716 0.9311

## IQN:status 0.93 2 0.0074 0.9926

## Residuals 1317.47 21

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# beta coefficients (term positions: 1, 2, 3, 4, 5, 6)

coef(lm.f.n.s.ns)

## (Intercept) IQN statusH statusM IQN:statusH

## 7.20460986 0.94842244 -9.07665352 -6.38858548 0.02913971

## IQN:statusM

## 0.02414450

The test for the interaction above (IQN:status) has a p-value=0.9926, which
indicates that common slope is reasonable. In the Wald test notation, we want
to test whether those last two coefficients (term positions 5 and 6) both equal
0. Here we get the same result as the ANOVA table.
library(aod) # for wald.test()

# Typically, we are interested in testing whether individual parameters or

# set of parameters are all simultaneously equal to 0s

# However, any null hypothesis values can be included in the vector coef.test.values.

coef.test.values <- rep(0, length(coef(lm.f.n.s.ns)))

wald.test(b = coef(lm.f.n.s.ns) - coef.test.values

, Sigma = vcov(lm.f.n.s.ns)

, Terms = c(5,6))

## Wald test:

## ----------

##

## Chi-squared test:

## X2 = 0.015, df = 2, P(> X2) = 0.99

Now to our two simultaneous hypotheses. In hypothesis 1 we are testing
β2 = 0 and β5 = 0, which are the 3rd and 6th position for coefficients in our
original equation (7.7). However, we need to choose the correct positions
based on the coef() order, and these are positions 4 and 6. The large p-
value=0.55 suggests that M and L can be described by the same regression line,
same slope and intercept.
library(aod) # for wald.test()

coef.test.values <- rep(0, length(coef(lm.f.n.s.ns)))

wald.test(b = coef(lm.f.n.s.ns) - coef.test.values

, Sigma = vcov(lm.f.n.s.ns)

, Terms = c(4,6))

## Wald test:

## ----------

##

## Chi-squared test:

## X2 = 1.2, df = 2, P(> X2) = 0.55
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# Another way to do this is to define the matrix r and vector r, manually.

mR <- as.matrix(rbind(c(0, 0, 0, 1, 0, 0), c(0, 0, 0, 0, 0, 1)))

mR

## [,1] [,2] [,3] [,4] [,5] [,6]

## [1,] 0 0 0 1 0 0

## [2,] 0 0 0 0 0 1

vR <- c(0, 0)

vR

## [1] 0 0

wald.test(b = coef(lm.f.n.s.ns)

, Sigma = vcov(lm.f.n.s.ns)

, L = mR, H0 = vR)

## Wald test:

## ----------

##

## Chi-squared test:

## X2 = 1.2, df = 2, P(> X2) = 0.55

In hypothesis 2 we are testing β1 − β2 = 0 and β4 − β5 = 0 which are
the difference of the 2nd and 3rd coefficients and the difference of the 5th and
6th coefficients. However, we need to choose the correct positions based on
the coef() order, and these are positions 3 and 4, and 5 and 6. The large
p-value=0.91 suggests that M and H can be described by the same regression
line, same slope and intercept.
mR <- as.matrix(rbind(c(0, 0, 1, -1, 0, 0), c(0, 0, 0, 0, 1, -1)))

mR

## [,1] [,2] [,3] [,4] [,5] [,6]

## [1,] 0 0 1 -1 0 0

## [2,] 0 0 0 0 1 -1

vR <- c(0, 0)

vR

## [1] 0 0

wald.test(b = coef(lm.f.n.s.ns)

, Sigma = vcov(lm.f.n.s.ns)

, L = mR, H0 = vR)

## Wald test:

## ----------

##

## Chi-squared test:

## X2 = 0.19, df = 2, P(> X2) = 0.91

The results of these tests are not surprising, given our previous analysis

where we found that the status effect is not significant for all three groups.

Any simultaneous linear combination of parameters can be tested in this
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way.

7.5 Comments on Comparing Regression Lines

In the twins example, I defined two indicator variables (plus two interaction

variables) from an ordinal categorical variable: status (H, M, L). Many re-

searchers would assign numerical codes to the status groups and use the coding

as a predictor in a regression model. For status, a “natural” coding might be

to define NSTAT=0 for L, 1 for M, and 2 for H status families. This suggests

building a multiple regression model with a single status variable (i.e., single

df):

IQF = β0 + β1 IQN + β2NSTAT + e.

If you consider the status classes separately, the model implies that

IQF = β0 + β1 IQN + β2(0) + e = β0 + β1 IQN + e for L status,

IQF = β0 + β1 IQN + β2(1) + e = (β0 + β2) + β1 IQN + e for M status,

IQF = β0 + β1 IQN + β2(2) + e = (β0 + 2β2) + β1 IQN + e for H status.

The model assumes that the IQF by IQN regression lines are parallel for the

three groups, and are separated by a constant β2. This model is more restrictive

(and less reasonable) than the ANCOVA model with equal slopes but arbitrary

intercepts. Of course, this model is a easier to work with because it requires

keeping track of only one status variable instead of two status indicators.

A plot of the population regression lines under this model is given above,

assuming β2 < 0.
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7.6 Three-way interaction

In this example, a three-way interaction is illustrated with two categorical vari-

ables and one continuous variable. Let a take values 0 or 1 (it’s an indicator

variable), b take values 0 or 1, and c be a continuous variable taking any value.

Below are five models:

(1) Interactions: ab. All lines parallel, different intercepts for each (a, b)

combination.

(2) Interactions: ab, ac. (a, c) combinations have parallel lines, different

intercepts for each (a, b) combination.

(3) Interactions: ab, bc. (b, c) combinations have parallel lines, different

intercepts for each (a, b) combination.

(4) Interactions: ab, ac, bc. All combinations may have different slope lines

with different intercepts, but difference in slope between b = 0 and b = 1 is

similar for each a group (and vice versa).
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(5) Interactions: ab, ac, bc, abc. All combinations may have different slope

lines with different intercepts.

Model Intercepts Slopes for c

(1) y = β0 +β1a +β2b +β3ab +β4c

(2) y = β0 +β1a +β2b +β3ab +β4c +β5ac

(3) y = β0 +β1a +β2b +β3ab +β4c +β6bc

(4) y = β0 +β1a +β2b +β3ab +β4c +β5ac +β6bc

(5) y = β0 +β1a +β2b +β3ab +β4c +β5ac +β6bc +β7abc
X <- expand.grid(c(0,1),c(0,1),c(0,1))
X <- cbind(1, X)
colnames(X) <- c("one", "a", "b", "c")
X$ab <- X$a * X$b
X$ac <- X$a * X$c
X$bc <- X$b * X$c
X$abc <- X$a * X$b * X$c
X <- as.matrix(X)
X <- X[,c(1,2,3,5,4,6,7,8)] # reorder columns to be consistent with table above
#£

vbeta <- matrix(c(3, -1, 2, 2, 5, -4, -2, 8), ncol = 1)
rownames(vbeta) <- paste("beta", 0:7, sep="")

Beta <- matrix(vbeta, nrow = dim(vbeta)[1], ncol = 5)
rownames(Beta) <- rownames(vbeta)

# Beta vector for each model
Beta[c(6,7,8), 1] <- 0
Beta[c( 7,8), 2] <- 0
Beta[c(6, 8), 3] <- 0
Beta[c( 8), 4] <- 0

colnames(Beta) <- 1:5 #paste("model", 1:5, sep="")

# Calculate response values
Y <- X %*% Beta

library(reshape2)
YX <- data.frame(cbind(melt(Y), X[,"a"], X[,"b"], X[,"c"]))
colnames(YX) <- c("obs", "Model", "Y", "a", "b", "c")
YX$a <- factor(YX$a)
YX$b <- factor(YX$b)

These are the β values used for this example.

beta0 beta1 beta2 beta3 beta4 beta5 beta6 beta7
3 −1 2 2 5 −4 −2 8

library(ggplot2)
p <- ggplot(YX, aes(x = c, y = Y, group = a))
#p <- p + geom_point()
p <- p + geom_line(aes(linetype = a))
p <- p + labs(title = "Three-way Interaction")
p <- p + facet_grid(Model ~ b, labeller = "label_both")
print(p)
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Chapter 8

Polynomial Regression

8.1 Polynomial Models with One Predictor

A pth order polynomial model relating a dependent variable Y to a predictor

X is given by

Y = β0 + β1X + β2X
2 + · · · + βpX

p + ε.

This is a multiple regression model with predictorsX,X2, . . . , Xp. For p = 2, 3,

4, and 5 we have quadratic, cubic, quartic and quintic relationships, respectively.

A second order polynomial (quadratic) allows at most one local maximum

or minimum (i.e., a point where trend changes direction from increasing to

decreasing, or from decreasing to increasing). A third order polynomial (cubic)

allows at most two local maxima or minima. In general, a pth order polynomial

allows at most p− 1 local maxima or minima. The two panels below illustrate

different quadratic and cubic relationships.
#### Creating polynomial plots
# R code for quadratic and cubic plots
x <- seq(-3,3,0.01);
y21 <- x^2-5;
y22 <- -(x+1)^2+3;
y31 <- (x+1)^2*(x-3);
y32 <- -(x-.2)^2*(x+.5)-10;

plot( x, y21, type="l", main="Quadratics", ylab="y")
points(x, y22, type="l", lt=2)
plot( x, y31, type="l", main="Cubics", ylab="y")
points(x, y32, type="l", lt=2)
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It is important to recognize that not all, or even none, of the “turning-points”

in a polynomial may be observed if the range of X is suitably restricted.

Although polynomial models allow a rich class of non-linear relationships

between Y and X (by virtue of Taylor’s Theorem in calculus), some caution is

needed when fitting polynomials. In particular, the extreme X-values can be

highly influential, numerical instabilities occur when fitting high order models,

and predictions based on high order polynomial models can be woeful.

To illustrate the third concern, consider a data set (Yi, Xi) for i = 1, 2, . . . , n

where the Xis are distinct. One can show mathematically that an (n − 1)st

degree polynomial will fit the observed data exactly. However, for a high order

polynomial to fit exactly, the fitted curve must oscillate wildly between data

points. In the picture below, I show the 10th degree polynomial that fits exactly

the 11 distinct data points. Although R2 = 1, I would not use the fitted model

to make predictions with new data. (If possible, models should always be

validated using new data.) Intuitively, a quadratic or a lower order polynomial

would likely be significantly better. In essence, the 10th degree polynomial is

modelling the variability in the data, rather than the trend.
# R code for quadratic and cubic plots

X <- rnorm(11); Y <- rnorm(11); # observed
X1 <- X^1 ;
X2 <- X^2 ;
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X3 <- X^3 ;
X4 <- X^4 ;
X5 <- X^5 ;
X6 <- X^6 ;
X7 <- X^7 ;
X8 <- X^8 ;
X9 <- X^9 ;
X10 <- X^10;

fit <- lm(Y~X+X2+X3+X4+X5+X6+X7+X8+X9+X10)
fit$coefficients

## (Intercept) X X2 X3 X4
## 36.70206 -461.55109 -620.55094 13030.85848 29149.14341
## X5 X6 X7 X8 X9
## -26416.29553 -81282.20211 15955.10270 70539.53467 -3396.10960
## X10
## -18290.46769

x <- seq(-2.5,2.5,0.01);
x1 <- x^1 ;
x2 <- x^2 ;
x3 <- x^3 ;
x4 <- x^4 ;
x5 <- x^5 ;
x6 <- x^6 ;
x7 <- x^7 ;
x8 <- x^8 ;
x9 <- x^9 ;
x10 <- x^10;

xx <- matrix(c(rep(1,length(x)),x1,x2,x3,x4,x5,x6,x7,x8,x9,x10),ncol=11)

y <- xx %*% fit$coefficients;

plot( X, Y, main="High-order polynomial", pch=20, cex=2)
points(x, y, type="l", lt=1)
plot( X, Y, main="(same, longer y-axis)", pch=20, cex=1, ylim=c(-10000,10000))
points(x, y, type="l", lt=1)
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Another concern is that the importance of lower order terms (i.e., X , X2,

. . ., Xp−1) depends on the scale in which we measure X . For example, suppose
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for some chemical reaction,

Time to reaction = β0 + β1 Temp + β2 Temp2 + ε.

The significance level for the estimate of the Temp coefficient depends on

whether we measure temperature in degrees Celsius or Fahrenheit.

To avoid these problems, I recommend the following:

1. Center the X data at X̄ and fit the model

Y = β0 + β1(X − X̄) + β2(X − X̄)2 + · · · + βp(X − X̄)p + ε.

This is usually important only for cubic and higher order models.

2. Restrict attention to low order models, say quartic or less. If a fourth-

order polynomial does not fit, a transformation may provide a more suc-

cinct summary.

3. Pay careful attention to diagnostics.

4. Add or delete variables using the natural hierarchy among powers of X

and include all lower order terms if a higher order term is needed. For

example, in a forward-selection type algorithm, add terms X , X2, . . .,

sequentially until no additional term is significant, but do not delete pow-

ers that were entered earlier. Similarly, with a backward-elimination type

algorithm, start with the model of maximum acceptable order (for ex-

ample a fourth or third order polynomial) and consider deleting terms in

the order Xp, Xp−1, . . ., until no further terms can be omitted. The se-

lect=backward option in the reg procedure does not allow you to

invoke the hierarchy principle with backward elimination. The backward

option sequentially eliminates the least significant effect in the model,

regardless of what other effects are included.

8.1.1 Example: Cloud point and percent I-8

The cloud point of a liquid is a measure of the degree of crystallization in a

stock, and is measured by the refractive index 1. It has been suggested that the

1Draper and Smith 1966, p. 162
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percent of I-8 (variable “i8”) in the base stock is an excellent predictor of the

cloud point using a second order (quadratic) model:

Cloud point = β0 + β1 I8 + β2 I82 + ε.

Data were collected to examine this model.
#### Example: Cloud point

cloudpoint <- read.table("http://statacumen.com/teach/ADA2/ADA2_notes_Ch08_cloudpoint.dat"

, header = TRUE)

# center i8 by subracting the mean

cloudpoint$i8 <- cloudpoint$i8 - mean(cloudpoint$i8)

The plot of the data suggest a departure from a linear relationship.
library(ggplot2)
p <- ggplot(cloudpoint, aes(x = i8, y = cloud))
p <- p + geom_point()
p <- p + labs(title="Cloudpoint data, cloud by centered i8")
print(p)
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Fit the simple linear regression model and plot the residuals.
lm.c.i <- lm(cloud ~ i8, data = cloudpoint)

#library(car)

#Anova(aov(lm.c.i), type=3)

#summary(lm.c.i)

The data plot is clearly nonlinear, suggesting that a simple linear regression
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model is inadequate. This is confirmed by a plot of the studentized residuals

against the fitted values from a simple linear regression of Cloud point on i8.

Also by the residuals against the i8 values. We do not see any local maxima or

minima, so a second order model is likely to be adequate. To be sure, we will

first fit a cubic model, and see whether the third order term is important.
# plot diagnistics
par(mfrow=c(2,3))
plot(lm.c.i, which = c(1,4,6), pch=as.character(cloudpoint$type))

plot(cloudpoint$i8, lm.c.i$residuals, main="Residuals vs i8", pch=as.character(cloudpoint$type))
# horizontal line at zero
abline(h = 0, col = "gray75")

# Normality of Residuals
library(car)
qqPlot(lm.c.i$residuals, las = 1, id.n = 3, main="QQ Plot", pch=as.character(cloudpoint$type))

## 1 11 17
## 1 18 2

# residuals vs order of data
plot(lm.c.i$residuals, main="Residuals vs Order of data")

# horizontal line at zero
abline(h = 0, col = "gray75")
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The output below shows that the cubic term improves the fit of the quadratic

model (i.e., the cubic term is important when added last to the model). The

plot of the studentized residuals against the fitted values does not show any

extreme abnormalities. Furthermore, no individual point is poorly fitted by the
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model. Case 1 has the largest studentized residual: r1 = −1.997.
# I() is used to create an interpreted object treated "as is"

# so we can include quadratic and cubic terms in the formula

# without creating separate columns in the dataset of these terms

lm.c.i3 <- lm(cloud ~ i8 + I(i8^2) + I(i8^3), data = cloudpoint)

#library(car)

#Anova(aov(lm.c.i3), type=3)

summary(lm.c.i3)

##

## Call:

## lm(formula = cloud ~ i8 + I(i8^2) + I(i8^3), data = cloudpoint)

##

## Residuals:

## Min 1Q Median 3Q Max

## -0.42890 -0.18658 0.07355 0.13536 0.39328

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 28.870451 0.088364 326.723 < 2e-16 ***

## i8 0.847889 0.048536 17.469 6.67e-11 ***

## I(i8^2) -0.065998 0.007323 -9.012 3.33e-07 ***

## I(i8^3) 0.009735 0.002588 3.762 0.0021 **

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.2599 on 14 degrees of freedom

## Multiple R-squared: 0.9943,Adjusted R-squared: 0.9931

## F-statistic: 812.9 on 3 and 14 DF, p-value: 6.189e-16

Below are plots of the data and the studentized residuals.
# plot diagnistics
par(mfrow=c(2,3))
plot(lm.c.i3, which = c(1,4,6), pch=as.character(cloudpoint$type))

plot(cloudpoint$i8, lm.c.i3$residuals, main="Residuals vs i8", pch=as.character(cloudpoint$type))
# horizontal line at zero
abline(h = 0, col = "gray75")

# Normality of Residuals
library(car)
qqPlot(lm.c.i3$residuals, las = 1, id.n = 3, main="QQ Plot", pch=as.character(cloudpoint$type))

## 4 12 1
## 1 18 2

# residuals vs order of data
plot(lm.c.i3$residuals, main="Residuals vs Order of data")

# horizontal line at zero
abline(h = 0, col = "gray75")
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The first and last observations have the lowest and highest values of I8,

given by 0 and 10, respectively. These cases are also the most influential points

in the data set (largest Cook’s D). If we delete these cases and redo the analysis

we find that the cubic term is no longer important (p-value=0.55) when added

after the quadratic term. One may reasonably conclude that the significance

of the cubic term in the original analysis is solely due to the two extreme I8

values, and that the quadratic model appears to fit well over the smaller range

of 1 ≤ I8 ≤ 9.
# remove points for minimum and maximum i8 values

cloudpoint2 <- cloudpoint[!(cloudpoint$i8 == min(cloudpoint$i8) |

cloudpoint$i8 == max(cloudpoint$i8)), ]

lm.c.i2 <- lm(cloud ~ i8 + I(i8^2) + I(i8^3), data = cloudpoint2)

#library(car)

#Anova(aov(lm.c.i2), type=3)

summary(lm.c.i2)

##

## Call:

## lm(formula = cloud ~ i8 + I(i8^2) + I(i8^3), data = cloudpoint2)

##

## Residuals:

## Min 1Q Median 3Q Max

Prof. Erik B. Erhardt



8.2: Polynomial Models with Two Predictors 225

## -0.36620 -0.12845 0.03737 0.14031 0.33737

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 28.857039 0.089465 322.551 < 2e-16 ***

## i8 0.904515 0.058338 15.505 8.04e-09 ***

## I(i8^2) -0.060714 0.012692 -4.784 0.000568 ***

## I(i8^3) 0.003168 0.005166 0.613 0.552200

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.2313 on 11 degrees of freedom

## Multiple R-squared: 0.9917,Adjusted R-squared: 0.9894

## F-statistic: 436.3 on 3 and 11 DF, p-value: 1.032e-11

8.2 Polynomial Models with Two Predic-
tors

Polynomial models are sometimes fit to data collected from experiments with

two or more predictors. For simplicity, consider the general quadratic model,

with two predictors:

Y = β0 + β1X1 + β2X2 + β3X
2
1 + β4X

2
2 + β5X1X2 + ε.

The model, which can be justified as a second order approximation to a smooth

trend, includes quadratic terms in X1 and X2 and the product or interaction

of X1 and X2.

8.2.1 Example: Mooney viscosity

The data below give the Mooney viscosity at 100 degrees Celsius (Y ) as a func-

tion of the filler level (X1) and the naphthenic oil (X2) level for an experiment

involving filled and plasticized elastomer compounds.
#### Example: Mooney viscosity

mooney <- read.table("http://statacumen.com/teach/ADA2/ADA2_notes_Ch08_mooney.dat"

, header = TRUE)
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library(ggplot2)
p <- ggplot(mooney, aes(x = oil, y = mooney, label = filler))
p <- p + geom_text()
p <- p + scale_y_continuous(limits = c(0, max(mooney$mooney, na.rm=TRUE)))
p <- p + labs(title="Mooney data, mooney by oil with filler labels")
print(p)

## Warning: Removed 1 rows containing missing values (geom text).
library(ggplot2)
p <- ggplot(mooney, aes(x = filler, y = mooney, label = oil))
p <- p + geom_text()
p <- p + scale_y_continuous(limits = c(0, max(mooney$mooney, na.rm=TRUE)))
p <- p + labs(title="Mooney data, mooney by filler with oil labels")
print(p)
## Warning: Removed 1 rows containing missing values (geom text).
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At each of the 4 oil levels, the relationship between the Mooney viscosity and

filler level (with 6 levels) appears to be quadratic. Similarly, the relationship

between the Mooney viscosity and oil level appears quadratic for each filler level

(with 4 levels). This supports fitting the general quadratic model as a first step

in the analysis.

The output below shows that each term is needed in the model. Although

there are potentially influential points (cases 6 and 20), deleting either or both

cases does not change the significance of the effects in the model (not shown).
# I create each term separately

lm.m.o2.f2 <- lm(mooney ~ oil + filler + I(oil^2) + I(filler^2) + I(oil * filler),

data = mooney)

summary(lm.m.o2.f2)

##

## Call:
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## lm(formula = mooney ~ oil + filler + I(oil^2) + I(filler^2) +

## I(oil * filler), data = mooney)

##

## Residuals:

## Min 1Q Median 3Q Max

## -6.3497 -2.2231 -0.1615 2.5424 5.2749

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 27.144582 2.616779 10.373 9.02e-09 ***

## oil -1.271442 0.213533 -5.954 1.57e-05 ***

## filler 0.436984 0.152658 2.862 0.0108 *

## I(oil^2) 0.033611 0.004663 7.208 1.46e-06 ***

## I(filler^2) 0.027323 0.002410 11.339 2.38e-09 ***

## I(oil * filler) -0.038659 0.003187 -12.131 8.52e-10 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 3.937 on 17 degrees of freedom

## (1 observation deleted due to missingness)

## Multiple R-squared: 0.9917,Adjusted R-squared: 0.9892

## F-statistic: 405.2 on 5 and 17 DF, p-value: < 2.2e-16

## poly() will evaluate variables and give joint polynomial values

## which is helpful when you have many predictors

#head(mooney, 10)

#head(poly(mooney£oil, mooney£filler, degree = 2, raw = TRUE), 10)

## This model is equivalent to the one above

#lm.m.o2.f2 <- lm(mooney ~ poly(oil, filler, degree = 2, raw = TRUE), data = mooney)

#summary(lm.m.o2.f2)

# plot diagnistics
par(mfrow=c(2,3))
plot(lm.m.o2.f2, which = c(1,4,6), pch=as.character(mooney$oil))

# because of one missing value, get the indices of non-missing
ind <- as.numeric(names(lm.m.o2.f2$residuals))

plot(mooney$oil[ind], lm.m.o2.f2$residuals, main="Residuals vs oil with filler labels", pch=as.character(mooney$filler[ind]))
# horizontal line at zero
abline(h = 0, col = "gray75")

plot(mooney$filler[ind], lm.m.o2.f2$residuals, main="Residuals vs filler with oil labels", pch=as.character(mooney$oil[ind]))
# horizontal line at zero
abline(h = 0, col = "gray75")

# Normality of Residuals
library(car)
qqPlot(lm.m.o2.f2$residuals, las = 1, id.n = 3, main="QQ Plot", pch=as.character(mooney$oil[ind]))

## 18 20 6
## 1 2 23

## residuals vs order of data
#plot(lm.m.o2.f2£residuals, main="Residuals vs Order of data")
# # horizontal line at zero
# abline(h = 0, col = "gray75")
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8.2.2 Example: Mooney viscosity on log scale

As noted earlier, transformations can often be used instead of polynomials. For

example, the original data plots suggest transforming the Moody viscosity to

a log scale. If we make this transformation and replot the data, we see that

the log Mooney viscosity is roughly linearly related to the filler level at each

oil level, but is a quadratic function of oil at each filler level. The plots of the

transformed data suggest that a simpler model will be appropriate.
# log transform the response
mooney$logmooney <- log(mooney$mooney)

library(ggplot2)
p <- ggplot(mooney, aes(x = oil, y = logmooney, label = filler))
p <- p + geom_text()
#p <- p + scale_y_continuous(limits = c(0, max(mooney£logmooney, na.rm=TRUE)))
p <- p + labs(title="Mooney data, log(mooney) by oil with filler labels")
print(p)

## Warning: Removed 1 rows containing missing values (geom text).
library(ggplot2)
p <- ggplot(mooney, aes(x = filler, y = logmooney, label = oil))
p <- p + geom_text()
#p <- p + scale_y_continuous(limits = c(0, max(mooney£logmooney, na.rm=TRUE)))
p <- p + labs(title="Mooney data, log(mooney) by filler with oil labels")
print(p)
## Warning: Removed 1 rows containing missing values (geom text).
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To see that a simpler model is appropriate, we fit the full quadratic model.

The interaction term can be omitted here, without much loss of predictive ability

(R-squared is similar). The p-value for the interaction term in the quadratic

model is 0.34.
# I create each term separately

lm.lm.o2.f2 <- lm(logmooney ~ oil + filler + I(oil^2) + I(filler^2) + I(oil * filler),

data = mooney)

summary(lm.lm.o2.f2)

##

## Call:

## lm(formula = logmooney ~ oil + filler + I(oil^2) + I(filler^2) +

## I(oil * filler), data = mooney)

##

## Residuals:

## Min 1Q Median 3Q Max

## -0.077261 -0.035795 0.009193 0.030641 0.075640

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 3.236e+00 3.557e-02 90.970 < 2e-16 ***

## oil -3.921e-02 2.903e-03 -13.507 1.61e-10 ***

## filler 2.860e-02 2.075e-03 13.781 1.18e-10 ***

## I(oil^2) 4.227e-04 6.339e-05 6.668 3.96e-06 ***

## I(filler^2) 4.657e-05 3.276e-05 1.421 0.173

## I(oil * filler) -4.231e-05 4.332e-05 -0.977 0.342

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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##

## Residual standard error: 0.05352 on 17 degrees of freedom

## (1 observation deleted due to missingness)

## Multiple R-squared: 0.9954,Adjusted R-squared: 0.9941

## F-statistic: 737 on 5 and 17 DF, p-value: < 2.2e-16

# plot diagnistics
par(mfrow=c(2,3))
plot(lm.lm.o2.f2, which = c(1,4,6), pch=as.character(mooney$oil))

# because of one missing value, get the indices of non-missing
ind <- as.numeric(names(lm.lm.o2.f2$residuals))

plot(mooney$oil[ind], lm.lm.o2.f2$residuals, main="Residuals vs oil with filler labels", pch=as.character(mooney$filler[ind]))
# horizontal line at zero
abline(h = 0, col = "gray75")

plot(mooney$filler[ind], lm.lm.o2.f2$residuals, main="Residuals vs filler with oil labels", pch=as.character(mooney$oil[ind]))
# horizontal line at zero
abline(h = 0, col = "gray75")

# Normality of Residuals
library(car)
qqPlot(lm.lm.o2.f2$residuals, las = 1, id.n = 3, main="QQ Plot", pch=as.character(mooney$oil[ind]))

## 22 12 21
## 1 23 22

## residuals vs order of data
#plot(lm.lm.o2.f2£residuals, main="Residuals vs Order of data")
# # horizontal line at zero
# abline(h = 0, col = "gray75")
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After omitting the interaction term, the quadratic effect in filler is not needed

in the model (output not given). Once these two effects are removed, each of
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the remaining effects is significant.
# I create each term separately

lm.lm.o2.f <- lm(logmooney ~ oil + filler + I(oil^2),

data = mooney)

summary(lm.lm.o2.f)

##

## Call:

## lm(formula = logmooney ~ oil + filler + I(oil^2), data = mooney)

##

## Residuals:

## Min 1Q Median 3Q Max

## -0.090796 -0.031113 -0.008831 0.032533 0.100587

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 3.230e+00 2.734e-02 118.139 < 2e-16 ***

## oil -4.024e-02 2.702e-03 -14.890 6.26e-12 ***

## filler 3.086e-02 5.716e-04 53.986 < 2e-16 ***

## I(oil^2) 4.097e-04 6.356e-05 6.446 3.53e-06 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.05423 on 19 degrees of freedom

## (1 observation deleted due to missingness)

## Multiple R-squared: 0.9947,Adjusted R-squared: 0.9939

## F-statistic: 1195 on 3 and 19 DF, p-value: < 2.2e-16

# plot diagnistics
par(mfrow=c(2,3))
plot(lm.lm.o2.f, which = c(1,4,6), pch=as.character(mooney$oil))

# because of one missing value, get the indices of non-missing
ind <- as.numeric(names(lm.lm.o2.f$residuals))

plot(mooney$oil[ind], lm.lm.o2.f$residuals, main="Residuals vs oil with filler labels", pch=as.character(mooney$filler[ind]))
# horizontal line at zero
abline(h = 0, col = "gray75")

plot(mooney$filler[ind], lm.lm.o2.f$residuals, main="Residuals vs filler with oil labels", pch=as.character(mooney$oil[ind]))
# horizontal line at zero
abline(h = 0, col = "gray75")

# Normality of Residuals
library(car)
qqPlot(lm.lm.o2.f$residuals, las = 1, id.n = 3, main="QQ Plot", pch=as.character(mooney$oil[ind]))

## 12 22 16
## 23 1 2

## residuals vs order of data
#plot(lm.lm.o2.f£residuals, main="Residuals vs Order of data")
# # horizontal line at zero
# abline(h = 0, col = "gray75")
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The model does not appear to have inadequacies. Assuming no difficulties,

an important effect of the transformation is that the resulting model is simpler

than the model selected on the original scale. This is satisfying to me, but you

may not agree. Note that the selected model, with linear effects due to the oil

and filler levels and a quadratic effect due to the oil level, agrees with our visual

assessment of the data. Assuming no inadequacies, the predicted log Moody

viscosity is given by

̂log(Moody viscosity) = 3.2297− 0.0402 Oil + 0.0004 Oil2 + 0.0309 Filler.

Quadratic models with two or more predictors are often used in industrial ex-

periments to estimate the optimal combination of predictor values to maximize

or minimize the response, over the range of predictor variable values where the

model is reasonable. (This strategy is called “response surface methodology”.)

For example, we might wish to know what combination of oil level between 0

and 40 and filler level between 0 and 60 provides the lowest predicted Mooney

viscosity (on the original or log scale). We can visually approximate the mini-
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mizer using the data plots, but one can do a more careful job of analysis using

standard tools from calculus.
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Chapter 9

Discussion of Response
Models with Factors and
Predictors

We have considered simple models for designed experiments and observational

studies where a response variable is modeled as a linear combination of effects

due to factors or predictors, or both. With designed experiments, where

only qualitative factors are considered, we get a “pure ANOVA” model. For

example, in the experiment comparing survival times of beetles, the potential

effects of insecticide (with levels A, B, C, and D) and dose (with levels 1=low,

2=medium, and 3=high) are included in the model as factors because these

variables are qualitative. The natural model to consider is a two-way ANOVA

with effects for dose and insecticide and a dose-by-insecticide interaction. If,

however, the dose given to each beetle was recorded on a measurement scale,

then the dosages can be used to define a predictor variable which can be used

as a “regression effect” in a model. That is, the dose or some function of dose

can be used as a (quantitative) predictor instead of as a qualitative effect.
For simplicity, assume that the doses are 10, 20, and 30, but the actual levels

are irrelevant to the discussion. The simple additive model, or ANCOVA model,
assumes that there is a linear relationship between mean survival time and dose,
with different intercepts for the four insecticides. If data set includes the survival
time (times) for each beetle, the insecticide (insect: an alphanumeric variable,

Prof. Erik B. Erhardt



235

with values A, B, C, and D), and dose, you would fit the ANCOVA model this
way
beetles$insect <- factor(beetles$insect)

lm.t.i.d <- lm(times ~ insect + dose, data = beetles)

A more complex model that allows separate regression lines for each insec-
ticide is specified as follows:
beetles$insect <- factor(beetles$insect)

lm.t.i.d.id <- lm(times ~ insect + dose + insect:dose, data = beetles)

It is important to recognize that the factor() statement defines which vari-
ables in the model are treated as factors. Each effect of Factor data type is
treated as a factor. Effects in the model statement that are numeric data types
are treated as predictors. To treat a measurement variable as a factor (with
one level for each distinct observed value of the variable) instead of a predictor,
convert that varible type to a factor using factor(). Thus, in the survival time
experiment, these models
beetles$insect <- factor(beetles$insect)

beetles$dose <- factor(beetles$dose)

# call this (A) for additive

lm.t.i.d <- lm(times ~ insect + dose, data = beetles)

# call this (I) for interaction

lm.t.i.d.id <- lm(times ~ insect + dose + insect:dose, data = beetles)

give the analysis for a two-way ANOVA model without interaction and with

interaction, respectively, where both dose and insecticide are treated as factors

(since dose and insect are both converted to factors), even though we just

defined dose on a measurement scale!

Is there a basic connection between the ANCOVA and separate regression

line models for dose and two-way ANOVA models where dose and insecticide are

treated as factors? Yes — I mentioned a connection when discussing ANCOVA

and I will try now to make the connection more explicit.

For the moment, let us simplify the discussion and assume that only one

insecticide was used at three dose levels. The LS estimates of the mean responses

from the quadratic model

Times = β0 + β1 Dose + β2 Dose2 + ε

are the observed average survival times at the three dose levels. The LS curve

goes through the mean survival time at each dose, as illustrated in the picture

below.
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236 Ch 9: Discussion of Response Models with Factors and Predictors

If we treat dose as a factor, and fit the one-way ANOVA model

Times = Grand Mean + Dose Effect + Residual,

then the LS estimates of the population mean survival times are the observed

mean survival times. The two models are mathematically equivalent, but the

parameters have different interpretations. In essence, the one-way ANOVA

model places no restrictions on the values of the population means (no a priori

relation between them) at the three doses, and neither does the quadratic model!

(WHY?)
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In a one-way ANOVA, the standard hypothesis of interest is that the dose

effects are zero. This can be tested using the one-way ANOVA F-test, or by

testing H0 : β1 = β2 = 0 in the quadratic model. With three dosages, the

absence of a linear or quadratic effect implies that all the population mean

survival times must be equal. An advantage of the polynomial model over the

one-way ANOVA is that it provides an easy way to quantify how dose impacts

the mean survival, and a convenient way to check whether a simple description

such as a simple linear regression model is adequate to describe the effect.

More generally, if dose has p levels, then the one-way ANOVA model

Times = Grand Mean + Dose Effect + Residual,
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is equivalent to the (p− 1)st degree polynomial

Times = β0 + β1 Dose + β2 Dose2 + · · · + βp−1 Dose(p−1) + ε

and the one-way ANOVA F-test for no treatment effects is equivalent to testing

H0 : β1 = β2 = · · · = βp−1 = 0 in this polynomial.
Returning to the original experiment with 4 insecticides and 3 doses, I

can show the following two equivalences. First, the two-way additive ANOVA
model, with insecticide and dose as factors, i.e., model (A), is mathematically
equivalent to an additive model with insecticide as a factor, and a quadratic
effect in dose:
beetles$insect <- factor(beetles$insect)

lm.t.i.d.d2 <- lm(times ~ insect + dose + I(dose^2), data = beetles)

Thinking of dose2 as a quadratic term in dose, rather than as an interaction,

this model has an additive insecticide effect, but the dose effect is not differen-

tiated across insecticides. That is, the model assumes that the quadratic curves

for the four insecticides differ only in level (i.e., different intercepts) and that the

coefficients for the dose and dose2 effects are identical across insecticides. This

is an additive model, because the population means plot has parallel profiles.

A possible pictorial representation of this model is given below.
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Second, the two-way ANOVA interaction model, with insecticide and dose
as factors, i.e., model (I), is mathematically equivalent to an interaction model
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with insecticide as a factor, and a quadratic effect in dose.
beetles$insect <- factor(beetles$insect)

lm.t.i.d.d2.id.id2 <- lm(times ~ insect + dose + I(dose^2)

+ insect:dose + insect:I(dose^2), data = beetles)

This model fits separate quadratic relationships for each of the four in-

secticides, by including interactions between insecticides and the linear and

quadratic terms in dose. Because dose has three levels, this model places no

restrictions on the mean responses.

To summarize, we have established that

� The additive two-way ANOVA model with insecticide and dose as factors

is mathematically identical to an additive model with an insecticide factor

and a quadratic effect in dose. The ANCOVA model with a linear effect

in dose is a special case of these models, where the quadratic effect is

omitted.

� The two-way ANOVA interaction model with insecticide and dose as fac-

tors is mathematically identical to a model with an insecticide factor, a

quadratic effect in dose, and interactions between the insecticide and the

linear and quadratic dose effects. The separate regression lines model with

a linear effect in dose is a special case of these models, where the quadratic

dose effect and the interaction of the quadratic term with insecticide are

omitted.

Recall that response models with factors and predictors as effects can

be fit using the lm() procedure, but each factor or interaction involving a factor

must be represented in the model using indicator variables or product terms.

The number of required indicators or product effects is one less than the number

of distinct levels of the factor. For example, to fit the model with “parallel”

quadratic curves in dose, you can define (in the data.frame()) three indicator

variables for the insecticide effect, say I1, I2, and I3, and fit the model

Times = β0 + β1I1 + β2I2 + β3I3 + β4 Dose + β5 Dose2 + ε.

For the “quadratic interaction model”, you must define 6 interaction or product
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terms between the 3 indicators and the 2 dose terms:

Times = β0 + β1I1 + β2I2 + β3I3 + β4 Dose + β5 Dose2

+β6I1 Dose + β7I2 Dose + β8I3 Dose

+β9I1 Dose2 + β10I2 Dose2 + β11I3 Dose2 + ε.

The (β6I1 Dose+β7I2 Dose+β8I3 Dose) component in the model formally cor-

responds to the insect∗dose interaction, whereas the (β9I1 Dose2+β10I2 Dose2+

β11I3 Dose2) component is equivalent to the insect ∗ dose ∗ dose interaction

(i.e., testing H0 : β9 = β10 = β11 = 0).

This discussion is not intended to confuse, but rather to impress upon

you the intimate connection between regression and ANOVA, and to con-

vince you of the care that is needed when modelling variation even in simple

studies. Researchers are usually faced with more complex modelling problems

than we have examined, where many variables might influence the response. If

experimentation is possible, a scientist will often control the levels of variables

that influence the response but that are not of primary interest. This can result

in a manageable experiment with, say, four or fewer qualitative or quantitative

variables that are systematically varied in a scientifically meaningful way. In

observational studies, where experimentation is not possible, the scientist builds

models to assess the effects of interest on the response, adjusting the response

for all the uncontrolled variables that might be important. The uncontrolled

variables are usually a mixture of factors and predictors. Ideally, the scientist

knows what variables to control in an experiment and which to vary, and what

variables are important to collect in an observational study.

The level of complexity that I am describing here might be intimidating,

but certain basic principles can be applied to many of the studies you will see.

Graduate students in statistics often take several courses (5+) in experimental

design, regression analysis, and linear model theory to master the breadth of

models, and the subtleties of modelling, that are needed to be a good data

analyst. I can only scratch the surface here. I will discuss a reasonably complex

study having multiple factors and multiple predictors. The example focuses
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on strategies for building models, with little attempt to do careful diagnostic

analyses. Hopefully, the example will give you an appreciation for statistical

modelling, but please be careful — these tools are dangerous!

9.1 Some Comments on Building Models

A primary goal in many statistical analyses is to build a model or models to

understand the variation in a response. Fortunately, or unfortunately, there is

no consensus on how this should be done. Ideally, theory would suggest models

to compare, but in many studies the goal is to provide an initial model that will

be refined, validated, or refuted, by further experimentation. An extreme view

is that the selected model(s) should only include effects that are “statistically

important”, whereas another extreme suggests that all effects that might be

“scientifically important” should be included.

A difficulty with implementing either approach is that importance is relative

to specific goals (i.e., Why are you building the model and what do you plan to

use the model for? Is the model a prescription or device to make predictions?

Is the model a tool to understand the effect that one or more variables have

on a response, after adjusting for uninteresting, but important effects that can

not be controlled? etc.) Madigan and Raftery, in the 1994 edition of The

Journal of the American Statistical Association, comment that “Science is

an iterative process in which competing models of reality are compared on the

basis of how well they predict what is observed; models that predict much less

well than their competitors are discarded.” They argue that models should be

selected using Occum’s razor, a widely accepted norm in scientific investigations

whereby the simplest plausible model among all reasonable models, given the

data, is preferred. Madigan and Raftery’s ideas are fairly consistent with the

first extreme, but can be implemented in a variety of ways, depending on how

you measure prediction adequacy. They propose a Bayesian approach, based

on model averaging and prior beliefs on the plausibility of different models. An

alternative method using Mallow’s Cp criterion will be discussed later.
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A simple compromise between the two extremes might be to start the model

building process with the most complex model that is scientifically reasonable,

but still interpretable, and systematically eliminate effects using backward elim-

ination. The initial or maximal model might include polynomial effects for

predictors, main effects and interactions (2 factor, 3 factor, etc.) between fac-

tors, and products or interactions between predictors and factors. This ap-

proach might appear to be less than ideal because the importance of effects is

assessed using hypothesis tests and no attempt is made to assess the effect of

changes on predictions. However, one can show that the average squared error

in predictions is essentially reduced by eliminating insignificant regression

effects from the model, so this approach seems tenable.

It might be sensible to only assess significance of effects specified in the

model statement. However, many of these effects consist of several degrees-

of-freedom. That is, the effect corresponds to several regression coefficients

in the model. (Refer to the discussion following the displayed equations on

page 239). The individual regression variables that comprise an effect could

also be tested individually. However, if the effect is a factor (with 3+ levels) or

an interaction involving a factor, then the interpretation of tests on individual

regression coefficients depends on the level of the factor that was selected to

be the baseline category. The Type III F -test on the entire effect does not

depend on the baseline category. In essence, two researchers can start with

different representations of the same mathematical model (i.e., the parameters

are defined differently for different choices of baseline categories), use the same

algorithm for selecting a model, yet come to different final models for the data.

Statisticians often follow the hierarchy principle, which states that a lower

order term (be it a factor or a predictor) may be considered for exclusion from

a model only if no higher order effects that include the term are present in

the model. For example, given an initial model with effects A, B, C, and the

A ∗B interaction, the only candidates for omission at the first step are C and

A ∗ B. If you follow the hierarchy principle, and test an entire effect rather

than test the single degree-of-freedom components that comprise an effect, then
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the difficulty described above can not occur. The hierarchy principle is most

appealing with pure ANOVA models (such as the three-factor model in the

example below), where all the regression variables are indicators. In ANOVA

models, the ANOVA effects are of interest because they imply certain structure

on the means. The individual regression variables that define the effects are

not usually a primary interest.

A non-hierarchical backward elimination algorithm where single degree-of-

freedom effects are eliminated independently of the other effects in the model

is implemented in the step() procedure. Recall our discussion of backwards

elimination from Chapter 3 earlier this semester.

9.2 Example: The Effect of Sex and Rank
on Faculty Salary

The data in this example were collected from the personnel files of faculty at

a small college in the 1970s. The data were collected to assess whether women

were being discriminated against (consciously or unconsciously) in salary. The

sample consists of tenured and tenure-stream faculty only. Temporary faculty

were excluded from consideration (because they were already being discrimi-

nated against).

The variables below are id (individual identification numbers from 1 to 52),

sex (coded 1 for female and 0 for male), rank (coded 1 for Asst. Professor, 2

for Assoc. Professor and 3 for Full Professor), year (number of years in current

rank), degree (coded 1 for Doctorate, 0 else), yd (number of years since highest

degree was earned), and salary (academic year salary in dollars).
#### Example: Faculty salary

faculty <- read.table("http://statacumen.com/teach/ADA2/ADA2_notes_Ch09_faculty.dat"

, header = TRUE)

head(faculty)

## id sex rank year degree yd salary

## 1 1 0 3 25 1 35 36350

## 2 2 0 3 13 1 22 35350

## 3 3 0 3 10 1 23 28200
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## 4 4 1 3 7 1 27 26775

## 5 5 0 3 19 0 30 33696

## 6 6 0 3 16 1 21 28516

str(faculty)

## 'data.frame': 52 obs. of 7 variables:

## $ id : int 1 2 3 4 5 6 7 8 9 10 ...

## $ sex : int 0 0 0 1 0 0 1 0 0 0 ...

## $ rank : int 3 3 3 3 3 3 3 3 3 3 ...

## $ year : int 25 13 10 7 19 16 0 16 13 13 ...

## $ degree: int 1 1 1 1 0 1 0 1 0 0 ...

## $ yd : int 35 22 23 27 30 21 32 18 30 31 ...

## $ salary: int 36350 35350 28200 26775 33696 28516 24900 31909 31850 32850 ...

faculty$sex <- factor(faculty$sex , labels=c("Male", "Female"))

# ordering the rank variable so Full is the baseline, then descending.

faculty$rank <- factor(faculty$rank , levels=c(3,2,1)

, labels=c("Full", "Assoc", "Asst"))

faculty$degree <- factor(faculty$degree, labels=c("Other", "Doctorate"))

head(faculty)

## id sex rank year degree yd salary

## 1 1 Male Full 25 Doctorate 35 36350

## 2 2 Male Full 13 Doctorate 22 35350

## 3 3 Male Full 10 Doctorate 23 28200

## 4 4 Female Full 7 Doctorate 27 26775

## 5 5 Male Full 19 Other 30 33696

## 6 6 Male Full 16 Doctorate 21 28516

str(faculty)

## 'data.frame': 52 obs. of 7 variables:

## $ id : int 1 2 3 4 5 6 7 8 9 10 ...

## $ sex : Factor w/ 2 levels "Male","Female": 1 1 1 2 1 1 2 1 1 1 ...

## $ rank : Factor w/ 3 levels "Full","Assoc",..: 1 1 1 1 1 1 1 1 1 1 ...

## $ year : int 25 13 10 7 19 16 0 16 13 13 ...

## $ degree: Factor w/ 2 levels "Other","Doctorate": 2 2 2 2 1 2 1 2 1 1 ...

## $ yd : int 35 22 23 27 30 21 32 18 30 31 ...

## $ salary: int 36350 35350 28200 26775 33696 28516 24900 31909 31850 32850 ...

The data includes two potential predictors of salary (year and yd), and

three factors (sex, rank, and degree). A primary statistical interest is whether

males and females are compensated equally, on average, after adjusting salary

for rank, years in rank, and the other given effects. Furthermore, we wish to

know whether an effect due to sex is the same for each rank, or not.

Before answering these questions, let us look at the data. I will initially focus

on the effect of the individual factors (sex, rank, and degree) on salary. A series
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of box-plots is given below. Looking at the boxplots, notice that women tend to

earn less than men, that faculty with Doctorates tend to earn more than those

without Doctorates (median), and that salary tends to increase with rank.
# plot marginal boxplots

# Plot the data using ggplot
library(ggplot2)
p1 <- ggplot(faculty, aes(x = sex, y = salary, group = sex))
# plot a reference line for the global mean (assuming no groups)
p1 <- p1 + geom_hline(aes(yintercept = mean(salary)),

colour = "black", linetype = "dashed", size = 0.3, alpha = 0.5)
# boxplot, size=.75 to stand out behind CI
p1 <- p1 + geom_boxplot(size = 0.75, alpha = 0.5)
# points for observed data
p1 <- p1 + geom_point(position = position_jitter(w = 0.05, h = 0), alpha = 0.5)
# diamond at mean for each group
p1 <- p1 + stat_summary(fun.y = mean, geom = "point", shape = 18, size = 6,

alpha = 0.5)
# confidence limits based on normal distribution
p1 <- p1 + stat_summary(fun.data = "mean_cl_normal", geom = "errorbar",

width = .2, alpha = 0.8)
p1 <- p1 + labs(title = "Salary by sex")

# Plot the data using ggplot
library(ggplot2)
p2 <- ggplot(faculty, aes(x = degree, y = salary, group = degree))
# plot a reference line for the global mean (assuming no groups)
p2 <- p2 + geom_hline(aes(yintercept = mean(salary)),

colour = "black", linetype = "dashed", size = 0.3, alpha = 0.5)
# boxplot, size=.75 to stand out behind CI
p2 <- p2 + geom_boxplot(size = 0.75, alpha = 0.5)
# points for observed data
p2 <- p2 + geom_point(position = position_jitter(w = 0.05, h = 0), alpha = 0.5)
# diamond at mean for each group
p2 <- p2 + stat_summary(fun.y = mean, geom = "point", shape = 18, size = 6,

alpha = 0.5)
# confidence limits based on normal distribution
p2 <- p2 + stat_summary(fun.data = "mean_cl_normal", geom = "errorbar",

width = .2, alpha = 0.8)
p2 <- p2 + labs(title = "Salary by degree")

# Plot the data using ggplot
library(ggplot2)
p3 <- ggplot(faculty, aes(x = rank, y = salary, group = rank))
# plot a reference line for the global mean (assuming no groups)
p3 <- p3 + geom_hline(aes(yintercept = mean(salary)),

colour = "black", linetype = "dashed", size = 0.3, alpha = 0.5)
# boxplot, size=.75 to stand out behind CI
p3 <- p3 + geom_boxplot(size = 0.75, alpha = 0.5)
# points for observed data
p3 <- p3 + geom_point(position = position_jitter(w = 0.05, h = 0), alpha = 0.5)
# diamond at mean for each group
p3 <- p3 + stat_summary(fun.y = mean, geom = "point", shape = 18, size = 6,

alpha = 0.5)
# confidence limits based on normal distribution
p3 <- p3 + stat_summary(fun.data = "mean_cl_normal", geom = "errorbar",

width = .2, alpha = 0.8)
p3 <- p3 + labs(title = "Salary by rank")

library(gridExtra)
grid.arrange(grobs = list(p1, p2, p3), nrow = 1)
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9.2.1 A Three-Way ANOVA on Salary Data

Hopefully, our earlier analyses have cured you of the desire to claim that a

sex effect exists before considering whether the differences between male and

female salaries might be due to other factors. The output below gives the

sample sizes, means, and standard deviations for the 11 combinations of sex,

rank, and degree observed in the data. Side-by-side boxplots of the salaries for

the 11 combinations are also provided. One combination of the three factors

was not observed: female Associate Professors without Doctorates.

Looking at the summaries, the differences between sexes within each com-

bination of rank and degree appear to be fairly small. There is a big difference

in the ranks of men and women, with a higher percentage of men in the more

advanced ranks. This might explain the differences between male and female

salaries, when other factors are ignored.
library(plyr)

fac.sum <- ddply(faculty, .(sex, rank, degree), function(.df) {
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data.frame(n = length(.df$salary)

, m = mean(.df$salary)

, s = sd(.df$salary)

)

})
fac.sum

## sex rank degree n m s

## 1 Male Full Other 4 30711.50 4241.9723

## 2 Male Full Doctorate 12 29592.75 3479.9566

## 3 Male Assoc Other 7 23584.57 1733.2365

## 4 Male Assoc Doctorate 5 23246.20 2120.2684

## 5 Male Asst Other 3 20296.00 3016.9642

## 6 Male Asst Doctorate 7 16901.14 728.9962

## 7 Female Full Other 1 24900.00 NA

## 8 Female Full Doctorate 3 30106.67 6904.2927

## 9 Female Assoc Other 2 21570.00 1244.5079

## 10 Female Asst Other 1 21600.00 NA

## 11 Female Asst Doctorate 7 17005.71 1834.6791
# plot marginal boxplots

library(ggplot2)
# create position dodge offset for plotting points
pd <- position_dodge(0.75) # 0.75 puts dots up center of boxplots

p <- ggplot(faculty, aes(x = degree, y = salary, fill = sex))
# plot a reference line for the global mean (assuming no groups)
p <- p + geom_hline(aes(yintercept = mean(salary)),

colour = "black", linetype = "dashed", size = 0.3, alpha = 0.5)
# boxplot, size=.25 for thin lines
p <- p + geom_boxplot(size = 0.25, alpha = 0.25)
# points for observed data
p <- p + geom_point(position = pd, alpha = 0.5)
p <- p + facet_grid(. ~ rank)
p <- p + scale_y_continuous(limits = c(0, max(faculty$salary)))
p <- p + labs(title = "Salary by rank, degree, and sex")
print(p)

Prof. Erik B. Erhardt



9.2: Example: The Effect of Sex and Rank on Faculty Salary 247

Full Assoc Asst

●

●

●

0

10000

20000

30000

Other Doctorate Other Doctorate Other Doctorate
degree

sa
la

ry

sex

Male

Female

Salary by rank, degree, and sex

I will consider two simple analyses of these data. The first analysis considers

the effect of the three factors on salary. The second analysis considers the effect

of the predictors. A complete analysis using both factors and predictors is then

considered. I am doing the three factor analysis because the most complex pure

ANOVA problem we considered this semester has two factors — the analysis is

for illustration only!!

The full model for a three-factor study includes the three main effects, the

three possible two-factor interactions, plus the three-factor interaction. Identi-

fying the factors by S (sex), D (degree) and R (rank), we write the full model

as

Salary = Grand mean + S effect + D effect + R effect

+S*D interaction + S*R interaction + R*D interaction

+S*D*R interaction + Residual.

You should understand what main effects and two-factor interactions mea-

sure, but what about the three-factor term? If you look at the two levels of
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degree separately, then a three-factor interaction is needed if the interaction

between sex and rank is different for the two degrees. (i.e., the profile plots

are different for the two degrees). Not surprisingly, three-factor interactions are

hard to interpret.

I considered a hierarchical backward elimination of effects (see Chapter 3 for

details). Individual regression variables are not considered for deletion, unless

they correspond to an effect in the model statement. All tests were performed

at the 0.10 level, but this hardly matters here.

The first step in the elimination is to fit the full model and check whether

the three-factor term is significant. The three-factor term was not significant

(in fact, it couldn’t be fit because one category had zero observations). After

eliminating this effect, I fit the model with all three two-factor terms, and

then sequentially deleted the least important effects, one at a time, while still

adhering to the hierarchy principle using the AIC criterion from the step()

function. The final model includes only an effect due to rank. Finally, I compute

the lsmeans() to compare salary for all pairs of rank.
# fit full model

lm.faculty.factor.full <- lm(salary ~ sex*rank*degree, data = faculty)

## Note that there are not enough degrees-of-freedom to estimate all these effects

## because we have 0 observations for Female/Assoc/Doctorate

library(car)

Anova(lm.faculty.factor.full, type=3)

## Error in Anova.III.lm(mod, error, singular.ok = singular.ok, ...): there are aliased

coefficients in the model

summary(lm.faculty.factor.full)

##

## Call:

## lm(formula = salary ~ sex * rank * degree, data = faculty)

##

## Residuals:

## Min 1Q Median 3Q Max

## -6261.5 -1453.0 -225.9 1349.7 7938.3

##

## Coefficients: (1 not defined because of singularities)

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 30711.5 1485.0 20.681 < 2e-16

## sexFemale -5811.5 3320.7 -1.750 0.087581

## rankAssoc -7126.9 1861.6 -3.828 0.000433
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## rankAsst -10415.5 2268.4 -4.591 4.13e-05

## degreeDoctorate -1118.8 1714.8 -0.652 0.517774

## sexFemale:rankAssoc 3796.9 4086.3 0.929 0.358229

## sexFemale:rankAsst 7115.5 4773.7 1.491 0.143734

## sexFemale:degreeDoctorate 6325.4 3834.4 1.650 0.106653

## rankAssoc:degreeDoctorate 780.4 2442.3 0.320 0.750952

## rankAsst:degreeDoctorate -2276.1 2672.3 -0.852 0.399304

## sexFemale:rankAssoc:degreeDoctorate NA NA NA NA

## sexFemale:rankAsst:degreeDoctorate -7524.8 5383.7 -1.398 0.169720

##

## (Intercept) ***

## sexFemale .

## rankAssoc ***

## rankAsst ***

## degreeDoctorate

## sexFemale:rankAssoc

## sexFemale:rankAsst

## sexFemale:degreeDoctorate

## rankAssoc:degreeDoctorate

## rankAsst:degreeDoctorate

## sexFemale:rankAssoc:degreeDoctorate

## sexFemale:rankAsst:degreeDoctorate

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 2970 on 41 degrees of freedom

## Multiple R-squared: 0.7975,Adjusted R-squared: 0.7481

## F-statistic: 16.14 on 10 and 41 DF, p-value: 2.989e-11

## AIC

# option: test="F" includes additional information

# for parameter estimate tests that we're familiar with

# option: for BIC, include k=log(nrow( [data.frame name] ))

lm.faculty.factor.red.AIC <- step(lm.faculty.factor.full, direction="backward", test="F")

## Start: AIC=841.26

## salary ~ sex * rank * degree

##

## Df Sum of Sq RSS AIC F value Pr(>F)

## <none> 361677227 841.26

## - sex:rank:degree 1 17233177 378910404 841.68 1.9536 0.1697

## Because the full model can not be fit, the step() procedure does not work

## Below we remove the three-way interaction, then the step() procedure will

## do the rest of the work for us.

Remove the three-way interaction, then use step() to perform backward selec-
tion based on AIC.
# model reduction using update() and subtracting (removing) model terms

lm.faculty.factor.red <- lm.faculty.factor.full;
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# remove variable

lm.faculty.factor.red <- update(lm.faculty.factor.red, ~ . - sex:rank:degree );

Anova(lm.faculty.factor.red, type=3)

## Anova Table (Type III tests)

##

## Response: salary

## Sum Sq Df F value Pr(>F)

## (Intercept) 3932650421 1 435.9113 < 2.2e-16 ***

## sex 11227674 1 1.2445 0.2709438

## rank 196652264 2 10.8989 0.0001539 ***

## degree 421614 1 0.0467 0.8298945

## sex:rank 2701493 2 0.1497 0.8614045

## sex:degree 7661926 1 0.8493 0.3620198

## rank:degree 33433415 2 1.8529 0.1693627

## Residuals 378910404 42

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# AIC backward selection

lm.faculty.factor.red.AIC <- step(lm.faculty.factor.red, direction="backward", test="F")

## Start: AIC=841.68

## salary ~ sex + rank + degree + sex:rank + sex:degree + rank:degree

##

## Df Sum of Sq RSS AIC F value Pr(>F)

## - sex:rank 2 2701493 381611896 838.05 0.1497 0.8614

## - sex:degree 1 7661926 386572329 840.72 0.8493 0.3620

## <none> 378910404 841.68

## - rank:degree 2 33433415 412343819 842.08 1.8529 0.1694

##

## Step: AIC=838.05

## salary ~ sex + rank + degree + sex:degree + rank:degree

##

## Df Sum of Sq RSS AIC F value Pr(>F)

## - sex:degree 1 12335789 393947686 837.71 1.4223 0.2394

## <none> 381611896 838.05

## - rank:degree 2 32435968 414047864 838.29 1.8699 0.1662

##

## Step: AIC=837.71

## salary ~ sex + rank + degree + rank:degree

##

## Df Sum of Sq RSS AIC F value Pr(>F)

## - sex 1 3009036 396956722 836.10 0.3437 0.5606

## - rank:degree 2 27067985 421015671 837.16 1.5460 0.2242

## <none> 393947686 837.71

##

## Step: AIC=836.1

## salary ~ rank + degree + rank:degree

##
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## Df Sum of Sq RSS AIC F value Pr(>F)

## - rank:degree 2 31019255 427975976 836.01 1.7973 0.1772

## <none> 396956722 836.10

##

## Step: AIC=836.01

## salary ~ rank + degree

##

## Df Sum of Sq RSS AIC F value Pr(>F)

## - degree 1 10970082 438946058 835.33 1.2304 0.2729

## <none> 427975976 836.01

## - rank 2 1349072233 1777048209 906.04 75.6532 1.45e-15 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Step: AIC=835.33

## salary ~ rank

##

## Df Sum of Sq RSS AIC F value Pr(>F)

## <none> 438946058 835.33

## - rank 2 1346783800 1785729858 904.30 75.171 1.174e-15 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# all are significant, stop.

