Review simple linear regression

Normal error regression model:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\epsilon_{i}
$$

- y_{i} : observed response in the i th trial
- x_{i} : a known constant, the level of the predictor variable in the i th trial
- β_{0} and β_{1} : parameters
- $\epsilon_{i} \stackrel{i i d}{\sim} N\left(0, \sigma^{2}\right)$ for $i=1,2, \cdots, n$

Example: Growth hormone is used as a prescription drug in medicine to treat children's growth disorders. In the medical study of short children, clinicians want to use the statistical relation to predict growth hormone deficiencies in short children by using simple measurements such as gender, age and various body measurements of the children.

- Gender, age and other body measurements affect the growth hormone in important and distinctive ways
- A single predictor variable in the model would have provided an inadequate description
- In situation of this type, predictions from a simple linear regression model are too imprecise to be useful
- Containing additional predictor variables, typically is more helpful in providing sufficiently precise predictions of the response variable.

Multiple Regression

- Multiple-More than one predictor variable
- Y_{i} is the response variable
- $X_{i 1}, X_{i 2}, \cdots X_{i, p-1}$ are the $p-1$ explanatory variables for cases $i=1$ to n
- Potential problem: These predictor variables are likely to be themselves correlated

General multiple linear regression model

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\cdots+\beta_{p-1} X_{i, p-1}+\epsilon_{i}
$$

- $i=1,2, \cdots, n$
- Y_{i} is the value of the response variable for the i th case
- $X_{i 1}, X_{i 2}, \cdots, X_{i, p-1}$ are known constants, $X_{i k}$ is the value of the k th explanatory variable for the i th case
- $\beta_{0}, \beta_{1}, \cdots, \beta_{p-1}$ are parameters, $p-1$ predictors, p parameters
- $\epsilon_{i} \stackrel{i i d}{\sim} N\left(0, \sigma^{2}\right)$

Geometry of one-predictor model

Example: A person's muscle mass is expected to decrease with age. To explore this relationship in women, a nutritionist randomly selected 15 women from each 10-year age group, beginning with age 40 and ending with age 79 with a total number of 60 women.

Geometry of two-predictor model

Model: $E(Y)=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}$
scatterplot of simulated data from $y=10+2^{*} x _1+5^{*} x _2$

+ error

Meaning of regression coefficients

Model: $E(Y)=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}$

- β_{0} is the Y intercept of the regression plane. If the scope of the model includes $X_{1}=0, X_{2}=0$, then β_{0} represents the mean response $E(Y)$ at $X_{1}=0, X_{2}=0$. Otherwise, β_{0} does not have any particular meaning
- β_{k} represents the change in the mean response $E(Y)$ for a unit change in X_{k} while all other X_{j} 's are held constant

Interaction effects--cross product

Suppose X_{1} and X_{2} interact, we can express a form of interaction in the regression model by adding the term $X_{1} X_{2}$

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\beta_{3} X_{i 1} X_{i 2}+\epsilon_{i}
$$

- Mean of Y at X_{1} is $\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{1} X_{2}$
- Mean of Y at $X_{1}+1$ is $\beta_{0}+\beta_{1}\left(X_{1}+1\right)+\beta_{2} X_{2}+\beta_{3}\left(X_{1}+1\right) X_{2}=$ $\beta_{0}+\beta_{1} X_{1}+\beta_{1}+\beta_{2} X_{2}+\beta_{3} X_{1} X_{2}+\beta_{3} X_{2}$
- Change in mean of Y is $\beta_{1}+\beta_{3} X_{2}$
- X_{1} and X_{2} interact since the change in the mean of Y for unit change in X_{1} depends on X_{2}

Interaction effects: bends the plane
(a)

(b)

Gontour Plot

Parameter Estimation

Least Squares: Want to minimize the sum of squared residuals:

$$
Q=\sum_{i=1}^{n}\left(Y_{i}-\beta_{0}-\beta_{1} X_{i 1}-\cdots-\beta_{p-1} X_{i, p-1}\right)^{2}
$$

Fitted values and residuals

- Fitted values $\hat{Y}_{i}=b_{0}+b_{1} X_{i 1}+b_{2} X_{i 2}+\cdots+b_{p-1} X_{i, p-1}$
- Residuals $e_{i}=Y_{i}-\hat{Y}_{i}$

ANOVA Table

Decomposition of SSTO: SSTO $=$ SSR + SSE				
SSTO $=\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}$				
$S S E=\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}$				
$S S R=\sum_{i=1}^{n}\left(\hat{y}_{i}-\bar{y}\right)^{2}$				
$\hat{y}_{i}=b_{0}+b_{1} x_{i 1}+\cdots+b_{p-1} x_{i, p-1}$				
Source	SS	df	MS	F-test
Regression	SSR	$\mathrm{p}-1$	MSR $=$ SSR/(p-1)	$\mathrm{F}=\mathrm{MSR} / \mathrm{MSE}$
Error	SSE	n-p	MSE $=$ SSE/(n-p)	
Total	SSTO	n -1		