# final model: salary ~ rank

lm.faculty.factor.final <- lm.faculty.factor.red.AIC

library(car)

Anova(lm.faculty.factor.final, type=3)

## Anova Table (Type III tests)

##

## Response: salary

## Sum Sq Df F value Pr(>F)

## (Intercept) 1.7593e+10 1 1963.932 < 2.2e-16 ***

## rank 1.3468e+09 2 75.171 1.174e-15 ***

## Residuals 4.3895e+08 49

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

summary(lm.faculty.factor.final)

##

## Call:

## lm(formula = salary ~ rank, data = faculty)

##

## Residuals:

## Min 1Q Median 3Q Max

## -5209.0 -1819.2 -417.8 1586.6 8386.1

##

## Coefficients:
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## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 29659.0 669.3 44.316 < 2e-16 ***

## rankAssoc -6483.0 1043.0 -6.216 1.09e-07 ***

## rankAsst -11890.3 972.4 -12.228 < 2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 2993 on 49 degrees of freedom

## Multiple R-squared: 0.7542,Adjusted R-squared: 0.7442

## F-statistic: 75.17 on 2 and 49 DF, p-value: 1.174e-15

All ranks are different with salaries increasing with rank.
### comparing lsmeans (may be unbalanced)

library(lsmeans)

## compare levels of main effects

lsmeans(lm.faculty.factor.final, list(pairwise ~ rank), adjust = "bonferroni")

## $`lsmeans of rank`

## rank lsmean SE df lower.CL upper.CL

## Full 29658.95 669.2564 49 28314.03 31003.87

## Assoc 23175.93 799.9144 49 21568.44 24783.42

## Asst 17768.67 705.4582 49 16351.00 19186.34

##

## Confidence level used: 0.95

##

## $`pairwise differences of contrast`

## contrast estimate SE df t.ratio p.value

## Full - Assoc 6483.021 1042.961 49 6.216 <.0001

## Full - Asst 11890.283 972.407 49 12.228 <.0001

## Assoc - Asst 5407.262 1066.553 49 5.070 <.0001

##

## P value adjustment: bonferroni method for 3 tests

This analysis suggests that sex is not predictive of salary, once other fac-

tors are taken into account. In particular, faculty rank appears to be the sole

important effect, in the sense that once salaries are adjusted for rank no other

factors explain a significant amount of the unexplained variation in salaries.

As noted earlier, the analysis was meant to illustrate a three-factor

ANOVA and backward selection. The analysis is likely flawed, because it

ignores the effects of year and year since degree on salary.
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9.2.2 Using Year and Year Since Degree to Predict
Salary

Plots of the salary against years in rank and years since degree show fairly strong

associations with salary. The variability in salaries appears to be increasing with

year and with year since degree, which might be expected. You might think to

transform the salaries to a log scale to eliminate this effect, but doing so has

little impact on the conclusions (not shown).
library(ggplot2)

p1 <- ggplot(faculty, aes(x = year, y = salary, colour = rank, shape = sex, size = degree))
p1 <- p1 + scale_size_discrete(range=c(3,5))
p1 <- p1 + geom_point(alpha = 0.5)
p1 <- p1 + labs(title = "Salary by year")
p1 <- p1 + theme(legend.position = "bottom")
#print(p1)

p2 <- ggplot(faculty, aes(x = yd, y = salary, colour = rank, shape = sex, size = degree))
p2 <- p2 + scale_size_discrete(range=c(3,5))
p2 <- p2 + geom_point(alpha = 0.5)
p2 <- p2 + labs(title = "Salary by yd")
p2 <- p2 + theme(legend.position = "bottom")
#print(p2)

library(gridExtra)
grid.arrange(grobs = list(p1, p2), nrow = 1)
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As a point of comparison with the three-factor ANOVA, I fit a multiple
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regression model with year and years since degree as predictors of salary. These

two predictors are important for explaining the variation in salaries, but to-

gether they explain much less of the variation (58%) than rank does on its own

(75%).
# interaction model

lm.s.y.yd.yyd <- lm(salary ~ year*yd, data = faculty)

summary(lm.s.y.yd.yyd)

##

## Call:

## lm(formula = salary ~ year * yd, data = faculty)

##

## Residuals:

## Min 1Q Median 3Q Max

## -10368.5 -2361.5 -505.7 2363.1 12211.6

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 16287.391 1395.049 11.675 1.25e-15 ***

## year 561.155 275.243 2.039 0.04700 *

## yd 235.415 83.266 2.827 0.00683 **

## year:yd -3.089 10.412 -0.297 0.76796

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 3958 on 48 degrees of freedom

## Multiple R-squared: 0.579,Adjusted R-squared: 0.5527

## F-statistic: 22 on 3 and 48 DF, p-value: 4.17e-09

# interaction is not significant

lm.s.y.yd <- lm(salary ~ year + yd, data = faculty)

summary(lm.s.y.yd)

##

## Call:

## lm(formula = salary ~ year + yd, data = faculty)

##

## Residuals:

## Min 1Q Median 3Q Max

## -10321.2 -2347.2 -332.7 2298.8 12240.9

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 16555.7 1052.4 15.732 < 2e-16 ***

## year 489.3 129.6 3.777 0.000431 ***

## yd 222.2 69.8 3.184 0.002525 **

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##
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## Residual standard error: 3921 on 49 degrees of freedom

## Multiple R-squared: 0.5782,Adjusted R-squared: 0.561

## F-statistic: 33.58 on 2 and 49 DF, p-value: 6.532e-10

9.2.3 Using Factors and Predictors to Model Salaries

The plots we looked at helped us to understand the data. In particular, the

plot of salary against years in rank, using rank as a plotting symbol, suggests

that a combination of predictors and factors will likely be better for modelling

faculty salaries than either of the two models that we proposed up to this point.

There is no evidence of non-linearity in the plots of salary against the pre-

dictors, so I will not consider transforming years since degree, years in rank,

or salary. Note that the increasing variability in salaries for increasing years in

rank and increasing years since degree is partly due to differences in the rela-

tionships across ranks. The non-constant variance should be less of a concern

in any model that includes rank and either years in rank or years since degree

as effects.
I started the model building process with a maximal or full model with the

five main effects plus the 10 possible interactions between two effects, regardless
of whether the effects were factors or predictors. Notationally, this model is
written as follows:

Salary = Grand mean + S effect + D effect + R effect + YEAR effect + YD effect

+S*D interaction + S*R interaction + S*YEAR interaction + S*YD interaction

+D*R interaction + D*YEAR interaction + D*YD interaction

+R*YEAR interaction + R*YD interaction + YEAR*YD interaction + Residual,

where the year and year since degree effects (YD) are linear terms (as in the

multiple regression model we considered). To check whether any important

effects might have been omitted, I added individual three-factor terms to this

model. All of the three factor terms were insignificant (not shown), so I believe

that my choice for the “maximal” model is sensible.

The output below gives the fit to the maximal model, and subsequent fits,

using the hierarchy principle. Only selected summaries are provided.

UNM, Stat 428/528 ADA2



256 Ch 9: Discussion of Response Models with Factors and Predictors

# fit full model with two-way interactions

lm.faculty.full <- lm(salary ~ (sex + rank + degree + year + yd)^2, data = faculty)

library(car)

Anova(lm.faculty.full, type=3)

## Anova Table (Type III tests)

##

## Response: salary

## Sum Sq Df F value Pr(>F)

## (Intercept) 22605087 1 3.6916 0.06392 .

## sex 4092995 1 0.6684 0.41984

## rank 5731837 2 0.4680 0.63059

## degree 4137628 1 0.6757 0.41735

## year 2022246 1 0.3302 0.56966

## yd 3190911 1 0.5211 0.47578

## sex:rank 932237 2 0.0761 0.92688

## sex:degree 7164815 1 1.1701 0.28773

## sex:year 7194388 1 1.1749 0.28676

## sex:yd 2024210 1 0.3306 0.56947

## rank:degree 13021265 2 1.0632 0.35759

## rank:year 1571933 2 0.1284 0.88001

## rank:yd 9822382 2 0.8020 0.45750

## degree:year 4510249 1 0.7366 0.39735

## degree:yd 6407880 1 1.0465 0.31424

## year:yd 50921 1 0.0083 0.92793

## Residuals 189825454 31

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# This time I use BIC for model reduction by specifying k=

# (compare this to model result using AIC --

# too many nonsignificant parameters left in model)

## BIC

# option: test="F" includes additional information

# for parameter estimate tests that we're familiar with

# option: for BIC, include k=log(nrow( [data.frame name] ))

lm.faculty.red.BIC <- step(lm.faculty.full, direction="backward", test="F"

, k=log(nrow(faculty)))

## Start: AIC=868.72

## salary ~ (sex + rank + degree + year + yd)^2

##

## Df Sum of Sq RSS AIC F value Pr(>F)

## - sex:rank 2 932237 190757690 861.07 0.0761 0.9269

## - rank:year 2 1571933 191397386 861.24 0.1284 0.8800

## - rank:yd 2 9822382 199647836 863.44 0.8020 0.4575

## - rank:degree 2 13021265 202846719 864.26 1.0632 0.3576

## - year:yd 1 50921 189876375 864.78 0.0083 0.9279

## - sex:yd 1 2024210 191849663 865.32 0.3306 0.5695

## - degree:year 1 4510249 194335703 865.99 0.7366 0.3974
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## - degree:yd 1 6407880 196233334 866.49 1.0465 0.3142

## - sex:degree 1 7164815 196990268 866.69 1.1701 0.2877

## - sex:year 1 7194388 197019841 866.70 1.1749 0.2868

## <none> 189825454 868.72

##

## Step: AIC=861.07

## salary ~ sex + rank + degree + year + yd + sex:degree + sex:year +

## sex:yd + rank:degree + rank:year + rank:yd + degree:year +

## degree:yd + year:yd

##

## Df Sum of Sq RSS AIC F value Pr(>F)

## - rank:year 2 4480611 195238301 854.37 0.3876 0.6818

## - rank:yd 2 14587933 205345624 857.00 1.2618 0.2964

## - year:yd 1 25889 190783580 857.12 0.0045 0.9470

## - rank:degree 2 16365099 207122790 857.45 1.4155 0.2572

## - sex:yd 1 3293276 194050966 858.01 0.5697 0.4557

## - degree:year 1 4428068 195185758 858.31 0.7660 0.3878

## - degree:yd 1 6525075 197282766 858.87 1.1288 0.2957

## - sex:year 1 10462381 201220071 859.89 1.8099 0.1877

## - sex:degree 1 10654937 201412628 859.94 1.8432 0.1838

## <none> 190757690 861.07

##

## Step: AIC=854.37

## salary ~ sex + rank + degree + year + yd + sex:degree + sex:year +

## sex:yd + rank:degree + rank:yd + degree:year + degree:yd +

## year:yd

##

## Df Sum of Sq RSS AIC F value Pr(>F)

## - year:yd 1 582367 195820669 850.58 0.1044 0.7485

## - rank:degree 2 18612514 213850816 851.21 1.6683 0.2032

## - sex:yd 1 3008739 198247041 851.22 0.5394 0.4676

## - rank:yd 2 20258184 215496486 851.60 1.8158 0.1777

## - degree:year 1 7497925 202736226 852.38 1.3441 0.2542

## - degree:yd 1 8179958 203418259 852.56 1.4664 0.2340

## - sex:degree 1 12500896 207739197 853.65 2.2410 0.1434

## - sex:year 1 12669105 207907406 853.69 2.2712 0.1408

## <none> 195238301 854.37

##

## Step: AIC=850.58

## salary ~ sex + rank + degree + year + yd + sex:degree + sex:year +

## sex:yd + rank:degree + rank:yd + degree:year + degree:yd

##

## Df Sum of Sq RSS AIC F value Pr(>F)

## - sex:yd 1 2456466 198277134 847.27 0.4516 0.50587

## - rank:degree 2 21836322 217656990 848.17 2.0072 0.14912

## - degree:year 1 7414066 203234734 848.56 1.3630 0.25069

## - degree:yd 1 9232872 205053541 849.02 1.6974 0.20090

## - sex:degree 1 12831931 208652600 849.93 2.3590 0.13330
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## - sex:year 1 13646799 209467467 850.13 2.5089 0.12196

## <none> 195820669 850.58

## - rank:yd 2 41051000 236871669 852.57 3.7734 0.03253 *

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Step: AIC=847.27

## salary ~ sex + rank + degree + year + yd + sex:degree + sex:year +

## rank:degree + rank:yd + degree:year + degree:yd

##

## Df Sum of Sq RSS AIC F value Pr(>F)

## - rank:degree 2 21157939 219435073 844.64 1.9741 0.15324

## - degree:year 1 8497324 206774458 845.50 1.5857 0.21583

## - degree:yd 1 9463400 207740534 845.75 1.7659 0.19202

## - sex:degree 1 10394382 208671516 845.98 1.9397 0.17202

## <none> 198277134 847.27

## - sex:year 1 22789419 221066553 848.98 4.2527 0.04626 *

## - rank:yd 2 42516602 240793736 849.47 3.9670 0.02749 *

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Step: AIC=844.64

## salary ~ sex + rank + degree + year + yd + sex:degree + sex:year +

## rank:yd + degree:year + degree:yd

##

## Df Sum of Sq RSS AIC F value Pr(>F)

## - degree:yd 1 361929 219797002 840.78 0.0643 0.8011

## - degree:year 1 855102 220290175 840.89 0.1520 0.6988

## - sex:degree 1 1616150 221051223 841.07 0.2872 0.5950

## - rank:yd 2 24391011 243826084 842.22 2.1675 0.1281

## - sex:year 1 10569795 230004869 843.14 1.8786 0.1783

## <none> 219435073 844.64

##

## Step: AIC=840.78

## salary ~ sex + rank + degree + year + yd + sex:degree + sex:year +

## rank:yd + degree:year

##

## Df Sum of Sq RSS AIC F value Pr(>F)

## - sex:degree 1 3112507 222909509 837.56 0.5664 0.45609

## - degree:year 1 4414318 224211320 837.86 0.8033 0.37546

## - rank:yd 2 24695126 244492128 838.41 2.2471 0.11889

## - sex:year 1 16645026 236442028 840.62 3.0292 0.08947 .

## <none> 219797002 840.78

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Step: AIC=837.56

## salary ~ sex + rank + degree + year + yd + sex:year + rank:yd +
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## degree:year

##

## Df Sum of Sq RSS AIC F value Pr(>F)

## - degree:year 1 2585275 225494784 834.21 0.4755 0.4943

## - rank:yd 2 25367664 248277174 835.26 2.3330 0.1098

## - sex:year 1 14770974 237680484 836.94 2.7168 0.1069

## <none> 222909509 837.56

##

## Step: AIC=834.21

## salary ~ sex + rank + degree + year + yd + sex:year + rank:yd

##

## Df Sum of Sq RSS AIC F value Pr(>F)

## - rank:yd 2 24905278 250400062 831.75 2.3194 0.1108

## - degree 1 8902098 234396882 832.27 1.6581 0.2049

## - sex:year 1 14134386 239629170 833.42 2.6326 0.1122

## <none> 225494784 834.21

##

## Step: AIC=831.75

## salary ~ sex + rank + degree + year + yd + sex:year

##

## Df Sum of Sq RSS AIC F value Pr(>F)

## - sex:year 1 8458303 258858365 829.53 1.4863 0.22929

## - degree 1 11217823 261617885 830.08 1.9712 0.16734

## - yd 1 16309342 266709404 831.08 2.8659 0.09755 .

## <none> 250400062 831.75

## - rank 2 406263292 656663354 873.98 35.6941 6.144e-10 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Step: AIC=829.53

## salary ~ sex + rank + degree + year + yd

##

## Df Sum of Sq RSS AIC F value Pr(>F)

## - sex 1 9134971 267993336 827.38 1.5880 0.2141

## - degree 1 10687589 269545954 827.68 1.8579 0.1796

## - yd 1 14868158 273726523 828.48 2.5847 0.1149

## <none> 258858365 829.53

## - year 1 144867403 403725768 848.69 25.1838 8.654e-06 ***

## - rank 2 399790682 658649047 870.19 34.7499 7.485e-10 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Step: AIC=827.38

## salary ~ rank + degree + year + yd

##

## Df Sum of Sq RSS AIC F value Pr(>F)

## - degree 1 6684984 274678320 824.71 1.1475 0.2897

## - yd 1 7871680 275865016 824.93 1.3511 0.2511
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## <none> 267993336 827.38

## - year 1 147642871 415636208 846.25 25.3423 7.839e-06 ***

## - rank 2 404108665 672102002 867.29 34.6818 6.544e-10 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Step: AIC=824.71

## salary ~ rank + year + yd

##

## Df Sum of Sq RSS AIC F value Pr(>F)

## - yd 1 2314414 276992734 821.19 0.396 0.5322

## <none> 274678320 824.71

## - year 1 141105647 415783967 842.32 24.145 1.126e-05 ***

## - rank 2 478539101 753217421 869.26 40.941 5.067e-11 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Step: AIC=821.19

## salary ~ rank + year

##

## Df Sum of Sq RSS AIC F value Pr(>F)

## <none> 276992734 821.19

## - year 1 161953324 438946058 841.18 28.065 2.905e-06 ***

## - rank 2 632056217 909048951 875.09 54.764 4.103e-13 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The add1() function will indicate whether a variable from the “full” model
should be added to the current model. In our case, our BIC-backward selected
model appears adequate.
add1(lm.faculty.red.BIC, . ~ (sex + rank + degree + year + yd)^2, test="F")

## Single term additions

##

## Model:

## salary ~ rank + year

## Df Sum of Sq RSS AIC F value Pr(>F)

## <none> 276992734 813.39

## sex 1 2304648 274688086 814.95 0.3943 0.5331

## degree 1 1127718 275865016 815.18 0.1921 0.6632

## yd 1 2314414 274678320 814.95 0.3960 0.5322

## rank:year 2 15215454 261777280 814.45 1.3368 0.2727

Let’s look carefully at our resulting model.
# all are significant, stop.

# final model: salary ~ year + rank

lm.faculty.final <- lm.faculty.red.BIC
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library(car)

Anova(lm.faculty.final, type=3)

## Anova Table (Type III tests)

##

## Response: salary

## Sum Sq Df F value Pr(>F)

## (Intercept) 4422688839 1 766.407 < 2.2e-16 ***

## rank 632056217 2 54.764 4.103e-13 ***

## year 161953324 1 28.065 2.905e-06 ***

## Residuals 276992734 48

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

summary(lm.faculty.final)

##

## Call:

## lm(formula = salary ~ rank + year, data = faculty)

##

## Residuals:

## Min 1Q Median 3Q Max

## -3462.0 -1302.8 -299.2 783.5 9381.6

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 25657.79 926.81 27.684 < 2e-16 ***

## rankAssoc -5192.24 871.83 -5.956 2.93e-07 ***

## rankAsst -9454.52 905.83 -10.437 6.12e-14 ***

## year 375.70 70.92 5.298 2.90e-06 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 2402 on 48 degrees of freedom

## Multiple R-squared: 0.8449,Adjusted R-squared: 0.8352

## F-statistic: 87.15 on 3 and 48 DF, p-value: < 2.2e-16

### comparing lsmeans (may be unbalanced)

library(lsmeans)

## compare levels of main effects

lsmeans(lm.faculty.final, list(pairwise ~ rank), adjust = "bonferroni")

## $`lsmeans of rank`

## rank lsmean SE df lower.CL upper.CL

## Full 28468.28 582.2789 48 27297.53 29639.03

## Assoc 23276.05 642.2996 48 21984.62 24567.48

## Asst 19013.76 613.0513 48 17781.14 20246.38

##

## Confidence level used: 0.95

##

## $`pairwise differences of contrast`

## contrast estimate SE df t.ratio p.value

UNM, Stat 428/528 ADA2



262 Ch 9: Discussion of Response Models with Factors and Predictors

## Full - Assoc 5192.239 871.8328 48 5.956 <.0001

## Full - Asst 9454.523 905.8301 48 10.437 <.0001

## Assoc - Asst 4262.285 882.8914 48 4.828 <.0001

##

## P value adjustment: bonferroni method for 3 tests

9.2.4 Discussion of the Salary Analysis

The selected model is a simple ANCOVA model with a rank effect and a linear

effect due to years in rank. Note that the maximal model has 20 single df

effects with an R2 = 0.89 while the selected model has 3 single df effects with

R2 = 0.84.

Looking at the parameter estimates table, all of the single df effects in

the selected model are significant. The baseline group is Full Professors, with

rank=3. Predicted salaries for the different ranks are given by:

Full: ŝalary = 25658 + 375.70 year

Assoc: ŝalary = 25658− 5192 + 375.70 year = 20466 + 375.70 year

Assis: ŝalary = 25658− 9454 + 375.70 year = 16204 + 375.70 year

Do you remember how to interpret the lsmeans, and the p-values for compar-

ing lsmeans?

You might be tempted to conclude that rank and years in rank are the only

effects that are predictive of salaries, and that differences in salaries by sex are

insignificant, once these effects have been taken into account. However, you

must be careful because you have not done a diagnostic analysis. The following

two issues are also important to consider.

A sex effect may exist even though there is insufficient evidence to

support it based on these data. (Lack of power corrupts; and absolute

lack of power corrupts absolutely!) If we are interested in the possibility

of a sex effect, I think that we would do better by focusing on how large the effect

might be, and whether it is important. A simple way to check is by constructing

a confidence interval for the sex effect, based on a simple additive model that
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includes sex plus the effects that were selected as statistically significant, rank

and year in rank. I am choosing this model because the omitted effects are

hopefully small, and because the regression coefficient for a sex indicator is

easy to interpret in an additive model. Other models might be considered for

comparison. Summary output from this model is given below.
# add sex to the model

lm.faculty.final.sex <- update(lm.faculty.final, . ~ . + sex)

summary(lm.faculty.final.sex)

##

## Call:

## lm(formula = salary ~ rank + year + sex, data = faculty)

##

## Residuals:

## Min 1Q Median 3Q Max

## -3286.3 -1311.8 -178.4 939.1 9002.7

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 25390.65 1025.14 24.768 < 2e-16 ***

## rankAssoc -5109.93 887.12 -5.760 6.20e-07 ***

## rankAsst -9483.84 912.79 -10.390 9.19e-14 ***

## year 390.94 75.38 5.186 4.47e-06 ***

## sexFemale 524.15 834.69 0.628 0.533

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 2418 on 47 degrees of freedom

## Multiple R-squared: 0.8462,Adjusted R-squared: 0.8331

## F-statistic: 64.64 on 4 and 47 DF, p-value: < 2.2e-16

Men are the baseline group for the sex effect, so the predicted salaries for

men are 524 dollars less than that for women, adjusting for rank and year.

A rough 95% CI for the sex differential is the estimated sex coefficient plus or

minus two standard errors, or 524 ± 2 ∗ (835), or −1146 to 2194 dollars. The

range of plausible values for the sex effect would appear to contain values of

practical importance, so further analysis is warranted here.

Another concern, and potentially a more important issue, was raised by M.

O. Finkelstein in a 1980 discussion in the Columbia Law Review on the

use of regression in discrimination cases: “. . . [a] variable may reflect a

position or status bestowed by the employer, in which case if
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there is discrimination in the award of the position or status,

the variable may be ‘tainted’.” Thus, if women are unfairly held back

from promotion through the faculty ranks, then using faculty rank to adjust

salary before comparing sexes may not be acceptable to the courts. This

suggests that an analysis comparing sexes but ignoring rank effects might be

justifiable. What happens if this is done?
lm.faculty.sex.yd <- lm(salary ~ sex + yd, data = faculty)

library(car)

Anova(lm.faculty.sex.yd, type=3)

## Anova Table (Type III tests)

##

## Response: salary

## Sum Sq Df F value Pr(>F)

## (Intercept) 4275963832 1 231.4448 < 2.2e-16 ***

## sex 67178787 1 3.6362 0.06241 .

## yd 766344185 1 41.4799 4.883e-08 ***

## Residuals 905279453 49

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

summary(lm.faculty.sex.yd)

##

## Call:

## lm(formula = salary ~ sex + yd, data = faculty)

##

## Residuals:

## Min 1Q Median 3Q Max

## -9631.7 -2529.4 3.5 2298.0 13125.7

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 18355.23 1206.52 15.213 < 2e-16 ***

## sexFemale -2572.53 1349.08 -1.907 0.0624 .

## yd 380.69 59.11 6.440 4.88e-08 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 4298 on 49 degrees of freedom

## Multiple R-squared: 0.493,Adjusted R-squared: 0.4724

## F-statistic: 23.83 on 2 and 49 DF, p-value: 5.911e-08

Similar result as before, insufficient evidence between sexes (due to large

proportion of variability in salary explained by yd [which I’m using in place

of year since year is paired with rank]). Furthermore (not shown), there is
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insufficient evidence for a sex:yd interaction. However, rank and sex are (po-

tentially) confounded. This data can not resolve this question. Instead, data

on promotions would help resolve this issue.
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Chapter 10

Automated Model
Selection for Multiple
Regression

Given data on a response variable Y and k predictors or binary variables

X1, X2, . . . , Xk, we wish to develop a regression model to predict Y . Assuming

that the collection of variables is measured on the correct scale, and that the

candidate list of effects includes all the important predictors or binary variables,

the most general model is

Y = β0 + β1X1 + · · · + βkXk + ε.

In most problems one or more of the effects can be eliminated from the full

model without loss of information. We want to identify the important effects,

or equivalently, eliminate the effects that are not very useful for explaining the

variation in Y .

We will study several automated non-hierarchical methods for model selec-

tion. Given a specific criterion for selecting a model, a method gives the best

model. Before applying these methods, plot Y against each predictor to see

whether transformations are needed. Although transformations of binary vari-

ables are not necessary, side-by-side boxplots of the response across the levels

of a factor give useful information on the predictive ability of the factor. If a
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transformation of Xi is suggested, include the transformation along with the

original Xi in the candidate list. Note that we can transform the predictors

differently, for example, log(X1) and
√
X2. However, if several transformations

are suggested for the response, then one should consider doing one analysis for

each suggested response scale before deciding on the final scale.

Different criteria for selecting models lead to different “best models.” Given

a collection of candidates for the best model, we make a choice of model on the

basis of (1) a direct comparison of models, if possible (2) examination of model

adequacy (residuals, influence, etc.) (3) simplicity — all things being equal,

simpler models are preferred, and (4) scientific plausibility.

I view the various criteria as a means to generate interesting models for

further consideration. I do not take any of them literally as best.

You should recognize that automated model selection methods should not

replace scientific theory when building models! Automated methods are best

suited for exploratory analyses, in situations where the researcher has little

scientific information as a guide.

AIC/BIC were discussed in Section 3.2.1 for stepwise procedures and were

used in examples in Chapter 9. In those examples, I included the corresponding

F -tests in the ANOVA table as a criterion for dropping variables from a model.

The next few sections cover these methods in more detail, then discuss other

criteria and selections strategies, finishing with a few examples.

10.1 Forward Selection

In forward selection we add variables to the model one at a time. The steps in

the procedure are:

1. Find the variable in the candidate list with the largest correlation (ignor-

ing the sign) with Y . This variable gives a simple linear regression model

with the largest R2. Suppose this is X1. Then fit the model

Y = β0 + β1X1 + ε (10.1)
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and test H0 : β1 = 0. If we reject H0, go to step 2. Otherwise stop and

conclude that no variables are important. A t-test can be used here, or

the equivalent ANOVA F -test.

2. Find the remaining variable which when added to model (10.1) increases

R2 the most (or equivalently decreases Residual SS the most). Suppose

this is X2. Fit the model

Y = β0 + β1X1 + β2X2 + ε (10.2)

and test H0 : β2 = 0. If we do not reject H0, stop and use model (10.1)

to predict Y . If we reject H0, replace model (10.1) with (10.2) and repeat

step 2 sequentially until no further variables are added to the model.

In forward selection we sequentially isolate the most important effect left

in the pool, and check whether it is needed in the model. If it is needed we

continue the process. Otherwise we stop.

The F -test default level for the tests on the individual effects is sometimes

set as high as α = 0.50 (SAS default). This may seem needlessly high. However,

in many problems certain variables may be important only in the presence of

other variables. If we force the forward selection to test at standard levels then

the process will never get “going” when none of the variables is important on

its own.

10.2 Backward Elimination

The backward elimination procedure (discussed earlier this semester) deletes

unimportant variables, one at a time, starting from the full model. The steps

is the procedure are:

1. Fit the full model

Y = β0 + β1X1 + · · · + βkXk + ε. (10.3)

2. Find the variable which when omitted from the full model (10.3) reduces

R2 the least, or equivalently, increases the Residual SS the least. This
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is the variable that gives the largest p-value for testing an individual

regression coefficient H0 : βj = 0 for j > 0. Suppose this variable is Xk.

If you reject H0, stop and conclude that the full model is best. If you do

not reject H0, delete Xk from the full model, giving the new full model

Y = β0 + β1X1 + · · · + βk−1Xk−1 + ε

to replace (10.3). Repeat steps 1 and 2 sequentially until no further

variables can be deleted.

In backward elimination we isolate the least important effect left in the

model, and check whether it is important. If not, delete it and repeat the

process. Otherwise, stop. The default test level on the individual variables is

sometimes set at α = 0.10 (SAS default).

10.3 Stepwise Regression

Stepwise regression combines features of forward selection and backward elim-

ination. A deficiency of forward selection is that variables can not be omitted

from the model once they are selected. This is problematic because many vari-

ables that are initially important are not important once several other variables

are included in the model. In stepwise regression, we add variables to the model

as in forward regression, but include a backward elimination step every time a

new variable is added. That is, every time we add a variable to the model we

ask whether any of the variables added earlier can be omitted. If variables can

be omitted, they are placed back into the candidate pool for consideration at

the next step of the process. The process continues until no additional variables

can be added, and none of the variables in the model can be excluded. The

procedure can start from an empty model, a full model, or an intermediate

model, depending on the software.

The p-values used for including and excluding variables in stepwise regres-

sion are usually taken to be equal (why is this reasonable?), and sometimes set

at α = 0.15 (SAS default).
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10.3.1 Example: Indian systolic blood pressure

We revisit the example first introduced in Chapter 2. Anthropologists con-

ducted a study to determine the long-term effects of an environmental change

on systolic blood pressure. They measured the blood pressure and several other

characteristics of 39 Indians who migrated from a very primitive environment

high in the Andes into the mainstream of Peruvian society at a lower altitude.

All of the Indians were males at least 21 years of age, and were born at a high

altitude.

Let us illustrate the three model selection methods to build a regression

model, using systolic blood pressure (sysbp) as the response, and seven candi-

date predictors: wt = weight in kilos; ht = height in mm; chin = chin skin fold

in mm; fore = forearm skin fold in mm; calf = calf skin fold in mm; pulse

= pulse rate-beats/min, and yrage = fraction, which is the proportion of each

individual’s lifetime spent in the new environment.

Below I generate simple summary statistics and plots. The plots do not

suggest any apparent transformations of the response or the predictors, so we

will analyze the data using the given scales.
#### Example: Indian

fn.data <- "http://statacumen.com/teach/ADA2/ADA2_notes_Ch02_indian.dat"

indian <- read.table(fn.data, header=TRUE)

# Description of variables

# id = individual id

# age = age in years yrmig = years since migration

# wt = weight in kilos ht = height in mm

# chin = chin skin fold in mm fore = forearm skin fold in mm

# calf = calf skin fold in mm pulse = pulse rate-beats/min

# sysbp = systolic bp diabp = diastolic bp

# Create the "fraction of their life" variable

# yrage = years since migration divided by age

indian$yrage <- indian$yrmig / indian$age

# correlation matrix and associated p-values testing "H0: rho == 0"

library(Hmisc)

i.cor <- rcorr(as.matrix(indian[,c("sysbp", "wt", "ht", "chin"

, "fore", "calf", "pulse", "yrage")]))

# print correlations with the response to 3 significant digits

signif(i.cor$r[1, ], 3)
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## sysbp wt ht chin fore calf pulse yrage

## 1.000 0.521 0.219 0.170 0.272 0.251 0.133 -0.276

# scatterplots

library(ggplot2)

p1 <- ggplot(indian, aes(x = wt , y = sysbp)) + geom_point(size=2)

p2 <- ggplot(indian, aes(x = ht , y = sysbp)) + geom_point(size=2)

p3 <- ggplot(indian, aes(x = chin , y = sysbp)) + geom_point(size=2)

p4 <- ggplot(indian, aes(x = fore , y = sysbp)) + geom_point(size=2)

p5 <- ggplot(indian, aes(x = calf , y = sysbp)) + geom_point(size=2)

p6 <- ggplot(indian, aes(x = pulse, y = sysbp)) + geom_point(size=2)

p7 <- ggplot(indian, aes(x = yrage, y = sysbp)) + geom_point(size=2)

library(gridExtra)

grid.arrange(grobs = list(p1, p2, p3, p4, p5, p6, p7), ncol=3

, top = "Scatterplots of response sysbp with each predictor variable")
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Scatterplots of response sysbp with each predictor variable

The step() function provides the forward, backward, and stepwise proce-

dures based on AIC or BIC, and provides corresponding F -tests.
## step() function specification

## The first two arguments of step(object, scope, ...) are

# object = a fitted model object.

# scope = a formula giving the terms to be considered for adding or dropping

## default is AIC

# for BIC, include k = log(nrow( [data.frame name] ))

# test="F" includes additional information
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# for parameter estimate tests that we're familiar with

Forward selection output The output for the forward selection method

is below. BIC is our selection criterion, though similar decisions are made as if

using F -tests.

Step 1 Variable wt =weight is entered first because it has the highest

correlation with sysbp =sys bp. The corresponding F -value is the square of

the t-statistic for testing the significance of the weight predictor in this simple

linear regression model.

Step 2 Adding yrage =fraction to the simple linear regression model

with weight as a predictor increases R2 the most, or equivalently, decreases

Residual SS (RSS) the most.

Step 3 The last table has “<none>” as the first row indicating that

the current model (no change to current model) is the best under the current

selection criterion.
# start with an empty model (just the intercept 1)

lm.indian.empty <- lm(sysbp ~ 1, data = indian)

# Forward selection, BIC with F-tests

lm.indian.forward.red.BIC <- step(lm.indian.empty

, sysbp ~ wt + ht + chin + fore + calf + pulse + yrage

, direction = "forward", test = "F", k = log(nrow(indian)))

## Start: AIC=203.38

## sysbp ~ 1

##

## Df Sum of Sq RSS AIC F value Pr(>F)

## + wt 1 1775.38 4756.1 194.67 13.8117 0.0006654 ***

## <none> 6531.4 203.38

## + yrage 1 498.06 6033.4 203.95 3.0544 0.0888139 .

## + fore 1 484.22 6047.2 204.03 2.9627 0.0935587 .

## + calf 1 410.80 6120.6 204.51 2.4833 0.1235725

## + ht 1 313.58 6217.9 205.12 1.8660 0.1801796

## + chin 1 189.19 6342.2 205.89 1.1037 0.3002710

## + pulse 1 114.77 6416.7 206.35 0.6618 0.4211339

## ---

UNM, Stat 428/528 ADA2



274 Ch 10: Automated Model Selection for Multiple Regression

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Step: AIC=194.67

## sysbp ~ wt

##

## Df Sum of Sq RSS AIC F value Pr(>F)

## + yrage 1 1314.69 3441.4 185.71 13.7530 0.0006991 ***

## <none> 4756.1 194.67

## + chin 1 143.63 4612.4 197.14 1.1210 0.2967490

## + calf 1 16.67 4739.4 198.19 0.1267 0.7240063

## + pulse 1 6.11 4749.9 198.28 0.0463 0.8308792

## + ht 1 2.01 4754.0 198.31 0.0152 0.9024460

## + fore 1 1.16 4754.9 198.32 0.0088 0.9257371

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Step: AIC=185.71

## sysbp ~ wt + yrage

##

## Df Sum of Sq RSS AIC F value Pr(>F)

## <none> 3441.4 185.71

## + chin 1 197.372 3244.0 187.07 2.1295 0.1534

## + fore 1 50.548 3390.8 188.80 0.5218 0.4749

## + calf 1 30.218 3411.1 189.03 0.3101 0.5812

## + ht 1 23.738 3417.6 189.11 0.2431 0.6251

## + pulse 1 5.882 3435.5 189.31 0.0599 0.8081

summary(lm.indian.forward.red.BIC)

##

## Call:

## lm(formula = sysbp ~ wt + yrage, data = indian)

##

## Residuals:

## Min 1Q Median 3Q Max

## -18.4330 -7.3070 0.8963 5.7275 23.9819

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 60.8959 14.2809 4.264 0.000138 ***

## wt 1.2169 0.2337 5.207 7.97e-06 ***

## yrage -26.7672 7.2178 -3.708 0.000699 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 9.777 on 36 degrees of freedom

## Multiple R-squared: 0.4731,Adjusted R-squared: 0.4438

## F-statistic: 16.16 on 2 and 36 DF, p-value: 9.795e-06
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Backward selection output The output for the backward elimination

method is below. BIC is our selection criterion, though similar decisions are

made as if using F -tests.

Step 0 The full model has 7 predictors so REG df = 7. The F -test in the

full model ANOVA table (F = 4.91 with p-value=0.0008) tests the hypothesis

that the regression coefficient for each predictor variable is zero. This test is

highly significant, indicating that one or more of the predictors is important in

the model.

The t-value column gives the t-statistic for testing the significance of the

individual predictors in the full model conditional on the other variables being

in the model.
# start with a full model

lm.indian.full <- lm(sysbp ~ wt + ht + chin + fore + calf + pulse + yrage, data = indian)

summary(lm.indian.full)

##

## Call:

## lm(formula = sysbp ~ wt + ht + chin + fore + calf + pulse + yrage,

## data = indian)

##

## Residuals:

## Min 1Q Median 3Q Max

## -14.3993 -5.7916 -0.6907 6.9453 23.5771

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 106.45766 53.91303 1.975 0.057277 .

## wt 1.71095 0.38659 4.426 0.000111 ***

## ht -0.04533 0.03945 -1.149 0.259329

## chin -1.15725 0.84612 -1.368 0.181239

## fore -0.70183 1.34986 -0.520 0.606806

## calf 0.10357 0.61170 0.169 0.866643

## pulse 0.07485 0.19570 0.383 0.704699

## yrage -29.31810 7.86839 -3.726 0.000777 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 9.994 on 31 degrees of freedom

## Multiple R-squared: 0.5259,Adjusted R-squared: 0.4189

## F-statistic: 4.913 on 7 and 31 DF, p-value: 0.0008079

The least important variable in the full model, as judged by the p-value,
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is calf =calf skin fold. This variable, upon omission, reduces R2 the least,

or equivalently, increases the Residual SS the least. So calf is the first to be

omitted from the model.

Step 1 After deleting calf , the six predictor model is fitted. At least one

of the predictors left is important, as judged by the overall F -test p-value. The

least important predictor left is pulse =pulse rate.
# Backward selection, BIC with F-tests

lm.indian.backward.red.BIC <- step(lm.indian.full

, direction = "backward", test = "F", k = log(nrow(indian)))

## Start: AIC=199.91

## sysbp ~ wt + ht + chin + fore + calf + pulse + yrage

##

## Df Sum of Sq RSS AIC F value Pr(>F)

## - calf 1 2.86 3099.3 196.28 0.0287 0.8666427

## - pulse 1 14.61 3111.1 196.43 0.1463 0.7046990

## - fore 1 27.00 3123.4 196.59 0.2703 0.6068061

## - ht 1 131.88 3228.3 197.88 1.3203 0.2593289

## - chin 1 186.85 3283.3 198.53 1.8706 0.1812390

## <none> 3096.4 199.91

## - yrage 1 1386.76 4483.2 210.68 13.8835 0.0007773 ***

## - wt 1 1956.49 5052.9 215.35 19.5874 0.0001105 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Step: AIC=196.28

## sysbp ~ wt + ht + chin + fore + pulse + yrage

##

## Df Sum of Sq RSS AIC F value Pr(>F)

## - pulse 1 13.34 3112.6 192.79 0.1377 0.7130185

## - fore 1 26.99 3126.3 192.96 0.2787 0.6011969

## - ht 1 129.56 3228.9 194.22 1.3377 0.2560083

## - chin 1 184.03 3283.3 194.87 1.9000 0.1776352

## <none> 3099.3 196.28

## - yrage 1 1448.00 4547.3 207.57 14.9504 0.0005087 ***

## - wt 1 1953.77 5053.1 211.69 20.1724 8.655e-05 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Step: AIC=192.79

## sysbp ~ wt + ht + chin + fore + yrage

##

## Df Sum of Sq RSS AIC F value Pr(>F)

## - fore 1 17.78 3130.4 189.35 0.1885 0.667013

## - ht 1 131.12 3243.8 190.73 1.3902 0.246810
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## - chin 1 198.30 3310.9 191.53 2.1023 0.156514

## <none> 3112.6 192.79

## - yrage 1 1450.02 4562.7 204.04 15.3730 0.000421 ***

## - wt 1 1983.51 5096.2 208.35 21.0290 6.219e-05 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Step: AIC=189.35

## sysbp ~ wt + ht + chin + yrage

##

## Df Sum of Sq RSS AIC F value Pr(>F)

## - ht 1 113.57 3244.0 187.07 1.2334 0.2745301

## - chin 1 287.20 3417.6 189.11 3.1193 0.0863479 .

## <none> 3130.4 189.35

## - yrage 1 1445.52 4575.9 200.49 15.7000 0.0003607 ***

## - wt 1 2263.64 5394.1 206.90 24.5857 1.945e-05 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Step: AIC=187.07

## sysbp ~ wt + chin + yrage

##

## Df Sum of Sq RSS AIC F value Pr(>F)

## - chin 1 197.37 3441.4 185.71 2.1295 0.1534065

## <none> 3244.0 187.07

## - yrage 1 1368.44 4612.4 197.14 14.7643 0.0004912 ***

## - wt 1 2515.33 5759.3 205.80 27.1384 8.512e-06 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Step: AIC=185.71

## sysbp ~ wt + yrage

##

## Df Sum of Sq RSS AIC F value Pr(>F)

## <none> 3441.4 185.71

## - yrage 1 1314.7 4756.1 194.67 13.753 0.0006991 ***

## - wt 1 2592.0 6033.4 203.95 27.115 7.966e-06 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

summary(lm.indian.backward.red.BIC)

##

## Call:

## lm(formula = sysbp ~ wt + yrage, data = indian)

##

## Residuals:

## Min 1Q Median 3Q Max

## -18.4330 -7.3070 0.8963 5.7275 23.9819

##
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## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 60.8959 14.2809 4.264 0.000138 ***

## wt 1.2169 0.2337 5.207 7.97e-06 ***

## yrage -26.7672 7.2178 -3.708 0.000699 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 9.777 on 36 degrees of freedom

## Multiple R-squared: 0.4731,Adjusted R-squared: 0.4438

## F-statistic: 16.16 on 2 and 36 DF, p-value: 9.795e-06

In the final table we are unable to drop yrage or wt from the model.

Stepwise selection output The output for the stepwise selection is given

below.

Variables are listed in the output tables in order that best improves the

AIC/BIC criterion. In the stepwise case, BIC will decrease (improve) by con-

sidering variables to drop or add (indicated in the first column by − and +).

Rather than printing a small table at each step of the step() procedure, we use

lm.XXX$anova to print a summary of the drop/add choices made.
# Stepwise (both) selection, BIC with F-tests, starting with intermediate model

# (this is a purposefully chosen "opposite" model,

# from the forward and backward methods this model

# includes all the variables dropped and none kept)

lm.indian.intermediate <- lm(sysbp ~ ht + fore + calf + pulse, data = indian)

# option: trace = 0 does not print each step of the selection

lm.indian.both.red.BIC <- step(lm.indian.intermediate

, sysbp ~ wt + ht + chin + fore + calf + pulse + yrage

, direction = "both", test = "F", k = log(nrow(indian)), trace = 0)

# the anova object provides a summary of the selection steps in order

lm.indian.both.red.BIC$anova

## Step Df Deviance Resid. Df Resid. Dev AIC

## 1 NA NA 34 5651.131 212.3837

## 2 - pulse 1 2.874432 35 5654.005 208.7400

## 3 - calf 1 21.843631 36 5675.849 205.2268

## 4 + wt -1 925.198114 35 4750.651 201.9508

## 5 + yrage -1 1439.707117 34 3310.944 191.5335

## 6 - ht 1 79.870793 35 3390.815 188.7995

## 7 - fore 1 50.548149 36 3441.363 185.7131

summary(lm.indian.both.red.BIC)

##

## Call:
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## lm(formula = sysbp ~ wt + yrage, data = indian)

##

## Residuals:

## Min 1Q Median 3Q Max

## -18.4330 -7.3070 0.8963 5.7275 23.9819

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 60.8959 14.2809 4.264 0.000138 ***

## wt 1.2169 0.2337 5.207 7.97e-06 ***

## yrage -26.7672 7.2178 -3.708 0.000699 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 9.777 on 36 degrees of freedom

## Multiple R-squared: 0.4731,Adjusted R-squared: 0.4438

## F-statistic: 16.16 on 2 and 36 DF, p-value: 9.795e-06

Summary of three section methods

All three methods using BIC choose the same final model, sysbp = β0 +

β1 wt + β2 yrage. Using the AIC criterion, you will find different results.

10.4 Other Model Selection Procedures

10.4.1 R2 Criterion

R2 is the proportion of variation explained by the model over the grand mean,

and we wish to maximize this. A substantial increase in R2 is usually ob-

served when an “important” effect is added to a regression model. With the

R2 criterion, variables are added to the model until further additions give in-

consequential increases in R2. The R2 criterion is not well-defined in the sense

of producing a single best model. All other things being equal, I prefer the

simpler of two models with similar values of R2. If several models with similar

complexity have similar R2s, then there may be no good reason, at this stage

of the analysis, to prefer one over the rest.
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10.4.2 Adjusted-R2 Criterion, maximize

The adjusted-R2 criterion gives a way to compare R2 across models with differ-

ent numbers of variables, and we want to maximize this. This eliminates some

of the difficulty with calibrating R2, which increases even when unimportant

predictors are added to a model. For a model with p variables and an intercept,

the adjusted-R2 is defined by

R̄2 = 1− n− 1

n− p− 1
(1−R2),

where n is the sample size.

There are four properties of R̄2 worth mentioning:

1. R̄2 ≤ R2,

2. if two models have the same number of variables, then the model with

the larger R2 has the larger R̄2,

3. if two models have the same R2, then the model with fewer variables has

the larger adjusted-R2. Put another way, R̄2 penalizes complex models

with many variables. And

4. R̄2 can be less than zero for models that explain little of the variation in

Y .

The adjusted R2 is easier to calibrate than R2 because it tends to decrease

when unimportant variables are added to a model. The model with the maxi-

mum R̄2 is judged best by this criterion. As I noted before, I do not take any

of the criteria literally, and would also choose other models with R̄2 near the

maximum value for further consideration.

10.4.3 Mallows’ Cp Criterion, minimize

Mallows’ Cp measures the adequacy of predictions from a model, relative to

those obtained from the full model, and we want to minimize Cp. Mallows’ Cp
statistic is defined for a given model with p variables by

Cp =
Residual SS

σ̂2
FULL

− Residual df + (p + 1)
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where σ̂2
FULL is the Residual MS from the full model with k variables X1, X2,

. . ., Xk.

If all the important effects from the candidate list are included in the model,

then the difference between the first two terms of Cp should be approximately

zero. Thus, if the model under consideration includes all the important variables

from the candidate list, then Cp should be approximately p+ 1 (the number of

variables in model plus one), or less. If important variables from the candidate

list are excluded, Cp will tend to be much greater than p + 1.

Two important properties of Cp are

1. the full model has Cp = p + 1, where p = k, and

2. if two models have the same number of variables, then the model with

the larger R2 has the smaller Cp.

Models with Cp ≈ p + 1, or less, merit further consideration. As with R2

and R̄2, I prefer simpler models that satisfy this condition. The “best” model

by this criterion has the minimum Cp.

10.5 Illustration with Peru Indian data

R2 Criterion
# The leaps package provides best subsets with other selection criteria.

library(leaps)

# First, fit the full model

lm.indian.full <- lm(sysbp ~ wt + ht + chin + fore + calf + pulse + yrage, data = indian)

# Second, create the design matrix which leap uses as argument

# using model.matrix(lm.XXX) as input to leaps()

# R^2 -- for each model size, report best subset of size 5

leaps.r2 <- leaps(x = model.matrix(lm.indian.full), y = indian$sysbp

, method = 'r2'

, int = FALSE, nbest = 5, names = colnames(model.matrix(lm.indian.full)))

str(leaps.r2)

## List of 4

## $ which: logi [1:36, 1:8] FALSE TRUE FALSE FALSE FALSE TRUE ...

## ..- attr(*, "dimnames")=List of 2
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## .. ..$ : chr [1:36] "1" "1" "1" "1" ...

## .. ..$ : chr [1:8] "(Intercept)" "wt" "ht" "chin" ...

## $ label: chr [1:8] "(Intercept)" "wt" "ht" "chin" ...

## $ size : num [1:36] 1 1 1 1 1 2 2 2 2 2 ...

## $ r2 : num [1:36] 0.99 0.99 0.989 0.976 0.845 ...

# plot model R^2 vs size of model

plot(leaps.r2$size, leaps.r2$r2, main = "R2")

# report the best model (indicate which terms are in the model)

best.model.r2 <- leaps.r2$which[which((leaps.r2$r2 == max(leaps.r2$r2))),]

# these are the variable names for the best model

names(best.model.r2)[best.model.r2]

## [1] "(Intercept)" "wt" "ht" "chin"

## [5] "fore" "calf" "pulse" "yrage"
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Adjusted-R2 Criterion, maximize
# adj-R^2 -- for each model size, report best subset of size 5

leaps.adjr2 <- leaps(x = model.matrix(lm.indian.full), y = indian$sysbp
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, method = 'adjr2'

, int = FALSE, nbest = 5, names = colnames(model.matrix(lm.indian.full)))

# plot model R^2 vs size of model

plot(leaps.adjr2$size, leaps.adjr2$adjr2, main = "Adj-R2")

# report the best model (indicate which terms are in the model)

best.model.adjr2 <- leaps.adjr2$which[which((leaps.adjr2$adjr2 == max(leaps.adjr2$adjr2))),]

# these are the variable names for the best model

names(best.model.adjr2)[best.model.adjr2]

## [1] "(Intercept)" "wt" "ht" "chin"

## [5] "yrage"
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Mallows’ Cp Criterion, minimize
# Cp -- for each model size, report best subset of size 3

leaps.Cp <- leaps(x = model.matrix(lm.indian.full), y = indian$sysbp

, method = 'Cp'

, int = FALSE, nbest = 3, names = colnames(model.matrix(lm.indian.full)))

# plot model R^2 vs size of model
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plot(leaps.Cp$size, leaps.Cp$Cp, main = "Cp")

lines(leaps.Cp$size, leaps.Cp$size) # adds the line for Cp = p

# report the best model (indicate which terms are in the model)

best.model.Cp <- leaps.Cp$which[which((leaps.Cp$Cp == min(leaps.Cp$Cp))),]

# these are the variable names for the best model

names(best.model.Cp)[best.model.Cp]

## [1] "(Intercept)" "wt" "yrage"
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All together The function below takes regsubsets() output and formats it

into a table.
# best subset, returns results sorted by BIC
f.bestsubset <- function(form, dat, nbest = 5){

library(leaps)
bs <- regsubsets(form, data=dat, nvmax=30, nbest=nbest, method="exhaustive");
bs2 <- cbind(summary(bs)$which, (rowSums(summary(bs)$which)-1)

, summary(bs)$rss, summary(bs)$rsq
, summary(bs)$adjr2, summary(bs)$cp, summary(bs)$bic);

cn <- colnames(bs2);
cn[(dim(bs2)[2]-5):dim(bs2)[2]] <- c("SIZE", "rss", "r2", "adjr2", "cp", "bic");
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colnames(bs2) <- cn;
ind <- sort.int(summary(bs)$bic, index.return=TRUE); bs2 <- bs2[ind$ix,];
return(bs2);

}
# perform on our model
i.best <- f.bestsubset(formula(sysbp ~ wt + ht + chin + fore + calf + pulse + yrage)

, indian)
op <- options(); # saving old options
options(width=90) # setting command window output text width wider

i.best

## (Intercept) wt ht chin fore calf pulse yrage SIZE rss r2 adjr2
## 2 1 1 0 0 0 0 0 1 2 3441.363 0.47310778 0.44383599
## 3 1 1 0 1 0 0 0 1 3 3243.990 0.50332663 0.46075463
## 3 1 1 0 0 1 0 0 1 3 3390.815 0.48084699 0.43634816
## 3 1 1 0 0 0 1 0 1 3 3411.145 0.47773431 0.43296868
## 3 1 1 1 0 0 0 0 1 3 3417.624 0.47674226 0.43189159
## 3 1 1 0 0 0 0 1 1 3 3435.481 0.47400828 0.42892328
## 4 1 1 1 1 0 0 0 1 4 3130.425 0.52071413 0.46432755
## 4 1 1 0 1 0 0 1 1 4 3232.168 0.50513668 0.44691747
## 4 1 1 0 1 1 0 0 1 4 3243.771 0.50336023 0.44493203
## 4 1 1 0 1 0 1 0 1 4 3243.988 0.50332702 0.44489490
## 4 1 1 1 0 1 0 0 1 4 3310.944 0.49307566 0.43343750
## 5 1 1 1 1 1 0 0 1 5 3112.647 0.52343597 0.45122930
## 5 1 1 1 1 0 0 1 1 5 3126.303 0.52134520 0.44882174
## 5 1 1 1 1 0 1 0 1 5 3128.297 0.52103997 0.44847027
## 5 1 1 0 1 1 0 1 1 5 3228.867 0.50564205 0.43073933
## 5 1 1 0 1 0 1 1 1 5 3231.936 0.50517225 0.43019835
## 1 1 1 0 0 0 0 0 0 1 4756.056 0.27182072 0.25214020
## 6 1 1 1 1 1 0 1 1 6 3099.310 0.52547798 0.43650510
## 6 1 1 1 1 1 1 0 1 6 3111.060 0.52367894 0.43436875
## 6 1 1 1 1 0 1 1 1 6 3123.448 0.52178233 0.43211651
## 2 1 1 0 1 0 0 0 0 2 4612.426 0.29381129 0.25457859
## 6 1 1 0 1 1 1 1 1 6 3228.324 0.50572524 0.41304872
## 2 1 1 0 0 0 1 0 0 2 4739.383 0.27437355 0.23406097
## 2 1 1 0 0 0 0 1 0 2 4749.950 0.27275566 0.23235320
## 2 1 1 1 0 0 0 0 0 2 4754.044 0.27212880 0.23169151
## 6 1 1 1 0 1 1 1 1 6 3283.293 0.49730910 0.40305455
## 7 1 1 1 1 1 1 1 1 7 3096.446 0.52591643 0.41886531
## 1 1 0 0 0 0 0 0 1 1 6033.372 0.07625642 0.05129038
## 1 1 0 0 0 1 0 0 0 1 6047.218 0.07413652 0.04911319
## 1 1 0 0 0 0 1 0 0 1 6120.639 0.06289527 0.03756811
## 1 1 0 1 0 0 0 0 0 1 6217.854 0.04801119 0.02228176
## cp bic
## 2 1.453122 -13.9989263
## 3 1.477132 -12.6388375
## 3 2.947060 -10.9124614
## 3 3.150596 -10.6793279
## 3 3.215466 -10.6053171
## 3 3.394238 -10.4020763
## 4 2.340175 -10.3650555
## 4 3.358774 -9.1176654
## 4 3.474934 -8.9779148
## 4 3.477106 -8.9753065
## 4 4.147436 -8.1785389
## 5 4.162196 -6.9236046
## 5 4.298910 -6.7528787
## 5 4.318869 -6.7280169
## 5 5.325728 -5.4939516
## 5 5.356448 -5.4569068
## 1 12.615145 -5.0439888
## 6 6.028670 -3.4275113
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## 6 6.146308 -3.2799319
## 6 6.270326 -3.1249499
## 2 13.177196 -2.5763538
## 6 7.320289 -1.8369533
## 2 14.448217 -1.5173924
## 2 14.554009 -1.4305331
## 2 14.595000 -1.3969306
## 6 7.870614 -1.1784808
## 7 8.000000 0.1999979
## 1 25.402961 4.2336138
## 1 25.541579 4.3230122
## 1 26.276637 4.7936744
## 1 27.249897 5.4082455

options(op); # reset (all) initial options

10.5.1 R2, R̄2, and Cp Summary for Peru Indian Data

Discussion of R2 results:

1. The single predictor model with the highest value of R2 has wt = weight

as a predictor: R2 = 0.272. All the other single predictor models have

R2 < 0.10.

2. The two predictor model with the highest value of R2 has weight and

yrage = fraction as predictors: R2 = 0.473. No other two predictor

model has R2 close to this.

3. All of the best three predictor models include weight and fraction as pre-

dictors. However, the increase in R2 achieved by adding a third predictor

is minimal.

4. None of the more complex models with four or more predictors provides

a significant increase in R2.

A good model using the R2 criterion has two predictors, weight and yrage.

The same conclusion is reached with R̄2, albeit the model with maximum R̄2

includes wt (weight), ht (height), chin (chin skin fold), and yrage (fraction)

as predictors.

Discussion of Cp results:

1. None of the single predictor models is adequate. Each has Cp � 1+1 = 2,

the target value.
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2. The only adequate two predictor model has wt = weight and yrage =

fraction as predictors: Cp = 1.45 < 2 + 1 = 3. This is the minimum Cp
model.

3. Every model with weight and fraction is adequate. Every model that

excludes either weight or fraction is inadequate: Cp � p + 1.

According to Cp, any reasonable model must include both weight and frac-

tion as predictors. Based on simplicity, I would select the model with these

two predictors as a starting point. I can always add predictors if subsequent

analysis suggests this is necessary!

10.5.2 Peru Indian Data Summary

The model selection procedures suggest three models that warrant further con-

sideration.

Predictors Methods suggesting model
------------------- ------------------------------------------------------------
wt, yrage BIC via stepwise, forward, and backward elimination, and C_p
wt, yrage, chin AIC via stepwise and backward selection
wt, yrage, chin, ht AIC via forward selection, Adj-R2

I will give three reasons why I feel that the simpler model is preferable at

this point:

1. It was suggested by 4 of the 5 methods (ignoring R2).

2. Forward selection often chooses predictors that are not important, even

when the significance level for inclusion is reduced from the default α =

0.50 level.

3. The AIC/BIC forward and backward elimination outputs suggest that

neither chin skin fold nor height is significant at any of the standard

levels of significance used in practice. Look at the third and fourth steps

of forward selection to see this.

Using a mechanical approach, we are led to a model with weight and yrage

as predictors of systolic blood pressure. At this point we should closely examine

this model. We did this earlier this semester and found that observation 1 (the
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individual with the largest systolic blood pressure) was fitted poorly by the

model and potentially influential.

As noted earlier this semester, model selection methods can be highly influ-

enced by outliers and influential cases. Thus, we should hold out case 1, and

re-evaluate the various procedures to see whether case 1 unduly influenced the

models selected. I will just note (not shown) that the selection methods point

to the same model when case 1 is held out. After deleting case 1, there are no

large residuals, extremely influential points, or any gross abnormalities in plots.

Both analyses suggest that the “best model” for predicting systolic blood

pressure is

sysbp = β0 + β1 wt + β2 yrage + ε.

Should case 1 be deleted? I have not fully explored this issue, but I will note

that eliminating this case does have a significant impact on the least squares

estimates of the regression coefficients, and on predicted values. What do you

think?

10.6 Example: Oxygen Uptake

An experiment was conducted to model oxygen uptake (o2up), in milligrams of

oxygen per minute, from five chemical measurements: biological oxygen demand

(bod), total Kjeldahl nitrogen (tkn), total solids (ts), total volatile solids (tvs),

which is a component of ts, and chemical oxygen demand (cod), each measured

in milligrams per liter. The data were collected on samples of dairy wastes kept

in suspension in water in a laboratory for 220 days. All observations were on

the same sample over time. We desire an equation relating o2up to the other

variables. The goal is to find variables that should be further studied with the

eventual goal of developing a prediction equation (day should not be considered

as a predictor).

We are interested in developing a regression model with o2up, or some

function of o2up, as a response. The researchers believe that the predictor

variables are more likely to be linearly related to log10(o2up) rather than o2up,

Prof. Erik B. Erhardt



10.6: Example: Oxygen Uptake 289

so log10(o2up) was included in the data set. As a first step, we should plot

o2up against the different predictors, and see whether the relationship between

o2up and the individual predictors is roughly linear. If not, we will consider

appropriate transformations of the response and/or predictors.
#### Example: Oxygen uptake

fn.data <- "http://statacumen.com/teach/ADA2/ADA2_notes_Ch10_oxygen.dat"

oxygen <- read.table(fn.data, header=TRUE)

day bod tkn ts tvs cod o2up logup
1 0 1125 232 7160 85.90 8905 36.00 1.56
2 7 920 268 8804 86.50 7388 7.90 0.90
3 15 835 271 8108 85.20 5348 5.60 0.75
4 22 1000 237 6370 83.80 8056 5.20 0.72
5 29 1150 192 6441 82.10 6960 2.00 0.30
6 37 990 202 5154 79.20 5690 2.30 0.36
7 44 840 184 5896 81.20 6932 1.30 0.11
8 58 650 200 5336 80.60 5400 1.30 0.11
9 65 640 180 5041 78.40 3177 0.60 −0.22

10 72 583 165 5012 79.30 4461 0.70 −0.15
11 80 570 151 4825 78.70 3901 1.00 0.00
12 86 570 171 4391 78.00 5002 1.00 0.00
13 93 510 243 4320 72.30 4665 0.80 −0.10
14 100 555 147 3709 74.90 4642 0.60 −0.22
15 107 460 286 3969 74.40 4840 0.40 −0.40
16 122 275 198 3558 72.50 4479 0.70 −0.15
17 129 510 196 4361 57.70 4200 0.60 −0.22
18 151 165 210 3301 71.80 3410 0.40 −0.40
19 171 244 327 2964 72.50 3360 0.30 −0.52
20 220 79 334 2777 71.90 2599 0.90 −0.05

The plots showed an exponential relationship between o2up and the predic-

tors. To shorten the output, only one plot is given. An exponential relationship

can often be approximately linearized by transforming o2up to the log10(o2up)

scale suggested by the researchers. The extreme skewness in the marginal distri-

bution of o2up also gives an indication that a transformation might be needed.
# scatterplots

library(ggplot2)

p1 <- ggplot(oxygen, aes(x = bod, y = o2up)) + geom_point(size=2)

p2 <- ggplot(oxygen, aes(x = tkn, y = o2up)) + geom_point(size=2)

p3 <- ggplot(oxygen, aes(x = ts , y = o2up)) + geom_point(size=2)

p4 <- ggplot(oxygen, aes(x = tvs, y = o2up)) + geom_point(size=2)
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p5 <- ggplot(oxygen, aes(x = cod, y = o2up)) + geom_point(size=2)

library(gridExtra)

grid.arrange(grobs = list(p1, p2, p3, p4, p5), nrow=2

, top = "Scatterplots of response o2up with each predictor variable")
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Scatterplots of response o2up with each predictor variable

After transformation, several plots show a roughly linear relationship. A

sensible next step would be to build a regression model using log(o2up) as the

response variable.
# scatterplots

library(ggplot2)

p1 <- ggplot(oxygen, aes(x = bod, y = logup)) + geom_point(size=2)

p2 <- ggplot(oxygen, aes(x = tkn, y = logup)) + geom_point(size=2)

p3 <- ggplot(oxygen, aes(x = ts , y = logup)) + geom_point(size=2)

p4 <- ggplot(oxygen, aes(x = tvs, y = logup)) + geom_point(size=2)

p5 <- ggplot(oxygen, aes(x = cod, y = logup)) + geom_point(size=2)

library(gridExtra)

grid.arrange(grobs = list(p1, p2, p3, p4, p5), nrow=2

, top = "Scatterplots of response logup with each predictor variable")
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Scatterplots of response logup with each predictor variable

Correlation between response and each predictor.
# correlation matrix and associated p-values testing "H0: rho == 0"

library(Hmisc)

o.cor <- rcorr(as.matrix(oxygen[,c("logup", "bod", "tkn", "ts", "tvs", "cod")]))

# print correlations with the response to 3 significant digits

signif(o.cor$r[1, ], 3)

## logup bod tkn ts tvs cod

## 1.0000 0.7740 0.0906 0.8350 0.7110 0.8320

I used several of the model selection procedures to select out predictors.

The model selection criteria below point to a more careful analysis of the model

with ts and cod as predictors. This model has the minimum Cp and is selected

by the backward and stepwise procedures. Furthermore, no other model has a

substantially higher R2 or R̄2. The fit of the model will not likely be improved

substantially by adding any of the remaining three effects to this model.
# perform on our model

o.best <- f.bestsubset(formula(logup ~ bod + tkn + ts + tvs + cod)

, oxygen, nbest = 3)

op <- options(); # saving old options

options(width=90) # setting command window output text width wider

o.best

## (Intercept) bod tkn ts tvs cod SIZE rss r2 adjr2 cp bic
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## 2 1 0 0 1 0 1 2 1.0850469 0.7857080 0.7604972 1.738781 -21.82112

## 3 1 0 1 1 0 1 3 0.9871461 0.8050430 0.7684886 2.318714 -20.71660

## 3 1 0 0 1 1 1 3 1.0633521 0.7899926 0.7506163 3.424094 -19.22933

## 3 1 1 0 1 0 1 3 1.0643550 0.7897946 0.7503810 3.438642 -19.21047

## 4 1 0 1 1 1 1 4 0.9652627 0.8093649 0.7585288 4.001291 -18.16922

## 1 1 0 0 1 0 0 1 1.5369807 0.6964531 0.6795894 6.294153 -17.85292

## 2 1 0 0 0 1 1 2 1.3287305 0.7375816 0.7067088 5.273450 -17.76910

## 4 1 1 1 1 0 1 4 0.9871272 0.8050467 0.7530592 4.318440 -17.72124

## 1 1 0 0 0 0 1 1 1.5563027 0.6926371 0.6755614 6.574421 -17.60306

## 4 1 1 0 1 1 1 4 1.0388337 0.7948349 0.7401242 5.068450 -16.70015

## 2 1 0 1 0 0 1 2 1.4388035 0.7158426 0.6824124 6.870078 -16.17735

## 5 1 1 1 1 1 1 5 0.9651737 0.8093824 0.7413048 6.000000 -15.17533

## 1 1 1 0 0 0 0 1 2.0337926 0.5983349 0.5760202 13.500489 -12.25127

options(op); # reset (all) initial options

These comments must be taken with a grain of salt because we have not crit-

ically assessed the underlying assumptions (linearity, normality, independence),

nor have we considered whether the data contain influential points or outliers.
lm.oxygen.final <- lm(logup ~ ts + cod, data = oxygen)

summary(lm.oxygen.final)

##

## Call:

## lm(formula = logup ~ ts + cod, data = oxygen)

##

## Residuals:

## Min 1Q Median 3Q Max

## -0.37640 -0.09238 -0.04229 0.06256 0.59827

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -1.370e+00 1.969e-01 -6.960 2.3e-06 ***

## ts 1.492e-04 5.489e-05 2.717 0.0146 *

## cod 1.415e-04 5.318e-05 2.661 0.0165 *

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.2526 on 17 degrees of freedom

## Multiple R-squared: 0.7857,Adjusted R-squared: 0.7605

## F-statistic: 31.17 on 2 and 17 DF, p-value: 2.058e-06

The p-values for testing the importance of the individual predictors are

small, indicating that both predictors are important. However, two observations

(1 and 20) are poorly fitted by the model (both have ri > 2) and are individually

most influential (largest Dis). Recall that this experiment was conducted over
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220 days, so these observations were the first and last data points collected. We

have little information about the experiment, but it is reasonable to conjecture

that the experiment may not have reached a steady state until the second time

point, and that the experiment was ended when the experimental material

dissipated. The end points of the experiment may not be typical of conditions

under which we are interested in modelling oxygen uptake. A sensible strategy

here is to delete these points and redo the entire analysis to see whether our

model changes noticeably.
# plot diagnistics
par(mfrow=c(2,3))
plot(lm.oxygen.final, which = c(1,4,6))

plot(oxygen$ts, lm.oxygen.final$residuals, main="Residuals vs ts")
# horizontal line at zero
abline(h = 0, col = "gray75")

plot(oxygen$cod, lm.oxygen.final$residuals, main="Residuals vs cod")
# horizontal line at zero
abline(h = 0, col = "gray75")

# Normality of Residuals
library(car)
qqPlot(lm.oxygen.final$residuals, las = 1, id.n = 3, main="QQ Plot")

## 1 20 7
## 20 19 1

## residuals vs order of data
#plot(lm.oxygen.final£residuals, main="Residuals vs Order of data")
# # horizontal line at zero
# abline(h = 0, col = "gray75")
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Further, the partial residual plot for both ts and cod clearly highlights
outlying cases 1 and 20.
library(car)

avPlots(lm.oxygen.final, id.n=3)
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10.6.1 Redo analysis excluding first and last obser-
vations

For more completeness, we exclude the end observations and repeat the model

selection steps. Summaries from the model selection are provided.

The model selection criteria again suggest ts and cod as predictors. After

deleting observations 1 and 20 the R2 for this two predictor model jumps from

0.786 to 0.892. Also note that the LS coefficients change noticeably after these

observations are deleted.
# exclude observations 1 and 20

oxygen2 <- oxygen[-c(1,20),]

Correlation between response and each predictor.
# correlation matrix and associated p-values testing "H0: rho == 0"

library(Hmisc)

o.cor <- rcorr(as.matrix(oxygen2[,c("logup", "bod", "tkn", "ts", "tvs", "cod")]))

# print correlations with the response to 3 significant digits

signif(o.cor$r[1, ], 3)

## logup bod tkn ts tvs cod

## 1.000 0.813 0.116 0.921 0.717 0.806

# perform on our model

o.best <- f.bestsubset(formula(logup ~ bod + tkn + ts + tvs + cod)

, oxygen2, nbest = 3)

op <- options(); # saving old options

options(width=90) # setting command window output text width wider

o.best

## (Intercept) bod tkn ts tvs cod SIZE rss r2 adjr2 cp bic

## 2 1 0 0 1 0 1 2 0.3100332 0.8923243 0.8779675 0.1755108 -31.44424

## 3 1 0 0 1 1 1 3 0.3060781 0.8936979 0.8709189 2.0201863 -28.78498

## 3 1 1 0 1 0 1 3 0.3092614 0.8925923 0.8695764 2.1452002 -28.59874

## 3 1 0 1 1 0 1 3 0.3095352 0.8924973 0.8694610 2.1559501 -28.58281

## 1 1 0 0 1 0 0 1 0.4346881 0.8490312 0.8395956 3.0709102 -28.25153

## 2 1 1 0 1 0 0 2 0.3832495 0.8668960 0.8491488 3.0508321 -27.62812

## 2 1 0 0 1 1 0 2 0.4182487 0.8547406 0.8353727 4.4253075 -26.05510

## 4 1 1 0 1 1 1 4 0.3056566 0.8938443 0.8611810 4.0036314 -25.91941

## 4 1 0 1 1 1 1 4 0.3057789 0.8938018 0.8611255 4.0084356 -25.91221

## 4 1 1 1 1 0 1 4 0.3091249 0.8926398 0.8596058 4.1398376 -25.71632

## 5 1 1 1 1 1 1 5 0.3055641 0.8938764 0.8496583 6.0000000 -23.03449

## 1 1 1 0 0 0 0 1 0.9766926 0.6607910 0.6395904 24.3563087 -13.67975

## 1 1 0 0 0 0 1 1 1.0100759 0.6491968 0.6272716 25.6673251 -13.07480

options(op); # reset (all) initial options

Below is the model with ts and cod as predictors, after omitting the end
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observations. Both predictors are significant at the 0.05 level. Furthermore,

there do not appear to be any extreme outliers. The QQ-plot, and the plot of

studentized residuals against predicted values do not show any extreme abnor-

malities.
lm.oxygen2.final <- lm(logup ~ ts + cod, data = oxygen2)

summary(lm.oxygen2.final)

##

## Call:

## lm(formula = logup ~ ts + cod, data = oxygen2)

##

## Residuals:

## Min 1Q Median 3Q Max

## -0.24157 -0.08517 0.01004 0.10102 0.25094

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -1.335e+00 1.338e-01 -9.976 5.16e-08 ***

## ts 1.852e-04 3.182e-05 5.820 3.38e-05 ***

## cod 8.638e-05 3.517e-05 2.456 0.0267 *

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.1438 on 15 degrees of freedom

## Multiple R-squared: 0.8923,Adjusted R-squared: 0.878

## F-statistic: 62.15 on 2 and 15 DF, p-value: 5.507e-08

# plot diagnistics
par(mfrow=c(2,3))
plot(lm.oxygen2.final, which = c(1,4,6))

plot(oxygen2$ts, lm.oxygen2.final$residuals, main="Residuals vs ts")
# horizontal line at zero
abline(h = 0, col = "gray75")

plot(oxygen2$cod, lm.oxygen2.final$residuals, main="Residuals vs cod")
# horizontal line at zero
abline(h = 0, col = "gray75")

# Normality of Residuals
library(car)
qqPlot(lm.oxygen2.final$residuals, las = 1, id.n = 3, main="QQ Plot")

## 6 7 15
## 18 1 2

## residuals vs order of data
#plot(lm.oxygen2.final£residuals, main="Residuals vs Order of data")
# # horizontal line at zero
# abline(h = 0, col = "gray75")
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library(car)

avPlots(lm.oxygen2.final, id.n=3)
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Added−Variable Plots

Let us recall that the researcher’s primary goal was to identify important

predictors of o2up. Regardless of whether we are inclined to include the end
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observations in the analysis or not, it is reasonable to conclude that ts and cod

are useful for explaining the variation in log10(o2up). If these data were the

final experiment, I might be inclined to eliminate the end observations and use

the following equation to predict oxygen uptake:

log10(o2up) = −1.335302 + 0.000185 ts + 0.000086 cod.
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Chapter 11

Logistic Regression

Logistic regression analysis is used for predicting the outcome of a categorical

dependent variable based on one or more predictor variables. The probabilities

describing the possible outcomes of a single trial are modeled, as a function of

the explanatory (predictor) variables, using a logistic function. Logistic regres-

sion is frequently used to refer to the problem in which the dependent variable

is binary — that is, the number of available categories is two — and problems

with more than two categories are referred to as multinomial logistic regression

or, if the multiple categories are ordered, as ordered logistic regression.

Logistic regression measures the relationship between a categorical depen-

dent variable and usually (but not necessarily) one or more continuous indepen-

dent variables, by converting the dependent variable to probability scores. As

such it treats the same set of problems as does probit regression using similar

techniques.

11.1 Generalized linear model variance and
link families

The generalized linear model (GLM) is a flexible generalization of ordinary

linear regression that allows for response variables that have other than a normal

distribution. The GLM generalizes linear regression by allowing the linear

UNM, Stat 428/528 ADA2



300 Ch 11: Logistic Regression

model to be related to the response variable via a link function and by allowing

the magnitude of the variance of each measurement to be a function of its

predicted value.

In R, the basic tool for fitting generalized linear models is the glm() function,
which has the following general structure:
glm(formula, family, data, weights, subset, ...)

where “...” stands for additional options. The key parameter here is family,

which is a simple way of specifying a choice of variance and link functions. Some

choices of family are listed in the table. As can be seen, each of the first five

choices has an associated variance function (for binomial the binomial variance

µ(1 − µ)), and one or more choices of link functions (for binomial the logit,

probit, or complementary log-log).

Family Variance Link

gaussian gaussian identity

binomial binomial logit, probit, or cloglog

poisson poisson log, identity, or sqrt

Gamma Gamma inverse, identity, or log

inverse.gaussian inverse.gaussian 1/µ2

quasi user-defined user-defined

As long as you want the default link, all you have to specify is the family
name. If you want an alternative link, you must add a link argument. For
example to do probits you use:
glm(formula, family = binomial(link = probit))

The last family on the list, quasi, is there to allow fitting user-defined models

by maximum quasi-likelihood.

The rest of this chapter concerns logistic regression with a binary response

variable.
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11.2 Example: Age of Menarche in Warsaw

The data1 below are from a study conducted by Milicer and Szczotka on pre-teen

and teenage girls in Warsaw, Poland in 1965. The subjects were classified into

25 age categories. The number of girls in each group (Total) and the number

that reached menarche (Menarche) at the time of the study were recorded. The

age for a group corresponds to the midpoint for the age interval.
#### Example: Menarche

# menarche dataset is available in MASS package

# (remove previous instance if it exists, important if rerunning code)

rm(menarche)

library(MASS)

# these frequencies look better in the table as integers

menarche$Total <- as.integer(menarche$Total)

menarche$Menarche <- as.integer(menarche$Menarche)

str(menarche)

## 'data.frame': 25 obs. of 3 variables:

## $ Age : num 9.21 10.21 10.58 10.83 11.08 ...

## $ Total : int 376 200 93 120 90 88 105 111 100 93 ...

## $ Menarche: int 0 0 0 2 2 5 10 17 16 29 ...

# create estimated proportion of girls reaching menarche for each age group

menarche$p.hat <- menarche$Menarche / menarche$Total

1Milicer, H. and Szczotka, F. (1966) Age at Menarche in Warsaw girls in 1965. Human Biology 38,
199–203.
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Age Total Menarche p.hat
1 9.21 376 0 0.00
2 10.21 200 0 0.00
3 10.58 93 0 0.00
4 10.83 120 2 0.02
5 11.08 90 2 0.02
6 11.33 88 5 0.06
7 11.58 105 10 0.10
8 11.83 111 17 0.15
9 12.08 100 16 0.16

10 12.33 93 29 0.31
11 12.58 100 39 0.39
12 12.83 108 51 0.47
13 13.08 99 47 0.47
14 13.33 106 67 0.63
15 13.58 105 81 0.77
16 13.83 117 88 0.75
17 14.08 98 79 0.81
18 14.33 97 90 0.93
19 14.58 120 113 0.94
20 14.83 102 95 0.93
21 15.08 122 117 0.96
22 15.33 111 107 0.96
23 15.58 94 92 0.98
24 15.83 114 112 0.98
25 17.58 1049 1049 1.00

The researchers were curious about how the proportion of girls that reached

menarche (p̂ = Menarche/Total) varied with age. One could perform a test

of homogeneity (Multinomial goodness-of-fit test) by arranging the data as a

2-by-25 contingency table with columns indexed by age and two rows: ROW1

= Menarche, and ROW2 = number that have not reached menarche = (Total

− Menarche). A more powerful approach treats these as regression data, using

the proportion of girls reaching menarche as the response and age as a predictor.

A plot of the observed proportion p̂ of girls that have reached menarche

shows that the proportion increases as age increases, but that the relationship

is nonlinear. The observed proportions, which are bounded between zero and

one, have a lazy S-shape (a sigmoidal function) when plotted against age.

The change in the observed proportions for a given change in age is much

smaller when the proportion is near 0 or 1 than when the proportion is near

1/2. This phenomenon is common with regression data where the response is

a proportion.

The trend is nonlinear so linear regression is inappropriate. A sensible al-

ternative might be to transform the response or the predictor to achieve near

linearity. A common transformation of response proportions following a sig-
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moidal curve is to the logit scale µ̂ = loge{p̂/(1− p̂)}. This transformation

is the basis for the logistic regression model. The natural logarithm (base

e) is traditionally used in logistic regression.

The logit transformation is undefined when p̂ = 0 or p̂ = 1. To overcome this

problem, researchers use the empirical logits, defined by log{(p̂+0.5/n)/(1−
p̂+ 0.5/n)}, where n is the sample size or the number of observations on which

p̂ is based.

A plot of the empirical logits against age is roughly linear, which supports

a logistic transformation for the response.
library(ggplot2)

p <- ggplot(menarche, aes(x = Age, y = p.hat))

p <- p + geom_point()

p <- p + labs(title = paste("Observed probability of girls reaching menarche,\n",
"Warsaw, Poland in 1965", sep=""))

print(p)

# emperical logits

menarche$emp.logit <- log(( menarche$p.hat + 0.5/menarche$Total) /

(1 - menarche$p.hat + 0.5/menarche$Total))

library(ggplot2)

p <- ggplot(menarche, aes(x = Age, y = emp.logit))

p <- p + geom_point()

p <- p + labs(title = "Empirical logits")

print(p)
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11.3 Simple logistic regression model

The simple logistic regression model expresses the population proportion p of

individuals with a given attribute (called the probability of success) as a function

of a single predictor variable X . The model assumes that p is related to X

through

log

(
p

1− p

)
= β0 + β1X

or, equivalently, as

p =
exp(β0 + β1X)

1 + exp(β0 + β1X)
.

The logistic regression model is a binary response model, where the re-

sponse for each case falls into one of two exclusive and exhaustive categories,

success (cases with the attribute of interest) and failure (cases without the

attribute of interest).

The odds of success are p/(1 − p). For example, when p = 1/2 the odds

of success are 1 (or 1 to 1). When p = 0.9 the odds of success are 9 (or 9 to

1). The logistic model assumes that the log-odds of success is linearly related

to X . Graphs of the logistic model relating p to X are given below. The sign

of the slope refers to the sign of β1.

I should write p = p(X) to emphasize that p is the proportion of all indi-

viduals with score X that have the attribute of interest. In the menarche data,

p = p(X) is the population proportion of girls at age X that have reached

menarche.
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The data in a logistic regression problem are often given in summarized or

aggregate form:

X n y

X1 n1 y1

X2 n2 y2
... ... ...

Xm nm ym
where yi is the number of individuals with the attribute of interest among ni
randomly selected or representative individuals with predictor variable value

Xi. For raw data on individual cases, yi = 1 or 0, depending on whether the

case at Xi is a success or failure, and the sample size column n is omitted with

raw data.

For logistic regression, a plot of the sample proportions p̂i = yi/ni against

Xi should be roughly sigmoidal, and a plot of the empirical logits against Xi

should be roughly linear. If not, then some other model is probably appropriate.

I find the second plot easier to calibrate, but neither plot is very informative

when the sample sizes are small, say 1 or 2. (Why?).

There are a variety of other binary response models that are used in practice.

The probit regression model or the complementary log-log regression
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model might be appropriate when the logistic model does fit the data.

The following section describes the standard MLE strategy for estimating

the logistic regression parameters.

11.3.1 Estimating Regression Parameters via LS of
empirical logits

(This is a naive method; we will discuss a better way in the next section.)

There are two unknown population parameters in the logistic regression

model

log

(
p

1− p

)
= β0 + β1X.

A simple way to estimate β0 and β1 is by least squares (LS), using the empirical

logits as responses and the Xis as the predictor values.
Below we use standard regression to calculate the LS fit between the empir-

ical logits and age.
lm.menarche.e.a <- lm(emp.logit ~ Age, data = menarche)

# LS coefficients

coef(lm.menarche.e.a)

## (Intercept) Age

## -22.027933 1.676395

The LS estimates for the menarche data are b0 = −22.03 and b1 = 1.68,

which gives the fitted relationship

log

(
p̃

1− p̃

)
= −22.03 + 1.68 Age

or

p̃ =
exp(−22.03 + 1.68 Age)

1 + exp(−22.03 + 1.68 Age)
,

where p̃ is the predicted proportion (under the model) of girls having reached

menarche at the given age. I used p̃ to identify a predicted probability, in

contrast to p̂ which is the observed proportion at a given age.

The power of the logistic model versus the contingency table analysis dis-

cussed earlier is that the model gives estimates for the population proportion
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reaching menarche at all ages within the observed age range. The observed pro-

portions allow you to estimate only the population proportions at the observed

ages.

11.3.2 Maximum Likelihood Estimation for Logistic
Regression Model

There are better ways to the fit the logistic regression model than LS which

assumes that the responses are normally distributed with constant variance.

A deficiency of the LS fit to the logistic model is that the observed counts

yi have a Binomial distribution under random sampling. The Binomial

distribution is a discrete probability model associated with counting the number

of successes in a fixed size sample, and other equivalent experiments such as

counting the number of heads in repeated flips of a coin. The distribution of the

empirical logits depend on the yis so they are not normal (but are approximately

normal in large samples), and are extremely skewed when the sample sizes ni
are small. The response variability depends on the population proportions, and

is not roughly constant when the observed proportions or the sample sizes vary

appreciably across groups.

The differences in variability among the empirical logits can be accounted

for using weighted least squares (WLS) when the sample sizes are large.

An alternative approach called maximum likelihood uses the exact Binomial

distribution of the responses yi to generate optimal estimates of the regression

coefficients. Software for maximum likelihood estimation is widely available, so

LS and WLS methods are not really needed.

In maximum likelihood estimation (MLE), the regression coefficients

are estimated iteratively by minimizing the deviance function (also called the

likelihood ratio chi-squared statistic)

D = 2

m∑
i=1

{
yi log

(
yi
nipi

)
+ (ni − yi) log

(
ni − yi
ni − nipi

)}
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over all possible values of β0 and β1, where the pis satisfy the logistic model

log

(
pi

1− pi

)
= β0 + β1Xi.

The ML method also gives standard errors and significance tests for the regres-

sion estimates.

The deviance is an analog of the residual sums of squares in linear regression.

The choices for β0 and β1 that minimize the deviance are the parameter values

that make the observed and fitted proportions as close together as possible in

a “likelihood sense”.

Suppose that b0 and b1 are the MLEs of β0 and β1. The deviance evaluated

at the MLEs,

D = 2

m∑
i=1

{
yi log

(
yi
nip̃i

)
+ (ni − yi) log

(
ni − yi
ni − nip̃i

)}
,

where the fitted probabilities p̃i satisfy

log

(
p̃i

1− p̃i

)
= b0 + b1Xi,

is used to test the adequacy of the model. The deviance is small when the

data fits the model, that is, when the observed and fitted proportions are close

together. Large values of D occur when one or more of the observed and fitted

proportions are far apart, which suggests that the model is inappropriate.

If the logistic model holds, then D has a chi-squared distribution

with m− r degrees of freedom, where m is the the number of groups and

r (here 2) is the number of estimated regression parameters. A p-value for the

deviance is given by the area under the chi-squared curve to the right of D. A

small p-value indicates that the data does not fit the model.

Alternatively, the fit of the model can be evaluated using the chi-squared

approximation to the Pearson X2 statistic:

X2 =

m∑
i=1

{
(yi − nip̃i)2

nip̃i
+

((ni − yi)− ni(1− p̃i))2

ni(1− p̃i)

}
=

m∑
i=1

(yi − nip̃i)2

nip̃i(1− p̃i)
.

Prof. Erik B. Erhardt



11.3: Simple logistic regression model 309

11.3.3 Fitting the Logistic Model by Maximum Like-
lihood, Menarche

# For our summarized data (with frequencies and totals for each age)

# The left-hand side of our formula binds two columns together with cbind():

# the columns are the number of "successes" and "failures".

# For logistic regression with logit link we specify family = binomial,

# where logit is the default link function for the binomial family.

glm.m.a <- glm(cbind(Menarche, Total - Menarche) ~ Age, family = binomial, menarche)

The glm() statement creates an object which we can use to create the fit-

ted probabilities and 95% CIs for the population proportions at the ages in

menarche. The fitted probabilities and the limits are stored in columns la-

beled fitted.values, fit.lower, and fit.upper, respectively.
# put the fitted values in the data.frame

menarche$fitted.values <- glm.m.a$fitted.values

pred <- predict(glm.m.a, data.frame(Age = menarche$Age), type = "link", se.fit = TRUE)

menarche$fit <- pred$fit

menarche$se.fit <- pred$se.fit

# CI for fitted values

menarche <- within(menarche, {
fit.lower = exp(fit - 1.96 * se.fit) / (1 + exp(fit - 1.96 * se.fit))

fit.upper = exp(fit + 1.96 * se.fit) / (1 + exp(fit + 1.96 * se.fit))

})
#round(menarche, 3)

This printed summary information is easily interpreted. For example, the

estimated population proportion of girls aged 15.08 (more precisely, among girls

in the age interval with midpoint 15.08) that have reached menarche is 0.967.

You are 95% confident that the population proportion is between 0.958 and

0.975. A variety of other summaries and diagnostics can be produced.

Age Total Menarche p.hat emp.logit fitted.values fit se.fit fit.upper fit.lower
21 15.08 122.00 117.00 0.96 3.06 0.97 3.38 0.14 0.97 0.96
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Age Total Menarche p.hat emp.logit fitted.values fit se.fit fit.upper fit.lower
1 9.21 376.00 0.00 0.00 −6.62 0.00 −6.20 0.23 0.00 0.00
2 10.21 200.00 0.00 0.00 −5.99 0.01 −4.56 0.18 0.01 0.01
3 10.58 93.00 0.00 0.00 −5.23 0.02 −3.96 0.16 0.02 0.01
4 10.83 120.00 2.00 0.02 −3.86 0.03 −3.55 0.14 0.04 0.02
5 11.08 90.00 2.00 0.02 −3.57 0.04 −3.14 0.13 0.05 0.03
6 11.33 88.00 5.00 0.06 −2.72 0.06 −2.74 0.12 0.08 0.05
7 11.58 105.00 10.00 0.10 −2.21 0.09 −2.33 0.11 0.11 0.07
8 11.83 111.00 17.00 0.15 −1.69 0.13 −1.92 0.10 0.15 0.11
9 12.08 100.00 16.00 0.16 −1.63 0.18 −1.51 0.08 0.21 0.16

10 12.33 93.00 29.00 0.31 −0.78 0.25 −1.10 0.07 0.28 0.22
11 12.58 100.00 39.00 0.39 −0.44 0.33 −0.70 0.07 0.36 0.30
12 12.83 108.00 51.00 0.47 −0.11 0.43 −0.29 0.06 0.46 0.40
13 13.08 99.00 47.00 0.47 −0.10 0.53 0.12 0.06 0.56 0.50
14 13.33 106.00 67.00 0.63 0.54 0.63 0.53 0.07 0.66 0.60
15 13.58 105.00 81.00 0.77 1.20 0.72 0.94 0.07 0.75 0.69
16 13.83 117.00 88.00 0.75 1.10 0.79 1.34 0.08 0.82 0.77
17 14.08 98.00 79.00 0.81 1.40 0.85 1.75 0.09 0.87 0.83
18 14.33 97.00 90.00 0.93 2.49 0.90 2.16 0.10 0.91 0.88
19 14.58 120.00 113.00 0.94 2.72 0.93 2.57 0.11 0.94 0.91
20 14.83 102.00 95.00 0.93 2.54 0.95 2.98 0.12 0.96 0.94
21 15.08 122.00 117.00 0.96 3.06 0.97 3.38 0.14 0.97 0.96
22 15.33 111.00 107.00 0.96 3.17 0.98 3.79 0.15 0.98 0.97
23 15.58 94.00 92.00 0.98 3.61 0.98 4.20 0.16 0.99 0.98
24 15.83 114.00 112.00 0.98 3.81 0.99 4.61 0.18 0.99 0.99
25 17.58 1049.00 1049.00 1.00 7.65 1.00 7.46 0.28 1.00 1.00

The summary table gives MLEs and standard errors for the regression pa-

rameters. The z-value column is the parameter estimate divided by its standard

error. The p-values are used to test whether the corresponding parameters of

the logistic model are zero.
summary(glm.m.a)

##

## Call:

## glm(formula = cbind(Menarche, Total - Menarche) ~ Age, family = binomial,

## data = menarche)

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -2.0363 -0.9953 -0.4900 0.7780 1.3675

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) -21.22639 0.77068 -27.54 <2e-16 ***

## Age 1.63197 0.05895 27.68 <2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## (Dispersion parameter for binomial family taken to be 1)

##

## Null deviance: 3693.884 on 24 degrees of freedom

## Residual deviance: 26.703 on 23 degrees of freedom

## AIC: 114.76
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##

## Number of Fisher Scoring iterations: 4

If the model is correct and when sample sizes are large, the residual deviance

D has an approximate chi-square distribution,

residual D = χ2
residual df.

If D is too large, or the p-value is too small, then the model does not capture

all the features in the data.

The deviance statistic is D = 26.70 on 25−2 = 23 df. The large p-value for

D suggests no gross deficiencies with the logistic model. The observed and fitted

proportions (p.hat and fitted.values in the output table above are reasonably

close at each observed age. Also, emp.logit and fit are close. This is consistent

with D being fairly small. The data fits the logistic regression model reasonably

well.
# Test residual deviance for lack-of-fit (if > 0.10, little-to-no lack-of-fit)

glm.m.a$deviance

## [1] 26.70345

glm.m.a$df.residual

## [1] 23

dev.p.val <- 1 - pchisq(glm.m.a$deviance, glm.m.a$df.residual)

dev.p.val

## [1] 0.2687953

The MLEs b0 = −21.23 and b1 = 1.63 for the intercept and slope are

close to the LS estimates of bLS0 = −22.03 and bLS1 = 1.68, respectively from

page 306. The two estimation methods give similar predicted probabilities here.

The MLE of the predicted probabilities satisfy

log

(
p̃

1− p̃

)
= −21.23 + 1.63 Age

or

p̃ =
exp(−21.23 + 1.63 Age)

1 + exp(−21.23 + 1.63 Age)
.
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library(ggplot2)

p <- ggplot(menarche, aes(x = Age, y = p.hat))

# predicted curve and point-wise 95% CI

p <- p + geom_ribbon(aes(x = Age, ymin = fit.lower, ymax = fit.upper), alpha = 0.2)

p <- p + geom_line(aes(x = Age, y = fitted.values), color = "red")

# fitted values

p <- p + geom_point(aes(y = fitted.values), color = "red", size=2)

# observed values

p <- p + geom_point(size=2)

p <- p + labs(title = paste("Observed and predicted probability of girls reaching menarche,\n",
"Warsaw, Poland in 1965", sep=""))

print(p)
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If the model holds, then a slope of β1 = 0 implies that p does not depend

on AGE, i.e., the proportion of girls that have reached menarche is identical

across age groups. The Wald p-value for the slope is < 0.0001, which leads

to rejecting H0 : β1 = 0 at any of the usual test levels. The proportion of

girls that have reached menarche is not constant across age groups. Again, the

power of the model is that it gives you a simple way to quantify the effect of

age on the proportion reaching menarche. This is more appealing than testing
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homogeneity across age groups followed by multiple comparisons.

Wald tests can be performed to test the global null hypothesis, that all

non-intercept βs are equal to zero. This is the logistic regression analog of the

overall model F-test in ANOVA and regression. The only predictor is AGE, so

the implied test is that the slope of the regression line is zero. The Wald test

statistic and p-value reported here are identical to the Wald test and p-value

for the AGE effect given in the parameter estimates table. The Wald test can

also be used to test specific contrasts between parameters.
# Testing Global Null Hypothesis

library(aod)

coef(glm.m.a)

## (Intercept) Age

## -21.226395 1.631968

# specify which coefficients to test = 0 (Terms = 2:4 would be terms 2, 3, and 4)

wald.test(b = coef(glm.m.a), Sigma = vcov(glm.m.a), Terms = 2:2)

## Wald test:

## ----------

##

## Chi-squared test:

## X2 = 766.3, df = 1, P(> X2) = 0.0

11.4 Example: Leukemia white blood cell
types

Feigl and Zelen2 reported the survival time in weeks and the white cell blood

count (WBC) at time of diagnosis for 33 patients who eventually died of acute

leukemia. Each person was classified as AG+ or AG−, indicating the presence

or absence of a certain morphological characteristic in the white cells. Four

variables are given in the data set: WBC, a binary factor or indicator vari-

able AG (1 for AG+, 0 for AG−), NTOTAL (the number of patients with

2Feigl, P., Zelen, M. (1965) Estimation of exponential survival probabilities with concomitant informa-
tion. Biometrics 21, 826–838. Survival times are given for 33 patients who died from acute myelogenous
leukaemia. Also measured was the patient’s white blood cell count at the time of diagnosis. The pa-
tients were also factored into 2 groups according to the presence or absence of a morphologic characteristic
of white blood cells. Patients termed AG positive were identified by the presence of Auer rods and/or
significant granulation of the leukaemic cells in the bone marrow at the time of diagnosis.
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the given combination of AG and WBC), and NRES (the number of NTOTAL

that survived at least one year from the time of diagnosis).

The researchers are interested in modelling the probability p of surviving at

least one year as a function of WBC and AG. They believe that WBC should

be transformed to a log scale, given the skewness in the WBC values.
#### Example: Leukemia

## Leukemia white blood cell types example

# ntotal = number of patients with IAG and WBC combination

# nres = number surviving at least one year

# ag = 1 for AG+, 0 for AG-

# wbc = white cell blood count

# lwbc = log white cell blood count

# p.hat = Emperical Probability

leuk <- read.table("http://statacumen.com/teach/ADA2/ADA2_notes_Ch11_leuk.dat"

, header = TRUE)

leuk$ag <- factor(leuk$ag)

leuk$lwbc <- log(leuk$wbc)

leuk$p.hat <- leuk$nres / leuk$ntotal

str(leuk)

## 'data.frame': 30 obs. of 6 variables:

## $ ntotal: int 1 1 1 1 1 1 1 1 3 1 ...

## $ nres : int 1 1 1 1 1 1 1 1 1 1 ...

## $ ag : Factor w/ 2 levels "0","1": 2 2 2 2 2 2 2 2 2 1 ...

## $ wbc : int 75 230 260 430 700 940 1000 1050 10000 300 ...

## $ lwbc : num 4.32 5.44 5.56 6.06 6.55 ...

## $ p.hat : num 1 1 1 1 1 ...
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ntotal nres ag wbc lwbc p.hat
1 1 1 1 75 4.32 1.00
2 1 1 1 230 5.44 1.00
3 1 1 1 260 5.56 1.00
4 1 1 1 430 6.06 1.00
5 1 1 1 700 6.55 1.00
6 1 1 1 940 6.85 1.00
7 1 1 1 1000 6.91 1.00
8 1 1 1 1050 6.96 1.00
9 3 1 1 10000 9.21 0.33

10 1 1 0 300 5.70 1.00
11 1 1 0 440 6.09 1.00
12 1 0 1 540 6.29 0.00
13 1 0 1 600 6.40 0.00
14 1 0 1 1700 7.44 0.00
15 1 0 1 3200 8.07 0.00
16 1 0 1 3500 8.16 0.00
17 1 0 1 5200 8.56 0.00
18 1 0 0 150 5.01 0.00
19 1 0 0 400 5.99 0.00
20 1 0 0 530 6.27 0.00
21 1 0 0 900 6.80 0.00
22 1 0 0 1000 6.91 0.00
23 1 0 0 1900 7.55 0.00
24 1 0 0 2100 7.65 0.00
25 1 0 0 2600 7.86 0.00
26 1 0 0 2700 7.90 0.00
27 1 0 0 2800 7.94 0.00
28 1 0 0 3100 8.04 0.00
29 1 0 0 7900 8.97 0.00
30 2 0 0 10000 9.21 0.00

As an initial step in the analysis, consider the following model:

log

(
p

1− p

)
= β0 + β1 LWBC + β2 AG,

where LWBC = log(WBC). The model is best understood by separating the

AG+ and AG− cases. For AG− individuals, AG=0 so the model reduces to

log

(
p

1− p

)
= β0 + β1 LWBC + β2 ∗ 0 = β0 + β1 LWBC.
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For AG+ individuals, AG=1 and the model implies

log

(
p

1− p

)
= β0 + β1 LWBC + β2 ∗ 1 = (β0 + β2) + β1 LWBC.

The model without AG (i.e., β2 = 0) is a simple logistic model where the

log-odds of surviving one year is linearly related to LWBC, and is independent

of AG. The reduced model with β2 = 0 implies that there is no effect of the

AG level on the survival probability once LWBC has been taken into account.

Including the binary predictor AG in the model implies that there is

a linear relationship between the log-odds of surviving one year and LWBC,

with a constant slope for the two AG levels. This model includes an effect for

the AG morphological factor, but more general models are possible. A natural

extension would be to include a product or interaction effect, a point that I will

return to momentarily.

The parameters are easily interpreted: β0 and β0 + β2 are intercepts for

the population logistic regression lines for AG− and AG+, respectively. The

lines have a common slope, β1. The β2 coefficient for the AG indicator is the

difference between intercepts for the AG+ and AG− regression lines. A picture

of the assumed relationship is given below for β1 < 0. The population regression

lines are parallel on the logit scale only, but the order between AG groups is

preserved on the probability scale.
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Before looking at output for the equal slopes model, note that the data

set has 30 distinct AG and LWBC combinations, or 30 “groups” or samples.

Only two samples have more than 1 observation. The majority of the observed

proportions surviving at least one year (number surviving ≥ 1 year/group

sample size) are 0 (i.e., 0/1) or 1 (i.e., 1/1). This sparseness of the data makes

it difficult to graphically assess the suitability of the logistic model (because

the estimated proportions are almost all 0 or 1). Although significance tests

on the regression coefficients do not require large group sizes, the chi-squared

approximation to the deviance statistic is suspect in sparse data settings. With

small group sizes as we have here, most researchers would not interpret the

p-value for D literally. Instead, they would use the p-values to informally check

the fit of the model. Diagnostics would be used to highlight problems with the

model.
glm.i.l <- glm(cbind(nres, ntotal - nres) ~ ag + lwbc, family = binomial, leuk)

# Test residual deviance for lack-of-fit (if > 0.10, little-to-no lack-of-fit)

dev.p.val <- 1 - pchisq(glm.i.l$deviance, glm.i.l$df.residual)

dev.p.val
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## [1] 0.6842804

The large p-value forD indicates that there are no gross deficiencies with the

model. Recall that the Testing Global Null Hypothesis gives p-values for testing

the hypothesis that the regression coefficients are zero for each predictor in the

model. The two predictors are LWBC and AG, so the small p-values indicate

that LWBC or AG, or both, are important predictors of survival. The p-values

in the estimates table suggest that LWBC and AG are both important. If either

predictor was insignificant, I would consider refitting the model omitting the

least significant effect, as in regression.
# Testing Global Null Hypothesis

library(aod)

coef(glm.i.l)

## (Intercept) ag1 lwbc

## 5.543349 2.519562 -1.108759

# specify which coefficients to test = 0 (Terms = 2:3 is for terms 2 and 3)

wald.test(b = coef(glm.i.l), Sigma = vcov(glm.i.l), Terms = 2:3)

## Wald test:

## ----------

##

## Chi-squared test:

## X2 = 8.2, df = 2, P(> X2) = 0.017

Given that the model fits reasonably well, a test of H0 : β2 = 0 might be

a primary interest here. This checks whether the regression lines are identical

for the two AG levels, which is a test for whether AG affects the survival

probability, after taking LWBC into account. This test is rejected at any of

the usual significance levels, suggesting that the AG level affects the survival

probability (assuming a very specific model).
summary(glm.i.l)

##

## Call:

## glm(formula = cbind(nres, ntotal - nres) ~ ag + lwbc, family = binomial,

## data = leuk)

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -1.6599 -0.6595 -0.2776 0.6438 1.7131

##

## Coefficients:
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## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 5.5433 3.0224 1.834 0.0666 .

## ag1 2.5196 1.0907 2.310 0.0209 *

## lwbc -1.1088 0.4609 -2.405 0.0162 *

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## (Dispersion parameter for binomial family taken to be 1)

##

## Null deviance: 38.191 on 29 degrees of freedom

## Residual deviance: 23.014 on 27 degrees of freedom

## AIC: 30.635

##

## Number of Fisher Scoring iterations: 5

A plot of the predicted survival probabilities as a function of LWBC, using

AG as the plotting symbol, indicates that the probability of surviving at least

one year from the time of diagnosis is a decreasing function of LWBC. For a

given LWBC the survival probability is greater for AG+ patients than for AG−
patients. This tendency is consistent with the observed proportions, which show

little information about the exact form of the trend.
# put the fitted values in the data.frame

leuk$fitted.values <- glm.i.l$fitted.values

pred <- predict(glm.i.l, data.frame(lwbc = leuk$lwbc, ag = leuk$ag), type = "link"

, se.fit = TRUE)

leuk$fit <- pred$fit

leuk$se.fit <- pred$se.fit

# CI for fitted values

leuk <- within(leuk, {
fit.lower = exp(fit - 1.96 * se.fit) / (1 + exp(fit - 1.96 * se.fit))

fit.upper = exp(fit + 1.96 * se.fit) / (1 + exp(fit + 1.96 * se.fit))

})
#round(leuk, 3)

library(ggplot2)

p <- ggplot(leuk, aes(x = lwbc, y = p.hat, colour = ag, fill = ag))

# predicted curve and point-wise 95% CI

p <- p + geom_ribbon(aes(x = lwbc, ymin = fit.lower, ymax = fit.upper), alpha = 0.2)

p <- p + geom_line(aes(x = lwbc, y = fitted.values))

# fitted values

p <- p + geom_point(aes(y = fitted.values), size=2)

# observed values

p <- p + geom_point(size = 2, alpha = 0.5)

p <- p + labs(title = "Observed and predicted probability of 1+ year survival")

print(p)
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ntotal nres ag wbc lwbc p.hat fitted.values fit se.fit fit.upper fit.lower
1 1 1 1 75 4.32 1.00 0.96 3.28 1.44 1.00 0.61
2 1 1 1 230 5.44 1.00 0.88 2.03 0.99 0.98 0.52
3 1 1 1 260 5.56 1.00 0.87 1.90 0.94 0.98 0.51
4 1 1 1 430 6.06 1.00 0.79 1.34 0.78 0.95 0.45
5 1 1 1 700 6.55 1.00 0.69 0.80 0.66 0.89 0.38
6 1 1 1 940 6.85 1.00 0.62 0.47 0.61 0.84 0.33
7 1 1 1 1000 6.91 1.00 0.60 0.40 0.61 0.83 0.31
8 1 1 1 1050 6.96 1.00 0.59 0.35 0.60 0.82 0.30
9 3 1 1 10000 9.21 0.33 0.10 −2.15 1.12 0.51 0.01

10 1 1 0 300 5.70 1.00 0.31 −0.78 0.87 0.72 0.08
11 1 1 0 440 6.09 1.00 0.23 −1.21 0.83 0.61 0.06
12 1 0 1 540 6.29 0.00 0.75 1.09 0.72 0.92 0.42
13 1 0 1 600 6.40 0.00 0.73 0.97 0.69 0.91 0.41
14 1 0 1 1700 7.44 0.00 0.45 −0.18 0.61 0.73 0.20
15 1 0 1 3200 8.07 0.00 0.29 −0.89 0.73 0.63 0.09
16 1 0 1 3500 8.16 0.00 0.27 −0.99 0.75 0.62 0.08
17 1 0 1 5200 8.56 0.00 0.19 −1.42 0.88 0.57 0.04
18 1 0 0 150 5.01 0.00 0.50 −0.01 1.02 0.88 0.12
19 1 0 0 400 5.99 0.00 0.25 −1.10 0.84 0.63 0.06
20 1 0 0 530 6.27 0.00 0.20 −1.41 0.83 0.55 0.05
21 1 0 0 900 6.80 0.00 0.12 −2.00 0.86 0.42 0.02
22 1 0 0 1000 6.91 0.00 0.11 −2.12 0.87 0.40 0.02
23 1 0 0 1900 7.55 0.00 0.06 −2.83 1.01 0.30 0.01
24 1 0 0 2100 7.65 0.00 0.05 −2.94 1.03 0.29 0.01
25 1 0 0 2600 7.86 0.00 0.04 −3.18 1.09 0.26 0.00
26 1 0 0 2700 7.90 0.00 0.04 −3.22 1.11 0.26 0.00
27 1 0 0 2800 7.94 0.00 0.04 −3.26 1.12 0.26 0.00
28 1 0 0 3100 8.04 0.00 0.03 −3.37 1.15 0.25 0.00
29 1 0 0 7900 8.97 0.00 0.01 −4.41 1.48 0.18 0.00
30 2 0 0 10000 9.21 0.00 0.01 −4.67 1.57 0.17 0.00
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The estimated survival probabilities satisfy

log

(
p̃

1− p̃

)
= 5.54− 1.11 LWBC + 2.52 AG.

For AG− individuals with AG=0, this reduces to

log

(
p̃

1− p̃

)
= 5.54− 1.11 LWBC,

or equivalently,

p̃ =
exp(5.54− 1.11 LWBC)

1 + exp(5.54− 1.11 LWBC)
.

For AG+ individuals with AG=1,

log

(
p̃

1− p̃

)
= 5.54− 1.11 LWBC + 2.52(1) = 8.06− 1.11 LWBC,

or

p̃ =
exp(8.06− 1.11 LWBC)

1 + exp(8.06− 1.11 LWBC)
.

Using the logit scale, the difference between AG+ and AG− individuals

in the estimated log-odds of surviving at least one year, at a fixed but arbitrary

LWBC, is the estimated AG regression coefficient

(8.06− 1.11 LWBC)− (5.54− 1.11 LWBC) = 2.52.

Using properties of exponential functions, the odds that an AG+ patient lives

at least one year is exp(2.52) = 12.42 times larger than the odds that an AG−
patient lives at least one year, regardless of LWBC.

This summary, and a CI for the AG odds ratio, is given in the Odds Ratio

table. Similarly, the estimated odds ratio of 0.33 for LWBC implies that the

odds of surviving at least one year is reduced by a factor of 3 for each unit

increase of LWBC.
We can use the confint() function to obtain confidence intervals for the

coefficient estimates. Note that for logistic models, confidence intervals are
based on the profiled log-likelihood function.
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## CIs using profiled log-likelihood

confint(glm.i.l)

## Waiting for profiling to be done...

## 2.5 % 97.5 %

## (Intercept) 0.1596372 12.4524409

## ag1 0.5993391 5.0149271

## lwbc -2.2072275 -0.3319512

We can also get CIs based on just the standard errors by using the default
method.
## CIs using standard errors

confint.default(glm.i.l)

## 2.5 % 97.5 %

## (Intercept) -0.3804137 11.467112

## ag1 0.3818885 4.657236

## lwbc -2.0121879 -0.205330

You can also exponentiate the coefficients and confidence interval bounds
and interpret them as odds-ratios.
## coefficients and 95% CI

cbind(OR = coef(glm.i.l), confint(glm.i.l))

## Waiting for profiling to be done...

## OR 2.5 % 97.5 %

## (Intercept) 5.543349 0.1596372 12.4524409

## ag1 2.519562 0.5993391 5.0149271

## lwbc -1.108759 -2.2072275 -0.3319512

## odds ratios and 95% CI

exp(cbind(OR = coef(glm.i.l), confint(glm.i.l)))

## Waiting for profiling to be done...

## OR 2.5 % 97.5 %

## (Intercept) 255.5323676 1.1730851 2.558741e+05

## ag1 12.4231582 1.8209149 1.506452e+02

## lwbc 0.3299682 0.1100052 7.175224e-01

Although the equal slopes model appears to fit well, a more general model

might fit better. A natural generalization here would be to add an interaction,

or product term, AG × LWBC to the model. The logistic model with an AG

effect and the AG× LWBC interaction is equivalent to fitting separate logistic

regression lines to the two AG groups. This interaction model provides an easy

way to test whether the slopes are equal across AG levels. I will note that the

interaction term is not needed here.
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Interpretting odds ratios in logistic regression Let’s begin with

probability3. Let’s say that the probability of success is 0.8, thus p = 0.8.

Then the probability of failure is q = 1 − p = 0.2. The odds of success are

defined as odds(success) = p/q = 0.8/0.2 = 4, that is, the odds of success are

4 to 1. The odds of failure would be odds(failure) = q/p = 0.2/0.8 = 0.25,

that is, the odds of failure are 1 to 4. Next, let’s compute the odds ratio

by OR = odds(success)/odds(failure) = 4/0.25 = 16. The interpretation of

this odds ratio would be that the odds of success are 16 times greater than

for failure. Now if we had formed the odds ratio the other way around with

odds of failure in the numerator, we would have gotten something like this,

OR = odds(failure)/odds(success) = 0.25/4 = 0.0625.

Another example This example is adapted from Pedhazur (1997). Sup-

pose that seven out of 10 males are admitted to an engineering school while

three of 10 females are admitted. The probabilities for admitting a male are,

p = 7/10 = 0.7 and q = 1 − 0.7 = 0.3. Here are the same probabilities

for females, p = 3/10 = 0.3 and q = 1 − 0.3 = 0.7. Now we can use

the probabilities to compute the admission odds for both males and females,

odds(male) = 0.7/0.3 = 2.33333 and odds(female) = 0.3/0.7 = 0.42857. Next,

we compute the odds ratio for admission, OR = 2.3333/0.42857 = 5.44. Thus,

the odds of a male being admitted are 5.44 times greater than for a female.

Leukemia example In the example above, the OR of surviving at least

one year increases 12.43 times for AG+ vs AG−, and increases 0.33 times

(that’s a decrease) for every unit increase in lwbc.

Example: Mortality of confused flour beetles This example illus-

trates a quadratic logistic model.

3Borrowed graciously from UCLA Academic Technology Services at http://www.ats.ucla.edu/stat/
sas/faq/oratio.htm
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The aim of an experiment originally reported by Strand (1930) and quoted

by Bliss (1935) was to assess the response of the confused flour beetle, Tribolium

confusum, to gaseous carbon disulphide (CS2). In the experiment, prescribed

volumes of liquid carbon disulphide were added to flasks in which a tubular

cloth cage containing a batch of about thirty beetles was suspended. Duplicate

batches of beetles were used for each concentration of CS2. At the end of a five-

hour period, the proportion killed was recorded and the actual concentration

of gaseous CS2 in the flask, measured in mg/l, was determined by a volumetric

analysis. The mortality data are given in the table below.
#### Example: Beetles

## Beetles data set

# conc = CS2 concentration

# y = number of beetles killed

# n = number of beetles exposed

# rep = Replicate number (1 or 2)

beetles <- read.table("http://statacumen.com/teach/ADA2/ADA2_notes_Ch11_beetles.dat", header = TRUE)

beetles$rep <- factor(beetles$rep)

conc y n rep
1 49.06 2 29 1
2 52.99 7 30 1
3 56.91 9 28 1
4 60.84 14 27 1
5 64.76 23 30 1
6 68.69 29 31 1
7 72.61 29 30 1
8 76.54 29 29 1

conc y n rep
9 49.06 4 30 2

10 52.99 6 30 2
11 56.91 9 34 2
12 60.84 14 29 2
13 64.76 29 33 2
14 68.69 24 28 2
15 72.61 32 32 2
16 76.54 31 31 2

beetles$conc2 <- beetles$conc^2 # for quadratic term (making coding a little easier)

beetles$p.hat <- beetles$y / beetles$n # observed proportion of successes

# emperical logits

beetles$emp.logit <- log(( beetles$p.hat + 0.5/beetles$n) /

(1 - beetles$p.hat + 0.5/beetles$n))

#str(beetles)

Plot the observed probability of mortality and the empirical logits with
linear and quadratic LS fits (which are not the same as the logistic MLE fits).
library(ggplot2)

p <- ggplot(beetles, aes(x = conc, y = p.hat, shape = rep))

# observed values

p <- p + geom_point(color = "black", size = 3, alpha = 0.5)

p <- p + labs(title = "Observed mortality, probability scale")

print(p)

library(ggplot2)
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p <- ggplot(beetles, aes(x = conc, y = emp.logit))

p <- p + geom_smooth(method = "lm", colour = "red", se = FALSE)

p <- p + geom_smooth(method = "lm", formula = y ~ poly(x, 2), colour = "blue", se = FALSE)

# observed values

p <- p + geom_point(aes(shape = rep), color = "black", size = 3, alpha = 0.5)

p <- p + labs(title = "Empirical logit with `naive' LS fits (not MLE)")

print(p)
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In a number of articles that refer to these data, the responses from the first

two concentrations are omitted because of apparent non-linearity. Bliss himself

remarks that

. . . in comparison with the remaining observations, the two lowest

concentrations gave an exceptionally high kill. Over the remain-

ing concentrations, the plotted values seemed to form a moderately

straight line, so that the data were handled as two separate sets,

only the results at 56.91 mg of CS2 per litre being included in both

sets.

However, there does not appear to be any biological motivation for this and so

here they are retained in the data set.

Combining the data from the two replicates and plotting the empirical logit

of the observed proportions against concentration gives a relationship that is
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better fit by a quadratic than a linear relationship,

log

(
p

1− p

)
= β0 + β1X + β2X

2.

The right plot below shows the linear and quadratic model fits to the observed

values with point-wise 95% confidence bands on the logit scale, and on the left

is the same on the proportion scale.
# fit logistic regression to create lines on plots below

# linear

glm.beetles1 <- glm(cbind(y, n - y) ~ conc, family = binomial, beetles)

# quadratic

glm.beetles2 <- glm(cbind(y, n - y) ~ conc + conc2, family = binomial, beetles)

## put model fits for two models together

beetles1 <- beetles

# put the fitted values in the data.frame

beetles1$fitted.values <- glm.beetles1$fitted.values

pred <- predict(glm.beetles1, data.frame(conc = beetles1$conc), type = "link", se.fit = TRUE) #£

beetles1$fit <- pred$fit

beetles1$se.fit <- pred$se.fit

# CI for fitted values

beetles1 <- within(beetles1, {
fit.lower = exp(fit - 1.96 * se.fit) / (1 + exp(fit - 1.96 * se.fit))

fit.upper = exp(fit + 1.96 * se.fit) / (1 + exp(fit + 1.96 * se.fit))

})
beetles1$modelorder <- "linear"

beetles2 <- beetles

# put the fitted values in the data.frame

beetles2$fitted.values <- glm.beetles2$fitted.values

pred <- predict(glm.beetles2, data.frame(conc = beetles2$conc, conc2 = beetles2$conc2), type = "link", se.fit = TRUE)

beetles2$fit <- pred$fit

beetles2$se.fit <- pred$se.fit

# CI for fitted values

beetles2 <- within(beetles2, {
fit.lower = exp(fit - 1.96 * se.fit) / (1 + exp(fit - 1.96 * se.fit))

fit.upper = exp(fit + 1.96 * se.fit) / (1 + exp(fit + 1.96 * se.fit))

})
beetles2$modelorder <- "quadratic"

beetles.all <- rbind(beetles1, beetles2)

beetles.all$modelorder <- factor(beetles.all$modelorder)

# plot on logit and probability scales

library(ggplot2)
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p <- ggplot(beetles.all, aes(x = conc, y = p.hat, shape = rep, colour = modelorder, fill = modelorder))

# predicted curve and point-wise 95% CI

p <- p + geom_ribbon(aes(x = conc, ymin = fit.lower, ymax = fit.upper), linetype = 0, alpha = 0.1)

p <- p + geom_line(aes(x = conc, y = fitted.values, linetype = modelorder), size = 1)

# fitted values

p <- p + geom_point(aes(y = fitted.values), size=2)

# observed values

p <- p + geom_point(color = "black", size = 3, alpha = 0.5)

p <- p + labs(title = "Observed and predicted mortality, probability scale")

print(p)

library(ggplot2)

p <- ggplot(beetles.all, aes(x = conc, y = emp.logit, shape = rep, colour = modelorder, fill = modelorder))

# predicted curve and point-wise 95% CI

p <- p + geom_ribbon(aes(x = conc, ymin = fit - 1.96 * se.fit, ymax = fit + 1.96 * se.fit), linetype = 0, alpha = 0.1)

p <- p + geom_line(aes(x = conc, y = fit, linetype = modelorder), size = 1)

# fitted values

p <- p + geom_point(aes(y = fit), size=2)

# observed values

p <- p + geom_point(color = "black", size = 3, alpha = 0.5)

p <- p + labs(title = "Observed and predicted mortality, logit scale")

print(p)
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11.5 Example: The UNM Trauma Data

The data to be analyzed here were collected on 3132 patients admitted to The

University of New Mexico Trauma Center between the years 1991 and 1994. For

each patient, the attending physician recorded their age, their revised trauma

score (RTS), their injury severity score (ISS), whether their injuries were blunt

(i.e., the result of a car crash: BP=0) or penetrating (i.e., gunshot/knife wounds:

BP=1), and whether they eventually survived their injuries (SURV=0 if not,

SURV=1 if survived). Approximately 10% of patients admitted to the UNM

Trauma Center eventually die from their injuries.

The ISS is an overall index of a patient’s injuries, based on the approximately

1300 injuries cataloged in the Abbreviated Injury Scale. The ISS can take on

values from 0 for a patient with no injuries to 75 for a patient with 3 or more

life threatening injuries. The ISS is the standard injury index used by trauma

centers throughout the U.S. The RTS is an index of physiologic injury, and

is constructed as a weighted average of an incoming patient’s systolic blood

pressure, respiratory rate, and Glasgow Coma Scale. The RTS can take on

values from 0 for a patient with no vital signs to 7.84 for a patient with normal

vital signs.

Champion et al. (1981) proposed a logistic regression model to estimate

the probability of a patient’s survival as a function of RTS, the injury severity

score ISS, and the patient’s age, which is used as a surrogate for physiologic

reserve. Subsequent survival models included the binary effect BP as a means

to differentiate between blunt and penetrating injuries.

We will develop a logistic model for predicting survival from ISS, AGE,

BP, and RTS, and nine body regions. Data on the number of severe injuries

in each of the nine body regions is also included in the database, so we will also

assess whether these features have any predictive power. The following labels

were used to identify the number of severe injuries in the nine regions: AS =

head, BS = face, CS = neck, DS = thorax, ES = abdomen, FS = spine, GS =

upper extremities, HS = lower extremities, and JS = skin.

Prof. Erik B. Erhardt
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#### Example: UNM Trauma Data

trauma <- read.table("http://statacumen.com/teach/ADA2/ADA2_notes_Ch11_trauma.dat"

, header = TRUE)

## Variables

# surv = survival (1 if survived, 0 if died)

# rts = revised trauma score (range: 0 no vital signs to 7.84 normal vital signs)

# iss = injury severity score (0 no injuries to 75 for 3 or more life threatening injuries)

# bp = blunt or penetrating injuries (e.g., car crash BP=0 vs gunshot/knife wounds BP=1)

# Severe injuries: add the severe injuries 3--6 to make summary variables

trauma <- within(trauma, {
as = a3 + a4 + a5 + a6 # as = head

bs = b3 + b4 + b5 + b6 # bs = face

cs = c3 + c4 + c5 + c6 # cs = neck

ds = d3 + d4 + d5 + d6 # ds = thorax

es = e3 + e4 + e5 + e6 # es = abdomen

fs = f3 + f4 + f5 + f6 # fs = spine

gs = g3 + g4 + g5 + g6 # gs = upper extremities

hs = h3 + h4 + h5 + h6 # hs = lower extremities

js = j3 + j4 + j5 + j6 # js = skin

})
# keep only columns of interest

names(trauma)

## [1] "id" "surv" "a1" "a2" "a3" "a4" "a5" "a6" "b1" "b2"

## [11] "b3" "b4" "b5" "b6" "c1" "c2" "c3" "c4" "c5" "c6"

## [21] "d1" "d2" "d3" "d4" "d5" "d6" "e1" "e2" "e3" "e4"

## [31] "e5" "e6" "f1" "f2" "f3" "f4" "f5" "f6" "g1" "g2"

## [41] "g3" "g4" "g5" "g6" "h1" "h2" "h3" "h4" "h5" "h6"

## [51] "j1" "j2" "j3" "j4" "j5" "j6" "iss" "iciss" "bp" "rts"

## [61] "age" "prob" "js" "hs" "gs" "fs" "es" "ds" "cs" "bs"

## [71] "as"

trauma <- subset(trauma, select = c(id, surv, as:js, iss:prob))

head(trauma)

## id surv as bs cs ds es fs gs hs js iss iciss bp rts age prob

## 1 1238385 1 0 0 0 1 0 0 0 0 0 13 0.8612883 0 7.8408 13 0.9909890

## 2 1238393 1 0 0 0 0 0 0 0 0 0 5 0.9421876 0 7.8408 23 0.9947165

## 3 1238898 1 0 0 0 0 0 0 2 0 0 13 0.7251130 0 7.8408 43 0.9947165

## 4 1239516 1 1 0 0 0 0 0 0 0 0 16 1.0000000 0 5.9672 17 0.9615540

## 5 1239961 1 1 0 0 0 0 0 0 0 1 9 0.9346634 0 4.8040 20 0.9338096

## 6 1240266 1 0 0 0 0 0 0 0 1 0 13 0.9004691 0 7.8408 32 0.9947165

#str(trauma)

I made side-by-side boxplots of the distributions of ISS, AGE, RTS, and

AS through JS for the survivors and non-survivors. In several body regions

the number of injuries is limited, so these boxplots are not very enlightening.

Survivors tend to have lower ISS scores, tend to be slightly younger, tend to

UNM, Stat 428/528 ADA2
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have higher RTS scores, and tend to have fewer severe head (AS) and abdomen

injuries (ES) than non-survivors. The importance of the effects individually

towards predicting survival is directly related to the separation between the

survivors and non-survivors scores.
# Create boxplots for each variable by survival

library(reshape2)

trauma.long <- melt(trauma, id.vars = c("id", "surv", "prob"))

# Plot the data using ggplot

library(ggplot2)

p <- ggplot(trauma.long, aes(x = factor(surv), y = value))

# boxplot, size=.75 to stand out behind CI

p <- p + geom_boxplot(size = 0.75, alpha = 0.5)

# points for observed data

p <- p + geom_point(position = position_jitter(w = 0.05, h = 0), alpha = 0.1)

# diamond at mean for each group

p <- p + stat_summary(fun.y = mean, geom = "point", shape = 18, size = 6,

alpha = 0.75, colour = "red")

# confidence limits based on normal distribution

p <- p + stat_summary(fun.data = "mean_cl_normal", geom = "errorbar",

width = .2, alpha = 0.8)

p <- p + facet_wrap( ~ variable, scales = "free_y", ncol = 4)

p <- p + labs(title = "Boxplots of variables by survival")

print(p)

Prof. Erik B. Erhardt
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11.5.1 Selecting Predictors in the Trauma Data

The same automated methods for model building are available for the glm() pro-

cedure, including backward elimination, forward selection, and stepwise meth-

ods, among others. Below we perform a stepwise selection using AIC starting

at the full model, starting with a full model having 13 effects: ISS, BP, RTS,
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AGE, and AS–JS. Revisit Chapter 10 for more information.

In our previous logistic regression analyses, the cases in the data set were

pre-aggregated into groups of observations having identical levels of the pre-

dictor variables. The numbers of cases in the success category and the group

sample sizes were specified in the model statement, along with the names of the

predictors. The trauma data set, which is not reproduced here, is raw data

consisting of one record per patient (i.e., 3132 lines). The logistic model is fitted

to data on individual cases by specifying the binary response variable (SURV)

with successes and 1−SURV failures with the predictors on the right-hand side

of the formula. Keep in mind that we are defining the logistic model to model

the success category, so we are modeling the probability of surviving.

As an aside, there are two easy ways to model the probability of dying (which

we don’t do below). The first is to swap the order the response is specified in

the formula: cbind(1 - surv, surv). The second is to convert a model for the

log-odds of surviving to a model for the log-odds of dying by simply changing

the sign of each regression coefficient in the model.

I only included the summary table from the backward elimination, and

information on the fit of the selected model.
glm.tr <- glm(cbind(surv, 1 - surv) ~ as + bs + cs + ds + es + fs + gs + hs + js

+ iss + rts + age + bp

, family = binomial, trauma)

# option: trace = 0 doesn't show each step of the automated selection

glm.tr.red.AIC <- step(glm.tr, direction="both", trace = 0)

# the anova object provides a summary of the selection steps in order

glm.tr.red.AIC$anova

## Step Df Deviance Resid. Df Resid. Dev AIC

## 1 NA NA 3118 869.4309 897.4309

## 2 - as 1 0.04911674 3119 869.4800 895.4800

## 3 - bs 1 0.12242766 3120 869.6024 893.6024

## 4 - fs 1 0.15243093 3121 869.7549 891.7549

## 5 - cs 1 0.78703127 3122 870.5419 890.5419

## 6 - ds 1 0.81690443 3123 871.3588 889.3588

## 7 - gs 1 1.18272567 3124 872.5415 888.5415

## 8 - hs 1 1.17941462 3125 873.7209 887.7209

## 9 - js 1 1.71204029 3126 875.4330 887.4330

The final model includes effects for ES (number of severe abdominal in-
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juries), ISS, RTS, AGE, and BP. All of the effects in the selected model are
significant at the 5% level.
summary(glm.tr.red.AIC)

##

## Call:

## glm(formula = cbind(surv, 1 - surv) ~ es + iss + rts + age +

## bp, family = binomial, data = trauma)

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -3.1546 0.0992 0.1432 0.2316 3.4454

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 0.355845 0.442943 0.803 0.4218

## es -0.461317 0.110098 -4.190 2.79e-05 ***

## iss -0.056920 0.007411 -7.680 1.59e-14 ***

## rts 0.843143 0.055339 15.236 < 2e-16 ***

## age -0.049706 0.005291 -9.394 < 2e-16 ***

## bp -0.635137 0.249597 -2.545 0.0109 *

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## (Dispersion parameter for binomial family taken to be 1)

##

## Null deviance: 1825.37 on 3131 degrees of freedom

## Residual deviance: 875.43 on 3126 degrees of freedom

## AIC: 887.43

##

## Number of Fisher Scoring iterations: 7

The p-value for D is large, indicating no gross deficiencies with the selected
model.
# Test residual deviance for lack-of-fit (if > 0.10, little-to-no lack-of-fit)

dev.p.val <- 1 - pchisq(glm.tr.red.AIC$deviance, glm.tr.red.AIC$df.residual)

dev.p.val

## [1] 1

Letting p be the probability of survival, the estimated survival probability

is given by

log

(
p̃

1− p̃

)
= 0.3558− 0.4613 ES− 0.6351 BP− 0.0569 ISS

+0.8431 RTS− 0.0497 AGE.

Let us interpret the sign of the coefficients, and the odds ratios, in terms of the
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impact that individual predictors have on the survival probability.
## coefficients and 95% CI

cbind(OR = coef(glm.tr.red.AIC), confint(glm.tr.red.AIC))

## Waiting for profiling to be done...

## OR 2.5 % 97.5 %

## (Intercept) 0.35584499 -0.51977300 1.21869015

## es -0.46131679 -0.67603693 -0.24307991

## iss -0.05691973 -0.07159539 -0.04249502

## rts 0.84314317 0.73817886 0.95531089

## age -0.04970641 -0.06020882 -0.03943822

## bp -0.63513735 -1.12051508 -0.14005288

## odds ratios and 95% CI

exp(cbind(OR = coef(glm.tr.red.AIC), confint(glm.tr.red.AIC)))

## Waiting for profiling to be done...

## OR 2.5 % 97.5 %

## (Intercept) 1.4273863 0.5946555 3.3827539

## es 0.6304529 0.5086287 0.7842088

## iss 0.9446699 0.9309075 0.9583952

## rts 2.3236592 2.0921220 2.5994786

## age 0.9515087 0.9415679 0.9613293

## bp 0.5298627 0.3261118 0.8693123

11.5.2 Checking Predictions for the Trauma Model

To assess the ability of the selected model to accurately predict survival, assume

that the two types of errors (a false positive prediction of survival, and a false

negative prediction) have equal costs. Under this assumption, the optimal

classification rule is to predict survival for an individual with an estimated

survival probability of 0.50 or larger.

In the below script, a table is generated that gives classifications for cutoff

probabilities thresh= 0.0, 0.1, . . . , 1.0 based on the selected model. While I do

not do this below, it is common to use the jackknife method for assessing

classification accuracy. To implement the jackknife method, each observation

is temporarily held out and the selected model is fitted to the remaining (3131)

cases. This leads to an estimated survival probability for the case, which is

compared to the actual result. The results are summarized in terms of total

number of correct and incorrect classifications for each possible outcome. In the

table below, the columns labeled Event (a survival) and Non-Event (a death)
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refer to the classification of observations, and not to the actual outcomes. The

columns labeled Correct and Incorrect identify whether the classifications

are accurate.
# thresholds for classification given model proportion predictions for each observation

thresh <- seq(0,1,by=0.1)

# predicted probabilities

Yhat <- fitted(glm.tr.red.AIC)

# Name: lower (0) = NonEvent, higher (1) = Event

YObs <- cut(trauma$surv, breaks = c(-Inf, mean(trauma$surv), Inf)

, labels = c("NonEvent", "Event"))

classify.table <- data.frame(Thresh = rep(NA, length(thresh))

, Cor.Event = rep(NA, length(thresh))

, Cor.NonEv = rep(NA, length(thresh))

, Inc.Event = rep(NA, length(thresh))

, Inc.NonEv = rep(NA, length(thresh))

, Cor.All = rep(NA, length(thresh))

, Sens = rep(NA, length(thresh))

, Spec = rep(NA, length(thresh))

, Fal.P = rep(NA, length(thresh))

, Fal.N = rep(NA, length(thresh)))

for (i.thresh in 1:length(thresh)) {
# choose a threshold for dichotomizing according to predicted probability

YhatPred <- cut(Yhat, breaks = c(-Inf, thresh[i.thresh], Inf)

, labels = c("NonEvent", "Event"))

# contingency table and marginal sums

cTab <- table(YhatPred, YObs)

addmargins(cTab)

# Classification Table

classify.table$Thresh [i.thresh] <- thresh[i.thresh] # Prob.Level

classify.table$Cor.Event[i.thresh] <- cTab[2,2] # Correct.Event

classify.table$Cor.NonEv[i.thresh] <- cTab[1,1] # Correct.NonEvent

classify.table$Inc.Event[i.thresh] <- cTab[2,1] # Incorrect.Event

classify.table$Inc.NonEv[i.thresh] <- cTab[1,2] # Incorrect.NonEvent

classify.table$Cor.All [i.thresh] <- 100 * sum(diag(cTab)) / sum(cTab) # Correct.Overall

classify.table$Sens [i.thresh] <- 100 * cTab[2,2] / sum(cTab[,2]) # Sensitivity

classify.table$Spec [i.thresh] <- 100 * cTab[1,1] / sum(cTab[,1]) # Specificity

classify.table$Fal.P [i.thresh] <- 100 * cTab[2,1] / sum(cTab[2,]) # False.Pos

classify.table$Fal.N [i.thresh] <- 100 * cTab[1,2] / sum(cTab[1,]) # False.Neg

}
round(classify.table, 1)

## Thresh Cor.Event Cor.NonEv Inc.Event Inc.NonEv Cor.All Sens Spec Fal.P Fal.N
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## 1 0.0 2865 0 267 0 91.5 100.0 0.0 8.5 NaN

## 2 0.1 2861 79 188 4 93.9 99.9 29.6 6.2 4.8

## 3 0.2 2856 105 162 9 94.5 99.7 39.3 5.4 7.9

## 4 0.3 2848 118 149 17 94.7 99.4 44.2 5.0 12.6

## 5 0.4 2837 125 142 28 94.6 99.0 46.8 4.8 18.3

## 6 0.5 2825 139 128 40 94.6 98.6 52.1 4.3 22.3

## 7 0.6 2805 157 110 60 94.6 97.9 58.8 3.8 27.6

## 8 0.7 2774 174 93 91 94.1 96.8 65.2 3.2 34.3

## 9 0.8 2727 196 71 138 93.3 95.2 73.4 2.5 41.3

## 10 0.9 2627 229 38 238 91.2 91.7 85.8 1.4 51.0

## 11 1.0 0 267 0 2865 8.5 0.0 100.0 NaN 91.5

The data set has 2865 survivors and 267 people that died. Using a 0.50 cut-

off, 2825 of the survivors would be correctly identified, and 40 misclassified. Sim-

ilarly, 139 of the patients that died would be correctly classified and 128 would

not. The overall percentage of cases correctly classified is (2825 + 138)/3132 =

94.6%. The sensitivity is the percentage of survivors that are correctly classi-

fied, 2825/(2825 + 40) = 98.6%. The specificity is the percentage of patients

that died that are correctly classified, 139/(139 + 128) = 52.1%. The false

positive rate, which is the % of those predicted to survive that did not, is

128/(128 + 2825) = 4.3%. The false negative rate, which is the % of those

predicted to die that did not is 40/(40 + 139) = 22.5%.
# Thresh = 0.5 classification table

YhatPred <- cut(Yhat, breaks=c(-Inf, 0.5, Inf), labels=c("NonEvent", "Event"))

# contingency table and marginal sums

cTab <- table(YhatPred, YObs)

addmargins(cTab)

## YObs

## YhatPred NonEvent Event Sum

## NonEvent 139 40 179

## Event 128 2825 2953

## Sum 267 2865 3132

round(subset(classify.table, Thresh == 0.5), 1)

## Thresh Cor.Event Cor.NonEv Inc.Event Inc.NonEv Cor.All Sens Spec Fal.P Fal.N

## 6 0.5 2825 139 128 40 94.6 98.6 52.1 4.3 22.3

The misclassification rate seems small, but you should remember that ap-

proximately 10% of patients admitted to UNM eventually die from their injuries.

Given this historical information only, you could achieve a 10% misclassification

rate by completely ignoring the data and classifying each admitted patient as a
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survivor. Using the data reduces the misclassification rate by about 50% (from

10% down to 4.4%), which is an important reduction in this problem.

11.6 Historical Example: O-Ring Data

The table below presents data from Dalal, Fowlkes, and Hoadley (1989) on field

O-ring failures in the 23 pre-Challenger space shuttle launches. Temperature

at lift-off and O-ring joint pressure are predictors. The binary version of the

data views each flight as an independent trial. The result of a trial (y) is a

1 if at least one field O-ring failure occurred on the flight and a 0 if all six

O-rings functioned properly. A regression for the binary data would model the

probability that any O-ring failed as a function of temperature and pressure.

The binomial version of these data is also presented. It views the six field O-

rings on each flight as independent trials. A regression for the binomial data

would model the probability that a particular O-ring on a given flight failed

as a function of temperature and pressure. The two regressions model different

probabilities. The Challenger explosion occurred during a takeoff at 31 degrees

Fahrenheit.
#### Example: Shuttle O-ring data

shuttle <- read.csv("http://statacumen.com/teach/ADA2/ADA2_notes_Ch11_shuttle.csv")

case flight y six temp pressure
1 1 14 1 2 53 50
2 2 9 1 1 57 50
3 3 23 1 1 58 200
4 4 10 1 1 63 50
5 5 1 0 0 66 200
6 6 5 0 0 67 50
7 7 13 0 0 67 200
8 8 15 0 0 67 50
9 9 4 0 0 68 200

10 10 3 0 0 69 200
11 11 8 0 0 70 50
12 12 17 0 0 70 200
13 13 2 1 1 70 200
14 14 11 1 1 70 200
15 15 6 0 0 72 200
16 16 7 0 0 73 200
17 17 16 0 0 75 100
18 18 21 1 2 75 200
19 19 19 0 0 76 200
20 20 22 0 0 76 200
21 21 12 0 0 78 200
22 22 20 0 0 79 200
23 23 18 0 0 81 200
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The regression model for the binomial data (i.e., six trials per launch) is

suspect on substantive grounds. The binomial model makes no allowance for

an effect due to having the six O-rings on the same flight. If these data were

measurements rather than counts, they would almost certainly be treated as

dependent repeated measures. If interest is focused on whether one or more

O-rings failed, the simplest, most direct data are the binary data.

Consider fitting a logistic regression model using temperature and pressure

as predictors. Let pi be the probability that any O-ring fails in case i and model

this as

log

(
pi

1− pi

)
= β0 + β1 Tempi + β2 Pressurei.

Logistic histogram plots of the data show a clear marginal relationship of
failure with temp but not with pressure. We still need to assess the model with
both variables together.
# plot logistic plots of response to each predictor individually

library(popbio)

logi.hist.plot(shuttle$temp, shuttle$y, boxp=FALSE, type="hist"

, rug=TRUE, col="gray", ylabel = "Probability", xlabel = "Temp")

logi.hist.plot(shuttle$pressure, shuttle$y, boxp=FALSE, type="hist"

, rug=TRUE, col="gray", ylabel = "Probability", xlabel = "Pressure")
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We fit the logistic model below using Y = 1 if at least one O-ring failed,

and 0 otherwise. We are modelling the chance of one or more O-ring failures

as a function of temperature and pressure.

The D goodness-of-fit statistic suggest no gross deviations from the model.
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Furthermore, the test of H0 : β1 = β2 = 0 (no regression effects) based on

the Wald test has a p-value of 0.1, which suggests that neither temperature or

pressure, or both, are useful predictors of the probability of O-ring failure. The

z-test test p-values for testing H0 : β1 = 0 and H0 : β2 = 0 individually are

0.037 and 0.576, respectively, which indicates pressure is not important (when

added last to the model), but that temperature is important. This conclusion

might be anticipated by looking at data plots above.
glm.sh <- glm(cbind(y, 1 - y) ~ temp + pressure, family = binomial, shuttle)

# Test residual deviance for lack-of-fit (if > 0.10, little-to-no lack-of-fit)

dev.p.val <- 1 - pchisq(glm.sh$deviance, glm.sh$df.residual)

dev.p.val

## [1] 0.4589415

# Testing Global Null Hypothesis

library(aod)

coef(glm.sh)

## (Intercept) temp pressure

## 16.385319489 -0.263404073 0.005177602

# specify which coefficients to test = 0 (Terms = 2:3 is for terms 2 and 3)

wald.test(b = coef(glm.sh), Sigma = vcov(glm.sh), Terms = 2:3)

## Wald test:

## ----------

##

## Chi-squared test:

## X2 = 4.6, df = 2, P(> X2) = 0.1

# Model summary

summary(glm.sh)

##

## Call:

## glm(formula = cbind(y, 1 - y) ~ temp + pressure, family = binomial,

## data = shuttle)

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -1.1928 -0.7879 -0.3789 0.4172 2.2031

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 16.385319 8.027474 2.041 0.0412 *

## temp -0.263404 0.126371 -2.084 0.0371 *

## pressure 0.005178 0.009257 0.559 0.5760

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##
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## (Dispersion parameter for binomial family taken to be 1)

##

## Null deviance: 28.267 on 22 degrees of freedom

## Residual deviance: 19.984 on 20 degrees of freedom

## AIC: 25.984

##

## Number of Fisher Scoring iterations: 5

A reasonable next step would be to refit the model, after omitting pressure

as a predictor. The target model is now

log

(
pi

1− pi

)
= β0 + β1 Tempi.

glm.sh <- glm(cbind(y, 1 - y) ~ temp, family = binomial, shuttle)

# Test residual deviance for lack-of-fit (if > 0.10, little-to-no lack-of-fit)

dev.p.val <- 1 - pchisq(glm.sh$deviance, glm.sh$df.residual)

dev.p.val

## [1] 0.5013827

# Model summary

summary(glm.sh)

##

## Call:

## glm(formula = cbind(y, 1 - y) ~ temp, family = binomial, data = shuttle)

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -1.0611 -0.7613 -0.3783 0.4524 2.2175

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 15.0429 7.3786 2.039 0.0415 *

## temp -0.2322 0.1082 -2.145 0.0320 *

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## (Dispersion parameter for binomial family taken to be 1)

##

## Null deviance: 28.267 on 22 degrees of freedom

## Residual deviance: 20.315 on 21 degrees of freedom

## AIC: 24.315

##

## Number of Fisher Scoring iterations: 5

Our conclusions on the overall fit of the model and the significance of the

effect of temperature on the probability of O-ring failure are consistent with the
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results for two predictor model. The model estimates the log-odds of (at least

one) O-ring failure to be

log

(
p̃

1− p̃

)
= 15.043− 0.2322 Temp.

The estimated probability of (at least one) O-ring failure is

p̃ =
exp(15.043− 0.2322 Temp)

1 + exp(15.043− 0.2322 Temp)
.

This is an decreasing function of temperature.

The Challenger was set to launch on a morning where the predicted tem-

perature at lift-off was 31 degrees. Given that temperature appears to affect

the probability of O-ring failure (a point that NASA missed), what can/should

we say about the potential for O-ring failure?

Clearly, the launch temperature is outside the region for which data were

available. Thus, we really have no prior information about what is likely to

occur. If we assume the logistic model holds, and we can extrapolate back to

31 degrees, what is the estimated probability of O-ring failure?

The following gives the answer this question. I augmented the original data

set to obtain predicted probabilities for temperatures not observed in the data

set. Note that the fitted model to data with missing observations gives the same

model fit because glm() excludes observations with missing values. Predictions

are then made for all temperatures in the dataset and the resulting table and

plot are reported.
# append values to dataset for which we wish to make predictions

shuttle.pred <- data.frame( case = rep(NA, 5)

, flight = rep(NA, 5)

, y = rep(NA, 5)

, six = rep(NA, 5)

, temp = c(31, 35, 40, 45, 50) # temp values to predict

, pressure = rep(NA, 5)

)

shuttle <- rbind(shuttle.pred, shuttle)

# fit model

glm.sh <- glm(cbind(y, 1 - y) ~ temp, family = binomial, shuttle)

# Note: same model fit as before since glm() does not use missing values
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round(summary(glm.sh)$coefficients, 3)

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 15.043 7.379 2.039 0.041

## temp -0.232 0.108 -2.145 0.032

# put the fitted values in the data.frame

shuttle$fitted.values <- c(rep(NA, 5), glm.sh$fitted.values)

# predict() uses all the temp values in dataset, including appended values

pred <- predict(glm.sh, data.frame(temp = shuttle$temp), type = "link", se.fit = TRUE)

shuttle$fit <- pred$fit

shuttle$se.fit <- pred$se.fit

# CI for fitted values

shuttle <- within(shuttle, {
# added "fitted" to make predictions at appended temp values

fitted = exp(fit) / (1 + exp(fit))

fit.lower = exp(fit - 1.96 * se.fit) / (1 + exp(fit - 1.96 * se.fit))

fit.upper = exp(fit + 1.96 * se.fit) / (1 + exp(fit + 1.96 * se.fit))

})

case flight y six temp pressure fitted.values fit se.fit fit.upper fit.lower fitted
1 31.00 7.85 4.04 1.00 0.48 1.00
2 35.00 6.92 3.61 1.00 0.46 1.00
3 40.00 5.76 3.08 1.00 0.43 1.00
4 45.00 4.60 2.55 1.00 0.40 0.99
5 50.00 3.43 2.02 1.00 0.37 0.97
6 1.00 14.00 1.00 2.00 53.00 50.00 0.94 2.74 1.71 1.00 0.35 0.94
7 2.00 9.00 1.00 1.00 57.00 50.00 0.86 1.81 1.31 0.99 0.32 0.86
8 3.00 23.00 1.00 1.00 58.00 200.00 0.83 1.58 1.21 0.98 0.31 0.83
9 4.00 10.00 1.00 1.00 63.00 50.00 0.60 0.42 0.77 0.87 0.25 0.60

10 5.00 1.00 0.00 0.00 66.00 200.00 0.43 −0.28 0.59 0.71 0.19 0.43
11 6.00 5.00 0.00 0.00 67.00 50.00 0.38 −0.51 0.56 0.64 0.17 0.38
12 7.00 13.00 0.00 0.00 67.00 200.00 0.38 −0.51 0.56 0.64 0.17 0.38
13 8.00 15.00 0.00 0.00 67.00 50.00 0.38 −0.51 0.56 0.64 0.17 0.38
14 9.00 4.00 0.00 0.00 68.00 200.00 0.32 −0.74 0.55 0.58 0.14 0.32
15 10.00 3.00 0.00 0.00 69.00 200.00 0.27 −0.98 0.56 0.53 0.11 0.27
16 11.00 8.00 0.00 0.00 70.00 50.00 0.23 −1.21 0.59 0.49 0.09 0.23
17 12.00 17.00 0.00 0.00 70.00 200.00 0.23 −1.21 0.59 0.49 0.09 0.23
18 13.00 2.00 1.00 1.00 70.00 200.00 0.23 −1.21 0.59 0.49 0.09 0.23
19 14.00 11.00 1.00 1.00 70.00 200.00 0.23 −1.21 0.59 0.49 0.09 0.23
20 15.00 6.00 0.00 0.00 72.00 200.00 0.16 −1.67 0.70 0.43 0.05 0.16
21 16.00 7.00 0.00 0.00 73.00 200.00 0.13 −1.90 0.78 0.40 0.03 0.13
22 17.00 16.00 0.00 0.00 75.00 100.00 0.09 −2.37 0.94 0.37 0.01 0.09
23 18.00 21.00 1.00 2.00 75.00 200.00 0.09 −2.37 0.94 0.37 0.01 0.09
24 19.00 19.00 0.00 0.00 76.00 200.00 0.07 −2.60 1.03 0.36 0.01 0.07
25 20.00 22.00 0.00 0.00 76.00 200.00 0.07 −2.60 1.03 0.36 0.01 0.07
26 21.00 12.00 0.00 0.00 78.00 200.00 0.04 −3.07 1.22 0.34 0.00 0.04
27 22.00 20.00 0.00 0.00 79.00 200.00 0.04 −3.30 1.32 0.33 0.00 0.04
28 23.00 18.00 0.00 0.00 81.00 200.00 0.02 −3.76 1.51 0.31 0.00 0.02

library(ggplot2)

p <- ggplot(shuttle, aes(x = temp, y = y))

# predicted curve and point-wise 95% CI

p <- p + geom_ribbon(aes(x = temp, ymin = fit.lower, ymax = fit.upper), alpha = 0.2)

p <- p + geom_line(aes(x = temp, y = fitted), colour="red")

# fitted values
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p <- p + geom_point(aes(y = fitted.values), size=2, colour="red")

# observed values

p <- p + geom_point(size = 2)

p <- p + ylab("Probability")

p <- p + labs(title = "Observed events and predicted probability of 1+ O-ring failures")

print(p)

## Warning: Removed 5 rows containing missing values (geom point).

## Warning: Removed 5 rows containing missing values (geom point).
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Chapter 12

An Introduction to
Multivariate Methods

Multivariate statistical methods are used to display, analyze, and describe data

on two or more features or variables simultaneously. I will discuss multivariate

methods for measurement data. Methods for multi-dimensional count data, or

mixtures of counts and measurements are available, but are beyond the scope

of what I can do here. I will give a brief overview of the type of problems where

multivariate methods are appropriate.

Example: Turtle shells Jolicouer and Mosimann provided data on the

height, length, and width of the carapace (shell) for a sample of female painted

turtles. Cluster analysis is used to identify which shells are similar on the

three features. Principal component analysis is used to identify the linear

combinations of the measurements that account for most of the variation in size

and shape of the shells.

Cluster analysis and principal component analysis are primarily descriptive

techniques.

Example: Fisher’s Iris data Random samples of 50 flowers were selected

from three iris species: Setosa, Virginica, and Versicolor. Four measurements

were made on each flower: sepal length, sepal width, petal length, and petal
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width. Suppose the sample means on each feature are computed within the

three species. Are the means on the four traits significantly different across

species? This question can be answered using four separate one-way ANOVAs.

A more powerful MANOVA (multivariate analysis of variance) method com-

pares species on the four features simultaneously.

Discriminant analysis is a technique for comparing groups on multi-

dimensional data. Discriminant analysis can be used with Fisher’s Iris data to

find the linear combinations of the flower features that best distinguish species.

The linear combinations are optimally selected, so insignificant differences on

one or all features may be significant (or better yet, important) when the fea-

tures are considered simultaneously! Furthermore, the discriminant analysis

could be used to classify flowers into one of these three species when their

species is unknown.

MANOVA, discriminant analysis, and classification are primarily infer-

ential techniques.

12.1 Linear Combinations

Suppose data are collected on p measurements or features X1, X2, . . . , Xp.

Most multivariate methods use linear combinations of the features as the

basis for analysis. A linear combination has the form

Y = a1X1 + a2X2 + · · · + apXp,

where the coefficients a1, a2, . . . , ap are known constants. Y is evaluated for

each observation in the data set, keeping the coefficients constant.

For example, three linear combinations of X1, X2, . . . , Xp are:

Y = 1X1 + 0X2 + 0X3 + · · · + 0Xp = X1,

Y =
1

p
(X1 + X2 + · · · + Xp), and

Y = 2X1 − 4X2 + 55X3 − 1954X4 + · · · + 44Xp.
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Vector and matrix notation are useful for representing and summarizing

multivariate data. Before introducing this notation, let us try to understand

linear combinations geometrically when p = 2.

Example: −45◦ rotation A plot of data on two features X1 and X2 is

given below. Also included is a plot for the two linear combinations

Y1 =
1√
2

(X1 + X2) and

Y2 =
1√
2

(X2 −X1).

This transformation creates two (roughly) uncorrelated linear combinations Y1

and Y2 from two highly correlated features X1 and X2. The transformation

corresponds to a rotation of the original coordinate axes by −45 degrees.

Each data point is then expressed relative to the new axes. The new features

are uncorrelated!
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The
√

2 divisor in Y1 and Y2 does not alter the interpretation of these linear

combinations: Y1 is essentially the sum of X1 and X2, whereas Y2 is essentially

the difference between X2 and X1.

Example: Two groups The plot below shows data on two features X1

and X2 from two distinct groups.
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If you compare the groups on X1 and X2 separately, you may find no sig-

nificant differences because the groups overlap substantially on each feature.

The plot on the right was obtained by rotating the coordinate axes −θ degrees,

and then plotting the data relative to the new coordinate axes. The rotation

corresponds to creating two linear combinations:

Y1 = cos(θ)X1 + sin(θ)X2

Y2 = − sin(θ)X1 + cos(θ)X2.

The two groups differ substantially on Y2. This linear combination is used with

discriminant analysis and MANOVA to distinguish between the groups.

The linear combinations used in certain multivariate methods do not corre-

spond to a rotation of the original coordinate axes. However, the pictures given

above should provide some insight into the motivation for the creating linear

combinations of two features. The ideas extend to three or more features, but

are more difficult to represent visually.
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12.2 Vector and Matrix Notation

A vector is a string of numbers or variables that is stored in either a row or

in a column. For example, the collection X1, X2, . . . , Xp of features can be

represented as a column-vector with p rows, using the notation

X =


X1

X2
...

Xp

 .
The entry in the jth row is Xj. The transpose of X , represented by X ′, is a

row-vector with p columns: X ′ = (X1, X2, . . . , Xp). The jth column of X ′

contains Xj.

Suppose you collect data on p features X1, X2, . . . , Xp for a sample of n

individuals. The data for the ith individual can be represented as the column-

vector:

Xi =


Xi1

Xi2
...

Xip

 .
or as the row-vector X ′i = (Xi1, Xi2, · · · , Xip). Here Xij is the value on the

jth variable. Two subscripts are needed for the data values. One subscript

identifies the individual and the other subscript identifies the feature.

A matrix is a rectangular array of numbers or variables. A data set can

be viewed as a matrix with n rows and p columns, where n is the sample size.

Each row contains data for a given individual:
X11 X12 · · · X1p

X21 X22 · · · X2p
... ... . . . ...

Xn1 Xn2 · · · Xnp

 .
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Vector and matrix notation are used for summarizing multivariate data. For

example, the sample mean vector is

X̄ =


X̄1

X̄2
...

X̄p

 ,
where X̄j is the sample average on the jth feature. Using matrix algebra, X̄ is

defined using a familiar formula:

X̄ =
1

n

n∑
i=1

Xi.

This mathematical operation is well-defined because vectors are added elemen-

twise.

The sample variances and covariances on the p variables can be grouped

together in a p × p sample variance-covariance matrix S (i.e., p rows

and p columns)

S =


s11 s12 · · · s1p

s21 s22 · · · s2p
... ... . . . ...

sp1 sp2 · · · spp

 ,
where

sii =
1

n− 1

n∑
k=1

(Xki − X̄i)
2

is the sample variance for the ith feature, and

sij =
1

n− 1

n∑
k=1

(Xki − X̄i)(Xkj − X̄j)

is the sample covariance between the ith and jth features. The subscripts on

the elements in S identify where the element is found in the matrix: sij is
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stored in the ith row and the jth column. The variances are found on the main

diagonal of the matrix. The covariances are off-diagonal elements. S is

symmetric, meaning that the elements above the main diagonal are a reflection

of the entries below the main diagonal. More formally, sij = sji.

Matrix algebra allows you to express S using a formula analogous to the

sample variance for a single feature:

S =
1

n− 1

n∑
k=1

(Xk − X̄)(Xk − X̄)′.

Here (Xk − X̄)(Xk − X̄)′ is the matrix product of a column vector with p

entries times a row vector with p entries. This matrix product is a p×p matrix

with (Xki−X̄i)(Xkj−X̄j) in the ith row and jth column. The matrix products

are added up over all n observations and then divided by n− 1.

The interpretation of covariances is enhanced by standardizing them to give

correlations. The sample correlation matrix is denoted by the p × p

symmetric matrix

R =


r11 r12 · · · r1p

r21 r22 · · · r2p
... ... . . . ...

rp1 rp2 · · · rpp

 .
The ith row and jth column element of R is the correlation between the ith and

jth features. The diagonal elements are one: rii = 1. The off-diagonal elements

satisfy

rij = rji =
sij√
siisjj

.

In many applications the data are standardized to have mean 0 and variance

1 on each feature. The data are standardized through the so-called Z-score

transformation: (Xki − X̄i)/sii which, on each feature, subtracts the mean

from each observation and divides by the corresponding standard deviation.

The sample variance-covariance matrix for the standardized data is the corre-

lation matrix R for the raw data.
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Example: Let X1, X2, and X3 be the reaction times for three visual stimuli

named A, B and C, respectively. Suppose you are given the following summaries

based on a sample of 30 individuals:

X̄ =

 4

5

4.7

 ,

S =

 2.26 2.18 1.63

2.18 2.66 1.82

1.63 1.82 2.47

 ,

R =

 1.00 0.89 0.69

0.89 1.00 0.71

0.69 0.71 1.00

 .
The average response time on B is 5. The sample variance of response times

on A is 2.26. The sample covariance between response times on A and C is

1.63. The sample correlation between response times on B and C is 0.71.

12.3 Matrix Notation to Summarize Linear
Combinations

Matrix algebra is useful for computing sample summaries for linear combina-

tions of the features X ′ = (X1, X2, . . . , Xp) from the sample summaries on

these features. For example, suppose you define the linear combination

Y1 = a1X1 + a2X2 + · · · + apXp.

Using matrix algebra, Y1 is the matrix product Y1 = a′X , where a′ = (a1, a2, . . . , ap).

The sample mean and variance of Y1 are

Ȳ = a1X̄1 + a2X̄2 + · · · + apX̄p = a′X̄
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and

s2
Y =

∑
ij

aiajsij = a′Sa,

where X̄ and S are the sample mean vector and sample variance-covariance

matrix for X ′ = (X1, X2, . . . , Xp).

Similarly, the sample covariance between Y1 and

Y2 = b′X = b1X1 + b2X2 + · · · + bpXp

is

sY1,Y2 =
∑
ij

aibjsij = a′Sb = b′Sa.

Example: In the stimuli example, the total reaction time per individual is

Y = [1 1 1]

 X1

X2

X3

 = X1 + X2 + X3.

The mean reaction time is

Ȳ = [1 1 1]

X̄ = [1 1 1]

 4

5

4.7

 = 4 + 5 + 4.7 = 13.7.

The variance of Y is the sum of the elements in the variance-covariance matrix:

s2
Y = [1 1 1]S

 1

1

1

 =
∑
ij

sij = 2.26 + 2.18 + · · · + 2.47 = 18.65.
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Principal Component
Analysis

Principal component analysis (PCA) is a multivariate technique for un-

derstanding variation, and for summarizing measurement data possibly through

variable reduction. Principal components (the variables created in PCA)

are sometimes used in addition to, or in place of, the original variables in certain

analyses. I will illustrate the use and misuse of principal components in a series

of examples.

Given data on p variables or featuresX1, X2, . . ., Xp, PCA uses a rotation of

the original coordinate axes to produce a new set of p uncorrelated variables,

called principal components, that are unit-length linear combinations of

the original variables. A unit-length linear combination a1X1+a2X2+· · ·+apXp

has a2
1 + a2

2 + · · · + a2
p = 1.

The principal components have the following properties. The first prin-

cipal component

PRIN1 = a11X1 + a12X2 + · · · + a1pXp

has the largest variability among all unit-length linear combinations of the

original variables. The second principal component

PRIN2 = a21X1 + a22X2 + · · · + a2pXp
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has the largest variability among all unit-length linear combinations of X1,

X2, . . ., Xp that are uncorrelated with PRIN1. In general, the jth principal

component PRINj for j = 1, 2, . . . , p, has the largest variability among all unit-

length linear combinations of the features that are uncorrelated with PRIN1,

PRIN2, . . . , PRIN(j − 1). The last or pth principal component PRINp

has the smallest variability among all unit-length linear combinations of

the features.

I have described PCA on the raw or unstandardized data. This method is

often called PCA on the sample covariance matrix, because the principal com-

ponents are computed numerically using a singular value decomposition

of the sample covariance matrix for the Xis. The variances of the PCs are

eigenvalues of the sample covariance matrix. The coefficients in the PCs are

eigenvectors of the sample covariance matrix. The sum of the variances of

the principal components is equal to the sum of the variances in the original

features. An alternative method for PCA uses standardized data, which is often

called PCA on the correlation matrix.

The ordered principal components are uncorrelated variables with progres-

sively less variation. Principal components are often viewed as separate di-

mensions corresponding to the collection of features. The variability of each

component divided by the total variability of the components is the proportion

of the total variation in the data captured by each component. If data reduction

is your goal, then you might need only the first few principal components to

capture most of the variability in the data. This issue will be returned to later.

The unit-length constraint on the coefficients in PCA is needed to make

the maximization well-defined. Without this constraint, there does not exist

a linear combination with maximum variation. For example, the variability of

an arbitrary linear combination a1X1 + a2X2 + · · ·+ apXp is increased by 100

when each coefficient is multiplied by 10!

The principal components are unique only up to a change of the sign for

each coefficient. For example,

PRIN1 = 0.2X1 − 0.4X2 + 0.4X3 + 0.8X4
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and

PRIN1 = −0.2X1 + 0.4X2 − 0.4X3 − 0.8X4

have the same variability, so either could play the role of the first principal

component. This non-uniqueness does not have an important impact on the

analysis.

13.1 Example: Temperature Data

The following temperature example includes mean monthly temperatures in

January and July for 64 U.S. cities.
#### Example: Temperature of cities

## The Temperature data file is in "fixed width format", an older data file format.

## Each field is specified by column ranges.

## Below I've provided numbers to help identify the column numbers

## as well as the first three observations in the dataset.

## 123456789012345678901234

## [ 14 char ][ 5 ][ 5 ]

# mobile 51.2 81.6

# phoenix 51.2 91.2

# little rock 39.5 81.4

fn.data <- "http://statacumen.com/teach/ADA2/ADA2_notes_Ch13_temperature.dat"

temp <- read.fwf(fn.data, widths = c(14, 5, 5))

# the city names have trailing white space (we fix this below)

str(temp)

## 'data.frame': 64 obs. of 3 variables:

## $ V1: Factor w/ 64 levels "albany ",..: 39 48 33 56 21 27 64 62 31 36 ...

## $ V2: num 51.2 51.2 39.5 45.1 29.9 24.8 32 35.6 54.6 67.2 ...

## $ V3: num 81.6 91.2 81.4 75.2 73 72.7 75.8 78.7 81 82.3 ...

head(temp)

## V1 V2 V3

## 1 mobile 51.2 81.6

## 2 phoenix 51.2 91.2

## 3 little rock 39.5 81.4

## 4 sacramento 45.1 75.2

## 5 denver 29.9 73.0

## 6 hartford 24.8 72.7

# remove that white space with strip.white=TRUE

temp <- read.fwf(fn.data, widths = c(14, 5, 5), strip.white = TRUE)

# name columns

colnames(temp) <- c("city", "january", "july")
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temp$id <- 1:nrow(temp)

str(temp)

## 'data.frame': 64 obs. of 4 variables:

## $ city : Factor w/ 64 levels "albany","albuquerque",..: 39 48 33 56 21 27 64 62 31 36 ...

## $ january: num 51.2 51.2 39.5 45.1 29.9 24.8 32 35.6 54.6 67.2 ...

## $ july : num 81.6 91.2 81.4 75.2 73 72.7 75.8 78.7 81 82.3 ...

## $ id : int 1 2 3 4 5 6 7 8 9 10 ...

head(temp)

## city january july id

## 1 mobile 51.2 81.6 1

## 2 phoenix 51.2 91.2 2

## 3 little rock 39.5 81.4 3

## 4 sacramento 45.1 75.2 4

## 5 denver 29.9 73.0 5

## 6 hartford 24.8 72.7 6

# plot original data

library(ggplot2)

p1 <- ggplot(temp, aes(x = january, y = july))

p1 <- p1 + geom_point() # points

p1 <- p1 + coord_fixed(ratio = 1) # makes 1 unit equal length on x- and y-axis

# good idea since both are in the same units

p1 <- p1 + geom_text(aes(label = city), vjust = -0.5, alpha = 0.25) # city labels

p1 <- p1 + labs(title = "Mean temperature in Jan and July for selected cities")

print(p1)
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The princomp() procedure is used for PCA. By default the principal com-

ponents are computed based on the covariance matrix. The correlation matrix
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may also be used (it effectively z-scores the data first) with the cor = TRUE

option. The principal component scores are the values of the principal

components across cases. The principal component scores PRIN1, PRIN2, . . . ,

PRINp are centered to have mean zero.

Output from a PCA on the covariance matrix is given. Two principal com-

ponents are created because p = 2.
# perform PCA on covariance matrix

temp.pca <- princomp( ~ january + july, data = temp)

# standard deviation and proportion of variation for each component

summary(temp.pca)

## Importance of components:

## Comp.1 Comp.2

## Standard deviation 12.3217642 3.0004557

## Proportion of Variance 0.9440228 0.0559772

## Cumulative Proportion 0.9440228 1.0000000

# coefficients for PCs

loadings(temp.pca)

##

## Loadings:

## Comp.1 Comp.2

## january -0.939 0.343

## july -0.343 -0.939

##

## Comp.1 Comp.2

## SS loadings 1.0 1.0

## Proportion Var 0.5 0.5

## Cumulative Var 0.5 1.0

# scores are coordinates of each observation on PC scale

head(temp.pca$scores)

## Comp.1 Comp.2

## 1 -20.000106 0.9239612

## 2 -23.291460 -8.0941867

## 3 -8.940669 -2.8994977

## 4 -12.075589 4.8446790

## 5 2.957414 1.7000283

## 6 7.851160 0.2333138

PCA is effectively doing a location shift (to the origin, zero) and a rotation

of the data. When the correlation is used for PCA (instead of the covariance),

it also performs a scaling so that the resulting PC scores have unit-variance in

all directions.
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# create small data.frame with endpoints of PC lines through data

line.scale <- c(35, 15) # length of PCA lines to draw

# endpoints of lines to draw

temp.pca.line.endpoints <-

data.frame(PC = c(rep("PC1", 2), rep("PC2", 2))

, x = c(temp.pca$center[1] - line.scale[1] * temp.pca$loadings[1, 1]

, temp.pca$center[1] + line.scale[1] * temp.pca$loadings[1, 1]

, temp.pca$center[1] - line.scale[2] * temp.pca$loadings[1, 2]

, temp.pca$center[1] + line.scale[2] * temp.pca$loadings[1, 2])

, y = c(temp.pca$center[2] - line.scale[1] * temp.pca$loadings[2, 1]

, temp.pca$center[2] + line.scale[1] * temp.pca$loadings[2, 1]

, temp.pca$center[2] - line.scale[2] * temp.pca$loadings[2, 2]

, temp.pca$center[2] + line.scale[2] * temp.pca$loadings[2, 2])

)

temp.pca.line.endpoints

## PC x y

## 1 PC1 64.9739769 87.61066

## 2 PC1 -0.7833519 63.61121

## 3 PC2 26.9525727 89.70179

## 4 PC2 37.2380523 61.52008

# plot original data with PCA vectors overlayed

library(ggplot2)

p1 <- ggplot(temp, aes(x = january, y = july))

p1 <- p1 + geom_point() # points

p1 <- p1 + coord_fixed(ratio = 1) # makes 1 unit equal length on x- and y-axis

# good idea since both are in the same units

p1 <- p1 + geom_text(aes(label = id), vjust = -0.5, alpha = 0.25) # city labels

# plot PC lines

p1 <- p1 + geom_path(data = subset(temp.pca.line.endpoints, PC=="PC1"), aes(x=x, y=y)

, alpha=0.5)

p1 <- p1 + geom_path(data = subset(temp.pca.line.endpoints, PC=="PC2"), aes(x=x, y=y)

, alpha=0.5)

# label lines

p1 <- p1 + annotate("text"

, x = temp.pca.line.endpoints$x[1]

, y = temp.pca.line.endpoints$y[1]

, label = as.character(temp.pca.line.endpoints$PC[1])

, vjust = 0) #, size = 10)

p1 <- p1 + annotate("text"

, x = temp.pca.line.endpoints$x[3]

, y = temp.pca.line.endpoints$y[3]

, label = as.character(temp.pca.line.endpoints$PC[3])

, hjust = 1) #, size = 10)

p1 <- p1 + labs(title = "Mean temperature in Jan and July for selected cities")

print(p1)
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# plot PCA scores (data on PC-scale centered at 0)

library(ggplot2)

p2 <- ggplot(as.data.frame(temp.pca$scores), aes(x = Comp.1, y = Comp.2))

p2 <- p2 + geom_point() # points

p2 <- p2 + coord_fixed(ratio = 1) # makes 1 unit equal length on x- and y-axis

# good idea since both are in the same units

p2 <- p2 + geom_text(aes(label = rownames(temp.pca$scores)), vjust = -0.5, alpha = 0.25) # city labels

# plot PC lines

p2 <- p2 + geom_vline(xintercept = 0, alpha=0.5)

p2 <- p2 + geom_hline(yintercept = 0, alpha=0.5)

p2 <- p2 + labs(title = "Same, PC scores")

#print(p2)

# plot PCA scores (data on (negative) PC-scale centered at 0)

library(ggplot2) # negative temp.pca£scores

p3 <- ggplot(as.data.frame(-temp.pca$scores), aes(x = Comp.1, y = Comp.2))

p3 <- p3 + geom_point() # points

p3 <- p3 + coord_fixed(ratio = 1) # makes 1 unit equal length on x- and y-axis

# good idea since both are in the same units

p3 <- p3 + geom_text(aes(label = rownames(temp.pca$scores)), vjust = -0.5, alpha = 0.25) # city labels

# plot PC lines

p3 <- p3 + geom_vline(xintercept = 0, alpha=0.5)

p3 <- p3 + geom_hline(yintercept = 0, alpha=0.5)

p3 <- p3 + labs(title = "Same, but negative PC scores match orientation of original data")

#print(p3)

library(gridExtra)

grid.arrange(grobs = list(p2, p3), ncol=1, top="Temperature data and PC scores")
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Temperature data and PC scores

Some comments on the output:

1. You can visualize PCA when p = 2. In the temperature plot, the direc-

tion of maximal variability corresponds to the first PC axis. The PRIN1

score for each city is obtained by projecting the temperature pairs perpen-

dicularly onto this axis. The direction of minimum variation corresponds

to the second PC axis, which is perpendicular to the first PC axis. The

PRIN2 score for each city is obtained by projecting the temperature pairs

onto this axis.

2. The total variance is the sum of variances for the monthly tempera-

tures: 163.38 = 137.18 + 26.20.
# variance of data (on diagonals, covariance of off-diags)

var(temp[,c("january","july")])

## january july

## january 137.1811 46.72910

UNM, Stat 428/528 ADA2



364 Ch 13: Principal Component Analysis

## july 46.7291 26.20035

# sum of variance

sum(diag(var(temp[,c("january","july")])))

## [1] 163.3814

# variance of PC scores

var(temp.pca$scores)

## Comp.1 Comp.2

## Comp.1 1.542358e+02 1.831125e-15

## Comp.2 1.831125e-15 9.145635e+00

# sum is same as original data

sum(diag(var(temp.pca$scores)))

## [1] 163.3814

3. The eigenvalues of the covariance matrix are variances for the

PCs. The variability of

PRIN1 = +0.939 JAN + 0.343 JULY

is 154.236. The variability of

PRIN2 = −0.343 JAN + 0.939 JULY

is 9.146. The proportion of the total variability due to PRIN1 is 0.944 =

154.23/163.38. The proportion of the total variability due to PRIN2 is

0.056 = 9.146/163.38.
# eigenvalues and eigenvectors of covariance matrix give PC variance and loadings

eigen(var(temp[,c("january","july")]))

## $values

## [1] 154.235808 9.145635

##

## $vectors

## [,1] [,2]

## [1,] -0.9393904 0.3428493

## [2,] -0.3428493 -0.9393904

4. Almost all of the variability (94.4%) in the original temperatures is cap-

tured by the first PC. The second PC accounts for the remaining 5.6% of

the total variability.
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5. PRIN1 weights the January temperature about three times the July tem-

perature. This is sensible because PRIN1 maximizes variation among

linear combinations of the January and July temperatures. January tem-

peratures are more variable, so they are weighted heavier in this linear

combination.

6. The PCs PRIN1 and PRIN2 are standardized to have mean zero. This

explains why some PRIN1 scores are negative, even though PRIN1 is a

weighted average of the January and July temperatures, each of which is

non-negative.

The built-in plots plot the scores and original data directions (biplot) and the
screeplot shows the relative variance proportion of all components in decreasing
order.
# a couple built-in plots

par(mfrow=c(1,2))

biplot(temp.pca)

screeplot(temp.pca)
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13.2 PCA on Correlation Matrix

The coefficients in the first principal component reflect the relative sizes of the

feature variances. The features with large variances have larger coefficients or

loadings. This might be considered a problem, because variability is scale

dependent and the principal component analysis on the raw data does not

take scale into account. For example, if you measure height in meters but then

change height to centimeters, the variability increases by a factor of 100*100 =

10,000. This might have a dramatic effect on the PCA.

You might prefer to standardize the features when they are measured on

different scales, or when the features have wildly different variances. The fea-

tures are standardized to have mean zero and variance one by using the Z-score

transformation: (Obs −Mean)/Std Dev. The PCA is then performed on the

standardized data.
temp.z <- temp

# manual z-score

temp.z$january <- (temp.z$january - mean(temp.z$january)) / sd(temp.z$january)

# z-score using R function scale()

temp.z$july <- scale(temp.z$july)

# the manual z-score and scale() match

all.equal(temp.z$january, as.vector(scale(temp.z$january)))

## [1] TRUE

# scale() includes attributes for the mean() and sd() used for z-scoring

str(temp.z)

## 'data.frame': 64 obs. of 4 variables:

## $ city : Factor w/ 64 levels "albany","albuquerque",..: 39 48 33 56 21 27 64 62 31 36 ...

## $ january: num 1.631 1.631 0.632 1.11 -0.187 ...

## $ july : num [1:64, 1] 1.1701 3.0456 1.131 -0.0803 -0.5101 ...

## ..- attr(*, "scaled:center")= num 75.6

## ..- attr(*, "scaled:scale")= num 5.12

## $ id : int 1 2 3 4 5 6 7 8 9 10 ...

head(temp.z)

## city january july id

## 1 mobile 1.6311459 1.17005226 1

## 2 phoenix 1.6311459 3.04555476 2

## 3 little rock 0.6322075 1.13097929 3

## 4 sacramento 1.1103319 -0.08028274 4

## 5 denver -0.1874344 -0.51008540 5

## 6 hartford -0.6228691 -0.56869485 6
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# z-scored data has mean 0 and variance 1

colMeans(temp.z[,c("january","july")])

## january july

## 1.228943e-16 -1.214842e-15

var(temp.z[,c("january","july")])

## january july

## january 1.0000000 0.7794472

## july 0.7794472 1.0000000

# the correlation is used to contruct the PCs

# (same as covariance for z-scored data)

cor(temp.z[,c("january","july")])

## january july

## january 1.0000000 0.7794472

## july 0.7794472 1.0000000

## Plot z-scored data
temp.z.pca <- princomp( ~ january + july, data = temp.z)

# create small data.frame with endpoints of PC lines through data
line.scale <- c(3, 3) # length of PCA lines to draw
# endpoints of lines to draw
temp.z.pca.line.endpoints <-

data.frame(PC = c(rep("PC1", 2), rep("PC2", 2))
, x = c(temp.z.pca$center[1] - line.scale[1] * temp.z.pca$loadings[1, 1]

, temp.z.pca$center[1] + line.scale[1] * temp.z.pca$loadings[1, 1]
, temp.z.pca$center[1] - line.scale[2] * temp.z.pca$loadings[1, 2]
, temp.z.pca$center[1] + line.scale[2] * temp.z.pca$loadings[1, 2])

, y = c(temp.z.pca$center[2] - line.scale[1] * temp.z.pca$loadings[2, 1]
, temp.z.pca$center[2] + line.scale[1] * temp.z.pca$loadings[2, 1]
, temp.z.pca$center[2] - line.scale[2] * temp.z.pca$loadings[2, 2]
, temp.z.pca$center[2] + line.scale[2] * temp.z.pca$loadings[2, 2])

)
temp.z.pca.line.endpoints

## PC x y
## 1 PC1 2.12132 2.12132
## 2 PC1 -2.12132 -2.12132
## 3 PC2 -2.12132 2.12132
## 4 PC2 2.12132 -2.12132

# plot original data with PCA vectors overlayed
library(ggplot2)
p1 <- ggplot(temp.z, aes(x = january, y = july))
p1 <- p1 + geom_point() # points
p1 <- p1 + coord_fixed(ratio = 1) # makes 1 unit equal length on x- and y-axis

# good idea since both are in the same units
p1 <- p1 + geom_text(aes(label = id), vjust = -0.5, alpha = 0.25) # city labels
# plot PC lines
p1 <- p1 + geom_path(data = subset(temp.z.pca.line.endpoints, PC=="PC1"), aes(x=x, y=y), alpha=0.5)
p1 <- p1 + geom_path(data = subset(temp.z.pca.line.endpoints, PC=="PC2"), aes(x=x, y=y), alpha=0.5)
# label lines
p1 <- p1 + annotate("text"

, x = temp.z.pca.line.endpoints$x[1]
, y = temp.z.pca.line.endpoints$y[1]
, label = as.character(temp.z.pca.line.endpoints$PC[1])
, vjust = 0) #, size = 10)

p1 <- p1 + annotate("text"
, x = temp.z.pca.line.endpoints$x[3]
, y = temp.z.pca.line.endpoints$y[3]
, label = as.character(temp.z.pca.line.endpoints$PC[3])
, hjust = 0) #, size = 10)

p1 <- p1 + labs(title = "Z-score temperature in Jan and July for selected cities")
print(p1)
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The covariance matrix computed from the standardized data is the cor-

relation matrix. Thus, principal components based on the standardized data

are computed from the correlation matrix. This is implemented by adding the

cor = TRUE option on the princomp() procedure statement.
# perform PCA on correlation matrix

temp.pca2 <- princomp( ~ january + july, data = temp, cor = TRUE)

# standard deviation and proportion of variation for each component

summary(temp.pca2)

## Importance of components:

## Comp.1 Comp.2

## Standard deviation 1.3339592 0.4696305

## Proportion of Variance 0.8897236 0.1102764

## Cumulative Proportion 0.8897236 1.0000000

# coefficients for PCs

loadings(temp.pca2)

##

## Loadings:
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## Comp.1 Comp.2

## january 0.707 -0.707

## july 0.707 0.707

##

## Comp.1 Comp.2

## SS loadings 1.0 1.0

## Proportion Var 0.5 0.5

## Cumulative Var 0.5 1.0

# scores are coordinates of each observation on PC scale

head(temp.pca2$scores)

## Comp.1 Comp.2

## 1 1.9964045 -0.3286199

## 2 3.3330689 1.0080444

## 3 1.2566173 0.3554730

## 4 0.7341125 -0.8485470

## 5 -0.4971200 -0.2299523

## 6 -0.8492236 0.0386098

This plot is the same except for the top/right scale around the biplot and
the variance scale on the screeplot.
# a couple built-in plots

par(mfrow=c(1,2))

biplot(temp.z.pca)

screeplot(temp.z.pca)

−0.2 0.0 0.2 0.4

−
0.

2
0.

0
0.

2
0.

4

Comp.1

C
om

p.
2 1

2

3

4

5

67

8

9

10

11

12 13

14

15

1617

18

19 20

21

22

23

24

25

26

27

28

29

30

31

32

3334

35
36

37

38

3940

41

42

43

44

45

46

47

4849

50

51

52
53

54

55

56

57

58

59
60

61

62

63

64

−5 0 5 10

−
5

0
5

10

january

july

Comp.1 Comp.2

temp.z.pca

V
ar

ia
nc

es

0.
0

0.
5

1.
0

1.
5

The standardized features are dimensionless, so the PCs are not influenced

by the original units of measure, nor are they affected by the variability in the

features. The only important factor is the correlation between the features,
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which is not changed by standardization.

The PCs from the correlation matrix are

PRIN1 = +0.707 JAN + 0.707 JULY

and

PRIN2 = −0.707 JAN + 0.707 JULY.

PCA is an exploratory tool, so neither a PCA on the covariance matrix nor

a PCA on the correlation matrix is always the “right” method. I often do both

and see which analysis is more informative.

13.3 Interpreting Principal Components

You should try to interpret the linear combinations created by multivariate

techniques. The interpretations are usually non-trivial, and some degree of

creativity is involved.

The coefficients or loadings in a principal component reflect the rela-

tive contribution of the features to the linear combination. Most researchers

focus more on the signs of the coefficents than on the magnitude of the co-

efficients. The principal components are then interpreted as weighted averages

or comparisons of weighted averages.

A weighted average is a linear combination of features with non-negative

loadings. The simplest case of a weighted average is an arithmetic average,

where each feature has the same coefficient.

The difference Z = X − Y is a comparison of X and Y . The sign and

magnitude of Z indicates which of X and Y is larger, and by how much. To

see this, note that Z = 0 if and only if X = Y , whereas Z < 0 when X < Y

and Z > 0 when X > Y .

In the temperature data, PRIN1 is a weighted average of January and July

temperatures (signs of the loadings: JAN is + and JULY is +):

PRIN1 = +0.94 JAN + 0.34 JULY.
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PRIN2 is a comparison of January and July temperatures (signs of the loadings:

JAN is − and JULY is +):

PRIN2 = −0.34 JAN + 0.94 JULY.

Principal components often have positive and negative loadings when p ≥ 3.

To interpret the components, group the features with + and − signs together

and then interpret the linear combination as a comparison of weighted averages.

You can often simplify the interpretation of principal components by men-

tally eliminating features from the linear combination that have relatively

small (in magnitude) loadings or coefficients. This strategy does not carry over

to all multivariate analyses, so I will be careful about this issue when necessary.

13.4 Example: Painted turtle shells

Jolicouer and Mosimann gave the length, width, and height in mm of the

carapace (shell) for a sample of 24 female painted turtles. I perform a PCA on

the original data and on the standardized data.
#### Example: Painted turtle shells

fn.data <- "http://statacumen.com/teach/ADA2/ADA2_notes_Ch13_shells.dat"

shells <- read.table(fn.data, header = TRUE)

str(shells)

## 'data.frame': 24 obs. of 3 variables:

## $ length: int 98 103 103 105 109 123 123 133 133 133 ...

## $ width : int 81 84 86 86 88 92 95 99 102 102 ...

## $ height: int 38 38 42 42 44 50 46 51 51 51 ...

head(shells)

## length width height

## 1 98 81 38

## 2 103 84 38

## 3 103 86 42

## 4 105 86 42

## 5 109 88 44

## 6 123 92 50

## Scatterplot matrix

library(ggplot2)

#suppressMessages(suppressWarnings(library(GGally)))

library(GGally)
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# put scatterplots on top so y axis is vertical

p <- ggpairs(shells, upper = list(continuous = "points")

, lower = list(continuous = "cor")

)

print(p)

# detach package after use so reshape2 works (old reshape (v.1) conflicts)

#detach("package:GGally", unload=TRUE)

#detach("package:reshape", unload=TRUE)

## 3D scatterplot

library(scatterplot3d)

par(mfrow=c(1,1))

with(shells, {
scatterplot3d(x=length

, y=width

, z=height

, main="Shells 3D Scatterplot"

, type = "h" # lines to the horizontal xy-plane

, color="blue", pch=19, # filled blue circles

#, highlight.3d = TRUE # makes color change with z-axis value

)

})

#### For a rotatable 3D plot, use plot3d() from the rgl library

# ## This uses the R version of the OpenGL (Open Graphics Library)

# library(rgl)

# with(shells, { plot3d(x = length, y = width, z = height) })
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13.4.1 PCA on shells covariance matrix

The plots show that the shell measurements are strongly positively correlated,

which is not surprising. Let us perform a PCA on the covariance matrix and

interpret the results.
# perform PCA on covariance matrix

shells.pca <- princomp( ~ length + width + height, data = shells)

# standard deviation and proportion of variation for each component

summary(shells.pca)

## Importance of components:

## Comp.1 Comp.2 Comp.3

## Standard deviation 25.4970668 2.547081962 1.653745717

## Proportion of Variance 0.9860122 0.009839832 0.004148005

## Cumulative Proportion 0.9860122 0.995851995 1.000000000

# coefficients for PCs

loadings(shells.pca)

##

## Loadings:

## Comp.1 Comp.2 Comp.3

## length 0.814 0.555 -0.172

## width 0.496 -0.818 -0.291

## height 0.302 -0.151 0.941

##

## Comp.1 Comp.2 Comp.3

## SS loadings 1.000 1.000 1.000

## Proportion Var 0.333 0.333 0.333

## Cumulative Var 0.333 0.667 1.000

The three principal components from the raw data are given below. Length

and width are grouped in PRIN3 because they have negative loadings.

PRIN1 = 0.81 Length + 0.50 Width + 0.30 Height

PRIN2 = −0.55 Length + (0.82 Width + 0.15 Height)

PRIN3 = −(0.17 Length + 0.29 Width) + 0.94 Height.

PRIN1 is a weighted average of the carapace measurements, and can be

viewed as an overall measure of shell size. Jolicouer and Mosimann interpreted

the second and third principal components as measures of shape, for they

appear to be a comparison of length with an average of width and height, and

a comparison of height with length and width, respectively.
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Jolicouer and Mosimann argue that the size of female turtle shells can be

characterized by PRIN1 with little loss of information because this linear com-

bination accounts for 98.6% of the total variability in the measurements. The

form of PRIN1 makes sense conceptually. The carapace measurements are pos-

itively correlated with each other, so larger lengths tend to occur with larger

widths and heights. The primary way the shells vary is with regards to their

overall size, as measured by a weighted average of length, width, and height.

Question: Can PRIN2 and PRIN3, which have relatively little variation, be

used in any meaningful way? To think about this, suppose the variability in

PRIN2 and PRIN3 was zero.

13.4.2 PCA on shells correlation matrix

For the analysis on the correlation matrix, add the cor = TRUE option.
# perform PCA on correlation matrix

shells.pca <- princomp( ~ length + width + height, data = shells, cor = TRUE)

# standard deviation and proportion of variation for each component

summary(shells.pca)

## Importance of components:

## Comp.1 Comp.2 Comp.3

## Standard deviation 1.714584 0.1853043 0.160820482

## Proportion of Variance 0.979933 0.0114459 0.008621076

## Cumulative Proportion 0.979933 0.9913789 1.000000000

# coefficients for PCs

loadings(shells.pca)

##

## Loadings:

## Comp.1 Comp.2 Comp.3

## length -0.578 -0.137 0.804

## width -0.577 -0.628 -0.522

## height -0.577 0.766 -0.284

##

## Comp.1 Comp.2 Comp.3

## SS loadings 1.000 1.000 1.000

## Proportion Var 0.333 0.333 0.333

## Cumulative Var 0.333 0.667 1.000
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The three principal components for the standardized data are

PRIN1 = 0.58 Length + 0.58 Width + 0.58 Height

PRIN2 = −(0.14 Length + 0.63 Width) + 0.77 Height

PRIN3 = −0.80 Length + (0.52 Width + 0.28 Height).

The first principal component accounts for 98% of the total variability in the

standardized data. The total variability for correlation is always the number p

of features because it is the sum of the variances. Here, p = 3. Little loss of

information is obtained by summarizing the standardized data using PRIN1,

which is essentially an average of length, width, and height. PRIN2 and PRIN3

are measures of shape.

The loadings in the first principal component are approximately equal be-

cause the correlations between pairs of features are almost identical. The stan-

dardized features are essentially interchangeable with regards to the construc-

tion of the first principal component, so they must be weighted similarly. True,

but not obvious.

13.5 Why is PCA a Sensible Variable Re-
duction Technique?

My description of PCA provides little insight into why principal components

are reasonable summaries for variable reduction. Specifically, why does it

make sense for researchers to consider the linear combination of the original

features with the largest variance as the best single variable summary of the

data?

There is an alternative description of PCA that provides more insight into

this issue. For simplicity, consider the following data plot of two features,

and the implied principal components. The PC scores for an observation are

obtained by projecting the feature scores onto the axes of maximal and minimal

variation, and then rotating the axes appropriately.
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One can show mathematically that PRIN1 is the best (in some sense) linear

combination of the two features to predict the original two features simultane-

ously. Intuitively, this is plausible. In a PCA, you know the direction for the

axis of maximal variation. Given the value of PRIN1, you get a good prediction

of the original feature scores by moving PRIN1 units along the axis of maximal

variation in the feature space.
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The LS line from regressing feature 2 on feature 1 gives the best prediction

for feature 2 scores when the feature 1 score is known. Similarly, the LS line

from regressing feature 1 on feature 2 gives the best prediction for feature 1

scores when the feature 2 score is known. PRIN1 is the best linear combination

of features 1 and 2 to predict both features simultaneously. Note that feature

1 and feature 2 are linear combinations as well!

This idea generalizes. The first k principal components give the best si-

multaneous prediction of the original p features, among all possible choices of

k uncorrelated unit-length linear combinations of the features. Prediction of

the original features improves as additional components are added, but the im-
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provement is slight when the added principal components have little variability.

Thus, summarizing the data using the principal components with maximum

variation is a sensible strategy for data reduction.

13.5.1 A Warning on Using PCA as a Variable Re-
duction Technique

Some researchers view PCA as a “catchall” technique for reducing the number

of variables that need to be considered in an analysis. They will replace the

original variables with a small number of principal components that explain

most of the variation in the original data and proceed with an analysis on the

principal components.

This strategy is not always sensible, especially if a primary interest in the

analysis is a comparison of heterogeneous groups. If the group structure was

ignored in the PCA analysis, then the linear combinations retained by the

researcher may contain little information for distinguishing among groups. For

example, consider the following data plot on two features and two groups, and

the implied principal components.
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Although PRIN1 explains most of the variability in the two features (ig-

noring the groups), little of the total variation is due to group differences. If

the researcher reduced the two features to the first principal component, he

would be throwing away most of the information for distinguishing between the

groups. PRIN2 accounts for little of the total variation in the features, but

most of the variation in PRIN2 is due to group differences.

If a comparison of the two groups was the primary interest, then the re-

searcher should use discriminant analysis instead. Although there is little gained

by reducing two variables to one, this principle always applies in multivariate

problems. In discriminant analysis, a stepwise selection of variables can be

implemented to eliminate features that have no information for distinguishing

among groups. This is data reduction as it should be practiced — with a final

goal in mind.

Variable reduction using PCA followed by group comparisons might be fruit-

ful if you are fortunate enough to have the directions with large variation cor-

respond to the directions of group differences. For example, in the plot below,
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the first principal component is a linear combination of the features that dis-

tinguishes between the groups. A comparison of the groups based on the first

principal component will lead to similar conclusions as a discriminant analysis.
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There is nothing unreasonable about using principal components in a com-

parison of groups, provided you recognize that the principal component scores

with the largest variability need not be informative for group comparisons!

In summary, PCA should be used to summarize the variation within a

homogeneous group, and should not, in general, be used as a data reduction

tool prior to a comparison across groups. The same concern applies to using

PCA for identifying groups of similar objects (use cluster analysis instead), or

when factor analysis is used prior to a group comparison.
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13.5.2 PCA is Used for Multivariate Outlier Detec-
tion

An outlier in a multidimensional data set has atypical readings on one or on

several features simultaneously. These observations can often be found in

univariate plots of the lead principal component scores, even when outliers are

not extreme in any individual feature.
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13.6 Example: Sparrows, for Class Discus-
sion

After a severe storm in 1898, a number of sparrows were taken to the biological

laboratory at the University of Rhode Island. H. Bumbus1 measured several

1Bumpus, Hermon C. 1898. Eleventh lecture. The elimination of the unfit as illustrated by the in-
troduced sparrow, Passer domesticus. (A fourth contribution to the study of variation.) Biol. Lectures:
Woods Hole Marine Biological Laboratory, 209–225.
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morphological characteristics on each bird. The data here correspond to five

measurements on a sample of 49 females. The measurements are the total

length, alar extent, beak-head length, humerus length, and length of keel of

sternum.

http://media-2.web.britannica.com/eb-media/46/51946-004-D003BC49.gif

Let us look at the output, paying careful attention to the interpretations of

the principal components (zeroing out small loadings). How many components

seem sufficient to capture the total variation in the morphological measure-

ments?
#### Example: Sparrows

fn.data <- "http://statacumen.com/teach/ADA2/ADA2_notes_Ch13_sparrows.dat"

sparrows <- read.table(fn.data, header = TRUE)

str(sparrows)

## 'data.frame': 49 obs. of 5 variables:

## $ Total : int 156 153 155 157 164 158 161 157 158 155 ...

## $ Alar : int 245 240 243 238 248 240 246 235 244 236 ...

## $ BeakHead: num 31.6 31 31.5 30.9 32.7 31.3 32.3 31.5 31.4 30.3 ...

## $ Humerus : num 18.5 18.4 18.6 18.4 19.1 18.6 19.3 18.1 18.5 18.5 ...

## $ Keel : num 20.5 20.6 20.3 20.2 21.2 22 21.8 19.8 21.6 20.1 ...

head(sparrows)
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## Total Alar BeakHead Humerus Keel

## 1 156 245 31.6 18.5 20.5

## 2 153 240 31.0 18.4 20.6

## 3 155 243 31.5 18.6 20.3

## 4 157 238 30.9 18.4 20.2

## 5 164 248 32.7 19.1 21.2

## 6 158 240 31.3 18.6 22.0

## Scatterplot matrix

library(ggplot2)

#suppressMessages(suppressWarnings(library(GGally)))

library(GGally)

# put scatterplots on top so y axis is vertical

p <- ggpairs(sparrows, upper = list(continuous = "points")

, lower = list(continuous = "cor")

)

print(p)

# detach package after use so reshape2 works (old reshape (v.1) conflicts)

#detach("package:GGally", unload=TRUE)

#detach("package:reshape", unload=TRUE)
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# perform PCA on covariance matrix

sparrows.pca <- princomp( ~ Total + Alar + BeakHead + Humerus + Keel

, data = sparrows)

# standard deviation and proportion of variation for each component

summary(sparrows.pca)

## Importance of components:

## Comp.1 Comp.2 Comp.3 Comp.4

## Standard deviation 5.8828991 2.1280701 0.78468836 0.552957190

## Proportion of Variance 0.8623099 0.1128372 0.01534175 0.007618397

## Cumulative Proportion 0.8623099 0.9751472 0.99048891 0.998107311
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## Comp.5

## Standard deviation 0.275612798

## Proportion of Variance 0.001892689

## Cumulative Proportion 1.000000000

# coefficients for PCs

# loadings(sparrows.pca) # print method for loadings() uses cutoff = 0.1 by default

print(loadings(sparrows.pca), cutoff = 0) # to show all values

##

## Loadings:

## Comp.1 Comp.2 Comp.3 Comp.4 Comp.5

## Total -0.536 0.828 0.157 0.039 -0.018

## Alar -0.829 -0.551 0.058 0.069 0.040

## BeakHead -0.096 0.034 -0.241 -0.897 0.357

## Humerus -0.074 -0.015 -0.205 -0.306 -0.927

## Keel -0.101 0.100 -0.934 0.310 0.110

##

## Comp.1 Comp.2 Comp.3 Comp.4 Comp.5

## SS loadings 1.0 1.0 1.0 1.0 1.0

## Proportion Var 0.2 0.2 0.2 0.2 0.2

## Cumulative Var 0.2 0.4 0.6 0.8 1.0

# perform PCA on correlation matrix

sparrows.pca <- princomp( ~ Total + Alar + BeakHead + Humerus + Keel

, data = sparrows, cor = TRUE)

# standard deviation and proportion of variation for each component

summary(sparrows.pca)

## Importance of components:

## Comp.1 Comp.2 Comp.3 Comp.4

## Standard deviation 1.9025587 0.7267974 0.62139498 0.54902221

## Proportion of Variance 0.7239459 0.1056469 0.07722634 0.06028508

## Cumulative Proportion 0.7239459 0.8295928 0.90681917 0.96710425

## Comp.5

## Standard deviation 0.40555980

## Proportion of Variance 0.03289575

## Cumulative Proportion 1.00000000

# coefficients for PCs

#loadings(sparrows.pca)

print(loadings(sparrows.pca), cutoff = 0) # to show all values

##

## Loadings:

## Comp.1 Comp.2 Comp.3 Comp.4 Comp.5

## Total 0.452 0.058 0.689 0.422 -0.375

## Alar 0.461 -0.301 0.345 -0.545 0.530

## BeakHead 0.450 -0.326 -0.453 0.607 0.342

## Humerus 0.470 -0.189 -0.409 -0.390 -0.651

## Keel 0.399 0.874 -0.184 -0.073 0.194

##
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## Comp.1 Comp.2 Comp.3 Comp.4 Comp.5

## SS loadings 1.0 1.0 1.0 1.0 1.0

## Proportion Var 0.2 0.2 0.2 0.2 0.2

## Cumulative Var 0.2 0.4 0.6 0.8 1.0

# a couple built-in plots

par(mfrow=c(1,2))

biplot(sparrows.pca)

screeplot(sparrows.pca)
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13.7 PCA for Variable Reduction in Regres-
sion

I will outline an analysis where PCA was used to create predictors in a re-

gression model. The data were selected from the Berkeley Guidance Study, a

longitudinal monitoring of children born in Berkeley, California, between 1928

and 1929. The variables selected from the study are

ID an identification number,

WT2 weight at age 2 in kg,

HT2 height at age 2 in cm,

WT9 weight at age 9,
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HT9 height at age 9,

LG9 leg circumference at age 9 in cm,

ST9 a composite measure of strength at age 9 (higher is stronger),

WT18 weight at age 18,

HT18 height at age 18,

LG18 leg circumference at age 18,

ST18 a composite measure of strength at age 18, and

SOMA somatotype on a 7-point scale, as a measure of fatness (1=slender to

7=fat) determined using a photo taken at age 18.

Data on 26 boys are given below.

We are interested in building a regression model to predict somatotype

(SOMA) from the other variables.
#### Example: BGS (Berkeley Guidance Study)

fn.data <- "http://statacumen.com/teach/ADA2/ADA2_notes_Ch13_bgs.dat"

bgs <- read.table(fn.data, header = TRUE)

str(bgs)

## 'data.frame': 26 obs. of 12 variables:

## $ ID : int 201 202 203 204 205 206 207 209 210 211 ...

## $ WT2 : num 13.6 12.7 12.6 14.8 12.7 11.9 11.5 13.2 16.9 12.7 ...

## $ HT2 : num 90.2 91.4 86.4 87.6 86.7 88.1 82.2 83.8 91 87.4 ...

## $ WT9 : num 41.5 31 30.1 34.1 24.5 29.8 26 30.1 37.9 27 ...

## $ HT9 : num 139 144 136 135 129 ...

## $ LG9 : num 31.6 26 26.6 28.2 24.2 26.7 26.5 27.6 29 26 ...

## $ ST9 : int 74 73 64 75 63 77 45 70 61 74 ...

## $ WT18: num 110.2 79.4 76.3 74.5 55.7 ...

## $ HT18: num 179 195 184 179 172 ...

## $ LG18: num 44.1 36.1 36.9 37.3 31 37 39.1 37.3 33.9 33.3 ...

## $ ST18: int 226 252 216 220 200 215 152 189 183 193 ...

## $ SOMA: num 7 4 6 3 1.5 3 6 4 3 3 ...

head(bgs)

## ID WT2 HT2 WT9 HT9 LG9 ST9 WT18 HT18 LG18 ST18 SOMA

## 1 201 13.6 90.2 41.5 139.4 31.6 74 110.2 179.0 44.1 226 7.0

## 2 202 12.7 91.4 31.0 144.3 26.0 73 79.4 195.1 36.1 252 4.0

## 3 203 12.6 86.4 30.1 136.5 26.6 64 76.3 183.7 36.9 216 6.0

## 4 204 14.8 87.6 34.1 135.4 28.2 75 74.5 178.7 37.3 220 3.0

## 5 205 12.7 86.7 24.5 128.9 24.2 63 55.7 171.5 31.0 200 1.5

## 6 206 11.9 88.1 29.8 136.0 26.7 77 68.2 181.8 37.0 215 3.0

## Scatterplot matrix

library(ggplot2)

#suppressMessages(suppressWarnings(library(GGally)))

library(GGally)
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p <- ggpairs(bgs)

print(p)

# detach package after use so reshape2 works (old reshape (v.1) conflicts)

#detach("package:GGally", unload=TRUE)

#detach("package:reshape", unload=TRUE)
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As an aside, there are other ways to visualize the linear relationships more

quickly. The ellipse library has a function plotcorr(), though it’s output is
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less than ideal. An improvement has been made with an updated version2 of

the plotcorr() function.
## my.plotcorr example, see associated R file for my.plotcorr() function code

# calculate correlations to plot

corr.bgs <- cor(bgs)

# Change the column and row names for clarity

colnames(corr.bgs) = colnames(bgs)

rownames(corr.bgs) = colnames(corr.bgs)

# set colors to use (blue positive, red negative)

colsc=c(rgb(241, 54, 23, maxColorValue=255), 'white', rgb(0, 61, 104, maxColorValue=255))

colramp = colorRampPalette(colsc, space='Lab')

colors = colramp(100)

# plot correlations, colored ellipses on lower diagonal, numerical correlations on upper

my.plotcorr(corr.bgs, col=colors[((corr.bgs + 1)/2) * 100]

, diag='ellipse', upper.panel="number", mar=c(0,2,0,0), main='Correlations')

2http://hlplab.wordpress.com/2012/03/20/correlation-plot-matrices-using-the-ellipse-library/

Prof. Erik B. Erhardt



13.7: PCA for Variable Reduction in Regression 389

Correlations

ID

WT2

HT2

WT9

HT9

LG9

ST9

WT18

HT18

LG18

ST18

SOMA

ID W
T

2

H
T

2

W
T

9

H
T

9

LG
9

S
T

9

W
T

18

H
T

18

LG
18

S
T

18

S
O

M
A

0.09 0.29 −0.08 0.09 −0.07 0.12 −0.3 0.03 −0.24 −0.05 −0.36

0.5 0.58 0.38 0.58 0.35 0.22 0.34 0.2 0.26 −0.28

0.53 0.78 0.28 0.36 0.32 0.68 0.11 0.23 −0.12

0.62 0.91 0.54 0.71 0.38 0.58 0.36 0.16

0.35 0.36 0.27 0.86 0.04 0.18 −0.14

0.52 0.64 0.11 0.66 0.34 0.17

0.19 0.16 0.21 0.66 −0.33

0.18 0.9 0.34 0.6

−0.03 0.19 −0.1

0.28 0.61

−0.23

It is reasonable to expect that the characteristics measured over time, for

example HT2, HT9, and HT18 are strongly correlated. Evidence supporting

this hypothesis is given in the following output, which summarizes correlations

within subsets of the predictors. Two of the three subsets include measures

over time on the same characteristic.
cor(bgs[,c("WT2", "WT9", "WT18")])

## WT2 WT9 WT18
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## WT2 1.0000000 0.5792217 0.2158735

## WT9 0.5792217 1.0000000 0.7089029

## WT18 0.2158735 0.7089029 1.0000000

cor(bgs[,c("HT2", "HT9", "HT18")])

## HT2 HT9 HT18

## HT2 1.0000000 0.7758332 0.6847144

## HT9 0.7758332 1.0000000 0.8644624

## HT18 0.6847144 0.8644624 1.0000000

cor(bgs[,c("LG9", "LG18", "ST9", "ST18")])

## LG9 LG18 ST9 ST18

## LG9 1.0000000 0.6644753 0.5239476 0.3440756

## LG18 0.6644753 1.0000000 0.2085289 0.2845414

## ST9 0.5239476 0.2085289 1.0000000 0.6595947

## ST18 0.3440756 0.2845414 0.6595947 1.0000000

library(ggplot2)

p1 <- ggplot(bgs, aes(x = WT2 , y = WT9 )) + geom_point()

p2 <- ggplot(bgs, aes(x = WT2 , y = WT18)) + geom_point()

p3 <- ggplot(bgs, aes(x = WT9 , y = WT18)) + geom_point()

p4 <- ggplot(bgs, aes(x = HT2 , y = HT9 )) + geom_point()

p5 <- ggplot(bgs, aes(x = HT2 , y = HT18)) + geom_point()

p6 <- ggplot(bgs, aes(x = HT9 , y = HT18)) + geom_point()

p7 <- ggplot(bgs, aes(x = LG9 , y = LG18)) + geom_point()

p8 <- ggplot(bgs, aes(x = ST9 , y = ST18)) + geom_point()

library(gridExtra)

grid.arrange(grobs = list(p1, p2, p3, p4, p5, p6, p7, p8), ncol=3, top="Selected BGS variables")
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Strong correlation among predictors can cause collinearity problems in re-

gression. The presence of collinearity makes the interpretation of regression

effects more difficult, and can reek havoc with the numerical stability of certain

algorithms used to compute least squares summaries. A natural way to avoid

collinearity and improve interpretation of regression effects is to use uncorrelated

linear combinations of the original predictors, such as principal components, to
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build a model.

The interpretation of regression effects changes when linear combinations

of predictors are used in place of the original predictors. However, two models

will be equivalent in the sense of giving identical fitted values when p linearly

independent combinations of p predictors are used. The fitted model can be

expressed in terms of the original predictors, or in terms of the linear combi-

nations. Similarly, standardizing the original predictors does not change the

significance of individual regression effects nor does it change the interpretation

of the model.

A reasonable strategy with the Berkeley data might be to find principal

components for the three height variables separately, the three weights sepa-

rately, and so on. It may not make sense to combine the four different types of

measures (HT, WT, ST, and LG) together because the resulting linear combi-

nations would likely be uninterpretable.

Output from a PCA on the four sets of standardized measures is given

below. Two sets (ST9, ST18) and (LG9, LG18) have two predictors. The PCs

on the strength and leg measures are essentially the sum and difference between

the two standardized features. The loadings have magnitude 0.707 = (1/2)1/2

to satisfy the unit-length restriction.

Here are some comments on how I might use the PCA to build a regression

model to predict somatotype. First, I would not necessarily use the given

PCS, but would instead use interpretable linear combinations that were nearly

identical to the PCs. For example, the first principal component of the heights

is roughly an unweighted average of the weights at ages 2, 9, and 18. I would

use (WT2+WT9+WT18)/3 instead. The overall sum of squared loadings is

not important in the regression analysis. Only the relative sizes are important.

Following this idea, what linear combinations of the heights are reasonable?

Second, you should not assume that principal components with low vari-

ance are unimportant for predicting somatotype. Recall our earlier discussion

on potential problems with ignoring low variability components when group

comparisons are the primary interest. The same problem is possible here.
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Feel free to explore these ideas at your leisure.
# WT

bgsWT.pca <- princomp( ~ WT2 + WT9 + WT18, data = bgs, cor = TRUE)

summary(bgsWT.pca)

## Importance of components:

## Comp.1 Comp.2 Comp.3

## Standard deviation 1.4241276 0.8882456 0.42764499

## Proportion of Variance 0.6760465 0.2629934 0.06096008

## Cumulative Proportion 0.6760465 0.9390399 1.00000000

print(loadings(bgsWT.pca), cutoff = 0)

##

## Loadings:

## Comp.1 Comp.2 Comp.3

## WT2 -0.492 0.781 0.384

## WT9 -0.665 -0.053 -0.745

## WT18 -0.562 -0.622 0.545

##

## Comp.1 Comp.2 Comp.3

## SS loadings 1.000 1.000 1.000

## Proportion Var 0.333 0.333 0.333

## Cumulative Var 0.333 0.667 1.000

# HT

bgsHT.pca <- princomp( ~ HT2 + HT9 + HT18, data = bgs, cor = TRUE)

summary(bgsHT.pca)

## Importance of components:

## Comp.1 Comp.2 Comp.3

## Standard deviation 1.5975991 0.5723653 0.34651866

## Proportion of Variance 0.8507743 0.1092007 0.04002506

## Cumulative Proportion 0.8507743 0.9599749 1.00000000

print(loadings(bgsHT.pca), cutoff = 0)

##

## Loadings:

## Comp.1 Comp.2 Comp.3

## HT2 -0.554 0.800 0.231

## HT9 -0.599 -0.190 -0.778

## HT18 -0.578 -0.570 0.584

##

## Comp.1 Comp.2 Comp.3

## SS loadings 1.000 1.000 1.000

## Proportion Var 0.333 0.333 0.333

## Cumulative Var 0.333 0.667 1.000

# LG

bgsLG.pca <- princomp( ~ LG9 + LG18, data = bgs, cor = TRUE)

summary(bgsLG.pca)

## Importance of components:

## Comp.1 Comp.2
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## Standard deviation 1.2901455 0.5792449

## Proportion of Variance 0.8322377 0.1677623

## Cumulative Proportion 0.8322377 1.0000000

print(loadings(bgsLG.pca), cutoff = 0)

##

## Loadings:

## Comp.1 Comp.2

## LG9 -0.707 0.707

## LG18 -0.707 -0.707

##

## Comp.1 Comp.2

## SS loadings 1.0 1.0

## Proportion Var 0.5 0.5

## Cumulative Var 0.5 1.0

# ST

bgsST.pca <- princomp( ~ ST9 + ST18, data = bgs, cor = TRUE)

summary(bgsST.pca)

## Importance of components:

## Comp.1 Comp.2

## Standard deviation 1.2882526 0.5834426

## Proportion of Variance 0.8297974 0.1702026

## Cumulative Proportion 0.8297974 1.0000000

print(loadings(bgsST.pca), cutoff = 0)

##

## Loadings:

## Comp.1 Comp.2

## ST9 0.707 -0.707

## ST18 0.707 0.707

##

## Comp.1 Comp.2

## SS loadings 1.0 1.0

## Proportion Var 0.5 0.5

## Cumulative Var 0.5 1.0

Prof. Erik B. Erhardt



Chapter 14

Cluster Analysis

14.1 Introduction

Cluster analysis is an exploratory tool for locating and grouping observations

that are similar to each other across features. Cluster analysis can also be used

to group variables that are similar across observations.

Clustering or grouping is distinct from discriminant analysis and classifica-

tion. In discrimination problems there are a given number of known groups to

compare or distinguish. The aim in cluster analysis is to define groups based

on similarities. The clusters are then examined for underlying characteristics

that might help explain the grouping.

There are a variety of clustering algorithms1. I will discuss a simple (ag-

glomerative) hierarchical clustering method for grouping observa-

tions. The method begins with each observation as an individual cluster or

group. The two most similar observations are then grouped, giving one clus-

ter with two observations. The remaining clusters have one observation. The

clusters are then joined sequentially until one cluster is left.

1http://cran.r-project.org/web/views/Cluster.html
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14.1.1 Illustration

To illustrate the steps, suppose eight observations are collected on two features

X1 and X2. A plot of the data is given below.

Step 1. Each observation is a cluster.

Step 2. Form a new cluster by grouping the two clusters that are most

similar, or closest to each other. This leaves seven clusters.

Step 3. Form a new cluster by grouping the two clusters that are most

similar, or closest to each other. This leaves six clusters.

Step 4–7. Continue the process of merging clusters one at a time.

Step 8. Merge (fuse or combine) the remaining two clusters.

Finally Use a tree or dendrogram to summarize the steps in the cluster

formation.
#### Example: Fake data cluster illustration

# convert to a data.frame by reading the text table

intro <- read.table(text = "

x1 x2

4 8

6 6

10 11

11 8

17 5

19 3

20 11

21 2

", header=TRUE)

str(intro)

## 'data.frame': 8 obs. of 2 variables:

## $ x1: int 4 6 10 11 17 19 20 21

## $ x2: int 8 6 11 8 5 3 11 2

# perform PCA on covariance matrix

intro.pca <- princomp( ~ x1 + x2, data = intro)

# plot original data

library(ggplot2)

p1 <- ggplot(intro, aes(x = x1, y = x2))

p1 <- p1 + geom_point() # points

p1 <- p1 + geom_text(aes(label = 1:nrow(intro)), hjust = -0.5, alpha = 0.5) # labels

p1 <- p1 + labs(title = "Introductory example")

print(p1)
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# plot PCA scores (data on PC-scale centered at 0)

library(ggplot2)

p2 <- ggplot(as.data.frame(intro.pca$scores), aes(x = Comp.1, y = Comp.2))

p2 <- p2 + geom_point() # points

p2 <- p2 + geom_text(aes(label = rownames(intro.pca$scores)), hjust = -0.5, alpha = 0.5) # labels

p2 <- p2 + labs(title = "Introductory example, PCA scores")

print(p2)
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Here are the results of one distance measure, which will be discussed in
more detail after the plots. The clustering algorithm order for average linkage
is plotted here.
# create distance matrix between points

intro.dist <- dist(intro)

intro.hc.average <- hclust(intro.dist, method = "average")

op <- par(no.readonly = TRUE) # save original plot options

par(mfrow = c(3,2), mar = c(2, 2, 2.5, 1)) # margins are c(bottom, left, top, right)

library(cluster)

for (i.clus in 7:2) {
clusplot(intro, cutree(intro.hc.average, k = i.clus)

, color = TRUE, labels = 2, lines = 0

, cex = 2, cex.txt = 1, col.txt = "gray20"

, main = paste(i.clus, "clusters"), sub = NULL)

}

par(op) # reset plot options
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The order of clustering is summarized in the average linkage dendrogram on
the right reading the tree from the bottom upwards2.
# create distance matrix between points

intro.dist <- dist(intro)

intro.dist

## 1 2 3 4 5 6

2There are many ways to create dendrograms in R, see http://gastonsanchez.com/blog/how-to/

2012/10/03/Dendrograms.html for several examples.
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## 2 2.828427

## 3 6.708204 6.403124

## 4 7.000000 5.385165 3.162278

## 5 13.341664 11.045361 9.219544 6.708204

## 6 15.811388 13.341664 12.041595 9.433981 2.828427

## 7 16.278821 14.866069 10.000000 9.486833 6.708204 8.062258

## 8 18.027756 15.524175 14.212670 11.661904 5.000000 2.236068

## 7

## 2

## 3

## 4

## 5

## 6

## 7

## 8 9.055385

op <- par(no.readonly = TRUE) # save original plot options

par(mfrow = c(1,3)) # margins are c(bottom, left, top, right)

intro.hc.single <- hclust(intro.dist, method = "single")

# note: plotting used to use plclust()

plot(intro.hc.single, hang = -1, main = "single")

intro.hc.complete <- hclust(intro.dist, method = "complete")

plot(intro.hc.complete, hang = -1, main = "complete")

intro.hc.average <- hclust(intro.dist, method = "average")

plot(intro.hc.average, hang = -1, main = "average")

par(op) # reset plot options
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14.1.2 Distance measures

There are several accepted measures of distance between clusters. The single

linkage distance is the minimum distance between points across two clusters.

The complete linkage distance is the maximum distance between points

across two clusters. The average linkage distance is the average distance

between points across two clusters. In these three cases the distance between

points is the Euclidean or “ruler” distance. The pictures below illustrate the

measures.

Given a distance measure, the distance between each pair of clusters is eval-

uated at each step. The two clusters that are closest to each other are merged.

The observations are usually standardized prior to clustering to eliminate the

effect of different variability on the distance measure.
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Different distance measures can produce different shape clusters.

Single uses the length of the shortest line between points in clusters.

Single linkage has the ability to produce and detect elongated and irregular

clusters.

Complete uses the length of the longest line between points in clusters.

Complete linkage is biased towards producing clusters with roughly equal

diameters.

Average uses the average length of all line between points in clusters.

Average linkage tends to produce clusters with similar variability.

You should try different distances to decide the most sensible measure for your

problem.

14.2 Example: Mammal teeth

The table below gives the numbers of different types of teeth for 32 mammals.

The columns, from left to right, give the numbers of (v1) top incisors, (v2)

bottom incisors, (v3) top canines, (v4) bottom canines, (v5) top premolars,

(v6) bottom premolars, (v7) top molars, (v8) bottom molars, respectively. A

cluster analysis will be used to identify the mammals that have similar counts

across the eight types of teeth.
#### Example: Mammal teeth

## Mammal teeth data

# mammal = name

# number of teeth
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# v1 = top incisors

# v2 = bottom incisors

# v3 = top canines

# v4 = bottom canines

# v5 = top premolars

# v6 = bottom premolars

# v7 = top molars

# v8 = bottom molars

fn.data <- "http://statacumen.com/teach/ADA2/ADA2_notes_Ch14_teeth.dat"

teeth <- read.table(fn.data, header = TRUE)

str(teeth)

## 'data.frame': 32 obs. of 9 variables:

## $ mammal: Factor w/ 32 levels "Badger","Bear",..: 4 17 29 19 13 24 20 22 3 12 ...

## $ v1 : int 2 3 2 2 2 1 2 2 1 1 ...

## $ v2 : int 3 2 3 3 3 3 1 1 1 1 ...

## $ v3 : int 1 1 1 1 1 1 0 0 0 0 ...

## $ v4 : int 1 0 1 1 1 1 0 0 0 0 ...

## $ v5 : int 3 3 2 2 1 2 2 3 2 2 ...

## $ v6 : int 3 3 3 2 2 2 2 2 1 1 ...

## $ v7 : int 3 3 3 3 3 3 3 3 3 3 ...

## $ v8 : int 3 3 3 3 3 3 3 3 3 3 ...

mammal v1 v2 v3 v4 v5 v6 v7 v8
1 Brown Bat 2 3 1 1 3 3 3 3
2 Mole 3 2 1 0 3 3 3 3
3 Silver Hair Bat 2 3 1 1 2 3 3 3
4 Pigmy Bat 2 3 1 1 2 2 3 3
5 House Bat 2 3 1 1 1 2 3 3
6 Red Bat 1 3 1 1 2 2 3 3
7 Pika 2 1 0 0 2 2 3 3
8 Rabbit 2 1 0 0 3 2 3 3
9 Beaver 1 1 0 0 2 1 3 3

10 Groundhog 1 1 0 0 2 1 3 3
11 Gray Squirrel 1 1 0 0 1 1 3 3
12 House Mouse 1 1 0 0 0 0 3 3
13 Porcupine 1 1 0 0 1 1 3 3
14 Wolf 3 3 1 1 4 4 2 3
15 Bear 3 3 1 1 4 4 2 3
16 Raccoon 3 3 1 1 4 4 3 2
17 Marten 3 3 1 1 4 4 1 2
18 Weasel 3 3 1 1 3 3 1 2
19 Wolverine 3 3 1 1 4 4 1 2
20 Badger 3 3 1 1 3 3 1 2
21 River Otter 3 3 1 1 4 3 1 2
22 Sea Otter 3 2 1 1 3 3 1 2
23 Jaguar 3 3 1 1 3 2 1 1
24 Cougar 3 3 1 1 3 2 1 1
25 Fur Seal 3 2 1 1 4 4 1 1
26 Sea Lion 3 2 1 1 4 4 1 1
27 Grey Seal 3 2 1 1 3 3 2 2
28 Elephant Seal 2 1 1 1 4 4 1 1
29 Reindeer 0 4 1 0 3 3 3 3
30 Elk 0 4 1 0 3 3 3 3
31 Deer 0 4 0 0 3 3 3 3
32 Moose 0 4 0 0 3 3 3 3
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The program below produces cluster analysis summaries for the mammal

teeth data.
# create distance matrix between points

teeth.dist <- dist(teeth[,-1])

# number of clusters to identify with red boxes and ellipses

# i.clus <- 8

# create dendrogram

teeth.hc.average <- hclust(teeth.dist, method = "average")

plot(teeth.hc.average, hang = -1

, main = paste("Teeth with average linkage") # and", i.clus, "clusters")

, labels = teeth[,1])

# rect.hclust(teeth.hc.average, k = i.clus)

# # create PCA scores plot with ellipses

# clusplot(teeth, cutree(teeth.hc.average, k = i.clus)

# , color = TRUE, labels = 2, lines = 0

# , cex = 2, cex.txt = 1, col.txt = "gray20"

# , main = paste("Teeth PCA with average linkage and", i.clus, "clusters")

# , sub = NULL)
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14.3 Identifying the Number of Clusters

Cluster analysis can be used to produce an “optimal” splitting of the data into

a prespecified number of groups or clusters, with different algorithms3 usually

giving different clusters. However, the important issue in many analyses revolves

around identifying the number of clusters in the data. A simple empirical

method is to continue grouping until the clusters being fused are relatively

dissimilar, as measured by the normalized RMS between clusters. Experience

with your data is needed to provide a reasonable stopping rule.

3There are thirty in this package: http://cran.r-project.org/web/packages/NbClust/NbClust.

pdf
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# NbClust provides methods for determining the number of clusters

library(NbClust)

str(teeth)

## 'data.frame': 32 obs. of 9 variables:

## $ mammal: Factor w/ 32 levels "Badger","Bear",..: 4 17 29 19 13 24 20 22 3 12 ...

## $ v1 : int 2 3 2 2 2 1 2 2 1 1 ...

## $ v2 : int 3 2 3 3 3 3 1 1 1 1 ...

## $ v3 : int 1 1 1 1 1 1 0 0 0 0 ...

## $ v4 : int 1 0 1 1 1 1 0 0 0 0 ...

## $ v5 : int 3 3 2 2 1 2 2 3 2 2 ...

## $ v6 : int 3 3 3 2 2 2 2 2 1 1 ...

## $ v7 : int 3 3 3 3 3 3 3 3 3 3 ...

## $ v8 : int 3 3 3 3 3 3 3 3 3 3 ...

# Because the data type is "int" for integer, the routine fails (error expected)

NbClust(teeth[,-1], method = "average", index = "all")

## Error in solve.default(W): system is computationally singular: reciprocal condition number

= 1.51394e-16

# However, change the data type from integer to numeric and it works just fine!

teeth.num <- as.numeric(as.matrix(teeth[,-1]))

NC.out <- NbClust(teeth.num, method = "average", index = "all")

## Warning in max(DiffLev[, 5], na.rm = TRUE): no non-missing arguments to max; returning

-Inf

## *** : The Hubert index is a graphical method of determining the number of clusters.

## In the plot of Hubert index, we seek a significant knee that corresponds to a

## significant increase of the value of the measure i.e the significant peak in Hubert

## index second differences plot.

##

## *** : The D index is a graphical method of determining the number of clusters.

## In the plot of D index, we seek a significant knee (the significant peak in Dindex

## second differences plot) that corresponds to a significant increase of the value of

## the measure.

##

## Warning in matrix(c(results), nrow = 2, ncol = 26): data length [51] is not a sub-multiple

or multiple of the number of rows [2]

## Warning in matrix(c(results), nrow = 2, ncol = 26, dimnames = list(c("Number clusters",

: data length [51] is not a sub-multiple or multiple of the number of rows [2]

## *******************************************************************

## * Among all indices:

## * 1 proposed 4 as the best number of clusters

## * 5 proposed 5 as the best number of clusters

##

## ***** Conclusion *****

##

## * According to the majority rule, the best number of clusters is 5

##

##

## *******************************************************************
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# most of the methods suggest 4 or 5 clusters, as do the plots

NC.out$Best.nc

## KL CH Hartigan CCC Scott Marriot TrCovW

## Number_clusters 5 5 4 5.0000 5.000 5 -Inf

## Value_Index Inf Inf Inf 369.1341 7787.404 414 5

## TraceW Friedman Rubin Cindex DB

## Number_clusters 25.875 8.720698e+14 -9.810785e+14 0 0

## Value_Index 5.000 5.000000e+00 6.000000e+00 5 5

## Silhouette Duda PseudoT2 Beale Ratkowsky Ball

## Number_clusters 1 0.4663 168.2472 0.3789 0.4737 61.8333

## Value_Index 2 2.0000 2.0000 3.0000 3.0000 3.0000

## PtBiserial Frey McClain Dunn Hubert SDindex Dindex

## Number_clusters 0.7713 NA 0 Inf 0 Inf 0

## Value_Index 1.0000 5 5 0 2 0 5

## SDbw

## Number_clusters 0

## Value_Index 5
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There are several statistical methods for selecting the number of clusters. No

method is best. They suggest using the cubic clustering criteria (ccc), a pseudo-

F statistic, and a pseudo-t statistic. At a given step, the pseudo-t statistic is

the distance between the center of the two clusters to be merged, relative to

the variability within these clusters. A large pseudo-t statistic implies that

the clusters to be joined are relatively dissimilar (i.e., much more variability

between the clusters to be merged than within these clusters). The pseudo-

F statistic at a given step measures the variability among the centers of the

current clusters relative to the variability within the clusters. A large pseudo-F

value implies that the clusters merged consist of fairly similar observations. As

clusters are joined, the pseudo-t statistic tends to increase, and the pseudo-F

statistic tends to decrease. The ccc is more difficult to describe.

The RSQ summary is also useful for determining the number of clusters.

RSQ is a pseudo-R2 statistic that measures the proportion of the total variation

explained by the differences among the existing clusters at a given step. RSQ

will typically decrease as the pseudo-F statistic decreases.

A common recommendation on cluster selection is to choose a clus-

ter size where the values of ccc and the pseudo-F statistic are relatively high

(compared to what you observe with other numbers of clusters), and where

the pseudo-t statistic is relatively low and increases substantially at the next

proposed merger. For the mammal teeth data this corresponds to four clusters.

Six clusters is a sensible second choice.

Let’s look at the results of 5 clusters.
# create distance matrix between points

teeth.dist <- dist(teeth[,-1])

# number of clusters to identify with red boxes and ellipses

i.clus <- 5

# create dendrogram

teeth.hc.average <- hclust(teeth.dist, method = "average")

plot(teeth.hc.average, hang = -1

, main = paste("Teeth with average linkage and", i.clus, "clusters")

, labels = teeth[,1])

rect.hclust(teeth.hc.average, k = i.clus)
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# create PCA scores plot with ellipses

clusplot(teeth, cutree(teeth.hc.average, k = i.clus)

, color = TRUE, labels = 2, lines = 0

, cex = 2, cex.txt = 1, col.txt = "gray20"

, main = paste("Teeth PCA with average linkage and", i.clus, "clusters")

, sub = NULL)
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# print the observations in each cluster

for (i.cut in 1:i.clus) {
print(paste("Cluster", i.cut, " ----------------------------- "))

print(teeth[(cutree(teeth.hc.average, k = i.clus) == i.cut),])

}
## [1] "Cluster 1 ----------------------------- "

## mammal v1 v2 v3 v4 v5 v6 v7 v8

## 1 Brown_Bat 2 3 1 1 3 3 3 3

## 3 Silver_Hair_Bat 2 3 1 1 2 3 3 3

## 4 Pigmy_Bat 2 3 1 1 2 2 3 3

## 5 House_Bat 2 3 1 1 1 2 3 3

## 6 Red_Bat 1 3 1 1 2 2 3 3

## [1] "Cluster 2 ----------------------------- "

## mammal v1 v2 v3 v4 v5 v6 v7 v8

## 2 Mole 3 2 1 0 3 3 3 3

## 7 Pika 2 1 0 0 2 2 3 3

## 8 Rabbit 2 1 0 0 3 2 3 3

## [1] "Cluster 3 ----------------------------- "

## mammal v1 v2 v3 v4 v5 v6 v7 v8

## 9 Beaver 1 1 0 0 2 1 3 3

## 10 Groundhog 1 1 0 0 2 1 3 3

## 11 Gray_Squirrel 1 1 0 0 1 1 3 3

## 12 House_Mouse 1 1 0 0 0 0 3 3

## 13 Porcupine 1 1 0 0 1 1 3 3
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14.4: Example: 1976 birth and death rates 411

## [1] "Cluster 4 ----------------------------- "

## mammal v1 v2 v3 v4 v5 v6 v7 v8

## 14 Wolf 3 3 1 1 4 4 2 3

## 15 Bear 3 3 1 1 4 4 2 3

## 16 Raccoon 3 3 1 1 4 4 3 2

## 17 Marten 3 3 1 1 4 4 1 2

## 18 Weasel 3 3 1 1 3 3 1 2

## 19 Wolverine 3 3 1 1 4 4 1 2

## 20 Badger 3 3 1 1 3 3 1 2

## 21 River_Otter 3 3 1 1 4 3 1 2

## 22 Sea_Otter 3 2 1 1 3 3 1 2

## 23 Jaguar 3 3 1 1 3 2 1 1

## 24 Cougar 3 3 1 1 3 2 1 1

## 25 Fur_Seal 3 2 1 1 4 4 1 1

## 26 Sea_Lion 3 2 1 1 4 4 1 1

## 27 Grey_Seal 3 2 1 1 3 3 2 2

## 28 Elephant_Seal 2 1 1 1 4 4 1 1

## [1] "Cluster 5 ----------------------------- "

## mammal v1 v2 v3 v4 v5 v6 v7 v8

## 29 Reindeer 0 4 1 0 3 3 3 3

## 30 Elk 0 4 1 0 3 3 3 3

## 31 Deer 0 4 0 0 3 3 3 3

## 32 Moose 0 4 0 0 3 3 3 3

14.4 Example: 1976 birth and death rates

Below are the 1976 crude birth and death rates in 74 countries. A data plot

and output from a complete and single linkage cluster analyses are given.
#### Example: Birth and death rates

fn.data <- "http://statacumen.com/teach/ADA2/ADA2_notes_Ch14_birthdeath.dat"

bd <- read.table(fn.data, header = TRUE)

str(bd)

## 'data.frame': 74 obs. of 3 variables:

## $ country: Factor w/ 74 levels "afghan","algeria",..: 1 2 3 4 5 6 7 8 9 10 ...

## $ birth : int 52 50 47 22 16 12 47 12 36 17 ...

## $ death : int 30 16 23 10 8 13 19 12 10 10 ...
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country birth death
1 afghan 52 30
2 algeria 50 16
3 angola 47 23
4 argentina 22 10
5 australia 16 8
6 austria 12 13
7 banglades 47 19
8 belguim 12 12
9 brazil 36 10

10 bulgaria 17 10
11 burma 38 15
12 cameroon 42 22
13 canada 17 7
14 chile 22 7
15 china 31 11
16 taiwan 26 5
17 columbia 34 10
18 cuba 20 6
19 czechosla 19 11
20 ecuador 42 11
21 egypt 39 13
22 ethiopia 48 23
23 france 14 11
24 german dr 12 14
25 german fr 10 12

country birth death
26 ghana 46 14
27 greece 16 9
28 guatamala 40 14
29 hungary 18 12
30 india 36 15
31 indonesia 38 16
32 iran 42 12
33 iraq 48 14
34 italy 14 10
35 ivory cst 48 23
36 japan 16 6
37 kenya 50 14
38 nkorea 43 12
39 skorea 26 6
40 madagasca 47 22
41 malaysia 30 6
42 mexico 40 7
43 morocco 47 16
44 mozambique 45 18
45 nepal 46 20
46 netherlan 13 8
47 nigeria 49 22
48 pakistan 44 14
49 peru 40 13
50 phillip 34 10

country birth death
51 poland 20 9
52 portugal 19 10
53 rhodesia 48 14
54 romania 19 10
55 saudi ar 49 19
56 sth africa 36 12
57 spain 18 8
58 sri lanka 26 9
59 sudan 49 17
60 sweden 12 11
61 switzer 12 9
62 syria 47 14
63 tanzania 47 17
64 thailand 34 10
65 turkey 34 12
66 ussr 18 9
67 uganda 48 17
68 uk 12 12
69 usa 15 9
70 upp volta 50 28
71 venez 36 6
72 vietnam 42 17
73 yugoslav 18 8
74 zaire 45 18

# plot original data

library(ggplot2)

p1 <- ggplot(bd, aes(x = birth, y = death))

p1 <- p1 + geom_point(size = 2) # points

p1 <- p1 + geom_text(aes(label = country), hjust = -0.1, alpha = 0.2) # labels

p1 <- p1 + coord_fixed(ratio = 1) # makes 1 unit equal length on x- and y-axis

p1 <- p1 + labs(title = "1976 crude birth and death rates")

print(p1)
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1976 crude birth and death rates

14.4.1 Complete linkage

library(NbClust)

# Change integer data type to numeric

bd.num <- as.numeric(as.matrix(bd[,-1]))

NC.out <- NbClust(bd.num, method = "complete", index = "all")

## Warning in max(DiffLev[, 5], na.rm = TRUE): no non-missing arguments to max; returning

-Inf

## *** : The Hubert index is a graphical method of determining the number of clusters.

## In the plot of Hubert index, we seek a significant knee that corresponds to a

## significant increase of the value of the measure i.e the significant peak in Hubert

## index second differences plot.

##

## *** : The D index is a graphical method of determining the number of clusters.

## In the plot of D index, we seek a significant knee (the significant peak in Dindex

## second differences plot) that corresponds to a significant increase of the value of

## the measure.
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##

## Warning in matrix(c(results), nrow = 2, ncol = 26): data length [51] is not a sub-multiple

or multiple of the number of rows [2]

## Warning in matrix(c(results), nrow = 2, ncol = 26, dimnames = list(c("Number clusters",

: data length [51] is not a sub-multiple or multiple of the number of rows [2]

## *******************************************************************

## * Among all indices:

## * 2 proposed 2 as the best number of clusters

## * 1 proposed 4 as the best number of clusters

## * 1 proposed 5 as the best number of clusters

## * 1 proposed 6 as the best number of clusters

## * 1 proposed 15 as the best number of clusters

##

## ***** Conclusion *****

##

## * According to the majority rule, the best number of clusters is 2

##

##

## *******************************************************************

# most of the methods suggest 2 to 6 clusters, as do the plots

NC.out$Best.nc

## KL CH Hartigan CCC Scott Marriot

## Number_clusters 2.000 15.000 5.0000 2.0000 4.0000 6.000

## Value_Index 3.333 1780.714 209.2456 20.7606 86.7855 9041.261

## TrCovW TraceW Friedman Rubin Cindex DB

## Number_clusters -Inf 854.6162 395.428 -131.4723 0.2254 0.4292

## Value_Index 4 15.0000 13.000 2.0000 2.0000 2.0000

## Silhouette Duda PseudoT2 Beale Ratkowsky Ball

## Number_clusters 0.7468 0.2486 142.0413 0.9864 0.4628 5166.333

## Value_Index 2.0000 2.0000 2.0000 3.0000 3.0000 2.000

## PtBiserial Frey McClain Dunn Hubert SDindex

## Number_clusters 0.8512 3.5386 0.1705 0.3333 0 0.3167

## Value_Index 3.0000 2.0000 13.0000 0.0000 3 0.0000

## Dindex SDbw

## Number_clusters 0 0.0073

## Value_Index 15 2.0000
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Let’s try 3 clusters based on the dendrogram plots below. First we’ll use

complete linkage.
# create distance matrix between points

bd.dist <- dist(bd[,-1])

# number of clusters to identify with red boxes and ellipses

i.clus <- 3

# create dendrogram
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bd.hc.complete <- hclust(bd.dist, method = "complete")

plot(bd.hc.complete, hang = -1

, main = paste("Teeth with complete linkage and", i.clus, "clusters")

, labels = bd[,1])

rect.hclust(bd.hc.complete, k = i.clus)

# create PCA scores plot with ellipses

clusplot(bd, cutree(bd.hc.complete, k = i.clus)

, color = TRUE, labels = 2, lines = 0

, cex = 2, cex.txt = 1, col.txt = "gray20"

, main = paste("Birth/Death PCA with complete linkage and", i.clus, "clusters"), sub = NULL)

# create a column with group membership

bd$cut.comp <- factor(cutree(bd.hc.complete, k = i.clus))
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# print the observations in each cluster

for (i.cut in 1:i.clus) {
print(paste("Cluster", i.cut, " ----------------------------- "))

print(bd[(cutree(bd.hc.complete, k = i.clus) == i.cut),])

}
## [1] "Cluster 1 ----------------------------- "

## country birth death cut.comp

## 1 afghan 52 30 1

## 2 algeria 50 16 1

## 3 angola 47 23 1

## 7 banglades 47 19 1

## 12 cameroon 42 22 1

## 22 ethiopia 48 23 1

## 26 ghana 46 14 1

## 33 iraq 48 14 1

## 35 ivory_cst 48 23 1

## 37 kenya 50 14 1

## 40 madagasca 47 22 1

## 43 morocco 47 16 1

## 44 mozambique 45 18 1

## 45 nepal 46 20 1

## 47 nigeria 49 22 1

## 53 rhodesia 48 14 1
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## 55 saudi_ar 49 19 1

## 59 sudan 49 17 1

## 62 syria 47 14 1

## 63 tanzania 47 17 1

## 67 uganda 48 17 1

## 70 upp_volta 50 28 1

## 72 vietnam 42 17 1

## 74 zaire 45 18 1

## [1] "Cluster 2 ----------------------------- "

## country birth death cut.comp

## 4 argentina 22 10 2

## 5 australia 16 8 2

## 6 austria 12 13 2

## 8 belguim 12 12 2

## 10 bulgaria 17 10 2

## 13 canada 17 7 2

## 14 chile 22 7 2

## 18 cuba 20 6 2

## 19 czechosla 19 11 2

## 23 france 14 11 2

## 24 german_dr 12 14 2

## 25 german_fr 10 12 2

## 27 greece 16 9 2

## 29 hungary 18 12 2

## 34 italy 14 10 2

## 36 japan 16 6 2

## 46 netherlan 13 8 2

## 51 poland 20 9 2

## 52 portugal 19 10 2

## 54 romania 19 10 2

## 57 spain 18 8 2

## 60 sweden 12 11 2

## 61 switzer 12 9 2

## 66 ussr 18 9 2

## 68 uk 12 12 2

## 69 usa 15 9 2

## 73 yugoslav 18 8 2

## [1] "Cluster 3 ----------------------------- "

## country birth death cut.comp

## 9 brazil 36 10 3

## 11 burma 38 15 3

## 15 china 31 11 3

## 16 taiwan 26 5 3

## 17 columbia 34 10 3

## 20 ecuador 42 11 3

## 21 egypt 39 13 3

## 28 guatamala 40 14 3

## 30 india 36 15 3
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## 31 indonesia 38 16 3

## 32 iran 42 12 3

## 38 nkorea 43 12 3

## 39 skorea 26 6 3

## 41 malaysia 30 6 3

## 42 mexico 40 7 3

## 48 pakistan 44 14 3

## 49 peru 40 13 3

## 50 phillip 34 10 3

## 56 sth_africa 36 12 3

## 58 sri_lanka 26 9 3

## 64 thailand 34 10 3

## 65 turkey 34 12 3

## 71 venez 36 6 3

# plot original data

library(ggplot2)

p1 <- ggplot(bd, aes(x = birth, y = death, colour = cut.comp, shape = cut.comp))

p1 <- p1 + geom_point(size = 2) # points

p1 <- p1 + geom_text(aes(label = country), hjust = -0.1, alpha = 0.2) # labels

p1 <- p1 + coord_fixed(ratio = 1) # makes 1 unit equal length on x- and y-axis

p1 <- p1 + labs(title = "1976 crude birth and death rates, complete linkage")

print(p1)
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1976 crude birth and death rates, complete linkage
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In very general/loose terms4, it appears that at least some members of the

“Four Asian Tigers5” are toward the bottom of the swoop, while the countries

with more Euro-centric wealth are mostly clustered on the left side of the swoop,

and many developing countries make up the steeper right side of the swoop.

Perhaps the birth and death rates of a given country are influenced in part by

the primary means by which the country has obtained wealth6 (if it is consid-

ered a wealthy country). For example, the Four Asian Tigers have supposedly

developed wealth in more recent years through export-driven economies, and

the Tiger Cub Economies7 are currently developing in a similar fashion8.

14.4.2 Single linkage

Now we’ll use single linkage to compare.
library(NbClust)
# Change integer data type to numeric
bd.num <- as.numeric(as.matrix(bd[,-1]))
NC.out <- NbClust(bd.num, method = "single", index = "all")

## Warning in max(DiffLev[, 5], na.rm = TRUE): no non-missing arguments to max; returning -Inf
## *** : The Hubert index is a graphical method of determining the number of clusters.
## In the plot of Hubert index, we seek a significant knee that corresponds to a
## significant increase of the value of the measure i.e the significant peak in Hubert
## index second differences plot.
##
## *** : The D index is a graphical method of determining the number of clusters.
## In the plot of D index, we seek a significant knee (the significant peak in Dindex
## second differences plot) that corresponds to a significant increase of the value of
## the measure.
##
## Warning in matrix(c(results), nrow = 2, ncol = 26): data length [51] is not a sub-multiple or multiple of the number of rows
[2]
## Warning in matrix(c(results), nrow = 2, ncol = 26, dimnames = list(c("Number clusters", : data length [51] is not a sub-multiple
or multiple of the number of rows [2]
## *******************************************************************
## * Among all indices:
## * 1 proposed 2 as the best number of clusters
## * 1 proposed 5 as the best number of clusters
## * 2 proposed 6 as the best number of clusters
## * 1 proposed 7 as the best number of clusters
## * 1 proposed 11 as the best number of clusters
##
## ***** Conclusion *****
##
## * According to the majority rule, the best number of clusters is 6
##
##
## *******************************************************************

4Thanks to Drew Enigk from Spring 2013 who provided this interpretation.
5http://en.wikipedia.org/wiki/Four_Asian_Tigers
6http://www.povertyeducation.org/the-rise-of-asia.html
7http://en.wikipedia.org/wiki/Tiger_Cub_Economies
8http://www.investopedia.com/terms/t/tiger-cub-economies.asp
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# most of the methods suggest 4 to 11 clusters, as do the plots
NC.out$Best.nc

## KL CH Hartigan CCC Scott Marriot
## Number_clusters 7.0000 11.0000 5.0000 2.0000 6.0000 6.0
## Value_Index 8.5944 342.3491 473.8986 13.7816 221.8442 115129.2
## TrCovW TraceW Friedman Rubin Cindex DB
## Number_clusters -Inf 4990.876 20.3754 -12.0601 0.189 0.341
## Value_Index 6 6.000 6.0000 7.0000 15.000 2.000
## Silhouette Duda PseudoT2 Beale Ratkowsky Ball
## Number_clusters 0.7364 0.4667 53.7092 0.373 0.3521 9161.833
## Value_Index 2.0000 2.0000 2.0000 7.000 3.0000 2.000
## PtBiserial Frey McClain Dunn Hubert SDindex
## Number_clusters 0.8462 4.0846 0.1235 0.1364 0 0.5134
## Value_Index 2.0000 2.0000 3.0000 0.0000 3 0.0000
## Dindex SDbw
## Number_clusters 0 0.0442
## Value_Index 15 7.0000
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# create distance matrix between points
bd.dist <- dist(bd[,-1])

# number of clusters to identify with red boxes and ellipses
i.clus <- 3

# create dendrogram
bd.hc.single <- hclust(bd.dist, method = "single")
plot(bd.hc.single, hang = -1

, main = paste("Teeth with single linkage and", i.clus, "clusters")
, labels = bd[,1])

rect.hclust(bd.hc.single, k = i.clus)

# create PCA scores plot with ellipses
clusplot(bd, cutree(bd.hc.single, k = i.clus)

, color = TRUE, labels = 2, lines = 0
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, cex = 2, cex.txt = 1, col.txt = "gray20"
, main = paste("Birth/Death PCA with single linkage and", i.clus, "clusters")
, sub = NULL)

# create a column with group membership
bd$cut.sing <- factor(cutree(bd.hc.single, k = i.clus))
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14.4: Example: 1976 birth and death rates 425

# print the observations in each cluster

for (i.cut in 1:i.clus) {
print(paste("Cluster", i.cut, " ----------------------------- "))

print(bd[(cutree(bd.hc.single, k = i.clus) == i.cut),])

}

## [1] "Cluster 1 ----------------------------- "

## country birth death cut.comp cut.sing

## 1 afghan 52 30 1 1

## 70 upp_volta 50 28 1 1

## [1] "Cluster 2 ----------------------------- "

## country birth death cut.comp cut.sing

## 2 algeria 50 16 1 2

## 3 angola 47 23 1 2

## 7 banglades 47 19 1 2

## 9 brazil 36 10 3 2

## 11 burma 38 15 3 2

## 12 cameroon 42 22 1 2

## 15 china 31 11 3 2

## 17 columbia 34 10 3 2

## 20 ecuador 42 11 3 2

## 21 egypt 39 13 3 2

## 22 ethiopia 48 23 1 2

## 26 ghana 46 14 1 2

## 28 guatamala 40 14 3 2

## 30 india 36 15 3 2

## 31 indonesia 38 16 3 2

## 32 iran 42 12 3 2

## 33 iraq 48 14 1 2

## 35 ivory_cst 48 23 1 2

## 37 kenya 50 14 1 2

## 38 nkorea 43 12 3 2

## 40 madagasca 47 22 1 2

## 42 mexico 40 7 3 2

## 43 morocco 47 16 1 2

## 44 mozambique 45 18 1 2

## 45 nepal 46 20 1 2

## 47 nigeria 49 22 1 2

## 48 pakistan 44 14 3 2

## 49 peru 40 13 3 2

## 50 phillip 34 10 3 2

## 53 rhodesia 48 14 1 2

## 55 saudi_ar 49 19 1 2

## 56 sth_africa 36 12 3 2

## 59 sudan 49 17 1 2

## 62 syria 47 14 1 2

## 63 tanzania 47 17 1 2

## 64 thailand 34 10 3 2

## 65 turkey 34 12 3 2
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426 Ch 14: Cluster Analysis

## 67 uganda 48 17 1 2

## 71 venez 36 6 3 2

## 72 vietnam 42 17 1 2

## 74 zaire 45 18 1 2

## [1] "Cluster 3 ----------------------------- "

## country birth death cut.comp cut.sing

## 4 argentina 22 10 2 3

## 5 australia 16 8 2 3

## 6 austria 12 13 2 3

## 8 belguim 12 12 2 3

## 10 bulgaria 17 10 2 3

## 13 canada 17 7 2 3

## 14 chile 22 7 2 3

## 16 taiwan 26 5 3 3

## 18 cuba 20 6 2 3

## 19 czechosla 19 11 2 3

## 23 france 14 11 2 3

## 24 german_dr 12 14 2 3

## 25 german_fr 10 12 2 3

## 27 greece 16 9 2 3

## 29 hungary 18 12 2 3

## 34 italy 14 10 2 3

## 36 japan 16 6 2 3

## 39 skorea 26 6 3 3

## 41 malaysia 30 6 3 3

## 46 netherlan 13 8 2 3

## 51 poland 20 9 2 3

## 52 portugal 19 10 2 3

## 54 romania 19 10 2 3

## 57 spain 18 8 2 3

## 58 sri_lanka 26 9 3 3

## 60 sweden 12 11 2 3

## 61 switzer 12 9 2 3

## 66 ussr 18 9 2 3

## 68 uk 12 12 2 3

## 69 usa 15 9 2 3

## 73 yugoslav 18 8 2 3

# plot original data
library(ggplot2)
p1 <- ggplot(bd, aes(x = birth, y = death, colour = cut.sing, shape = cut.sing))
p1 <- p1 + geom_point(size = 2) # points
p1 <- p1 + geom_text(aes(label = country), hjust = -0.1, alpha = 0.2) # labels
p1 <- p1 + coord_fixed(ratio = 1) # makes 1 unit equal length on x- and y-axis
p1 <- p1 + labs(title = "1976 crude birth and death rates, single linkage")
print(p1)
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1976 crude birth and death rates, single linkage

The two methods suggest three clusters. Complete linkage also suggests 14

clusters, but the clusters were unappealing so this analysis will not be presented

here.

The three clusters generated by the two methods are very different. The

same tendency was observed using average linkage and Ward’s method.

An important point to recognize is that different clustering algorithms may

agree on the number of clusters, but they may not agree on the composition of

the clusters.
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Chapter 15

Multivariate Analysis of
Variance

Jolicouer and Mosimann studied the relationship between the size and shape

of painted turtles. The table below gives the length, width, and height (all in

mm) for 24 males and 24 females.
#### Example: Painted turtle shells

fn.data <- "http://statacumen.com/teach/ADA2/ADA2_notes_Ch15_shells_mf.dat"

shells <- read.table(fn.data, header = TRUE)

str(shells)

## 'data.frame': 48 obs. of 4 variables:

## $ sex : Factor w/ 2 levels "F","M": 1 1 1 1 1 1 1 1 1 1 ...

## $ length: int 98 103 103 105 109 123 123 133 133 133 ...

## $ width : int 81 84 86 86 88 92 95 99 102 102 ...

## $ height: int 38 38 42 42 44 50 46 51 51 51 ...

#head(shells)
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sex length width height
1 F 98 81 38
2 F 103 84 38
3 F 103 86 42
4 F 105 86 42
5 F 109 88 44
6 F 123 92 50
7 F 123 95 46
8 F 133 99 51
9 F 133 102 51

10 F 133 102 51
11 F 134 100 48
12 F 136 102 49
13 F 138 98 51
14 F 138 99 51
15 F 141 105 53
16 F 147 108 57
17 F 149 107 55
18 F 153 107 56
19 F 155 115 63
20 F 155 117 60
21 F 158 115 62
22 F 159 118 63
23 F 162 124 61
24 F 177 132 67

sex length width height
25 M 93 74 37
26 M 94 78 35
27 M 96 80 35
28 M 101 84 39
29 M 102 85 38
30 M 103 81 37
31 M 104 83 39
32 M 106 83 39
33 M 107 82 38
34 M 112 89 40
35 M 113 88 40
36 M 114 86 40
37 M 116 90 43
38 M 117 90 41
39 M 117 91 41
40 M 119 93 41
41 M 120 89 40
42 M 121 93 44
43 M 121 95 42
44 M 125 93 45
45 M 127 96 45
46 M 128 95 45
47 M 131 95 46
48 M 135 106 47

## Scatterplot matrix

library(ggplot2)

#suppressMessages(suppressWarnings(library(GGally)))

library(GGally)

# color by sex

p <- ggpairs(shells

, mapping = ggplot2::aes(colour = sex, alpha = 0.5)

, title = "Painted turtle shells")

print(p)

## ‘stat bin()‘ using ‘bins = 30‘. Pick better value with ‘binwidth‘.

## ‘stat bin()‘ using ‘bins = 30‘. Pick better value with ‘binwidth‘.

## ‘stat bin()‘ using ‘bins = 30‘. Pick better value with ‘binwidth‘.

# detach package after use so reshape2 works (old reshape (v.1) conflicts)

#detach("package:GGally", unload=TRUE)

#detach("package:reshape", unload=TRUE)

## 3D scatterplot

library(scatterplot3d)

with(shells, {
scatterplot3d(x = length

, y = width

, z = height

, main = "Shells 3D Scatterplot"

, type = "h" # lines to the horizontal xy-plane

, color = as.integer(sex) # color by group

, pch = as.integer(sex)+19 # plotting character by group

#, highlight.3d = TRUE # makes color change with z-axis value

, angle = 40 # viewing angle (seems hard to control)

)
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430 Ch 15: Multivariate Analysis of Variance

})

#### Try this!

#### For a rotatable 3D plot, use plot3d() from the rgl library

# ## This uses the R version of the OpenGL (Open Graphics Library)

# library(rgl)

# with(shells, { plot3d(x = length, y = width, z = height, col = sex) })
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MANOVA considers the following two questions:

� Are the population mean length, width, and height the same for males

and females?

� If not, then what combination of features is most responsible for the

differences?

To describe MANOVA, suppose you measure p features on independent

random samples from k strata, groups, or populations. Let

µ′i =
[
µi1 µi2 · · · µip

]′
be the vector of population means for the ith population, where µij is the ith

population mean on the jth feature. For the turtles, p = 3 features and k = 2

strata (sexes).

A one-way MANOVA tests the hypothesis that the population mean vec-

tors are identical: H0 : µ1 = µ2 = · · · = µk against HA : not H0. For the
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carapace data, you are simultaneously testing that the sexes have equal popula-

tion mean lengths, equal population mean widths, and equal population mean

heights.

Assume that the sample sizes from the different groups are n1, n2, . . . , nk.

The total sample size is n = n1 + n2 + · · · + nk. Let

X ′ij =
[
Xij1 Xij2 · · · Xijp

]′
be the vector of responses for the jth individual from the ith sample. Let

X̄ ′i =
[
X̄i1 X̄i2 · · · X̄ip

]′
and Si be the mean vector and variance-covariance matrix for the ith sample.

Finally, let

X̄ ′ =
[
X̄1 X̄2 · · · X̄p

]′
be the vector of means ignoring samples (combine all the data across samples

and compute the average on each feature), and let

S =

∑
i(ni − 1)Si
n− k

be the pooled variance-covariance matrix. The pooled variance-covariance ma-

trix is a weighted average of the variance-covariance matrices from each group.

To test H0, construct the following MANOVA table, which is the multivari-

ate analog of the ANOVA table:

Source df SS MS

Between k − 1
∑

i ni(X̄i − X̄)(X̄i − X̄)′

Within n− k
∑

i(ni − 1)Si
Total n− 1

∑
ij(Xij − X̄)(Xij − X̄)′

where all the MSs are SS/df.

The expressions for the SS have the same form as SS in univariate analysis

of variance, except that each SS is a p × p symmetric matrix. The diagonal

elements of the SS matrices are the SS for one-way ANOVAs on the individual
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features. The off-diagonal elements are SS between features. The Error MS

matrix is the pooled variance-covariance matrix S.

The standard MANOVA assumes that you have independent samples from

multivariate normal populations with identical variance-covariance matrices.

This implies that each feature is normally distributed in each population, that

a feature has the same variability across populations, and that the correlation

(or covariance) between two features is identical across populations. The Error

MS matrix estimates the common population variance-covariance matrix when

the population variance-covariance matrices are identical.

The H0 of equal population mean vectors should be rejected when the dif-

ference among mean vectors, as measured by the Between MS matrix, is large

relative to the variability within groups, as measured by the Error MS matrix.

Equivalently, H0 is implausible if a significant portion of the total variation in

the data, as measured by the Total SS matrix, is due to differences among the

groups. The same idea is used in a one-way ANOVA to motivate the F -test of

no differences in population means. However, some care is needed to quantify

these ideas in a MANOVA because there are several natural matrix definitions

for comparing the Between MS matrix to the Error MS matrix. As a result,

several MANOVA tests of H0 have been proposed.

Graphical summaries for the carapace data are given above, with numerical

summaries below.
# summary statistics for each sex

by(shells, shells$sex, summary)

## shells$sex: F

## sex length width height

## F:24 Min. : 98.0 Min. : 81.00 Min. :38.00

## M: 0 1st Qu.:123.0 1st Qu.: 94.25 1st Qu.:47.50

## Median :137.0 Median :102.00 Median :51.00

## Mean :136.0 Mean :102.58 Mean :52.04

## 3rd Qu.:153.5 3rd Qu.:109.75 3rd Qu.:57.75

## Max. :177.0 Max. :132.00 Max. :67.00

## ----------------------------------------------------

## shells$sex: M

## sex length width height

## F: 0 Min. : 93.0 Min. : 74.00 Min. :35.00

## M:24 1st Qu.:103.8 1st Qu.: 83.00 1st Qu.:38.75

## Median :115.0 Median : 89.00 Median :40.00
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## Mean :113.4 Mean : 88.29 Mean :40.71

## 3rd Qu.:121.0 3rd Qu.: 93.00 3rd Qu.:43.25

## Max. :135.0 Max. :106.00 Max. :47.00

# standard deviations

by(shells[, 2:4], shells$sex, apply, 2, sd)

## shells$sex: F

## length width height

## 21.24900 13.10465 8.04595

## ----------------------------------------------------

## shells$sex: M

## length width height

## 11.806103 7.074013 3.355452

# correlation matrix (excluding associated p-values testing "H0: rho == 0")

library(Hmisc)

rcorr(as.matrix(shells[, 2:4]))[[1]] # all

## length width height

## length 1.0000000 0.9778962 0.9628010

## width 0.9778962 1.0000000 0.9599055

## height 0.9628010 0.9599055 1.0000000

rcorr(as.matrix(shells[shells$sex == "F", 2:4]))[[1]] # females

## length width height

## length 1.0000000 0.9731162 0.9706748

## width 0.9731162 1.0000000 0.9659029

## height 0.9706748 0.9659029 1.0000000

rcorr(as.matrix(shells[shells$sex == "M", 2:4]))[[1]] # males

## length width height

## length 1.0000000 0.9501287 0.9470730

## width 0.9501287 1.0000000 0.9122648

## height 0.9470730 0.9122648 1.0000000

The features are positively correlated within each sex. The correlations

between pairs of features are similar for males and females. Females tend to be

larger on each feature. The distributions for length, width, and height are fairly

symmetric within sexes. No outliers are present. Although females are more

variable on each feature than males, the MANOVA assumptions do not appear

to be grossly violated here. (Additionally, you could consider transforming the

each dimension of the data in hopes to make the covariances between sexes

more similar, though it may not be easy to find a good transformation to use.)
pca.sh <- princomp(shells[, 2:4])

df.pca.sh <- data.frame(sex = shells$sex, pca.sh$scores)

str(df.pca.sh)
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## 'data.frame': 48 obs. of 4 variables:

## $ sex : Factor w/ 2 levels "F","M": 1 1 1 1 1 1 1 1 1 1 ...

## $ Comp.1: num -31.4 -25.9 -23.6 -22 -17.1 ...

## $ Comp.2: num -2.27 -1.43 -4.44 -3.26 -3.11 ...

## $ Comp.3: num 0.943 -0.73 1.671 1.618 2.2 ...

## Scatterplot matrix

library(ggplot2)

#suppressMessages(suppressWarnings(library(GGally)))

library(GGally)

# put scatterplots on top so y axis is vertical

p <- ggpairs(df.pca.sh

, mapping = ggplot2::aes(colour = sex, alpha = 0.5)

, title = "Principal components of Shells")

print(p)

## ‘stat bin()‘ using ‘bins = 30‘. Pick better value with ‘binwidth‘.

## ‘stat bin()‘ using ‘bins = 30‘. Pick better value with ‘binwidth‘.

## ‘stat bin()‘ using ‘bins = 30‘. Pick better value with ‘binwidth‘.

# detach package after use so reshape2 works (old reshape (v.1) conflicts)

#detach("package:GGally", unload=TRUE)

#detach("package:reshape", unload=TRUE)
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Principal components of Shells
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For comparison with the MANOVA below, here are the univariate ANOVAs

for each feature. For the carapace data, the univariate ANOVAs indicate sig-

nificant differences between sexes on length, width, and height. Females are

larger on average than males on each feature.
# Univariate ANOVA tests, by each response variable

lm.sh <- lm(cbind(length, width, height) ~ sex, data = shells)

summary(lm.sh)

## Response length :

##

## Call:

## lm(formula = length ~ sex, data = shells)

##

## Residuals:

## Min 1Q Median 3Q Max

## -38.042 -10.667 1.271 11.927 40.958

##

## Coefficients:
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## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 136.042 3.509 38.77 < 2e-16 ***

## sexM -22.625 4.962 -4.56 3.79e-05 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 17.19 on 46 degrees of freedom

## Multiple R-squared: 0.3113,Adjusted R-squared: 0.2963

## F-statistic: 20.79 on 1 and 46 DF, p-value: 3.788e-05

##

##

## Response width :

##

## Call:

## lm(formula = width ~ sex, data = shells)

##

## Residuals:

## Min 1Q Median 3Q Max

## -21.5833 -5.5417 -0.4375 4.8854 29.4167

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 102.583 2.149 47.725 < 2e-16 ***

## sexM -14.292 3.040 -4.701 2.38e-05 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 10.53 on 46 degrees of freedom

## Multiple R-squared: 0.3246,Adjusted R-squared: 0.3099

## F-statistic: 22.1 on 1 and 46 DF, p-value: 2.376e-05

##

##

## Response height :

##

## Call:

## lm(formula = height ~ sex, data = shells)

##

## Residuals:

## Min 1Q Median 3Q Max

## -14.0417 -2.7917 -0.7083 4.0417 14.9583

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 52.042 1.258 41.360 < 2e-16 ***

## sexM -11.333 1.779 -6.369 8.09e-08 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##
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## Residual standard error: 6.164 on 46 degrees of freedom

## Multiple R-squared: 0.4686,Adjusted R-squared: 0.457

## F-statistic: 40.56 on 1 and 46 DF, p-value: 8.087e-08

# Alternatively, for many ANOVAs at once, it may be easier

# to select by column number, but you won't get the column names in the output.

# Also, the left-hand side needs to be a matrix data type.

# lm.sh <- lm(as.matrix(shells[, 2:4]) ~ shells[, 1])

A few procedures can be used for one-way MANOVA; two are manova()

and the car package’s Manova(). First we check the assumption of multivariate

normality.
# Test multivariate normality using the Shapiro-Wilk test for multivariate normality

library(mvnormtest)

# The data needs to be transposed t() so each variable is a row

# with observations as columns.

mshapiro.test(t(shells[shells$sex == "F", 2:4]))

##

## Shapiro-Wilk normality test

##

## data: Z

## W = 0.89324, p-value = 0.01551

mshapiro.test(t(shells[shells$sex == "M", 2:4]))

##

## Shapiro-Wilk normality test

##

## data: Z

## W = 0.93602, p-value = 0.1329

# Graphical Assessment of Multivariate Normality

f.mnv.norm.qqplot <- function(x, name = "") {
# creates a QQ-plot for assessing multivariate normality

x <- as.matrix(x) # n x p numeric matrix

center <- colMeans(x) # centroid

n <- nrow(x);

p <- ncol(x);

cov <- cov(x);

d <- mahalanobis(x, center, cov) # distances

qqplot(qchisq(ppoints(n), df=p), d

, main=paste("QQ Plot MV Normality:", name)

, ylab="Mahalanobis D2 distance"

, xlab="Chi-squared quantiles")

abline(a = 0, b = 1, col = "red")

}

f.mnv.norm.qqplot(shells[shells$sex == "F", 2:4], "Female")
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f.mnv.norm.qqplot(shells[shells$sex == "M", 2:4], "Male")
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The curvature in the Famale sample cause us to reject normality, while the

males do not deviate from normality. We’ll proceed anyway since this deviation

from normality in the female sample will largely increase the variability of the

sample and not displace the mean greatly, and the sample sizes are somewhat

large.

Multivariate test statistics These four multivariate test statistics are

among the most common to assess differences across the levels of the categorical

variables for a linear combination of responses. In general Wilks’ lambda is

recommended unless there are problems with small total sample size, unequal

sample sizes between groups, violations of assumptions, etc., in which case

Pillai’s trace is more robust.

Wilks’ lambda, (λ)

� Most commonly used statistic for overall significance

� Considers differences over all the characteristic roots

� The smaller the value of Wilks’ lambda, the larger the between-groups

dispersion

Pillai’s trace
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� Considers differences over all the characteristic roots

� More robust than Wilks’; should be used when sample size decreases,

unequal cell sizes or homogeneity of covariances is violated

Hotelling’s trace

� Considers differences over all the characteristic roots

Roy’s greatest characteristic root

� Tests for differences on only the first discriminant function (Chapter 16)

� Most appropriate when responses are strongly interrelated on a single

dimension

� Highly sensitive to violation of assumptions, but most powerful when

all assumptions are met.
# Multivariate MANOVA test

# the specific test is specified in summary()

# test = c("Pillai", "Wilks", "Hotelling-Lawley", "Roy")

man.sh <- manova(cbind(length, width, height) ~ sex, data = shells)

summary(man.sh, test="Wilks")

## Df Wilks approx F num Df den Df Pr(>F)

## sex 1 0.38695 23.237 3 44 3.622e-09 ***

## Residuals 46

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# I prefer the output from the car package

library(car)

lm.man <- lm(cbind(length, width, height) ~ sex, data = shells)

man.sh <- Manova(lm.man)

summary(man.sh)

##

## Type II MANOVA Tests:

##

## Sum of squares and products for error:

## length width height

## length 13590.792 8057.500 4679.875

## width 8057.500 5100.792 2840.458

## height 4679.875 2840.458 1747.917

##

## ------------------------------------------

##

## Term: sex

##

## Sum of squares and products for the hypothesis:

## length width height

## length 6142.688 3880.188 3077.000
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## width 3880.188 2451.021 1943.667

## height 3077.000 1943.667 1541.333

##

## Multivariate Tests: sex

## Df test stat approx F num Df den Df Pr(>F)

## Pillai 1 0.6130506 23.23665 3 44 3.622e-09 ***

## Wilks 1 0.3869494 23.23665 3 44 3.622e-09 ***

## Hotelling-Lawley 1 1.5843173 23.23665 3 44 3.622e-09 ***

## Roy 1 1.5843173 23.23665 3 44 3.622e-09 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The four MANOVA tests of no differences between sexes are all highly

significant. These tests reinforce the univariate analyses. Of the four tests, I

prefer Roy’s test because it has an intuitive interpretation. I will mostly ignore

the other three tests for discussion.

Roy’s test locates the linear combination of the features that produces

the most significant one-way ANOVA test for no differences among groups. If

the groups are not significantly different on the linear combination that best

separates the groups in a one-way ANOVA sense, then there is no evidence

that the population mean vectors are different. The critical value for Roy’s

test accounts for the linear combination being suggested by the data. That is,

the critical value for Roy’s test is not the same critical value that is used in

a one-way ANOVA. The idea is similar to a Bonferroni-type correction with

multiple comparisons.

Roy’s method has the ability to locate linear combinations of the features

on which the groups differ, even when the differences across groups are not

significant on any feature. This is a reason for treating multivariate problems

using multivariate methods rather than through individual univariate analyses

on each feature.
## For Roy's characteristic Root and vector

#str(man.sh)

H <- man.sh$SSP$sex # H = hypothesis matrix

# man.sh£df # hypothesis df

E <- man.sh$SSPE # E = error matrix

# man.sh£error.df # error df

# characteristic roots of (E inverse * H)
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EinvH <- solve(E) %*% H # solve() computes the matrix inverse

ev <- eigen(EinvH) # eigenvalue/eigenvectors

ev

## $values

## [1] 1.584317e+00 1.401030e-15 -1.315838e-15

##

## $vectors

## [,1] [,2] [,3]

## [1,] 0.2151877 0.3563618 0.02975353

## [2,] 0.1014317 0.1651253 0.59173018

## [3,] -0.9712908 -0.9196412 -0.80558682

The characteristic vector (eigenvector) output gives one linear combi-

nation of the features for each variable in the data set. By construction, the

linear combinations are uncorrelated (adjusting for groups). In general, the first

a = minimum(p, k − 1) linear combinations contain information in decreasing

amounts for distinguishing among the groups. The first linear combination is

used by Roy’s test.

The three linear combinations for the carapace data are (reading down the

columns in the matrix of eigenvectors)

D1 = 0.2152 Length + 0.1014 Width +−0.9713 Height

D2 = 0.3564 Length + 0.1651 Width +−0.9196 Height

D3 = 0.02975 Length + 0.5917 Width +−0.8056 Height.

Here p = 3 and k = 2 gives a = min(p, k − 1) = min(3, 2− 1) = 1 so only D1

from (D1, D2, and D3) contains information for distinguishing between male

and female painted turtles.

As in PCA, the linear combinations should be interpreted. However, do not

discount the contribution of a feature with a small loading (though, in the shells

example, D2 and D3 have 0 for loadings). In particular, the most important

feature for distinguishing among the groups might have a small loading because

of the measurement scale.

The following output shows the differences between sexes on D1. The sep-

aration between sexes on D1 is greater than on any single feature. Females

typically have much larger D1 scores than males.
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Since the matrix of eigenvectors are a rotation matrix1 we can create the

D linear combinations by matrix multiplication of the eigenvector (rotation)

matrix with the original data (being careful about dimensions).
# linear combinations of features

D <- as.matrix(shells[,2:4]) %*% ev$vectors

colnames(D) <- c("D1", "D2", "D3")

df.D <- data.frame(sex = shells$sex, D)

str(df.D)

## 'data.frame': 48 obs. of 4 variables:

## $ sex: Factor w/ 2 levels "F","M": 1 1 1 1 1 1 1 1 1 1 ...

## $ D1 : num -7.6 -6.22 -9.91 -9.48 -10.36 ...

## $ D2 : num 13.4 15.6 12.3 13 12.9 ...

## $ D3 : num 20.2 22.2 20.1 20.2 19.9 ...

## Scatterplot matrix

library(ggplot2)

#suppressMessages(suppressWarnings(library(GGally)))

library(GGally)

# put scatterplots on top so y axis is vertical

p <- ggpairs(df.D

, mapping = ggplot2::aes(colour = sex, alpha = 0.5)

, title = "D1 is the linear combination that best distinguishes the sexes")

print(p)

## ‘stat bin()‘ using ‘bins = 30‘. Pick better value with ‘binwidth‘.

## ‘stat bin()‘ using ‘bins = 30‘. Pick better value with ‘binwidth‘.

## ‘stat bin()‘ using ‘bins = 30‘. Pick better value with ‘binwidth‘.

# detach package after use so reshape2 works (old reshape (v.1) conflicts)

#detach("package:GGally", unload=TRUE)

#detach("package:reshape", unload=TRUE)

1http://en.wikipedia.org/wiki/Rotation_matrix
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D1 is the linear combination that best distinguishes the sexes
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# Univariate ANOVA tests, by D1 linear combination variable

lm.D.sh <- lm(D1 ~ sex, data = df.D)

summary(lm.D.sh)

##

## Call:

## lm(formula = D1 ~ sex, data = df.D)

##

## Residuals:

## Min 1Q Median 3Q Max

## -5.3047 -0.9791 0.3260 0.9570 4.6434

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -10.8679 0.3884 -27.978 < 2e-16 ***

## sexM 4.6897 0.5493 8.537 4.84e-11 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 1.903 on 46 degrees of freedom

## Multiple R-squared: 0.6131,Adjusted R-squared: 0.6046
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## F-statistic: 72.88 on 1 and 46 DF, p-value: 4.841e-11
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Chapter 16

Discriminant Analysis

A researcher collected data on two external features for two (known) sub-species

of an insect. She can use discriminant analysis to find linear combinations

of the features that best distinguish the sub-species. The analysis can then be

used to classify insects with unknown sub-species origin into one of the two

sub-species based on their external features.

To see how this might be done, consider the following data plot. Can1 is the

linear combination of the two features that best distinguishes or discriminates

the two sub-species. The value of Can1 could be used to classify insects into

one of the two groups, as illustrated.

UNM, Stat 428/528 ADA2



446 Ch 16: Discriminant Analysis

The method generalizes to more than two features and sub-species.

16.1 Canonical Discriminant Analysis

While there’s a connection between canonical discriminant analysis and

canonical correlation, I prefer to emphasize the connection between canoni-

cal discriminant analysis and MANOVA because these techniques are essentially

identical.

Assume that you have representative samples from k groups, strata, or sub-

populations. Each selected individual is measured on p features (measurements)

X1, X2, . . . , Xp. As in MANOVA, canonical discriminant analysis assumes you

have independent samples from multivariate normal populations with identical

Prof. Erik B. Erhardt



16.2: Example: Owners of riding mowers 447

variance-covariance matrices.

Canonical discriminant analysis computes r = min(p, k−1) linear combina-

tions of the features with the following properties. The first linear combination,

called the first linear discriminant function

Can1 = a11X1 + a12X2 + · · · + a1pXp

gives the most significant F -test for a null hypothesis of no group differences in

a one-way ANOVA, among all linear combinations of the features. The second

linear combination or the second linear discriminant function:

Can2 = a21X1 + a22X2 + · · · + a2pXp

gives the most significant F -test for no group differences in a one-way ANOVA,

among all linear combinations of the features that are uncorrelated (adjust-

ing for groups) with Can1. In general, the jth linear combination Canj (j =

1, 2, . . . , r) gives the most significant F -test for no group differences in a one-

way ANOVA, among all linear combinations of the features that are uncorre-

lated with Can1,Can2, . . . ,Can(j − 1).

The coefficients in the canonical discriminant functions can be multiplied by

a constant, or all the signs can be changed (that is, multiplied by the constant

−1), without changing their properties or interpretations.

16.2 Example: Owners of riding mowers

The manufacturer of a riding lawn mower wishes to identify the best prospects

for buying their product using data on the incomes (X1) and lot sizes (X2) of

homeowners (Johnson and Wichern, 1988). The data below are the incomes

and lot sizes from independent random samples of 12 current owners and 12

non-owners of the mowers.
#### Example: Riding mowers

fn.data <- "http://statacumen.com/teach/ADA2/ADA2_notes_Ch16_mower.dat"

mower <- read.table(fn.data, header = TRUE)

# income = income in £1000
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# lotsize = lot size in 1000 sq ft

# owner = nonowners or owners

str(mower)

## 'data.frame': 24 obs. of 3 variables:

## $ income : num 20 28.5 21.6 20.5 29 36.7 36 27.6 23 31 ...

## $ lotsize: num 9.2 8.4 10.8 10.4 11.8 9.6 8.8 11.2 10 10.4 ...

## $ owner : Factor w/ 2 levels "nonowner","owner": 2 2 2 2 2 2 2 2 2 2 ...

income lotsize owner
1 20.00 9.20 owner
2 28.50 8.40 owner
3 21.60 10.80 owner
4 20.50 10.40 owner
5 29.00 11.80 owner
6 36.70 9.60 owner
7 36.00 8.80 owner
8 27.60 11.20 owner
9 23.00 10.00 owner

10 31.00 10.40 owner
11 17.00 11.00 owner
12 27.00 10.00 owner

income lotsize owner
13 25.00 9.80 nonowner
14 17.60 10.40 nonowner
15 21.60 8.60 nonowner
16 14.40 10.20 nonowner
17 28.00 8.80 nonowner
18 19.80 8.00 nonowner
19 22.00 9.20 nonowner
20 15.80 8.20 nonowner
21 11.00 9.40 nonowner
22 17.00 7.00 nonowner
23 16.40 8.80 nonowner
24 21.00 7.40 nonowner

library(ggplot2)

p <- ggplot(mower, aes(x = income, y = lotsize, shape = owner, colour = owner))

p <- p + geom_point(size = 3)

p <- p + scale_y_continuous(limits = c(0, 15))

p <- p + scale_x_continuous(limits = c(0, 40))

p <- p + coord_fixed(ratio = 1) # square axes (for perp lines)

p <- p + xlab("income in $1000")

p <- p + ylab("lot size in 1000 sq ft")

print(p)
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#suppressMessages(suppressWarnings(library(GGally)))

library(GGally)

p <- ggpairs(rev(mower)

, mapping = ggplot2::aes(colour = owner, alpha = 0.5)
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)

print(p)

## ‘stat bin()‘ using ‘bins = 30‘. Pick better value with ‘binwidth‘.

## ‘stat bin()‘ using ‘bins = 30‘. Pick better value with ‘binwidth‘.

# detach package after use so reshape2 works (old reshape (v.1) conflicts)

#detach("package:GGally", unload=TRUE)

#detach("package:reshape", unload=TRUE)
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Although the two groups overlap, the owners tend to have higher incomes

and larger lots than the non-owners. Income seems to distinguish owners and

non-owners better than lot size, but both variables seem to be useful for dis-

criminating between groups.

Qualitatively, one might classify prospects based on their location relative

to a roughly vertical line on the scatter plot. A discriminant analysis gives

similar results to this heuristic approach because the Can1 scores will roughly
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correspond to the projection of the two features onto a line perpendicular to

the hypothetical vertical line. candisc() computes one discriminant function

here because p = 2 and k = 2 gives r = min(p, k − 1) = min(2, 1) = 1.

Below we first fit a lm() and use that object to compare populations. First

we compare using univariate ANOVAs. The p-values are for one-way ANOVA

comparing owners to non-owners and both income and lotsize features are im-

portant individually for distinguishing between the groups.
# first fit lm() with formula = continuous variables ~ factor variables

lm.mower <- lm(cbind(income, lotsize) ~ owner, data = mower)

# univariate ANOVA tests

summary(lm.mower)

## Response income :

##

## Call:

## lm(formula = income ~ owner, data = mower)

##

## Residuals:

## Min 1Q Median 3Q Max

## -9.4917 -3.8021 0.5875 2.5979 10.2083

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 19.133 1.601 11.954 4.28e-11 ***

## ownerowner 7.358 2.264 3.251 0.00367 **

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 5.545 on 22 degrees of freedom

## Multiple R-squared: 0.3245,Adjusted R-squared: 0.2938

## F-statistic: 10.57 on 1 and 22 DF, p-value: 0.003665

##

##

## Response lotsize :

##

## Call:

## lm(formula = lotsize ~ owner, data = mower)

##

## Residuals:

## Min 1Q Median 3Q Max

## -1.81667 -0.66667 -0.01667 0.71667 1.66667

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 8.8167 0.2984 29.55 < 2e-16 ***
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## ownerowner 1.3167 0.4220 3.12 0.00498 **

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 1.034 on 22 degrees of freedom

## Multiple R-squared: 0.3068,Adjusted R-squared: 0.2753

## F-statistic: 9.736 on 1 and 22 DF, p-value: 0.004983

Second, the MANOVA indicates the multivariate means are different indi-

cating both income and lotsize features taken together are important for dis-

tinguishing between the groups.
# test whether the multivariate means of the two populations are different

library(car)

man.mo <- Manova(lm.mower)

summary(man.mo)

##

## Type II MANOVA Tests:

##

## Sum of squares and products for error:

## income lotsize

## income 676.31583 -26.41333

## lotsize -26.41333 23.50333

##

## ------------------------------------------

##

## Term: owner

##

## Sum of squares and products for the hypothesis:

## income lotsize

## income 324.87042 58.13083

## lotsize 58.13083 10.40167

##

## Multivariate Tests: owner

## Df test stat approx F num Df den Df Pr(>F)

## Pillai 1 0.5386044 12.25704 2 21 0.00029701 ***

## Wilks 1 0.4613956 12.25704 2 21 0.00029701 ***

## Hotelling-Lawley 1 1.1673374 12.25704 2 21 0.00029701 ***

## Roy 1 1.1673374 12.25704 2 21 0.00029701 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Finally, we fit the canonical discriminant function with candisc(). The LR

(likelihood ratio) p-values below correspond to tests of no differences between

groups on the canonical discriminant functions. There is only one canonical dis-

criminant function here. The tests of no differences based on the first canonical
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discriminant function is equivalent to Roy’s MANOVA test.
# perform canonical discriminant analysis

library(candisc)

can.mower <- candisc(lm.mower)

can.mower

##

## Canonical Discriminant Analysis for owner:

##

## CanRsq Eigenvalue Difference Percent Cumulative

## 1 0.5386 1.1673 100 100

##

## Test of H0: The canonical correlations in the

## current row and all that follow are zero

##

## LR test stat approx F num Df den Df Pr(> F)

## 1 0.4614 25.681 1 22 4.473e-05 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The objects available from the candisc() object are named below, and we’ll

soon use a few. There are also a few plots available, but I’ll be creating other

plots shortly.
names(can.mower) # list of objects in can.mower

## [1] "dfh" "dfe" "eigenvalues" "canrsq"

## [5] "pct" "rank" "ndim" "means"

## [9] "factors" "term" "terms" "coeffs.raw"

## [13] "coeffs.std" "structure" "scores"

# plot(can.mower) # this plot causes Rnw compile errors

# it would show box plots

# with proportional contribution of each variable to Can1

### can also plot 2D plots when have more than two groups (will use later)

## library(heplots)

#heplot(can.mower, scale=6, fill=TRUE)

#heplot3d(can.mower, scale=6, fill=TRUE)

The raw canonical coefficients define the canonical discriminant variables

and are identical to the feature loadings in a one-way MANOVA, except for an

unimportant multiplicative factor. Only Can1 is generated here.
can.mower$coeffs.raw

## Can1

## income -0.1453404

## lotsize -0.7590457
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The means output gives the mean score on the canonical discriminant vari-

ables by group, after centering the scores to have mean zero over all groups.

These are in order of the owner factor levels (nonowner, owner).
can.mower$means

## [1] 1.034437 -1.034437

The linear combination of income and lotsize that best distinguishes owners

from non-owners

Can1 = −0.1453 INCOME +−0.759 LOTSIZE

is a weighted average of income and lotsize.

In the scatterplot below, Can1 is the direction indicated by the dashed line.
library(ggplot2)

# Scatterplots with Can1 line overlayed

p <- ggplot(mower, aes(x = income, y = lotsize, shape = owner, colour = owner))

p <- p + geom_point(size = 3)

# use a little algebra to determine the intercept and slopes of the

# Can1 line and a line perpendicular to it.

# dashed line of Can1

b1 <- can.mower$coeffs.raw[1]/can.mower$coeffs.raw[2] # slope

a1 <- mean(mower$lotsize) - b1 * mean(mower$income) - 3.5 # intercept

p <- p + geom_abline(intercept = a1, slope = b1, linetype = 2)

p <- p + annotate("text", x = 10, y = 6, label = "Can1"

, hjust = 0, vjust = 1, size = 4)

# solid line to separate groups (perpendicular to Can1)

b2 <- -can.mower$coeffs.raw[2]/can.mower$coeffs.raw[1] # slope

a2 <- mean(mower$lotsize) - b2 * mean(mower$income) - 4.5 # intercept

p <- p + geom_abline(intercept = a2, slope = b2, linetype = 1, alpha = 0.5)

p <- p + annotate("text", x = 22, y = 15, label = "Perp to Can1 for discrim"

, hjust = 0, vjust = 1, size = 4)

p <- p + scale_y_continuous(limits = c(0, 15))

p <- p + scale_x_continuous(limits = c(0, 40))

p <- p + coord_fixed(ratio = 1) # square axes (for perp lines)

p <- p + xlab("income in $1000")

p <- p + ylab("lot size in 1000 sq ft")

print(p)
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# Plots of Can1
p1 <- ggplot(can.mower$scores, aes(x = Can1, fill = owner))
p1 <- p1 + geom_histogram(binwidth = 2/3, alpha = 0.5, position="identity")
p1 <- p1 + scale_x_continuous(limits = c(min(can.mower$scores$Can1), max(can.mower$scores$Can1)))
p1 <- p1 + geom_rug(aes(colour = owner))
#p1 <- p1 + labs(title = "Can1 for mower data")
#print(p1)

p2 <- ggplot(can.mower$scores, aes(y = Can1, x = owner, fill = owner))
p2 <- p2 + geom_boxplot(alpha = 0.5)

# add a "+" at the mean
p2 <- p2 + stat_summary(fun.y = mean, geom = "point", shape = 3, size = 2)
p2 <- p2 + geom_point()
p2 <- p2 + coord_flip()
p2 <- p2 + scale_y_continuous(limits = c(min(can.mower$scores$Can1), max(can.mower$scores$Can1)))
#p2 <- p2 + labs(title = "Can1 for mower data")
#print(p2)

library(gridExtra)
grid.arrange(grobs = list(p1, p2), ncol=2, top = "Can1 for mower data")

## Warning: Removed 6 rows containing missing values (geom bar).
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The standardized coefficients (use the pooled within-class coefficients) in-

dicate the relative contributions of the features to the discrimination. The

standardized coefficients are roughly equal, which suggests that income and

lotsize contribute similarly to distinguishing the owners from non-owners.
can.mower$coeffs.std

## Can1
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## income -0.8058419

## lotsize -0.7845512

The p-value of 0.0004 on the likelihood ratio test indicates that Can1 strongly

distinguishes between owners and non-owners. This is consistent with the sep-

aration between owners and non-owners in the boxplot of Can1 scores.

I noted above that Can1 is essentially the same linear combination given in a

MANOVA comparison of owners to non-owners. Here is some Manova() output

to support this claim. The MANOVA test p-values agree with the candisc

output (as we saw earlier). The first characteristic vector from the MANOVA

is given here.
## For Roy's characteristic Root and vector

H <- man.mo$SSP$owner # H = hypothesis matrix

E <- man.mo$SSPE # E = error matrix

# characteristic roots of (E inverse * H)

EinvH <- solve(E) %*% H # solve() computes the matrix inverse

ev <- eigen(EinvH) # eigenvalue/eigenvectors

ev

## $values

## [1] 1.167337 0.000000

##

## $vectors

## [,1] [,2]

## [1,] 0.1880613 -0.1761379

## [2,] 0.9821573 0.9843655

mult.char.can.disc <- can.mower$coeffs.raw[1] / ev$vectors[1,1]

mult.char.can.disc

## [1] -0.7728352

The first canonical discriminant function is obtained by multiplying the first

characteristic vector given in MANOVA by −0.7728:

Can1 = −0.1453 INCOME +−0.759 LOTSIZE

= −0.7728 (0.1881 INCOME + 0.9822 LOTSIZE)
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16.3 Discriminant Analysis on Fisher’s Iris
Data

Fisher’s iris data consists of samples of 50 flowers from each of three species of

iris: Setosa, Versicolor, and Virginica. Four measurements (in mm) were taken

on each flower: sepal length, sepal width, petal length, and petal width.

The plots show big differences between Setosa and the other two species.

The differences between Versicolor and Virginica are smaller, and appear to be

mostly due to differences in the petal widths and lengths.
#### Example: Fisher's iris data

# The "iris" dataset is included with R in the library(datasets)

data(iris)

str(iris)

## 'data.frame': 150 obs. of 5 variables:

## $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...

## $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...

## $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...

## $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...

## $ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...

## Scatterplot matrix

library(ggplot2)

#suppressMessages(suppressWarnings(library(GGally)))

library(GGally)

p <- ggpairs(iris[,c(5,1,2,3,4)]

, mapping = ggplot2::aes(colour = Species, alpha = 0.5)

)

print(p)

## ‘stat bin()‘ using ‘bins = 30‘. Pick better value with ‘binwidth‘.

## ‘stat bin()‘ using ‘bins = 30‘. Pick better value with ‘binwidth‘.

## ‘stat bin()‘ using ‘bins = 30‘. Pick better value with ‘binwidth‘.

## ‘stat bin()‘ using ‘bins = 30‘. Pick better value with ‘binwidth‘.
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# detach package after use so reshape2 works (old reshape (v.1) conflicts)

#detach("package:GGally", unload=TRUE)

#detach("package:reshape", unload=TRUE)
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## parallel coordinate plot

library(ggplot2)

#suppressMessages(suppressWarnings(library(GGally)))

library(GGally)

# univariate min/max scaling

p1 <- ggparcoord(

data = iris

, columns = 1:4

, groupColumn = 5

, order = "anyClass"

, scale = "uniminmax" # "uniminmax". "globalminmax"

, showPoints = FALSE

, title = "uniminmax scaling"
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, alphaLines = 1/3

#, shadeBox = "white"

, boxplot = TRUE

) #+ theme_bw()

# global min/max scaling

p2 <- ggparcoord(

data = iris

, columns = 1:4

, groupColumn = 5

, order = "anyClass"

, scale = "globalminmax" # "uniminmax". "globalminmax"

, showPoints = FALSE

, title = "globalminmax scaling"

, alphaLines = 1/3

#, shadeBox = "white"

, boxplot = TRUE

) #+ theme_bw()

library(gridExtra)

grid.arrange(grobs = list(p1, p2), ncol=2, top = "Parallel Coordinate Plots of Iris data")

# detach package after use so reshape2 works (old reshape (v.1) conflicts)

#detach("package:GGally", unload=TRUE)

#detach("package:reshape", unload=TRUE)
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candisc was used to discriminate among species. There are k = 3 species

and p = 4 features, so the number of discriminant functions is 2 (the minimum

of 4 and 3− 1).
# first fit lm() with formula = continuous variables ~ factor variables

lm.iris <- lm(cbind(Sepal.Length, Sepal.Width, Petal.Length, Petal.Width) ~ Species

, data = iris)

## univariate ANOVA tests

#summary(lm.iris)

## test whether the multivariate means of the two populations are different

#library(car)

#man.mo <- Manova(lm.iris)

#summary(man.mo)

# perform canonical discriminant analysis

library(candisc)

can.iris <- candisc(lm.iris)

can.iris$coeffs.raw

## Can1 Can2

## Sepal.Length -0.8293776 0.02410215

## Sepal.Width -1.5344731 2.16452123

## Petal.Length 2.2012117 -0.93192121

## Petal.Width 2.8104603 2.83918785

Can1 is a comparison of petal and sepal measurements (from Raw Canonical

Coefficients):

Can1 = −0.8294 sepalL +−1.534 sepalW + 2.201 petalL + 2.81 petalW.

Can2 is not easily interpreted, though perhaps a comperison of lengths and

widths ignoring sepalL:

Can2 = 0.0241 sepalL + 2.165 sepalW +−0.9319 petalL + 2.839 petalW.

The canonical directions provide a maximal separation the species. Two

lines across Can1 will provide a classification rule.
## Scatterplot matrix

library(ggplot2)

#suppressMessages(suppressWarnings(library(GGally)))

library(GGally)

p <- ggpairs(can.iris$scores

, mapping = ggplot2::aes(colour = Species, alpha = 0.5)

)

print(p)
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## ‘stat bin()‘ using ‘bins = 30‘. Pick better value with ‘binwidth‘.

## ‘stat bin()‘ using ‘bins = 30‘. Pick better value with ‘binwidth‘.

# detach package after use so reshape2 works (old reshape (v.1) conflicts)

#detach("package:GGally", unload=TRUE)

#detach("package:reshape", unload=TRUE)
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There are significant differences among species on both discriminant func-

tions; see the p-values under the likelihood ratio tests. Of course, Can1 produces

the largest differences — the overlap among species on Can1 is small. Setosa

has the lowest Can1 scores because this species has the smallest petal mea-

surements relative to its sepal measurements. Virginica has the highest Can1

scores.
can.iris

##
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## Canonical Discriminant Analysis for Species:

##

## CanRsq Eigenvalue Difference Percent Cumulative

## 1 0.96987 32.19193 31.907 99.12126 99.121

## 2 0.22203 0.28539 31.907 0.87874 100.000

##

## Test of H0: The canonical correlations in the

## current row and all that follow are zero

##

## LR test stat approx F num Df den Df Pr(> F)

## 1 0.02344 403.82 4 292 < 2.2e-16 ***

## 2 0.77797 41.95 1 147 1.32e-09 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Questions:

1. What is the most striking feature of the plot of the Can1 scores?

2. Does the assumption of equal population covariance matrices across species

seem plausible?

3. How about multivariate normality?
# Covariance matrices by species

by(iris[,1:4], iris$Species, cov)

## iris$Species: setosa

## Sepal.Length Sepal.Width Petal.Length Petal.Width

## Sepal.Length 0.12424898 0.099216327 0.016355102 0.010330612

## Sepal.Width 0.09921633 0.143689796 0.011697959 0.009297959

## Petal.Length 0.01635510 0.011697959 0.030159184 0.006069388

## Petal.Width 0.01033061 0.009297959 0.006069388 0.011106122

## ----------------------------------------------------

## iris$Species: versicolor

## Sepal.Length Sepal.Width Petal.Length Petal.Width

## Sepal.Length 0.26643265 0.08518367 0.18289796 0.05577959

## Sepal.Width 0.08518367 0.09846939 0.08265306 0.04120408

## Petal.Length 0.18289796 0.08265306 0.22081633 0.07310204

## Petal.Width 0.05577959 0.04120408 0.07310204 0.03910612

## ----------------------------------------------------

## iris$Species: virginica

## Sepal.Length Sepal.Width Petal.Length Petal.Width

## Sepal.Length 0.40434286 0.09376327 0.30328980 0.04909388

## Sepal.Width 0.09376327 0.10400408 0.07137959 0.04762857

## Petal.Length 0.30328980 0.07137959 0.30458776 0.04882449

## Petal.Width 0.04909388 0.04762857 0.04882449 0.07543265
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# Test multivariate normality using the Shapiro-Wilk test for multivariate normality

library(mvnormtest)

# The data needs to be transposed t() so each variable is a row

# with observations as columns.

mshapiro.test(t(iris[iris$Species == "setosa" , 1:4]))

##

## Shapiro-Wilk normality test

##

## data: Z

## W = 0.95878, p-value = 0.07906

mshapiro.test(t(iris[iris$Species == "versicolor", 1:4]))

##

## Shapiro-Wilk normality test

##

## data: Z

## W = 0.93043, p-value = 0.005739

mshapiro.test(t(iris[iris$Species == "virginica" , 1:4]))

##

## Shapiro-Wilk normality test

##

## data: Z

## W = 0.93414, p-value = 0.007955

# Graphical Assessment of Multivariate Normality

f.mnv.norm.qqplot <- function(x, name = "") {
# creates a QQ-plot for assessing multivariate normality

x <- as.matrix(x) # n x p numeric matrix

center <- colMeans(x) # centroid

n <- nrow(x);

p <- ncol(x);

cov <- cov(x);

d <- mahalanobis(x, center, cov) # distances

qqplot(qchisq(ppoints(n), df=p), d

, main=paste("QQ Plot MV Normality:", name)

, ylab="Mahalanobis D2 distance"

, xlab="Chi-squared quantiles")

abline(a = 0, b = 1, col = "red")

}

par(mfrow=c(1,3))

f.mnv.norm.qqplot(iris[iris$Species == "setosa" , 1:4], "setosa" )

f.mnv.norm.qqplot(iris[iris$Species == "versicolor", 1:4], "versicolor")

f.mnv.norm.qqplot(iris[iris$Species == "virginica" , 1:4], "virginica" )

par(mfrow=c(1,1))
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Chapter 17

Classification

A goal with discriminant analysis might be to classify individuals of unknown

origin into one of several known groups. How should this be done? Recall

our example where two subspecies of an insect are compared on two external

features. The discriminant analysis gives one discriminant function (CAN1) for

distinguishing the subspecies. It makes sense to use CAN1 to classify insects

because CAN1 is the best (linear) combination of the features to distinguish

between subspecies.

Given the score on CAN1 for each insect to be classified, assign insects to

the sub-species that they most resemble. Similarity is measured by the distance

on CAN1 to the average CAN1 scores for the two subspecies, identified by X’s

on the plot.
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To classify using r discriminant functions, compute the average response on

CAN1, . . . , CANr in each sample. Then compute the canonical discriminant

function scores for each individual to be classified. Each observation is classified

into the group it is closest to, as measured by the distance from the observation

in r-space to the sample mean vector on the canonical variables. How do you

measure distance in r-space?

The plot below illustrates the idea with the r = 2 discriminant functions

in Fisher’s iris data: Obs 1 is classified as Versicolor and Obs 2 is classified as

Setosa.
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17.1 Classification using Mahalanobis dis-
tance

Classification using discrimination is based on the original features and not

the canonical discriminant function scores. Although a linear classification rule

is identical to the method I just outlined, the equivalence is not obvious. I will

discuss the method without justifying the equivalence.

Suppose p features X = (X1, X2, . . . , Xp)
′ are used to discriminate among

the k groups. Let X̄i = (X̄i1, X̄i2, . . . , X̄ip)
′ be the vector of mean responses

for the ith sample, and let Si be the p-by-p variance-covariance matrix for the

ith sample. The pooled variance-covariance matrix is given by

S =
(n1 − 1)S1 + (n2 − 1)S2 + · · · + (nk − 1)Sk

n− k
,

where the nis are the group sample sizes and n = n1 + n2 + · · · + nk is the

total sample size.
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17.1: Classification using Mahalanobis distance 467

The classification rules below can be defined using either the Mahalanobis

generalized squared distance or in terms of a probability model. I will

describe each, starting with the Mahalanobis or M -distance.

The M -distance from an observation X to (the center of) the ith sample is

D2
i (X) = (X − X̄i)

′S−1(X − X̄i),

where (X−X̄i)
′ is the transpose of the column vector (X−X̄i), and S−1 is the

matrix inverse of S. Note that if S is the identity matrix (a matrix with 1s on

the diagonal and 0s on the off-diagonals), then this is the Euclidean distance.

Given the M -distance from X to each sample, classify X into the group which

has the minimum M -distance.

The M -distance is an elliptical distance measure that accounts for corre-

lation between features, and adjusts for different scales by standardizing the

features to have unit variance. The picture below (left) highlights the idea

when p = 2. All of the points on a given ellipse are the same M -distance

to the center (X̄1, X̄2)′. As the ellipse expands, the M -distance to the center

increases.
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To see how classification works, suppose you have three groups and two

features, as in the plot above (right). Observations 1 is closest in M -distance
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468 Ch 17: Classification

to the center of group 3. Observation 2 is closest to group 1. Thus, classify

observations 1 and 2 into groups 3 and 1, respectively. Observation 3 is closest

to the center of group 2 in terms of the standard Euclidean (walking) distance.

However, observation 3 is more similar to data in group 1 than it is to either of

the other groups. TheM -distance from observation 3 to group 1 is substantially

smaller than the M -distances to either group 2 or 3. The M -distance accounts

for the elliptical cloud of data within each group, which reflects the correlation

between the two features. Thus, you would classify observation 3 into group 1.

The M -distance from the ith group to the jth group is the M -distance

between the centers of the groups:

D2(i, j) = D2(j, i) = (X̄i − X̄j)
′S−1(X̄i − X̄j).

Larger values suggest relatively better potential for discrimination between

groups. In the plot above, D2(1, 2) < D2(1, 3) which implies that it should

be easier to distinguish between groups 1 and 3 than groups 1 and 2.

M -distance classification is equivalent to classification based on a probability

model that assumes the samples are independently selected from multivariate

normal populations with identical covariance matrices. This assumption is

consistent with the plot above where the data points form elliptical clouds with

similar orientations and spreads across samples. Suppose you can assume a

priori (without looking at the data for the individual that you wish to classify)

that a randomly selected individual from the combined population (i.e.,

merge all sub-populations) is equally likely to be from any group:

PRIORj ≡ Pr(observation is from group j) =
1

k
,

where k is the number of groups. Then, given the observed features X for an

individual

Pr(j|X) ≡ Pr(observation is from group j given X)

=
exp{−0.5D2

j (X)}∑
k exp{−0.5D2

k(X)}
.
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To be precise, I will note that Pr(j|X) is unknown, and the expression for

Pr(j|X) is an estimate based on the data.

The group with the largest posterior probability Pr(j|X) is the group

into which X is classified. Maximizing Pr(j|X) across groups is equivalent to

minimizing the M -distance D2
j (X) across groups, so the two classification rules

are equivalent.

17.2 Evaluating the Accuracy of a Classifi-
cation Rule

The misclassification rate, or the expected proportion of misclassified ob-

servations, is a good yardstick to gauge a classification rule. Better rules have

smaller misclassification rates, but there is no universal cutoff for what is con-

sidered good in a given problem. You should judge a classification rule relative

to the current standards in your field for “good classification”.

Resubstitution evaluates the misclassification rate using the data from

which the classification rule is constructed. The resubstitution estimate of the

error rate is optimistic (too small). A greater percentage of misclassifications is

expected when the rule is used on new data, or on data from which the rule is

not constructed.

Cross-validation is a better way to estimate the misclassification rate.

In many statistical packages, you can implement cross-validation by randomly

splitting the data into a training or calibration set from which the classi-

fication rule is constructed. The remaining data, called the test data set, is

used with the classification rule to estimate the error rate. In particular, the

proportion of test cases misclassified estimates the misclassification rate. This

process is often repeated, say 10 times, and the error rate estimated to be the

average of the error rates from the individual splits. With repeated random

splitting, it is common to use 10% of each split as the test data set (a 10-fold

cross-validation).

Repeated random splitting can be coded. As an alternative, you might
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consider using one random 50-50 split (a 2-fold) to estimate the misclassification

rate, provided you have a reasonably large data base.

Another form of cross-validation uses a jackknife method where single

cases are held out of the data (an n-fold), then classified after constructing

the classification rule from the remaining data. The process is repeated for

each case, giving an estimated misclassification rate as the proportion of cases

misclassified.

The lda() function allows for jackknife cross-validation (CV) and cross-

validation using a single test data set (predict()). The jackknife method is

necessary with small sized data sets so single observations don’t greatly bias

the classification. You can also classify observations with unknown group mem-

bership, by treating the observations to be classified as a test data set.

17.3 Example: Carapace classification and
error

#### Example: Painted turtle shells

fn.data <- "http://statacumen.com/teach/ADA2/ADA2_notes_Ch15_shells_mf.dat"

shells <- read.table(fn.data, header = TRUE)

## Scatterplot matrix

library(ggplot2)

#suppressMessages(suppressWarnings(library(GGally)))

library(GGally)

# put scatterplots on top so y axis is vertical

p <- ggpairs(shells

, mapping = ggplot2::aes(colour = sex, alpha = 0.5)

)

print(p)

## ‘stat bin()‘ using ‘bins = 30‘. Pick better value with ‘binwidth‘.

## ‘stat bin()‘ using ‘bins = 30‘. Pick better value with ‘binwidth‘.

## ‘stat bin()‘ using ‘bins = 30‘. Pick better value with ‘binwidth‘.

# detach package after use so reshape2 works (old reshape (v.1) conflicts)

#detach("package:GGally", unload=TRUE)

#detach("package:reshape", unload=TRUE)

## 3D scatterplot

library(scatterplot3d)

with(shells, {
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17.3: Example: Carapace classification and error 471

scatterplot3d(x = length

, y = width

, z = height

, main = "Shells 3D Scatterplot"

, type = "h" # lines to the horizontal xy-plane

, color = as.integer(sex) # color by group

, pch = as.integer(sex)+19 # plotting character by group

#, highlight.3d = TRUE # makes color change with z-axis value

, angle = 100 # viewing angle (seems hard to control)

)

})

#### Try this!

#### For a rotatable 3D plot, use plot3d() from the rgl library

# ## This uses the R version of the OpenGL (Open Graphics Library)

# library(rgl)

# with(shells, { plot3d(x = length, y = width, z = height, col = sex) })
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As suggested in the partimat() plot below (and by an earlier analysis), classi-

fication based on the length and height of the carapace appears best (considering

only pairs). For this example, we’ll only consider those two features.
# classification of observations based on classification methods

# (e.g. lda, qda) for every combination of two variables.

library(klaR)

partimat(sex ~ length + width + height, data = shells

, plot.matrix = TRUE)
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The default linear discriminant analysis assumes equal prior probabilities

for males and females.
library(MASS)

lda.sh <- lda(sex ~ length + height, data = shells)

lda.sh

## Call:

## lda(sex ~ length + height, data = shells)

##

## Prior probabilities of groups:

## F M

## 0.5 0.5

##

## Group means:

## length height

## F 136.0417 52.04167

## M 113.4167 40.70833

##

## Coefficients of linear discriminants:

## LD1

## length 0.1370519

## height -0.4890769

The linear discrimant function is in the direction that best separates the

sexes,

LD1 = 0.1371 length +−0.4891 height.
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17.3: Example: Carapace classification and error 473

The plot of the lda object shows the groups across the linear discriminant

function. From the klaR package we can get color-coded classification areas

based on a perpendicular line across the LD function.
plot(lda.sh, dimen = 1, type = "both", col = as.numeric(shells$sex))
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The constructed table gives the jackknife-based classification and posterior

probabilities of being male or female for each observation in the data set. The

misclassification rate follows.
# CV = TRUE does jackknife (leave-one-out) crossvalidation

lda.sh.cv <- lda(sex ~ length + height, data = shells, CV = TRUE)

# Create a table of classification and posterior probabilities for each observation

classify.sh <- data.frame(sex = shells$sex

, class = lda.sh.cv$class

, error = ""

, round(lda.sh.cv$posterior,3))

colnames(classify.sh) <- c("sex", "class", "error"

, paste("post", colnames(lda.sh.cv$posterior), sep=""))

# "postF" and "postM" column names

# error column

classify.sh$error <- as.character(classify.sh$error)

classify.agree <- as.character(as.numeric(shells$sex) - as.numeric(lda.sh.cv$class))

classify.sh$error[!(classify.agree == 0)] <- classify.agree[!(classify.agree == 0)]

The classification summary table is constructed from the canonical
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discriminant functions by comparing the predicted group membership for each

observation to its actual group label. To be precise, if you assume that the sex

for the 24 males are unknown then you would classify each of them correctly.

Similarly, 20 of the 24 females are classified correctly, with the other four classi-

fied as males. The Total Error of 0.0833 is the estimated miscassification rate,

computed as the sum of Rates×Prior over sexes: 0.0833 = 0.1667×0.5+0×0.5.

Are the misclassification results sensible, given the data plots that you saw ear-

lier?

The listing of the posterior probabilities for each sex, by case, gives you

an idea of the clarity of classification, with larger differences between the

male and female posteriors corresponding to more definitive (but not necessarily

correct!) classifications.
# print table

classify.sh

## sex class error postF postM

## 1 F M -1 0.166 0.834

## 2 F M -1 0.031 0.969

## 3 F F 0.847 0.153

## 4 F F 0.748 0.252

## 5 F F 0.900 0.100

## 6 F F 0.992 0.008

## 7 F F 0.517 0.483

## 8 F F 0.937 0.063

## 9 F F 0.937 0.063

## 10 F F 0.937 0.063

## 11 F M -1 0.184 0.816

## 12 F M -1 0.294 0.706

## 13 F F 0.733 0.267

## 14 F F 0.733 0.267

## 15 F F 0.917 0.083

## 16 F F 0.994 0.006

## 17 F F 0.886 0.114

## 18 F F 0.864 0.136

## 19 F F 1.000 0.000

## 20 F F 0.998 0.002

## 21 F F 1.000 0.000

## 22 F F 1.000 0.000

## 23 F F 0.993 0.007

## 24 F F 0.999 0.001

## 25 M M 0.481 0.519

## 26 M M 0.040 0.960

## 27 M M 0.020 0.980
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17.3: Example: Carapace classification and error 475

## 28 M M 0.346 0.654

## 29 M M 0.092 0.908

## 30 M M 0.021 0.979

## 31 M M 0.146 0.854

## 32 M M 0.078 0.922

## 33 M M 0.018 0.982

## 34 M M 0.036 0.964

## 35 M M 0.026 0.974

## 36 M M 0.019 0.981

## 37 M M 0.256 0.744

## 38 M M 0.023 0.977

## 39 M M 0.023 0.977

## 40 M M 0.012 0.988

## 41 M M 0.002 0.998

## 42 M M 0.175 0.825

## 43 M M 0.020 0.980

## 44 M M 0.157 0.843

## 45 M M 0.090 0.910

## 46 M M 0.067 0.933

## 47 M M 0.081 0.919

## 48 M M 0.074 0.926

# Assess the accuracy of the prediction

pred.freq <- table(shells$sex, lda.sh.cv$class) # row = true sex, col = classified sex

pred.freq

##

## F M

## F 20 4

## M 0 24

prop.table(pred.freq, 1) # proportions by row

##

## F M

## F 0.8333333 0.1666667

## M 0.0000000 1.0000000

# proportion correct for each category

diag(prop.table(pred.freq, 1))

## F M

## 0.8333333 1.0000000

# total proportion correct

sum(diag(prop.table(pred.freq)))

## [1] 0.9166667

# total error rate

1 - sum(diag(prop.table(pred.freq)))

## [1] 0.08333333

UNM, Stat 428/528 ADA2



476 Ch 17: Classification

17.4 Example: Fisher’s Iris Data cross-validation

I will illustrate cross-validation on Fisher’s iris data first using a test data set,

and then using the jackknife method. The 150 observations were randomly

rearranged and separated into two batches of 75. The 75 observations in the

calibration set were used to develop a classification rule. This rule was applied

to the remaining 75 flowers, which form the test data set. There is no general

rule about the relative sizes of the test data and the training data. Many

researchers use a 50-50 split. Regardless of the split, you should combine the

two data sets at the end of the cross-validation to create the actual rule for

classifying future data.

Below, the half of the indices of the iris data set are randomly selected,

and assigned a label “test”, whereas the rest are “train”. A plot indicates the

two subsamples are similar.
#### Example: Fisher's iris data

# The "iris" dataset is included with R in the library(datasets)

data(iris)

str(iris)

## 'data.frame': 150 obs. of 5 variables:

## $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...

## $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...

## $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...

## $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...

## $ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...

# Randomly assign equal train/test by Species strata

library(plyr)

iris <- ddply(iris, .(Species), function(X) {
ind <- sample.int(nrow(X), size = round(nrow(X)/2))

sort(ind)

X$test <- "train"

X$test[ind] <- "test"

X$test <- factor(X$test)

X$test

return(X)

})
summary(iris$test)

## test train

## 75 75

table(iris$Species, iris$test)

##
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## test train

## setosa 25 25

## versicolor 25 25

## virginica 25 25

## Scatterplot matrix

library(ggplot2)

#suppressMessages(suppressWarnings(library(GGally)))

library(GGally)

p <- ggpairs(subset(iris, test == "train")[,c(5,1,2,3,4)]

, mapping = ggplot2::aes(colour = Species, alpha = 0.5)

, title = "train")

print(p)

## ‘stat bin()‘ using ‘bins = 30‘. Pick better value with ‘binwidth‘.

## ‘stat bin()‘ using ‘bins = 30‘. Pick better value with ‘binwidth‘.

## ‘stat bin()‘ using ‘bins = 30‘. Pick better value with ‘binwidth‘.

## ‘stat bin()‘ using ‘bins = 30‘. Pick better value with ‘binwidth‘.

p <- ggpairs(subset(iris, test == "test")[,c(5,1,2,3,4)]

, mapping = ggplot2::aes(colour = Species, alpha = 0.5)

, title = "test")

print(p)

## ‘stat bin()‘ using ‘bins = 30‘. Pick better value with ‘binwidth‘.

## ‘stat bin()‘ using ‘bins = 30‘. Pick better value with ‘binwidth‘.

## ‘stat bin()‘ using ‘bins = 30‘. Pick better value with ‘binwidth‘.

## ‘stat bin()‘ using ‘bins = 30‘. Pick better value with ‘binwidth‘.

# detach package after use so reshape2 works (old reshape (v.1) conflicts)

#detach("package:GGally", unload=TRUE)

#detach("package:reshape", unload=TRUE)
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As suggested in the partimat() plot below, we should expect Sepal.Length

to potentially not contribute much to the classification, since (pairwise) more

errors are introduced with that variable than between other pairs. (In fact,
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we’ll see below that the coefficients for Sepal.Length is smallest.)
# classification of observations based on classification methods

# (e.g. lda, qda) for every combination of two variables.

library(klaR)

partimat(Species ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width

, data = subset(iris, test == "train")

, plot.matrix = TRUE)
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library(MASS)

lda.iris <- lda(Species ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width

, data = subset(iris, test == "train"))

lda.iris

## Call:

## lda(Species ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width,

## data = subset(iris, test == "train"))

##

## Prior probabilities of groups:

## setosa versicolor virginica

## 0.3333333 0.3333333 0.3333333
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##

## Group means:

## Sepal.Length Sepal.Width Petal.Length Petal.Width

## setosa 4.960 3.400 1.448 0.240

## versicolor 5.968 2.792 4.304 1.344

## virginica 6.512 2.944 5.508 2.020

##

## Coefficients of linear discriminants:

## LD1 LD2

## Sepal.Length 0.598122 -0.3320011

## Sepal.Width 1.684216 2.0882107

## Petal.Length -2.287078 -0.8035116

## Petal.Width -2.297160 2.8095820

##

## Proportion of trace:

## LD1 LD2

## 0.9934 0.0066

The linear discrimant functions that best classify the Species in the training

set are

LD1 = 0.5981 sepalL + 1.684 sepalW +−2.287 petalL +−2.297 petalW

LD2 = −0.332 sepalL + 2.088 sepalW +−0.8035 petalL + 2.81 petalW.

The plots of the lda object shows the data on the LD scale.
plot(lda.iris, dimen = 1, col = as.numeric(iris$Species))

plot(lda.iris, dimen = 2, col = as.numeric(iris$Species))

#pairs(lda.iris, col = as.numeric(iris£Species))
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# CV = TRUE does jackknife (leave-one-out) crossvalidation

lda.iris.cv <- lda(Species ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width

, data = subset(iris, test == "train"), CV = TRUE)

# Create a table of classification and posterior probabilities for each observation

classify.iris <- data.frame(Species = subset(iris, test == "train")$Species

, class = lda.iris.cv$class

, error = ""

, round(lda.iris.cv$posterior,3))

colnames(classify.iris) <- c("Species", "class", "error"

, paste("post", colnames(lda.iris.cv$posterior), sep=""))

# error column

classify.iris$error <- as.character(classify.iris$error)

classify.agree <- as.character(as.numeric(subset(iris, test == "train")$Species)

- as.numeric(lda.iris.cv$class))

classify.iris$error[!(classify.agree == 0)] <- classify.agree[!(classify.agree == 0)]

The misclassification error is low within the training set.
# print table

#classify.iris

# Assess the accuracy of the prediction

# row = true Species, col = classified Species

pred.freq <- table(subset(iris, test == "train")$Species, lda.iris.cv$class)

pred.freq

##

## setosa versicolor virginica

## setosa 25 0 0
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## versicolor 0 23 2

## virginica 0 1 24

prop.table(pred.freq, 1) # proportions by row

##

## setosa versicolor virginica

## setosa 1.00 0.00 0.00

## versicolor 0.00 0.92 0.08

## virginica 0.00 0.04 0.96

# proportion correct for each category

diag(prop.table(pred.freq, 1))

## setosa versicolor virginica

## 1.00 0.92 0.96

# total proportion correct

sum(diag(prop.table(pred.freq)))

## [1] 0.96

# total error rate

1 - sum(diag(prop.table(pred.freq)))

## [1] 0.04

How well does the LD functions constructed on the training data predict

the Species in the independent test data?
# predict the test data from the training data LDFs

pred.iris <- predict(lda.iris, newdata = subset(iris, test == "test"))

# Create a table of classification and posterior probabilities for each observation

classify.iris <- data.frame(Species = subset(iris, test == "test")$Species

, class = pred.iris$class

, error = ""

, round(pred.iris$posterior,3))

colnames(classify.iris) <- c("Species", "class", "error"

, paste("P", colnames(lda.iris.cv$posterior), sep=""))

# error column

classify.iris$error <- as.character(classify.iris$error)

classify.agree <- as.character(as.numeric(subset(iris, test == "test")$Species)

- as.numeric(pred.iris$class))

classify.iris$error[!(classify.agree == 0)] <- classify.agree[!(classify.agree == 0)]

# print table

classify.iris

## Species class error Psetosa Pversicolor Pvirginica

## 2 setosa setosa 1 0.000 0.000

## 3 setosa setosa 1 0.000 0.000

## 6 setosa setosa 1 0.000 0.000

## 8 setosa setosa 1 0.000 0.000
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## 9 setosa setosa 1 0.000 0.000

## 10 setosa setosa 1 0.000 0.000

## 11 setosa setosa 1 0.000 0.000

## 12 setosa setosa 1 0.000 0.000

## 15 setosa setosa 1 0.000 0.000

## 16 setosa setosa 1 0.000 0.000

## 23 setosa setosa 1 0.000 0.000

## 24 setosa setosa 1 0.000 0.000

## 26 setosa setosa 1 0.000 0.000

## 28 setosa setosa 1 0.000 0.000

## 29 setosa setosa 1 0.000 0.000

## 31 setosa setosa 1 0.000 0.000

## 35 setosa setosa 1 0.000 0.000

## 37 setosa setosa 1 0.000 0.000

## 40 setosa setosa 1 0.000 0.000

## 41 setosa setosa 1 0.000 0.000

## 43 setosa setosa 1 0.000 0.000

## 44 setosa setosa 1 0.000 0.000

## 45 setosa setosa 1 0.000 0.000

## 47 setosa setosa 1 0.000 0.000

## 49 setosa setosa 1 0.000 0.000

## 52 versicolor versicolor 0 0.999 0.001

## 53 versicolor versicolor 0 0.992 0.008

## 54 versicolor versicolor 0 0.999 0.001

## 55 versicolor versicolor 0 0.992 0.008

## 57 versicolor versicolor 0 0.988 0.012

## 59 versicolor versicolor 0 1.000 0.000

## 61 versicolor versicolor 0 1.000 0.000

## 62 versicolor versicolor 0 0.999 0.001

## 63 versicolor versicolor 0 1.000 0.000

## 69 versicolor versicolor 0 0.918 0.082

## 74 versicolor versicolor 0 0.999 0.001

## 76 versicolor versicolor 0 1.000 0.000

## 79 versicolor versicolor 0 0.991 0.009

## 80 versicolor versicolor 0 1.000 0.000

## 83 versicolor versicolor 0 1.000 0.000

## 85 versicolor versicolor 0 0.973 0.027

## 89 versicolor versicolor 0 1.000 0.000

## 90 versicolor versicolor 0 1.000 0.000

## 91 versicolor versicolor 0 0.998 0.002

## 93 versicolor versicolor 0 1.000 0.000

## 95 versicolor versicolor 0 0.999 0.001

## 96 versicolor versicolor 0 1.000 0.000

## 97 versicolor versicolor 0 1.000 0.000

## 98 versicolor versicolor 0 1.000 0.000

## 99 versicolor versicolor 0 1.000 0.000

## 103 virginica virginica 0 0.000 1.000

## 105 virginica virginica 0 0.000 1.000
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## 106 virginica virginica 0 0.000 1.000

## 107 virginica virginica 0 0.114 0.886

## 108 virginica virginica 0 0.000 1.000

## 109 virginica virginica 0 0.000 1.000

## 113 virginica virginica 0 0.001 0.999

## 114 virginica virginica 0 0.001 0.999

## 116 virginica virginica 0 0.000 1.000

## 118 virginica virginica 0 0.000 1.000

## 119 virginica virginica 0 0.000 1.000

## 122 virginica virginica 0 0.004 0.996

## 124 virginica virginica 0 0.137 0.863

## 127 virginica virginica 0 0.283 0.717

## 130 virginica virginica 0 0.053 0.947

## 132 virginica virginica 0 0.001 0.999

## 136 virginica virginica 0 0.000 1.000

## 138 virginica virginica 0 0.010 0.990

## 139 virginica virginica 0 0.346 0.654

## 140 virginica virginica 0 0.003 0.997

## 141 virginica virginica 0 0.000 1.000

## 145 virginica virginica 0 0.000 1.000

## 148 virginica virginica 0 0.009 0.991

## 149 virginica virginica 0 0.000 1.000

## 150 virginica virginica 0 0.039 0.961

# Assess the accuracy of the prediction

# row = true Species, col = classified Species

pred.freq <- table(subset(iris, test == "test")$Species, pred.iris$class)

pred.freq

##

## setosa versicolor virginica

## setosa 25 0 0

## versicolor 0 25 0

## virginica 0 0 25

prop.table(pred.freq, 1) # proportions by row

##

## setosa versicolor virginica

## setosa 1 0 0

## versicolor 0 1 0

## virginica 0 0 1

# proportion correct for each category

diag(prop.table(pred.freq, 1))

## setosa versicolor virginica

## 1 1 1

# total proportion correct

sum(diag(prop.table(pred.freq)))

## [1] 1
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# total error rate

1 - sum(diag(prop.table(pred.freq)))

## [1] 0

The classification rule based on the training set works well with the test

data. Do not expect such nice results on all classification problems! Usually

the error rate is slightly higher on the test data than on the training data.

It is important to recognize that statistically significant differences (MANOVA)

among groups on linear discriminant function scores do not necessarily translate

into accurate classification rules! (WHY?)

17.4.1 Stepwise variable selection for classification

Stepwise variable selection for classification can be performed using package

klaR function stepclass() using any specified classification function. Classifi-

cation performance is estimated by selected from one of Uschi’s classification

performance measures.

The resulting model can be very sensitive to the starting model. Below, the

first model starts full and ends full. The second model starts empty and ends

after one variable is added. Note that running this repeatedly could result in

slightly different models because the k-fold crossvalidation partitions the data

at random. The formula object gives the selected model.
library(klaR)

# start with full model and do stepwise (direction = "backward")

step.iris.b <- stepclass(Species ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width

, data = iris

, method = "lda"

, improvement = 0.01 # stop criterion: improvement less than 1%

# default of 5% is too coarse

, direction = "backward")

## ‘stepwise classification’, using 10-fold cross-validated correctness rate of method

lda’.

## 150 observations of 4 variables in 3 classes; direction: backward

## stop criterion: improvement less than 1%.

## correctness rate: 0.98; starting variables (4): Sepal.Length, Sepal.Width, Petal.Length, Petal.Width

##

## hr.elapsed min.elapsed sec.elapsed

## 0.00 0.00 0.23
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plot(step.iris.b, main = "Start = full model, backward selection")

step.iris.b$formula

## Species ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width

## <environment: 0x0000000030a47f38>

# start with empty model and do stepwise (direction = "both")

step.iris.f <- stepclass(Species ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width

, data = iris

, method = "lda"

, improvement = 0.01 # stop criterion: improvement less than 1%

# default of 5% is too coarse

, direction = "forward")

## ‘stepwise classification’, using 10-fold cross-validated correctness rate of method

lda’.

## 150 observations of 4 variables in 3 classes; direction: forward

## stop criterion: improvement less than 1%.

## correctness rate: 0.96; in: "Petal.Width"; variables (1): Petal.Width

##

## hr.elapsed min.elapsed sec.elapsed

## 0.00 0.00 0.27

plot(step.iris.f, main = "Start = empty model, forward selection")

step.iris.f$formula

## Species ~ Petal.Width

## <environment: 0x0000000023572d18>
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Given your selected model, you can then go on to fit your classification

model by using the formula from the stepclass() object.
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library(MASS)

lda.iris.step <- lda(step.iris.b$formula

, data = iris)

lda.iris.step

## Call:

## lda(step.iris.b$formula, data = iris)

##

## Prior probabilities of groups:

## setosa versicolor virginica

## 0.3333333 0.3333333 0.3333333

##

## Group means:

## Sepal.Length Sepal.Width Petal.Length Petal.Width

## setosa 5.006 3.428 1.462 0.246

## versicolor 5.936 2.770 4.260 1.326

## virginica 6.588 2.974 5.552 2.026

##

## Coefficients of linear discriminants:

## LD1 LD2

## Sepal.Length 0.8293776 0.02410215

## Sepal.Width 1.5344731 2.16452123

## Petal.Length -2.2012117 -0.93192121

## Petal.Width -2.8104603 2.83918785

##

## Proportion of trace:

## LD1 LD2

## 0.9912 0.0088

Note that if you have many variables, you may wish to use the alternate

syntax below to specify your formula (see the help ?stepclass for this example).
iris.d <- iris[,1:4] # the data

iris.c <- iris[,5] # the classes

sc_obj <- stepclass(iris.d, iris.c, "lda", start.vars = "Sepal.Width")

17.5 Example: Analysis of Admissions Data

The admissions officer of a business school has used an index of undergraduate

GPA and management aptitude test scores (GMAT) to help decide which ap-

plicants should be admitted to graduate school. The data below gives the GPA

and GMAT scores for recent applicants who are classified as admit (A), border-

line (B), or not admit (N). An equal number of A, B, and N’s (roughly) were
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selected from their corresponding populations (Johnson and Wichern, 1988).
#### Example: Business school admissions data

fn.data <- "http://statacumen.com/teach/ADA2/ADA2_notes_Ch17_business.dat"

business <- read.table(fn.data, header = TRUE)

## Scatterplot matrix

library(ggplot2)

#suppressMessages(suppressWarnings(library(GGally)))

library(GGally)

p <- ggpairs(business

, mapping = ggplot2::aes(colour = admit, alpha = 0.5)

)

print(p)

## ‘stat bin()‘ using ‘bins = 30‘. Pick better value with ‘binwidth‘.

## ‘stat bin()‘ using ‘bins = 30‘. Pick better value with ‘binwidth‘.

# detach package after use so reshape2 works (old reshape (v.1) conflicts)

#detach("package:GGally", unload=TRUE)

#detach("package:reshape", unload=TRUE)

library(ggplot2)

p <- ggplot(business, aes(x = gpa, y = gmat, shape = admit, colour = admit))

p <- p + geom_point(size = 6)

library(R.oo) # for ascii code lookup

p <- p + scale_shape_manual(values=charToInt(sort(unique(business$admit))))

p <- p + theme(legend.position="none") # remove legend with fill colours

print(p)
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The officer wishes to use these data to develop a more quantitative (i.e., less
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subjective) approach to classify prospective students. Historically, about 20%

of all applicants have been admitted initially, 10% are classified as borderline,

and the remaining 70% are not admitted. The officer would like to keep these

percentages roughly the same in the future.

This is a natural place to use discriminant analysis. Let us do a more

careful analysis here, paying attention to underlying assumptions of normality

and equal covariance matrices.

The GPA and GMAT distributions are reasonably symmetric. Although

a few outliers are present, it does not appear that any transformation will

eliminate the outliers and preserve the symmetry. Given that the outliers are

not very extreme, I would analyze the data on this scale. Except for the outliers,

the spreads (IQRs) are roughly equal across groups within GPA and GMAT. I

will look carefully at the variance-covariance matrices later.

There is a fair amount of overlap between the borderline and other groups,

but this should not be too surprising. Otherwise these applicants would not be

borderline!

17.5.1 Further Analysis of the Admissions Data

The assumption of constant variance-covariance matrices is suspect. The GPA

and GMAT variances are roughly constant across groups, but the correlation

between GPA and GMAT varies greatly over groups.
# Covariance matrices by admit

by(business[,2:3], business$admit, cov)

## business$admit: A

## gpa gmat

## gpa 0.05866734 2.857601

## gmat 2.85760081 6479.990927

## ----------------------------------------------------

## business$admit: B

## gpa gmat

## gpa 0.05422559 -4.87757

## gmat -4.87756989 4002.76129

## ----------------------------------------------------

## business$admit: N

## gpa gmat

## gpa 0.05602785 10.01171
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## gmat 10.01170769 6973.16462

# Correlation matrices by admit

by(business[,2:3], business$admit, cor)

## Error in FUN(X[[i]], ...): could not find function "FUN"

Assuming equal variance-covariance matrices, both GPA and GMAT are

important for discriminating among entrance groups. This is consistent with

the original data plots.
# classification of observations based on classification methods

# (e.g. lda, qda) for every combination of two variables.

library(klaR)

partimat(admit ~ gmat + gpa

, data = business

, plot.matrix = FALSE)
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app. error rate: 0.157

Partition Plot

library(MASS)

lda.business <- lda(admit ~ gpa + gmat

, data = business)
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lda.business

## Call:

## lda(admit ~ gpa + gmat, data = business)

##

## Prior probabilities of groups:

## A B N

## 0.3595506 0.3483146 0.2921348

##

## Group means:

## gpa gmat

## A 3.321875 554.4062

## B 3.004516 454.1935

## N 2.400385 443.7308

##

## Coefficients of linear discriminants:

## LD1 LD2

## gpa -3.977912929 -1.48346456

## gmat -0.003057846 0.01292319

##

## Proportion of trace:

## LD1 LD2

## 0.9473 0.0527

The linear discrimant functions that best classify the admit are

LD1 = −3.978 gpa +−0.003058 gmat

LD2 = −1.483 gpa + 0.01292 gmat,

interpretted as a weighted average of the scores and a contrast of the scores.

The plots of the lda() object shows the data on the LD scale.
plot(lda.business, dimen = 1)

plot(lda.business, dimen = 2, col = as.numeric(business$admit))

#pairs(lda.business, col = as.numeric(business£admit))
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# CV = TRUE does jackknife (leave-one-out) crossvalidation

lda.business.cv <- lda(admit ~ gpa + gmat

, data = business, CV = TRUE)

# Create a table of classification and posterior probabilities for each observation

classify.business <- data.frame(admit = business$admit

, class = lda.business.cv$class

, error = ""

, round(lda.business.cv$posterior,3))

colnames(classify.business) <- c("admit", "class", "error"

, paste("post", colnames(lda.business.cv$posterior), sep=""))

# error column

classify.business$error <- as.character(classify.business$error)

classify.agree <- as.character(as.numeric(business$admit)

- as.numeric(lda.business.cv$class))

classify.business$error[!(classify.agree == 0)] <- classify.agree[!(classify.agree == 0)]

The misclassification error within the training set is reasonably low, given

the overlap between the B group and the others, and never a misclassification

between A and N.
# print table

#classify.business

# Assess the accuracy of the prediction

# row = true admit, col = classified admit

pred.freq <- table(business$admit, lda.business.cv$class)

pred.freq
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##

## A B N

## A 26 6 0

## B 3 25 3

## N 0 3 23

prop.table(pred.freq, 1) # proportions by row

##

## A B N

## A 0.81250000 0.18750000 0.00000000

## B 0.09677419 0.80645161 0.09677419

## N 0.00000000 0.11538462 0.88461538

# proportion correct for each category

diag(prop.table(pred.freq, 1))

## A B N

## 0.8125000 0.8064516 0.8846154

# total proportion correct

sum(diag(prop.table(pred.freq)))

## [1] 0.8314607

# total error rate

1 - sum(diag(prop.table(pred.freq)))

## [1] 0.1685393

17.5.2 Classification Using Unequal Prior Probabil-
ities

A new twist to this problem is that we have prior information on the rela-

tive sizes of the populations. Historically 20% of applicants are admitted, 10%

are borderline, and 70% are not admitted. This prior information is incorpo-

rated into the classification rule by using a prior option with lda(). The prior

probabilities are assumed to be equal when this statement is omitted. The

classification rule for unequal prior probabilities uses both the M -distance and

the prior probability for making decisions, as outlined below.

When the prior probabilities are unequal, classification is based on the gen-

eralized distance to group j:

D2
j (X) = (X − X̄j)

′S−1(X − X̄j)− 2 log(PRIORj),
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or on the estimated posterior probability of membership in group j:

Pr(j|X) =
exp{−0.5D2

j (X)}∑
k exp{−0.5D2

k(X)}
.

Here S is the pooled covariance matrix, and log(PRIORj) is the (natural) log

of the prior probability of being in group j. As before, you classify observa-

tion X into the group that it is closest to in terms of generalized distance, or

equivalently, into the group with the maximum posterior probability.

Note that−2 log(PRIORj) exceeds zero, and is extremely large when PRIORj

is near zero. The generalized distance is the M -distance plus a penalty term

that is large when the prior probability for a given group is small. If the prior

probabilities are equal, the penalty terms are equal so the classification rule

depends only on the M -distance.

The penalty makes it harder (relative to equal probabilities) to classify into

a low probability group, and easier to classify into high probability groups. In

the admissions data, an observation has to be very close to the B or A groups

to not be classified as N.

Note that in the analysis below, we make the tenuous assumption that the

population covariance matrices are equal. We also have 6 new observations

that we wish to classify. These observations are entered as a test data set with

missing class levels.
# new observations to classify

business.test <- read.table(text = "

admit gpa gmat

NA 2.7 630

NA 3.3 450

NA 3.4 540

NA 2.8 420

NA 3.5 340

NA 3.0 500

", header = TRUE)

With priors, the LDs are different.
library(MASS)

lda.business <- lda(admit ~ gpa + gmat

, prior = c(0.2, 0.1, 0.7)

, data = business)

lda.business
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## Call:

## lda(admit ~ gpa + gmat, data = business, prior = c(0.2, 0.1,

## 0.7))

##

## Prior probabilities of groups:

## A B N

## 0.2 0.1 0.7

##

## Group means:

## gpa gmat

## A 3.321875 554.4062

## B 3.004516 454.1935

## N 2.400385 443.7308

##

## Coefficients of linear discriminants:

## LD1 LD2

## gpa -4.014778092 -1.38058511

## gmat -0.002724201 0.01299761

##

## Proportion of trace:

## LD1 LD2

## 0.9808 0.0192

About 1/2 of the borderlines in the calibration set are misclassified. This is

due to the overlap of the B group with the other 2 groups, but also reflects the

low prior probability for the borderline group. The classification rule requires

strong evidence that an observation is borderline before it can be classified as

such.
# CV = TRUE does jackknife (leave-one-out) crossvalidation

lda.business.cv <- lda(admit ~ gpa + gmat

, prior = c(0.2, 0.1, 0.7)

, data = business, CV = TRUE)

# Create a table of classification and posterior probabilities for each observation

classify.business <- data.frame(admit = business$admit

, class = lda.business.cv$class

, error = ""

, round(lda.business.cv$posterior,3))

colnames(classify.business) <- c("admit", "class", "error"

, paste("post", colnames(lda.business.cv$posterior), sep=""))

# error column

classify.business$error <- as.character(classify.business$error)

classify.agree <- as.character(as.numeric(business$admit)

- as.numeric(lda.business.cv$class))

classify.business$error[!(classify.agree == 0)] <- classify.agree[!(classify.agree == 0)]
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# print table, errors only

classify.business[!(classify.business$error == ""), ]

## admit class error postA postB postN

## 29 A B -1 0.027 0.557 0.416

## 30 A N -2 0.114 0.383 0.503

## 31 A B -1 0.045 0.595 0.360

## 35 N A 2 0.442 0.273 0.285

## 36 N B 1 0.033 0.516 0.451

## 59 B N -1 0.001 0.044 0.955

## 60 B N -1 0.002 0.016 0.982

## 61 B N -1 0.126 0.329 0.545

## 66 B A 1 0.747 0.253 0.000

## 67 B N -1 0.161 0.412 0.428

## 68 B N -1 0.037 0.277 0.686

## 71 B N -1 0.059 0.227 0.714

## 72 B N -1 0.017 0.089 0.894

## 74 B N -1 0.070 0.129 0.801

## 75 B N -1 0.020 0.146 0.834

## 82 B N -1 0.107 0.344 0.549

## 85 B A 1 0.758 0.233 0.009

## 86 B A 1 0.979 0.021 0.001

## 87 B A 1 0.627 0.365 0.008

## 88 B A 1 0.633 0.367 0.000

# Assess the accuracy of the prediction

# row = true admit, col = classified admit

pred.freq <- table(business$admit, lda.business.cv$class)

pred.freq

##

## A B N

## A 29 2 1

## B 5 16 10

## N 1 1 24

prop.table(pred.freq, 1) # proportions by row

##

## A B N

## A 0.90625000 0.06250000 0.03125000

## B 0.16129032 0.51612903 0.32258065

## N 0.03846154 0.03846154 0.92307692

# proportion correct for each category

diag(prop.table(pred.freq, 1))

## A B N

## 0.9062500 0.5161290 0.9230769

# total proportion correct

sum(diag(prop.table(pred.freq)))

## [1] 0.7752809
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# total error rate

1 - sum(diag(prop.table(pred.freq)))

## [1] 0.2247191

The test data cases were entered with missing group IDs. The classification

table compares the group IDs, which are unknown, to the ID for the group into

which an observation is classified. These two labels differ, so all the test data

cases are identified as misclassified. Do not be confused by this! Just focus on

the classification for each case, and ignore the other summaries.
# predict the test data from the training data LDFs

pred.business <- predict(lda.business, newdata = business.test)

# Create a table of classification and posterior probabilities for each observation

classify.business.test <- data.frame(admit = business.test$admit

, class = pred.business$class

#, error = ""

, round(pred.business$posterior,3))

colnames(classify.business.test) <- c("admit", "class"#, "error"

, paste("post", colnames(pred.business$posterior), sep=""))

## error column

#classify.business.test£error <- as.character(classify.business.test£error)

#classify.agree <- as.character(as.numeric(business.test£admit)

# - as.numeric(pred.business£class))

#classify.business.test£error[!(classify.agree == 0)] <- classify.agree[!(classify.agree == 0)]

# print table

classify.business.test

## admit class postA postB postN

## 1 NA N 0.102 0.074 0.824

## 2 NA A 0.629 0.367 0.004

## 3 NA A 0.919 0.081 0.000

## 4 NA N 0.026 0.297 0.676

## 5 NA B 0.461 0.538 0.001

## 6 NA B 0.385 0.467 0.148

Except for observation 5, the posterior probabilities for the test cases give

strong evidence in favor of classification into a specific group.
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17.5.3 Classification With Unequal Covariance Ma-
trices, QDA

The assumption of multivariate normal populations with equal covariance ma-

trices is often unrealistic. Although there are no widely available procedures

for MANOVA or stepwise variable selection in discriminant analysis that relax

these assumptions, there are a variety of classification rules that weaken one or

both of these assumptions. The qda() function is a quadratic discriminant

classification rule that assumes normality but allows unequal covari-

ance matrices.

The quadratic discriminant classification rule is based on the generalized

distance to group j:

D2
j (X) = (X − X̄j)

′S−1
j (X − X̄j)− 2 log(PRIORj) + log |Sj|,

or equivalently, the posterior probability of membership in group j:

Pr(j|X) =
exp{−0.5D2

j (X)}∑
k exp{−0.5D2

k(X)}
.

Here Sj is the sample covariance matrix from group j and log |Sj| is the log

of the determinant of this covariance matrix. The determinant penalty term is

large for groups having large variability. The rule is not directly tied to linear

discriminant function variables, so interpretation and insight into this method

is less straightforward.

There is evidence that quadratic discrimination does not improve misclas-

sification rates in many problems with small to modest sample sizes, in part,

because the quadratic rule requires an estimate of the covariance matrix for

each population. A modest to large number of observations is needed to ac-

curately estimate variances and correlations. I often compute the linear and

quadratic rules, but use the linear discriminant analysis unless the quadratic

rule noticeably reduces the misclassification rate.

Recall that the GPA and GMAT sample variances are roughly constant

across admission groups, but the correlation between GPA and GMAT varies

widely across groups.
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The quadratic rule does not classify the training data noticeably better

than the linear discriminant analysis. The individuals in the test data have the

same classifications under both approaches. Assuming that the optimistic error

rates for the two rules were “equally optimistic”, I would be satisfied with the

standard linear discriminant analysis, and would summarize my analysis based

on this approach. Additional data is needed to decide whether the quadratic

rule might help reduce the misclassification rates.
# classification of observations based on classification methods

# (e.g. qda, qda) for every combination of two variables.

library(klaR)

partimat(admit ~ gmat + gpa

, data = business

, plot.matrix = FALSE

, method = "lda", main = "LDA partition")

partimat(admit ~ gmat + gpa

, data = business

, plot.matrix = FALSE

, method = "qda", main = "QDA partition")
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LDA partition
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QDA partition

library(MASS)

qda.business <- qda(admit ~ gpa + gmat

, prior = c(0.2, 0.1, 0.7)

, data = business)

qda.business

## Call:

## qda(admit ~ gpa + gmat, data = business, prior = c(0.2, 0.1,
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## 0.7))

##

## Prior probabilities of groups:

## A B N

## 0.2 0.1 0.7

##

## Group means:

## gpa gmat

## A 3.321875 554.4062

## B 3.004516 454.1935

## N 2.400385 443.7308

# CV = TRUE does jackknife (leave-one-out) crossvalidation

qda.business.cv <- qda(admit ~ gpa + gmat

, prior = c(0.2, 0.1, 0.7)

, data = business, CV = TRUE)

# Create a table of classification and posterior probabilities for each observation

classify.business <- data.frame(admit = business$admit

, class = qda.business.cv$class

, error = ""

, round(qda.business.cv$posterior,3))

colnames(classify.business) <- c("admit", "class", "error"

, paste("post", colnames(qda.business.cv$posterior), sep=""))

# error column

classify.business$error <- as.character(classify.business$error)

classify.agree <- as.character(as.numeric(business$admit)

- as.numeric(qda.business.cv$class))

classify.business$error[!(classify.agree == 0)] <- classify.agree[!(classify.agree == 0)]

# print table

#classify.business

# Assess the accuracy of the prediction

# row = true admit, col = classified admit

pred.freq <- table(business$admit, qda.business.cv$class)

pred.freq

##

## A B N

## A 27 3 2

## B 5 17 9

## N 0 1 25

prop.table(pred.freq, 1) # proportions by row

##

## A B N

## A 0.84375000 0.09375000 0.06250000

## B 0.16129032 0.54838710 0.29032258
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## N 0.00000000 0.03846154 0.96153846

# proportion correct for each category

diag(prop.table(pred.freq, 1))

## A B N

## 0.8437500 0.5483871 0.9615385

# total proportion correct

sum(diag(prop.table(pred.freq)))

## [1] 0.7752809

# total error rate

1 - sum(diag(prop.table(pred.freq)))

## [1] 0.2247191

# predict the test data from the training data LDFs

pred.business <- predict(qda.business, newdata = business.test)

# Create a table of classification and posterior probabilities for each observation

classify.business.test <- data.frame(admit = business.test$admit

, class = pred.business$class

#, error = ""

, round(pred.business$posterior,3))

colnames(classify.business.test) <- c("admit", "class"#, "error"

, paste("post", colnames(pred.business$posterior), sep=""))

## error column

#classify.business.test£error <- as.character(classify.business.test£error)

#classify.agree <- as.character(as.numeric(business.test£admit)

# - as.numeric(pred.business£class))

#classify.business.test£error[!(classify.agree == 0)] <- classify.agree[!(classify.agree == 0)]

# print table

classify.business.test

## admit class postA postB postN

## 1 NA N 0.043 0.038 0.919

## 2 NA A 0.597 0.402 0.000

## 3 NA A 0.978 0.022 0.000

## 4 NA N 0.051 0.423 0.526

## 5 NA B 0.292 0.708 0.000

## 6 NA B 0.363 0.513 0.123
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Chapter 18

Data Cleaning

Data cleaning1, or data preparation, is an essential part of statistical analysis.

In fact, in practice it is often more time-consuming than the statistical analysis

itself. Data cleaning may profoundly influence the statistical statements based

on the data. Typical actions like imputation or outlier handling obviously

influence the results of a statistical analyses. For this reason, data cleaning

should be considered a statistical operation, to be performed in a reproducible

manner. The R statistical environment provides a good environment for repro-

ducible data cleaning since all cleaning actions can be scripted and therefore

reproduced.

18.1 The five steps of statistical analysis

Statistical analysis can be viewed as the result of a number of value-increasing

data processing steps.

1Content in this chapter is derived with permission from Statistics Netherlands at http://cran.

r-project.org/doc/contrib/de_Jonge+van_der_Loo-Introduction_to_data_cleaning_with_R.pdf
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1. Raw data
type checking, normalizing

D
at

a 
cl

ea
ni

ng
�x and impute

estimate, analyze, derive, etc.

tabulate, plot

2. Technically correct data

3. Consistent data

4. Statistical results

5. Formatted output

Each box represents data in a certain state while each arrow represents the

activities needed to get from one state to the other.

1. Raw Data The data “as is” may lack headers, contain wrong data types

(e.g., numbers stored as strings), wrong category labels, unknown or unex-

pected character encoding and so on. Reading such files into an R data.frame

directly is either difficult or impossible without some sort of preprocessing.

2. Technically correct data The data can be read into an R data.frame,

with correct names, types and labels, without further trouble. However, that

does not mean that the values are error-free or complete.

For example, an age variable may be reported negative, an under-aged person

may be registered to possess a driver’s license, or data may simply be missing.

Such inconsistencies obviously depend on the subject matter that the data

pertains to, and they should be ironed out before valid statistical inference

from such data can be produced.

3. Consistent data The data is ready for statistical inference. It is the

data that most statistical theories use as a starting point. Ideally, such the-

ories can still be applied without taking previous data cleaning steps into
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account. In practice however, data cleaning methods like imputation of miss-

ing values will influence statistical results and so must be accounted for in

the following analyses or interpretation thereof.

4. Statistical results The results of the analysis have been produced and

can be stored for reuse.

5. Formatted output The results in tables and figures ready to include

in statistical reports or publications.

Best practice Store the input data for each stage (raw, technically correct,

consistent, results, and formatted) separately for reuse. Each step between the

stages may be performed by a separate R script for reproducibility.

18.2 R background review

18.2.1 Variable types

The most basic variable in R is a vector. An R vector is a sequence of values of

the same type. All basic operations in R act on vectors (think of the element-

wise arithmetic, for example). The basic types in R are as follows.

numeric Numeric data (approximations of the real numbers)

integer Integer data (whole numbers)

factor Categorical data (simple classifications, like gender)

ordered Ordinal data (ordered classifications, like educational level)

character Character data (strings)

raw Binary data (rarely used)
All basic operations in R work element-wise on vectors where the shortest ar-
gument is recycled if necessary. Why does the following code work the way it
does?
# vectors have variables of _one_ type

c(1, 2, "three")

## [1] "1" "2" "three"

# shorter arguments are recycled

(1:3) * 2
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## [1] 2 4 6

(1:4) * c(1, 2)

## [1] 1 4 3 8

# warning! (why?)

(1:4) * (1:3)

## Warning in (1:4) * (1:3): longer object length is not a multiple of shorter object length

## [1] 1 4 9 4

18.2.2 Special values and value-checking functions

Below are the definitions and some illustrations of the special values NA, NULL,

±Inf, and NaN.

� NA Stands for “not available”. NA is a placeholder for a missing value.

All basic operations in R handle NA without crashing and mostly return

NA as an answer whenever one of the input arguments is NA. If you

understand NA, you should be able to predict the result of the following

R statements.
NA + 1

sum(c(NA, 1, 2))

median(c(NA, 1, 2, 3), na.rm = TRUE)

length(c(NA, 2, 3, 4))

3 == NA

NA == NA

TRUE | NA

# use is.na() to detect NAs

is.na(c(1, NA, 3))

� NULL Think of NULL as the empty set from mathematics; it has no class
(its class is NULL) and has length 0 so it does not take up any space in a
vector.
length(c(1, 2, NULL, 4))

sum(c(1, 2, NULL, 4))

x <- NULL

length(x)

c(x, 2)

# use is.null() to detect NULL variables

is.null(x)

� Inf Stands for “infinity” and only applies to vectors of class numeric (not
integer). Technically, Inf is a valid numeric that results from calculations
like division of a number by zero. Since Inf is a numeric, operations be-
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tween Inf and a finite numeric are well-defined and comparison operators
work as expected.
pi/0

2 * Inf

Inf - 1e+10

Inf + Inf

3 < -Inf

Inf == Inf

# use is.infinite() to detect Inf variables

is.infinite(-Inf)

� NaN Stands for “not a number”. This is generally the result of a calculation
of which the result is unknown, but it is surely not a number. In particular
operations like 0/0, Inf − Inf and Inf/Inf result in NaN. Technically,
NaN is of class numeric, which may seem odd since it is used to indicate
that something is not numeric. Computations involving numbers and NaN
always result in NaN.
NaN + 1

exp(NaN)

# use is.nan() to detect NULL variables

is.nan(0/0)

Note that is.finite() checks a numeric vector for the occurrence of any
non-numerical or special values.
is.finite(c(1, NA, 2, Inf, 3, -Inf, 4, NULL, 5, NaN, 6))

## [1] TRUE FALSE TRUE FALSE TRUE FALSE TRUE TRUE FALSE TRUE

18.3 From raw to technically correct data

18.3.1 Technically correct data

Limiting ourselves to “rectangular” data sets read from a text-based format,

technically correct data in R

1. is stored in a data.frame with suitable columns names, and

2. each column of the data.frame is of the R type that adequately represents

the value domain.

The second demand implies that numeric data should be stored as numeric or

integer, textual data should be stored as character and categorical data should

be stored as a factor or ordered vector, with the appropriate levels.
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Best practice Whenever you need to read data from a foreign file format,

like a spreadsheet or proprietary statistical software that uses undisclosed file

formats, make that software responsible for exporting the data to an open

format that can be read by R.

18.3.2 Reading text data into an R data.frame

In the following, we assume that the text-files we are reading contain data of at

most one unit per line. The number of attributes, their format and separation

symbols in lines containing data may differ over the lines. This includes files in

fixed-width or csv-like format, but excludes XML-like storage formats.

Reading text

read.table() and similar functions below will read a text file and return a

data.frame.

Best practice. A freshly read data.frame should always be inspected with

functions like head(), str(), and summary().

The read.table() function is the most flexible function to read tabular data

that is stored in a textual format. The other read-functions below all even-

tually use read.table() with some fixed parameters and possibly after some

preprocessing. Specifically

� read.csv() for comma separated values with period as decimal separator.

� read.csv2() for semicolon separated values with comma as decimal sepa-

rator.

� read.delim() tab-delimited files with period as decimal separator.

� read.delim2() tab-delimited files with comma as decimal separator.

� read.fwf() data with a predetermined number of bytes per column.

Additional optional arguments include:

Prof. Erik B. Erhardt



18.3: From raw to technically correct data 509

Argument Description

header Does the first line contain column names?

col.names character vector with column names.

na.string Which strings should be considered NA?

colClasses character vector with the types of columns. Will

coerce the columns to the specified types.

stringsAsFactors If TRUE, converts all character vectors into factor vec-

tors.

sep Field separator.

Except for read.table() and read.fwf(), each of the above functions assumes
by default that the first line in the text file contains column headers. The
following demonstrates this on the following text file.
21,6.0

42,5.9

18,5.7*

21,NA

Read the file with defaults, then specifying necessary options.
fn.data <- "http://statacumen.com/teach/ADA2/ADA2_notes_Ch18_unnamed.txt"

# first line is erroneously interpreted as column names

person <- read.csv(fn.data)

person

## X21 X6.0

## 1 42 5.9

## 2 18 5.7*

## 3 21 <NA>

# instead, use header = FALSE and specify the column names

person <- read.csv(file = fn.data

, header = FALSE

, col.names = c("age", "height")

)

person

## age height

## 1 21 6.0

## 2 42 5.9

## 3 18 5.7*

## 4 21 <NA>

If colClasses is not specified by the user, read.table() will try to determine
the column types. Although this may seem convenient, it is noticeably slower for
larger files (say, larger than a few MiB) and it may yield unexpected results. For
example, in the above script, one of the rows contains a malformed numerical
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variable (5.7*), causing R to interpret the whole column as a text variable.
Moreover, by default text variables are converted to factor, so we are now stuck
with a height variable expressed as levels in a categorical variable:
str(person)

## 'data.frame': 4 obs. of 2 variables:

## $ age : int 21 42 18 21

## $ height: Factor w/ 3 levels "5.7*","5.9","6.0": 3 2 1 NA

Using colClasses, we can force R to either interpret the columns in the way
we want or throw an error when this is not possible.
read.csv(fn.data

, header=FALSE

, colClasses=c("numeric", "numeric")

)

## Error in scan(file, what, nmax, sep, dec, quote, skip, nlines, na.strings, : scan() expected

’a real’, got ’5.7*’

# no data.frame output because of error

This behaviour is desirable if you need to be strict about how data is offered

to your R script. However, unless you are prepared to write tryCatch() con-

structions, a script containing the above code will stop executing completely

when an error is encountered.
As an alternative, columns can be read in as character by setting stringsAsFactors=FALSE.

Next, one of the as.-functions can be applied to convert to the desired type, as
shown below.
person <- read.csv(file = fn.data

, header = FALSE

, col.names = c("age", "height")

, stringsAsFactors = FALSE)

person

## age height

## 1 21 6.0

## 2 42 5.9

## 3 18 5.7*

## 4 21 <NA>

person$height <- as.numeric(person$height)

## Warning: NAs introduced by coercion

person

## age height

## 1 21 6.0

## 2 42 5.9

## 3 18 NA

## 4 21 NA
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Now, everything is read in and the height column is translated to numeric,

with the exception of the row containing 5.7*. Moreover, since we now get a

warning instead of an error, a script containing this statement will continue to

run, albeit with less data to analyse than it was supposed to. It is of course up

to the programmer to check for these extra NA’s and handle them appropriately.

Reading data with readLines

When the rows in a data file are not uniformly formatted you can consider
reading in the text line-by-line and transforming the data to a rectangular set
yourself. With readLines() you can exercise precise control over how each line
is interpreted and transformed into fields in a rectangular data set. We use the
following data as an example.
%% Data on the Dalton Brothers

Gratt ,1861,1892

Bob,1892

1871,Emmet ,1937

% Names, birth and death dates

And this is the table we want.
Name Birth Death

Gratt 1861 1892

Bob NA 1892

Emmet 1871 1937

The file has comments on several lines (starting with a % sign) and a missing

value in the second row. Moreover, in the third row the name and birth date

have been swapped. We want a general strategy so that if we had a file with

10,000 records we could process them all. The table suggests one strategy.
Step result

1 Read the data with readLines character

2 Select lines containing data character

3 Split lines into separate fields list of character vectors

4 Standardize rows list of equivalent vectors

5 Transform to data.frame data.frame

6 Normalize and coerce to correct type data.frame
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Step 1. Reading data. The readLines() function accepts filename as ar-

gument and returns a character vector containing one element for each line

in the file. readLines() detects both the end-of-line and carriage return char-

acters so lines are detected regardless of whether the file was created under

DOS, UNIX, or MAC (each OS has traditionally had different ways of mark-

ing an end-of-line). Reading in the Daltons file yields the following.
fn.data <- "http://statacumen.com/teach/ADA2/ADA2_notes_Ch18_dalton.txt"

dalton.txt <- readLines(fn.data)

dalton.txt

## [1] "%% Data on the Dalton Brothers" "Gratt ,1861,1892"

## [3] "Bob,1892" "1871,Emmet ,1937"

## [5] "% Names, birth and death dates"

str(dalton.txt)

## chr [1:5] "%% Data on the Dalton Brothers" ...

The variable dalton.txt has 5 character elements, equal to the number of

lines in the textfile.
Step 2. Selecting lines containing data. This is generally done by
throwing out lines containing comments or otherwise lines that do not contain
any data fields. You can use grep() or grepl() to detect such lines. Regular
expressions2, though challenging to learn, can be used to specify what you’re
searching for. I usually search for an example and modify it to meet my
needs.
# detect lines starting (^) with a percentage sign (%)

ind.nodata <- grepl("^%", dalton.txt)

ind.nodata

## [1] TRUE FALSE FALSE FALSE TRUE

# and throw them out

!ind.nodata

## [1] FALSE TRUE TRUE TRUE FALSE

dalton.dat <- dalton.txt[!ind.nodata]

dalton.dat

## [1] "Gratt ,1861,1892" "Bob,1892" "1871,Emmet ,1937"

Here, the first argument of grepl() is a search pattern, where the caret (^)

indicates a start-of-line. The result of grepl() is a logical vector that indicates

2http://en.wikipedia.org/wiki/Regular_expression

Prof. Erik B. Erhardt



18.3: From raw to technically correct data 513

which elements of dalton.txt contain the pattern ’start-of-line’ followed by

a percent-sign. The functionality of grep() and grepl() will be discussed in

more detail later.
Step 3. Split lines into separate fields. This can be done with strsplit().
This function accepts a character vector and a split argument which tells
strsplit() how to split a string into substrings. The result is a list of char-
acter vectors.
# remove whitespace by substituting nothing where spaces appear

dalton.dat2 <- gsub(" ", "", dalton.dat)

# split strings by comma

dalton.fieldList <- strsplit(dalton.dat2, split = ",")

dalton.fieldList

## [[1]]

## [1] "Gratt" "1861" "1892"

##

## [[2]]

## [1] "Bob" "1892"

##

## [[3]]

## [1] "1871" "Emmet" "1937"

Here, split= is a single character or sequence of characters that are to be

interpreted as field separators. By default, split is interpreted as a regular

expression, and the meaning of a special characters can be ignored by passing

fixed=TRUE as extra parameter.

Step 4. Standardize rows. The goal of this step is to make sure that

(a) every row has the same number of fields and (b) the fields are in the right

order. In read.table(), lines that contain fewer fields than the maximum

number of fields detected are appended with NA. One advantage of the do-it-

yourself approach shown here is that we do not have to make this assumption.

The easiest way to standardize rows is to write a function that takes a single

character vector as input and assigns the values in the right order.
The function below accepts a character vector and assigns three values to
an output vector of class character. The grepl() statement detects fields
containing alphabetical values a-z or A-Z. To assign year of birth and year of
death, we use the knowledge that all Dalton brothers were born before and
died after 1890. To retrieve the fields for each row in the example, we need
to apply this function to every element of dalton.fieldList.
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# function to correct column order for Dalton data

f.assignFields <- function(x) {
# create a blank character vector of length 3

out <- character(3)

# get name and put into first position

ind.alpha <- grepl("[[:alpha:]]", x)

out[1] <- x[ind.alpha]

# get birth date (if any) and put into second position

ind.num.birth <- which(as.numeric(x) < 1890)

# if there are more than 0 years <1890,

# then return that value to second position,

# else return NA to second position

out[2] <- ifelse(length(ind.num.birth) > 0, x[ind.num.birth], NA)

# get death date (if any) and put into third position (same strategy as birth)

ind.num.death <- which(as.numeric(x) > 1890)

out[3] <- ifelse(length(ind.num.death) > 0, x[ind.num.death], NA)

out

}

The function lapply() will apply the function f.assignFields() to each list
element in dalton.fieldList.

dalton.standardFields <- lapply(dalton.fieldList, f.assignFields)

## Warning in which(as.numeric(x) < 1890): NAs introduced by coercion

## Warning in which(as.numeric(x) > 1890): NAs introduced by coercion

## Warning in which(as.numeric(x) < 1890): NAs introduced by coercion

## Warning in which(as.numeric(x) > 1890): NAs introduced by coercion

## Warning in which(as.numeric(x) < 1890): NAs introduced by coercion

## Warning in which(as.numeric(x) > 1890): NAs introduced by coercion

dalton.standardFields

## [[1]]

## [1] "Gratt" "1861" "1892"

##

## [[2]]

## [1] "Bob" NA "1892"

##

## [[3]]

## [1] "Emmet" "1871" "1937"

The advantage of this approach is having greater flexibility than read.table

offers. However, since we are interpreting the value of fields here, it is un-

avoidable to know about the contents of the dataset which makes it hard to

generalize the field assigner function. Furthermore, f.assignFields() func-

tion we wrote is still relatively fragile. That is, it crashes for example when

the input vector contains two or more text-fields or when it contains more
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than one numeric value larger than 1890. Again, no one but the data ana-

lyst is probably in a better position to choose how safe and general the field

assigner should be.
Step 5. Transform to data.frame. There are several ways to trans-
form a list to a data.frame object. Here, first all elements are copied into
a matrix which is then coerced into a data.frame.
# unlist() returns each value in a list in a single object

unlist(dalton.standardFields)

## [1] "Gratt" "1861" "1892" "Bob" NA "1892" "Emmet" "1871"

## [9] "1937"

# there are three list elements in dalton.standardFields

length(dalton.standardFields)

## [1] 3

# fill a matrix will the character values

dalton.mat <- matrix(unlist(dalton.standardFields)

, nrow = length(dalton.standardFields)

, byrow = TRUE

)

dalton.mat

## [,1] [,2] [,3]

## [1,] "Gratt" "1861" "1892"

## [2,] "Bob" NA "1892"

## [3,] "Emmet" "1871" "1937"

# name the columns

colnames(dalton.mat) <- c("name", "birth", "death")

dalton.mat

## name birth death

## [1,] "Gratt" "1861" "1892"

## [2,] "Bob" NA "1892"

## [3,] "Emmet" "1871" "1937"

# convert to a data.frame but don't turn character variables into factors

dalton.df <- as.data.frame(dalton.mat, stringsAsFactors=FALSE)

str(dalton.df)

## 'data.frame': 3 obs. of 3 variables:

## $ name : chr "Gratt" "Bob" "Emmet"

## $ birth: chr "1861" NA "1871"

## $ death: chr "1892" "1892" "1937"

dalton.df

## name birth death

## 1 Gratt 1861 1892

## 2 Bob <NA> 1892

## 3 Emmet 1871 1937
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The function unlist() concatenates all vectors in a list into one large char-

acter vector. We then use that vector to fill a matrix of class character.

However, the matrix function usually fills up a matrix column by column.

Here, our data is stored with rows concatenated, so we need to add the ar-

gument byrow=TRUE. Finally, we add column names and coerce the matrix

to a data.frame. We use stringsAsFactors=FALSE since we have not started

interpreting the values yet.
Step 6. Normalize and coerce to correct types. This step consists
of preparing the character columns of our data.frame for coercion and trans-
lating numbers into numeric vectors and possibly character vectors to factor
variables. String normalization and type conversion are discussed later. In
this example we can suffice with the following statements.
dalton.df$birth <- as.numeric(dalton.df$birth)

dalton.df$death <- as.numeric(dalton.df$death)

str(dalton.df)

## 'data.frame': 3 obs. of 3 variables:

## $ name : chr "Gratt" "Bob" "Emmet"

## $ birth: num 1861 NA 1871

## $ death: num 1892 1892 1937

dalton.df

## name birth death

## 1 Gratt 1861 1892

## 2 Bob NA 1892

## 3 Emmet 1871 1937

18.4 Type conversion

Converting a variable from one type to another is called coercion. The reader
is probably familiar with R’s basic coercion functions, but as a reference they
are listed here.
as.numeric

as.integer

as.character

as.logical

as.factor

as.ordered

Each of these functions takes an R object and tries to convert it to the class
specified behind the “as.”. By default, values that cannot be converted to the
specified type will be converted to a NA value while a warning is issued.
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as.numeric(c("7", "7*", "7.0", "7,0"))

## Warning: NAs introduced by coercion

## [1] 7 NA 7 NA

In the remainder of this section we introduce R’s typing and storage system

and explain the difference between R types and classes. After that we discuss

date conversion.

18.4.1 Introduction to R’s typing system

Everything in R is an object. An object is a container of data endowed with
a label describing the data. Objects can be created, destroyed, or overwritten
on-the-fly by the user. The function class returns the class label of an R object.

class(c("abc", "def"))

## [1] "character"

class(1:10)

## [1] "integer"

class(c(pi, exp(1)))

## [1] "numeric"

class(factor(c("abc", "def")))

## [1] "factor"

# all columns in a data.frame

sapply(dalton.df, class)

## name birth death

## "character" "numeric" "numeric"

For the user of R these class labels are usually enough to handle R objects in
R scripts. Under the hood, the basic R objects are stored as C structures as C
is the language in which R itself has been written. The type of C structure that
is used to store a basic type can be found with the typeof function. Compare
the results below with those in the previous code snippet.
typeof(c("abc", "def"))

## [1] "character"

typeof(1:10)

## [1] "integer"

typeof(c(pi, exp(1)))

## [1] "double"

typeof(factor(c("abc", "def")))

## [1] "integer"
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Note that the type of an R object of class numeric is double. The term

double refers to double precision, which is a standard way for lower-level com-

puter languages such as C to store approximations of real numbers. Also, the

type of an object of class factor is integer. The reason is that R saves memory

(and computational time!) by storing factor values as integers, while a trans-

lation table between factor and integers are kept in memory. Normally, a user

should not have to worry about these subtleties, but there are exceptions (the

homework includes an example of the subtleties).

In short, one may regard the class of an object as the object’s type from

the user’s point of view while the type of an object is the way R looks at the

object. It is important to realize that R’s coercion functions are fundamentally

functions that change the underlying type of an object and that class changes

are a consequence of the type changes.

18.4.2 Recoding factors

In R, the value of categorical variables is stored in factor variables. A factor is an
integer vector endowed with a table specifying what integer value corresponds
to what level. The values in this translation table can be requested with the
levels function.
f <- factor(c("a", "b", "a", "a", "c"))

f

## [1] a b a a c

## Levels: a b c

levels(f)

## [1] "a" "b" "c"

as.numeric(f)

## [1] 1 2 1 1 3

You may need to create a translation table by hand. For example, suppose
we read in a vector where 1 stands for male, 2 stands for female and 0 stands for
unknown. Conversion to a factor variable can be done as in the example below.
# example:

gender <- c(2, 1, 1, 2, 0, 1, 1)

gender

## [1] 2 1 1 2 0 1 1

# recoding table, stored in a simple vector
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recode <- c(male = 1, female = 2)

recode

## male female

## 1 2

gender <- factor(gender, levels = recode, labels = names(recode))

gender

## [1] female male male female <NA> male male

## Levels: male female

Note that we do not explicitly need to set NA as a label. Every integer

value that is encountered in the first argument, but not in the levels argument

will be regarded missing.

Levels in a factor variable have no natural ordering. However in multivariate
(regression) analyses it can be beneficial to fix one of the levels as the reference
level. R’s standard multivariate routines (lm, glm) use the first level as reference
level. The relevel function allows you to determine which level comes first.
gender <- relevel(gender, ref = "female")

gender

## [1] female male male female <NA> male male

## Levels: female male

Levels can also be reordered, depending on the mean value of another vari-
able, for example:
age <- c(27, 52, 65, 34, 89, 45, 68)

gender <- reorder(gender, age)

gender

## [1] female male male female <NA> male male

## attr(,"scores")

## female male

## 30.5 57.5

## Levels: female male

Here, the means are added as a named vector attribute to gender. It can
be removed by setting that attribute to NULL.
attr(gender, "scores") <- NULL

gender

## [1] female male male female <NA> male male

## Levels: female male
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18.4.3 Converting dates

The base R installation has three types of objects to store a time instance:

Date, POSIXlt, and POSIXct. The Date object can only be used to store dates,

the other two store date and/or time. Here, we focus on converting text to

POSIXct objects since this is the most portable way to store such information.

Under the hood, a POSIXct object stores the number of seconds that have

passed since January 1, 1970 00:00. Such a storage format facilitates the calcu-

lation of durations by subtraction of two POSIXct objects.
When a POSIXct object is printed, R shows it in a human-readable calen-

der format. For example, the command Sys.time() returns the system time
provided by the operating system in POSIXct format.
current_time <- Sys.time()

class(current_time)

## [1] "POSIXct" "POSIXt"

current_time

## [1] "2016-01-18 11:01:33 MST"

Here, Sys.time() uses the time zone that is stored in the locale settings of

the machine running R.

Converting from a calender time to POSIXct and back is not entirely trivial,

since there are many idiosyncrasies to handle in calender systems. These include

leap days, leap seconds, daylight saving times, time zones and so on. Converting

from text to POSIXct is further complicated by the many textual conventions of

time/date denotation. For example, both 28 September 1976 and 1976/09/28

indicate the same day of the same year. Moreover, the name of the month (or

weekday) is language-dependent, where the language is again defined in the

operating system’s locale settings.
The lubridate package contains a number of functions facilitating the con-

version of text to POSIXct dates. As an example, consider the following code.

library(lubridate)

dates <- c("15/02/2013"

, "15 Feb 13"

, "It happened on 15 02 '13")

dmy(dates)

## [1] "2013-02-15 UTC" "2013-02-15 UTC" "2013-02-15 UTC"
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Here, the function dmy assumes that dates are denoted in the order day-

month-year and tries to extract valid dates. Note that the code above will

only work properly in locale settings where the name of the second month

is abbreviated to Feb. This holds for English or Dutch locales, but fails for

example in a French locale (Fevrier).
There are similar functions for all permutations of d, m, and y. Explicitly,

all of the following functions exist.
dmy()

dym()

mdy()

myd()

ydm()

ymd()

So once it is known in what order days, months and years are denoted,

extraction is very easy.

Note It is not uncommon to indicate years with two numbers, leaving out the
indication of century. Recently in R, 00-69 was interpreted as 2000-2069 and
70-99 as 1970-1999; this behaviour is according to the 2008 POSIX standard,
but one should expect that this interpretation changes over time. Currently all
are now 2000-2099.
dmy("01 01 68")

## [1] "2068-01-01 UTC"

dmy("01 01 69")

## [1] "1969-01-01 UTC"

dmy("01 01 90")

## [1] "1990-01-01 UTC"

dmy("01 01 00")

## [1] "2000-01-01 UTC"

It should be noted that lubridate (as well as R’s base functionality) is only

capable of converting certain standard notations. For example, the following

notation does not convert.
dmy("15 Febr. 2013")

## Warning: All formats failed to parse. No formats found.

## [1] NA

The standard notations that can be recognized by R, either using lubridate
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or R’s built-in functionality are shown below. The complete list can be found by

typing ?strptime in the R console. These are the day, month, and year formats

recognized by R.
Code Description Example

%a Abbreviated weekday name in the current locale. Mon

%A Full weekday name in the current locale. Monday

%b Abbreviated month name in the current locale. Sep

%B Full month name in the current locale. September

%m Month number (01-12) 09

%d Day of the month as decimal number (01-31). 28

%y Year without century (00-99) 13

%Y Year including century. 2013

Here, the names of (abbreviated) week or month names that are sought for in

the text depend on the locale settings of the machine that is running R.

If you know the textual format that is used to describe a date in the input,

you may want to use R’s core functionality to convert from text to POSIXct. This

can be done with the as.POSIXct function. It takes as arguments a character

vector with time/date strings and a string describing the format.
dates <- c("15-9-2009", "16-07-2008", "17 12-2007", "29-02-2011")

as.POSIXct(dates, format = "%d-%m-%Y")

## [1] "2009-09-15 MDT" "2008-07-16 MDT" NA

## [4] NA

In the format string, date and time fields are indicated by a letter preceded

by a percent sign (%). Basically, such a %-code tells R to look for a range of

substrings. For example, the %d indicator makes R look for numbers 1-31 where

precursor zeros are allowed, so 01, 02, . . . , 31 are recognized as well. Strings

that are not in the exact format specified by the format argument (like the third

string in the above example) will not be converted by as.POSIXct. Impossible

dates, such as the leap day in the fourth date above are also not converted.

Finally, to convert dates from POSIXct back to character, one may use the

format function that comes with base R. It accepts a POSIXct date/time object

and an output format string.
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mybirth <- dmy("28 Sep 1976")

format(mybirth, format = "I was born on %B %d, %Y")

## [1] "I was born on September 28, 1976"

18.5 Character-type manipulation

Because of the many ways people can write the same things down, character
data can be difficult to process. For example, consider the following excerpt of
a data set with a gender variable.
gender

M

male

Female

fem.

If this would be treated as a factor variable without any preprocessing,

obviously four, not two classes would be stored. The job at hand is therefore

to automatically recognize from the above data whether each element pertains

to male or female. In statistical contexts, classifying such “messy” text strings

into a number of fixed categories is often referred to as coding.

Below we discuss two complementary approaches to string coding: string

normalization and approximate text matching. In particular, the following

topics are discussed.

� Remove prepending or trailing white spaces.

� Pad strings to a certain width.

� Transform to upper/lower case.

� Search for strings containing simple patterns (substrings).

� Approximate matching procedures based on string distances.

18.5.1 String normalization

String normalization techniques are aimed at transforming a variety of strings

to a smaller set of string values which are more easily processed. By default,

R comes with extensive string manipulation functionality that is based on the

two basic string operations: finding a pattern in a string and replacing one
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pattern with another. We will deal with R’s generic functions below but start

by pointing out some common string cleaning operations.
The stringr package offers a number of functions that make some some

string manipulation tasks a lot easier than they would be with R’s base func-
tions. For example, extra white spaces at the beginning or end of a string can
be removed using str_trim().
library(stringr)

str_trim(" hello world ")

## [1] "hello world"

str_trim(" hello world ", side = "left")

## [1] "hello world "

str_trim(" hello world ", side = "right")

## [1] " hello world"

Conversely, strings can be padded with spaces or other characters with
str_pad() to a certain width. For example, numerical codes are often repre-
sented with prepending zeros.
str_pad(112, width = 6, side = "left", pad = 0)

## [1] "000112"

Both str_trim() and str_pad() accept a side argument to indicate whether

trimming or padding should occur at the beginning (left), end (right), or both

sides of the string.
Converting strings to complete upper or lower case can be done with R’s

built-in toupper() and tolower() functions.
toupper("Hello world")

## [1] "HELLO WORLD"

tolower("Hello World")

## [1] "hello world"

18.5.2 Approximate string matching

There are two forms of string matching. The first consists of determining

whether a (range of) substring(s) occurs within another string. In this case

one needs to specify a range of substrings (called a pattern) to search for in

another string. In the second form one defines a distance metric between strings

that measures how “different” two strings are. Below we will give a short
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introduction to pattern matching and string distances with R.

There are several pattern matching functions that come with base R. The

most used are probably grep() and grepl(). Both functions take a pattern and

a character vector as input. The output only differs in that grepl() returns a

logical index, indicating which element of the input character vector contains

the pattern, while grep() returns a numerical index. You may think of grep(...)

as which(grepl(...)).
In the most simple case, the pattern to look for is a simple substring. For

example, from the previous example, we get the following.
gender <- c("M", "male ", "Female", "fem.")

grepl("m", gender)

## [1] FALSE TRUE TRUE TRUE

grep("m", gender)

## [1] 2 3 4

Note that the result is case sensitive: the capital M in the first element of
gender does not match the lower case m. There are several ways to circumvent
this case sensitivity. Either by case normalization or by the optional argument
ignore.case.
grepl("m", gender, ignore.case = TRUE)

## [1] TRUE TRUE TRUE TRUE

grepl("m", tolower(gender))

## [1] TRUE TRUE TRUE TRUE

Obviously, looking for the occurrence of m or M in the gender vector does not
allow us to determine which strings pertain to male and which not. Preferably
we would like to search for strings that start with an m or M. Fortunately, the
search patterns that grep() accepts allow for such searches. The beginning of
a string is indicated with a caret (^).
grepl("^m", gender, ignore.case = TRUE)

## [1] TRUE TRUE FALSE FALSE

Indeed, the grepl() function now finds only the first two elements of gender.
The caret is an example of a so-called meta-character. That is, it does not
indicate the caret itself but something else, namely the beginning of a string.
The search patterns that grep(), grepl() (and sub() and gsub()) understand
have more of these meta-characters, namely:
. \ | ( ) [ { ^ $ * + ?

If you need to search a string for any of these characters, you can use the
option fixed=TRUE.
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grepl("^", gender, fixed = TRUE)

## [1] FALSE FALSE FALSE FALSE

This will make grepl() or grep() ignore any meta-characters in the search

string (and thereby search for the “^” character).

Search patterns using meta-characters are called regular expressions. Reg-

ular expressions3 offer powerful and flexible ways to search (and alter) text.

A concise description of regular expressions allowed by R’s built-in string pro-

cessing functions can be found by typing ?regex at the R command line. If

you frequently have to deal with “messy” text variables, learning to work with

regular expressions is a worthwhile investment. Moreover, since many popular

programming languages support some dialect of regexps, it is an investment

that could pay off several times.
We now turn our attention to the second method of approximate matching,

namely string distances. A string distance is an algorithm or equation that
indicates how much two strings differ from each other. An important distance
measure is implemented by the R’s native adist() function. This function
counts how many basic operations are needed to turn one string into another.
These operations include insertion, deletion, or substitution of a single charac-
ter. For example
adist("abc", "bac")

## [,1]

## [1,] 2

The result equals two since turning ”abc” into ”bac” involves two character

substitutions: abc → bbc → bac.
Using adist(), we can compare fuzzy text strings to a list of known codes.

For example:
codes <- c("male", "female")

# calculate pairwise distances between the gender strings and codes strings

dist.g.c <- adist(gender, codes)

# add column and row names

colnames(dist.g.c) <- codes

rownames(dist.g.c) <- gender

dist.g.c

## male female

## M 4 6

## male 1 3

3http://en.wikipedia.org/wiki/Regular_expression
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## Female 2 1

## fem. 4 3

Here, adist() returns the distance matrix between our vector of fixed codes
and the input data. For readability we added row and column names accord-
ingly. Now, to find out which code matches best with our raw data, we need
to find the index of the smallest distance for each row of dist.g.c. This can be
done as follows.
ind.min <- apply(dist.g.c, 1, which.min)

data.frame(rawtext = gender, coded = codes[ind.min])

## rawtext coded

## 1 M male

## 2 male male

## 3 Female female

## 4 fem. female

We use apply() to apply which.min() to every row of dist.g.c. Note that

in the case of multiple minima, the first match will be returned. At the end of

this subsection we show how this code can be simplified with the stringdist

package.

Finally, we mention three more functions based on string distances. First,

the R built-in function agrep() is similar to grep(), but it allows one to specify

a maximum Levenshtein distance4 between the input pattern and the found

substring. The agrep() function allows for searching for regular expression

patterns, which makes it very flexible.
Secondly, the stringdist package offers a function called stringdist() which

can compute a variety of string distance metrics, some of which are likely to
provide results that are better than adist()’s. Most importantly, the distance
function used by adist() does not allow for character transpositions, which is a
common typographical error. Using the optimal string alignment distance (the
default choice for stringdist()) we get
library(stringdist)

stringdist("abc", "bac")

## [1] 1

The answer is now 1 (not 2 as with adist()), since the optimal string align-

ment distance allows for transpositions of adjacent characters: abc → bac.

4Informally, the Levenshtein distance between two words is the minimum number of single-character
edits (i.e., insertions, deletions, or substitutions) required to change one word into the other: https:

//en.wikipedia.org/wiki/Levenshtein_distance.
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Thirdly, the stringdist package provides a function called amatch(), which
mimics the behaviour of R’s match() function: it returns an index to the closest
match within a maximum distance. Recall the earlier gender and code example.

# this yields the closest match of 'gender' in 'codes' (within a distance of 4)

ind <- amatch(gender, codes, maxDist = 4)

ind

## [1] 1 1 2 2

# store results in a data.frame

data.frame(rawtext = gender, code = codes[ind])

## rawtext code

## 1 M male

## 2 male male

## 3 Female female

## 4 fem. female

18.6 From technically correct data to con-
sistent data

Consistent data are technically correct data that are fit for statistical analysis.

They are data in which missing values, special values, (obvious) errors and

outliers are either removed, corrected, or imputed. The data are consistent

with constraints based on real-world knowledge about the subject that the

data describe.

Consistency can be understood to include in-record consistency, mean-

ing that no contradictory information is stored in a single record, and cross-

record consistency, meaning that statistical summaries of different variables

do not conflict with each other. Finally, one can include cross-dataset consis-

tency, meaning that the dataset that is currently analyzed is consistent with

other datasets pertaining to the same subject matter. In this tutorial we mainly

focus on methods dealing with in-record consistency, with the exception of

outlier handling which can be considered a cross-record consistency issue.

The process towards consistent data always involves the following three

steps.

Prof. Erik B. Erhardt



18.6: From technically correct data to consistent data 529

� Detection of an inconsistency. That is, one establishes which con-

straints are violated. For example, an age variable is constrained to non-

negative values.

� Selection of the field or fields causing the inconsistency. This is

trivial in the case of a univariate demand as in the previous step, but may

be more cumbersome when cross-variable relations are expected to hold.

For example the marital status of a child must be unmarried. In the case

of a violation it is not immediately clear whether age, marital status, or

both are wrong.

� Correction of the fields that are deemed erroneous by the selec-

tion method. This may be done through deterministic (model-based) or

stochastic methods.

For many data correction methods these steps are not necessarily neatly sepa-

rated.

First, we introduce a number of techniques dedicated to the detection of

errors and the selection of erroneous fields. If the field selection procedure is

performed separately from the error detection procedure, it is generally referred

to as error localization. Next, we describe techniques that implement cor-

rection methods based on “direct rules” or “deductive correction”. In these

techniques, erroneous values are replaced by better ones by directly deriving

them from other values in the same record. Finally, we give an overview of

some commonly used imputation techniques that are available in R.

18.6.1 Detection and localization of errors

This section details a number of techniques to detect univariate and multivariate

constraint violations.
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Missing values

A missing value, represented by NA in R, is a placeholder for a datum of which

the type is known but its value isn’t. Therefore, it is impossible to perform

statistical analysis on data where one or more values in the data are missing.

One may choose to either omit elements from a dataset that contain missing

values or to impute a value, but missingness is something to be dealt with prior

to any analysis.

In practice, analysts, but also commonly used numerical software may con-

fuse a missing value with a default value or category. For instance, in Excel

2010, the result of adding the contents of a field containing the number 1 with

an empty field results in 1. This behaviour is most definitely unwanted since

Excel silently imputes “0” where it should have said something along the lines

of “unable to compute”. It should be up to the analyst to decide how empty val-

ues are handled, since a default imputation may yield unexpected or erroneous

results for reasons that are hard to trace.

Another commonly encountered mistake is to confuse an NA in categorical

data with the category unknown. If unknown is indeed a category, it should

be added as a factor level so it can be appropriately analyzed. Consider as an

example a categorical variable representing place of birth. Here, the category

unknown means that we have no knowledge about where a person is born. In

contrast, NA indicates that we have no information to determine whether the

birth place is known or not.

The behaviour of R’s core functionality is completely consistent with the

idea that the analyst must decide what to do with missing data. A common

choice, namely “leave out records with missing data” is supported by many

base functions through the na.rm option.
age <- c(23, 16, NA)

mean(age)

## [1] NA

mean(age, na.rm = TRUE)

## [1] 19.5

Functions such as sum(), prod(), quantile(), sd(), and so on all have this
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option. Functions implementing bivariate statistics such as cor() and cov()

offer options to include complete or pairwise complete values.

Besides the is.na() function, that was already mentioned previously, R

comes with a few other functions facilitating NA handling. The complete.cases()

function detects rows in a data.frame that do not contain any missing value.

Recall the person data set example from earlier.
print(person)

## age height

## 1 21 6.0

## 2 42 5.9

## 3 18 NA

## 4 21 NA

complete.cases(person)

## [1] TRUE TRUE FALSE FALSE

The resulting logical can be used to remove incomplete records from the

data.frame. Alternatively the na.omit() function, does the same.
persons_complete <- na.omit(person)

persons_complete

## age height

## 1 21 6.0

## 2 42 5.9

na.action(persons_complete)

## 3 4

## 3 4

## attr(,"class")

## [1] "omit"

The result of the na.omit() function is a data.frame where incomplete rows

have been deleted. The row.names of the removed records are stored in an

attribute called na.action.

Note. It may happen that a missing value in a data set means 0 or Not

applicable. If that is the case, it should be explicitly imputed with that value,

because it is not unknown, but was coded as empty.

UNM, Stat 428/528 ADA2



532 Ch 18: Data Cleaning

Special values

As explained previously, numeric variables are endowed with several formalized

special values including ±Inf, NA, and NaN. Calculations involving special values

often result in special values, and since a statistical statement about a real-world

phenomenon should never include a special value, it is desirable to handle special

values prior to analysis. For numeric variables, special values indicate values

that are not an element of the mathematical set of real numbers. The function

is.finite() determines which values are “regular” values.
is.finite(c(1, Inf, NaN, NA))

## [1] TRUE FALSE FALSE FALSE

This function accepts vectorial input. With little effort we can write a

function that may be used to check every numerical column in a data.frame.
f.is.special <- function(x) {

if (is.numeric(x)) {
return(!is.finite(x))

} else {
return(is.na(x))

}
}
person

## age height

## 1 21 6.0

## 2 42 5.9

## 3 18 NA

## 4 21 NA

sapply(person, f.is.special)

## age height

## [1,] FALSE FALSE

## [2,] FALSE FALSE

## [3,] FALSE TRUE

## [4,] FALSE TRUE

Here, the f.is.special() function is applied to each column of person using

sapply(). f.is.special() checks its input vector for numerical special values if

the type is numeric, otherwise it only checks for NA.
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Outliers

There is a vast body of literature on outlier detection, and several definitions

of outlier exist. A general definition by Barnett and Lewis defines an outlier

in a data set as an observation (or set of observations) which appear to be

inconsistent with that set of data. Although more precise definitions exist

(see e.g., the book by Hawkins), this definition is sufficient for the current

chapter. Below we mention a few fairly common graphical and computational

techniques for outlier detection in univariate numerical data. In a previous

chapter, we’ve discussed using PCA as a graphical technique to help detect

multivariate outliers.

Note. Outliers do not equal errors. They should be detected, but not neces-

sarily removed. Their inclusion in the analysis is a statistical decision.

For more or less unimodal and symmetrically distributed data, Tukey’s box-

and-whisker method for outlier detection is often appropriate. In this method,

an observation is an outlier when it is larger than the so-called “whiskers” of

the set of observations. The upper whisker is computed by adding 1.5 times

the interquartile range to the third quartile and rounding to the nearest lower

observation. The lower whisker is computed likewise. The base R installation

comes with function boxplot.stats(), which, amongst other things, list the

outliers.
x <- c(1:10, 20, 30)

boxplot.stats(x)

## $stats

## [1] 1.0 3.5 6.5 9.5 10.0

##

## $n

## [1] 12

##

## $conf

## [1] 3.76336 9.23664

##

## $out

## [1] 20 30

Here, 20 and 30 are detected as outliers since they are above the upper
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whisker of the observations in x. The factor 1.5 used to compute the whisker

is to an extent arbitrary and it can be altered by setting the coef option of

boxplot.stats(). A higher coefficient means a higher outlier detection limit (so

for the same dataset, generally less upper or lower outliers will be detected).
boxplot.stats(x, coef = 2)$out

## [1] 30

The box-and-whisker method can be visualized with the box-and-whisker

plot, where the box indicates the interquartile range and the median, the

whiskers are represented at the ends of the box-and-whisker plots and outliers

are indicated as separate points above or below the whiskers.
op <- par(no.readonly = TRUE) # save plot settings

par(mfrow=c(1,3))

boxplot(x, main="default")

boxplot(x, range = 1.5, main="range = 1.5")

boxplot(x, range = 2, main="range = 2")

par(op) # restore plot settings
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The box-and-whisker method fails when data distribution is skewed, as in

an exponential or log-normal distribution. In that case one can attempt to

transform the data, for example with a logarithm or square root transformation.

Another option is to use a method that takes the skewness into account.

A particularly easy-to-implement method for outlier detection with positive

observations is by Hiridoglou and Berthelot. In this method, an observation is
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an outlier when

h(x) = max

(
x

x∗
,
x∗

x

)
≥ r, and x > 0.

Here, r is a user-defined reference value and x∗ is usually the median obser-

vation, although other measures of centrality may be chosen. Here, the score

function h(x) grows as 1/x as x approaches zero and grows linearly with x when

it is larger than x∗. It is therefore appropriate for finding outliers on both sides

of the distribution. Moreover, because of the different behaviour for small and

large x-values, it is appropriate for skewed (long-tailed) distributions. An im-

plementation of this method in R does not seem available but it is implemented

simple enough as follows.
f.hb.outlier <- function(x,r) {

x <- x[is.finite(x)]

stopifnot(length(x) > 0 , all(x>0)) # if empty vector or non-positive values, quit

xref <- median(x)

if (xref <= sqrt(.Machine$double.eps)) {
warning("Reference value close to zero: results may be inaccurate")

}
pmax(x/xref, xref/x) > r

}
f.hb.outlier(x, r = 4)

## [1] TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

## [12] TRUE

The above function returns a logical vector indicating which elements of x

are outliers.

Obvious inconsistencies

An obvious inconsistency occurs when a record contains a value or combination

of values that cannot correspond to a real-world situation. For example, a

person’s age cannot be negative, a man cannot be pregnant and an under-aged

person cannot possess a drivers license.

Such knowledge can be expressed as rules or constraints. In data editing

literature these rules are referred to as edit rules or edits, in short. Checking for

obvious inconsistencies can be done straightforwardly in R using logical indices
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and recycling. For example, to check which elements of x obey the rule ‘x must

be non negative’ one simply uses the following.
x_nonnegative <- (x >= 0)

However, as the number of variables increases, the number of rules may

increase rapidly and it may be beneficial to manage the rules separate from

the data. Moreover, since multivariate rules may be interconnected by common

variables, deciding which variable or variables in a record cause an inconsistency

may not be straightforward.

The editrules package allows one to define rules on categorical, numerical

or mixed-type data sets which each record must obey. Furthermore, editrules

can check which rules are obeyed or not and allows one to find the minimal

set of variables to adapt so that all rules can be obeyed. The package also

implements a number of basic rule operations allowing users to test rule sets

for contradictions and certain redundancies.

As an example, we will work with a small file containing the following data.
age,agegroup,height,status,yearsmarried

21,adult,6.0,single,-1

2,child,3,married, 0

18,adult,5.7,married, 20

221,elderly, 5,widowed, 2

34,child, -7,married, 3

We read this data into a variable called people and define some restrictions

on age using editset().
fn.data <- "http://statacumen.com/teach/ADA2/ADA2_notes_Ch18_people.txt"

people <- read.csv(fn.data)

library(editrules)

E <- editset(c("age >=0", "age <= 150"))

E

##

## Edit set:

## num1 : 0 <= age

## num2 : age <= 150

The editset() function parses the textual rules and stores them in an

editset object. Each rule is assigned a name according to it’s type (numeric,

categorical, or mixed) and a number. The data can be checked against these
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rules with the violatedEdits() function. Record 4 contains an error according

to one of the rules: an age of 21 is not allowed.
violatedEdits(E, people)

## edit

## record num1 num2

## 1 FALSE FALSE

## 2 FALSE FALSE

## 3 FALSE FALSE

## 4 FALSE TRUE

## 5 FALSE FALSE

violatedEdits() returns a logical array indicating for each row of the data,

which rules are violated. The number and type of rules applying to a data set

usually quickly grow with the number of variables. With editrules, users may

read rules, specified in a limited R-syntax, directly from a text file using the

editfile() function. As an example consider the contents of the following text

file (note, you can’t include braces in your if() statement).
# numerical rules

age >= 0

height > 0

age <= 150

age > yearsmarried

# categorical rules

status %in% c("married", "single", "widowed")

agegroup %in% c("child", "adult", "elderly")

if ( status == "married" ) agegroup %in% c("adult","elderly")

# mixed rules

if ( status %in% c("married","widowed")) age - yearsmarried >= 17

if ( age < 18 ) agegroup == "child"

if ( age >= 18 && age <65 ) agegroup == "adult"

if ( age >= 65 ) agegroup == "elderly"

There are rules pertaining to purely numerical, purely categorical and rules

pertaining to both data types. Moreover, there are univariate as well as mul-

tivariate rules. Comments are written behind the usual # character. The rule

set can be read as follows.
fn.data <- "http://statacumen.com/teach/ADA2/ADA2_notes_Ch18_edits.txt"

E <- editfile(fn.data)

E

##
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## Data model:

## dat6 : agegroup %in% c('adult', 'child', 'elderly')

## dat7 : status %in% c('married', 'single', 'widowed')

##

## Edit set:

## num1 : 0 <= age

## num2 : 0 < height

## num3 : age <= 150

## num4 : yearsmarried < age

## cat5 : if( agegroup == 'child' ) status != 'married'

## mix6 : if( age < yearsmarried + 17 ) !( status %in% c('married', 'widowed') )

## mix7 : if( age < 18 ) !( agegroup %in% c('adult', 'elderly') )

## mix8 : if( 18 <= age & age < 65 ) !( agegroup %in% c('child', 'elderly') )

## mix9 : if( 65 <= age ) !( agegroup %in% c('adult', 'child') )

Since rules may pertain to multiple variables, and variables may occur in sev-

eral rules (e.g., the age variable in the current example), there is a dependency

between rules and variables. It can be informative to show these dependencies

in a graph using the plot function. Below the graph plot shows the interconnec-

tion of restrictions. Blue circles represent variables and yellow boxes represent

restrictions. The lines indicate which restrictions pertain to what variables.
op <- par(no.readonly = TRUE) # save plot settings

par(mfrow=c(1,1), mar = c(0,0,0,0))

plot(E)

par(op) # restore plot settings

num1

num2

num3

num4

cat5

mix6
mix7

mix8

mix9

age
heght

yrsmr

aggrp

stats
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As the number of rules grows, looking at the full array produced by violatedEdits()

becomes cumbersome. For this reason, editrules offers methods to summarize

or visualize the result.
ve <- violatedEdits(E, people)

summary(ve)

## Edit violations, 5 observations, 0 completely missing (0%):

##

## editname freq rel

## cat5 2 40%

## mix6 2 40%

## num2 1 20%

## num3 1 20%

## num4 1 20%

## mix8 1 20%

##

## Edit violations per record:

##

## errors freq rel

## 0 1 20%

## 1 1 20%

## 2 2 40%

## 3 1 20%

plot(ve)
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Here, the edit labeled cat5 is violated by two records (20% of all records).

Violated edits are sorted from most to least often violated. The plot visualizes

the same information.

Error localization

The interconnectivity of edits is what makes error localization difficult. For

example, the graph above shows that a record violating edit num4 may contain

an error in age and/or yrsmr (years married). Suppose that we alter age so that

num4 is not violated anymore. We then run the risk of violating up to six other

edits containing age.

If we have no other information available but the edit violations, it makes

sense to minimize the number of fields being altered. This principle, commonly

Prof. Erik B. Erhardt



18.6: From technically correct data to consistent data 541

referred to as the principle of Fellegi and Holt, is based on the idea that er-

rors occur relatively few times and when they do, they occur randomly across

variables. Over the years several algorithms have been developed to solve this

minimization problem of which two have been implemented in editrules. The

localizeErrors() function provides access to this functionality.

As an example we take two records from the people dataset from the previous

subsection.
id <- c(2, 5)

people[id, ]

## age agegroup height status yearsmarried

## 2 2 child 3 married 0

## 5 34 child -7 married 3

violatedEdits(E, people[id, ])

## edit

## record num1 num2 num3 num4 dat6 dat7 cat5 mix6 mix7 mix8

## 2 FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE

## 5 FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE

## edit

## record mix9

## 2 FALSE

## 5 FALSE

Record 2 violates mix6 while record 5 violates edits num2, cat5, and mix8.

We use localizeErrors(), with a mixed-integer programming (MIP) approach

to find the minimal set of variables to adapt.
le <- localizeErrors(E, people[id, ], method = "mip")

le$adapt

## age agegroup height status yearsmarried

## 1 FALSE FALSE FALSE TRUE FALSE

## 2 FALSE TRUE TRUE FALSE FALSE

Here, the le object contains some processing metadata and a logical array

labeled adapt which indicates the minimal set of variables to be altered in each

record. It can be used in correction and imputation procedures for filling in

valid values. Such procedures are not part of editrules, but for demonstration

purposes we will manually fill in new values showing that the solution computed

by localizeErrors() indeed allows one to repair records to full compliance with

all edit rules.
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people[2, "status"] <- "single"

people[5, "height"] <- 7

people[5, "agegroup"] <- "adult"

summary(violatedEdits(E, people[id, ]))

## No violations detected, 0 checks evaluated to NA

## NULL

The behaviour of localizeErrors() can be tuned with various options. It

is possible to supply a confidence weight for each variable allowing for fine

grained control on which values should be adapted. It is also possible to choose

a branch-and-bound based solver (instead of the MIP solver used here), which

is typically slower but allows for more control.

18.6.2 Correction

Correction methods aim to fix inconsistent observations by altering invalid val-

ues in a record based on information from valid values. Depending on the

method this is either a single-step procedure or a two-step procedure where

first, an error localization method is used to empty certain fields, followed by

an imputation step.

In some cases, the cause of errors in data can be determined with enough

certainty so that the solution is almost automatically known. In recent years,

several such methods have been developed and implemented in the deducorrect

package.

Simple transformation rules

In practice, data cleaning procedures involve a lot of ad-hoc transformations.

This may lead to long scripts where one selects parts of the data, changes some

variables, selects another part, changes some more variables, etc. When such

scripts are neatly written and commented, they can almost be treated as a log of

the actions performed by the analyst. However, as scripts get longer it is better

to store the transformation rules separately and log which rule is executed on

what record. The deducorrect package offers functionality for this. Consider
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as an example the following (fictitious) dataset listing the body length of some

brothers.
marx <- read.table(text = "

name height unit

Groucho 170.00 cm

Zeppo 1.74 m

Chico 70.00 inch

Gummo 168.00 cm

Harpo 5.91 ft

", header=TRUE, stringsAsFactors = FALSE)

marx

## name height unit

## 1 Groucho 170.00 cm

## 2 Zeppo 1.74 m

## 3 Chico 70.00 inch

## 4 Gummo 168.00 cm

## 5 Harpo 5.91 ft

The task here is to standardize the lengths and express all of them in me-

ters. The obvious way would be to use indexing techniques, which would look

something like this.
marx_m <- marx

ind <- (marx$unit == "cm") # indexes for cm

marx_m[ind, "height"] <- marx$height[ind] / 100

marx_m[ind, "unit"] <- "m"

ind <- (marx$unit == "inch") # indexes for inch

marx_m[ind, "height"] <- marx$height[ind] / 39.37

marx_m[ind, "unit"] <- "m"

ind <- (marx$unit == "ft") # indexes for ft

marx_m[ind, "height"] <- marx$height[ind] / 3.28

marx_m[ind, "unit"] <- "m"

marx_m

## name height unit

## 1 Groucho 1.700000 m

## 2 Zeppo 1.740000 m

## 3 Chico 1.778004 m

## 4 Gummo 1.680000 m

## 5 Harpo 1.801829 m

Such operations quickly become cumbersome. Of course, in this case one

could write a for-loop but that would hardly save any code. Moreover, if you

want to check afterwards which values have been converted and for what reason,

there will be a significant administrative overhead. The deducorrect package

takes all this overhead off your hands with the correctionRules() functionality.
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For example, to perform the above task, one first specifies a file with correction

rules as follows.
# convert centimeters

if ( unit == "cm" ){
height <- height / 100

unit <- "m" # set all units to meter

}
# convert inches

if (unit == "inch" ){
height <- height / 39.37

unit <- "m" # set all units to meter

}
# convert feet

if (unit == "ft" ){
height <- height / 3.28

unit <- "m" # set all units to meter

}

With deducorrect we can read these rules, apply them to the data and

obtain a log of all actual changes as follows.
library(deducorrect)

fn.data <- "http://statacumen.com/teach/ADA2/ADA2_notes_Ch18_conversions.txt"

# read the conversion rules.

R <- correctionRules(fn.data)

R

## Object of class 'correctionRules'

## ## 1-------

## if (unit == "cm") {

## height <- height/100

## unit <- "m"

## }

## ## 2-------

## if (unit == "inch") {

## height <- height/39.37

## unit <- "m"

## }

## ## 3-------

## if (unit == "ft") {

## height <- height/3.28

## unit <- "m"

## }

correctionRules() has parsed the rules and stored them in a correctionRules

object. We may now apply them to the data.
cor <- correctWithRules(R, marx)

The returned value, cor, is a list containing the corrected data
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cor$corrected

## name height unit

## 1 Groucho 1.700000 m

## 2 Zeppo 1.740000 m

## 3 Chico 1.778004 m

## 4 Gummo 1.680000 m

## 5 Harpo 1.801829 m

as well as a log of applied corrections.
cor$corrections[1:4]

## row variable old new

## 1 1 height 170 1.7

## 2 1 unit cm m

## 3 3 height 70 1.77800355600711

## 4 3 unit inch m

## 5 4 height 168 1.68

## 6 4 unit cm m

## 7 5 height 5.91 1.80182926829268

## 8 5 unit ft m

The log lists for each row, what variable was changed, what the old value was

and what the new value is. Furthermore, the fifth column of cor$corrections

shows the corrections that were applied (not shown above for formatting rea-

sons).
cor$corrections[5]

## how

## 1 if (unit == "cm") { height <- height/100 unit <- "m" }

## 2 if (unit == "cm") { height <- height/100 unit <- "m" }

## 3 if (unit == "inch") { height <- height/39.37 unit <- "m" }

## 4 if (unit == "inch") { height <- height/39.37 unit <- "m" }

## 5 if (unit == "cm") { height <- height/100 unit <- "m" }

## 6 if (unit == "cm") { height <- height/100 unit <- "m" }

## 7 if (unit == "ft") { height <- height/3.28 unit <- "m" }

## 8 if (unit == "ft") { height <- height/3.28 unit <- "m" }

So here, with just two commands, the data is processed and all actions

logged in a data.frame which may be stored or analyzed. The rules that may

be applied with deducorrect are rules that can be executed record-by-record.

By design, there are some limitations to which rules can be applied with

correctWithRules(). The processing rules should be executable record-by-record.

That is, it is not permitted to use functions like mean() or sd(). The symbols

that may be used can be listed as follows.
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getOption("allowedSymbols")

## [1] "if" "else" "is.na" "is.finite" "=="

## [6] "<" "<=" "=" ">=" ">"

## [11] "!=" "!" "%in%" "identical" "sign"

## [16] "abs" "||" "|" "&&" "&"

## [21] "(" "{" "<-" "=" "+"

## [26] "-" "*" "^" "/" "%%"

## [31] "%/%"

When the rules are read by correctionRules(), it checks whether any symbol

occurs that is not in the list of allowed symbols and returns an error message

when such a symbol is found as in the following example.
correctionRules(expression(x <- mean(x)))

##

## Forbidden symbols found:

## ## ERR 1 ------

## Forbidden symbols: mean

## x <- mean(x)

## Error in correctionRules.expression(expression(x <- mean(x))): Forbidden symbols found

Finally, it is currently not possible to add new variables using correctionRules()

although such a feature will likely be added in the future.

Deductive correction

When the data you are analyzing is generated by people rather than machines

or measurement devices, certain typical human-generated errors are likely to

occur. Given that data has to obey certain edit rules, the occurrence of such

errors can sometimes be detected from raw data with (almost) certainty. Ex-

amples of errors that can be detected are typing errors in numbers (under linear

restrictions) rounding errors in numbers and sign errors or variable swaps. The

deducorrect package has a number of functions available that can correct such

errors. Below we give some examples, every time with just a single edit rule.

The functions can handle larger sets of edits however.

[I will complete this section if we need it for our Spring semester.]

Prof. Erik B. Erhardt



18.6: From technically correct data to consistent data 547

Deterministic imputation

In some cases a missing value can be determined because the observed values

combined with their constraints force a unique solution.

[I will complete this section if we need it for our Spring semester.]

18.6.3 Imputation

Imputation is the process of estimating or deriving values for fields where data

is missing. There is a vast body of literature on imputation methods and it

goes beyond the scope of this chapter to discuss all of them.

There is no one single best imputation method that works in all cases. The

imputation model of choice depends on what auxiliary information is available

and whether there are (multivariate) edit restrictions on the data to be imputed.

The availability of R software for imputation under edit restrictions is limited.

However, a viable strategy for imputing numerical data is to first impute missing

values without restrictions, and then minimally adjust the imputed values so

that the restrictions are obeyed. Separately, these methods are available in R.

[I will complete this section if we need it for our Spring semester.]
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