F-test for significance of regression:

$$
\begin{gathered}
H_{0}: \beta_{1}=\beta_{2}=\cdots \beta_{p-1}=0 \\
H_{\alpha}: \text { not all } \quad \beta_{k}(k=1,2, \cdots p-1) \quad \text { equal zero }
\end{gathered}
$$

Test statistic and decision rule:

$$
F^{*}=M S R / M S E
$$

- If H_{0} is true, $F=M S R / M S E$ has an F distribution with ($p-1, n-p$) degrees of freedom.
- Reject H_{0}, if $F^{*}>F(1-\alpha, p-1, n-p)$

Coefficient of Multiple Determination R^{2}

$R^{2}=$ proportion of variation in y accounted for by the multiple linear regression model in $x_{1}, x_{2}, \cdots, x_{p-1}$
$=$ SSR/SSTO

- $0 \leq R^{2} \leq 1$
- R^{2} is the square of correlation between y_{i} and \hat{y}_{i}
- $R^{2}=1$ if $y_{i}=\hat{y}_{i}$ for all i
- $R^{2}=0$ if $b_{1}=b_{2}=\cdots=b_{p-1}=0$
- A large R^{2} value does not necessarily imply that the fitted model is a useful one or that the fit is "good".
- The addition of more predictors to the regression model will result in an increase in the value of R^{2}.
- Adjusted R^{2}

$$
R_{a}^{2}=1-\frac{\operatorname{SSE} /(n-p)}{\operatorname{SSTO} /(n-1)}
$$

The adjusted R^{2} can decrease as more predictors are added to the model.

Inference for individual regression coefficient

- Distribution of $b_{k}: \frac{b_{k}-\beta_{k}}{s\left(b_{k}\right)} \sim t(n-p) \quad k=0,1, \cdots, p-1$
- a $(1-\alpha) 100 \%$ confidence interval for β_{k}

$$
b_{k} \pm t_{n-p}(1-\alpha / 2) s\left\{b_{k}\right\}
$$

- Significant test for β_{k}

$$
\begin{aligned}
H_{0}: \beta_{k} & =0 \quad \text { v.s } \quad \beta_{k} \neq 0 \\
t^{*} & =\frac{b_{k}}{s\left\{b_{k}\right\}}
\end{aligned}
$$

If H_{0} is true, t^{*} has a t-distribution with $n-p$ degrees of freedom.
Alternative Reject H_{0} if

$$
\begin{array}{cc}
H_{\alpha}: \beta_{k}>0 & t^{*}>t(1-\alpha ; n-p) \\
H_{\alpha}: \beta_{k}<0 & t^{*}<-t(1-\alpha ; n-p) \\
H_{\alpha}: \beta_{k} \neq 0 & \left|t^{*}\right|>t(1-\alpha / 2 ; n-p) \\
\hline
\end{array}
$$

Let

$$
\begin{gathered}
\boldsymbol{\beta}=\left(\beta_{0}, \beta_{1}, \cdots, \beta_{p-1}\right)^{T} \\
\mathbf{b}=\left(b_{0}, b_{1}, \cdots, b_{p-1}\right)^{T} \\
\mathbf{X}_{h}=\left(1, X_{h, 1}, X_{h, 2}, \cdots, X_{h, p-1}\right)^{T}
\end{gathered}
$$

Estimation of $E\left(Y_{h}\right)$

We want a point estimate and a confidence interval for the mean corresponding to the set of explanatory variables \mathbf{X}_{h}.

$$
\begin{aligned}
& Y_{i}=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\cdots+\beta_{p-1} X_{i, p-1}+\epsilon_{i}, \\
& \mathbf{X}_{h}=\left(1, X_{h, 1}, X_{h, 2}, \cdots, X_{h, p-1}\right)^{T} \\
& Y_{h}=\beta_{0}+\beta_{1} X_{h 1}+\beta_{2} X_{h 2}+\cdots+\beta_{p-1} X_{h, p-1}+\epsilon_{h} \\
& E\left(Y_{h}\right)=\beta_{0}+\beta_{1} X_{h 1}+\beta_{2} X_{h 2}+\cdots+\beta_{p-1} X_{h, p-1} \\
& \text { or } E\left(Y_{h}\right)=u_{h}=\mathbf{X}_{h}^{T} \boldsymbol{\beta} \\
& \hat{u}_{h}=\mathbf{X}_{h}^{T} \mathbf{b} \\
& s^{2}\left\{\hat{u}_{h}\right\}=\mathbf{X}_{h}^{T} s^{2}\{\mathbf{b}\} \mathbf{X}_{h}=M S E \mathbf{X}_{h}^{T}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}_{h} \\
& 95 \% \mathrm{Cl} \hat{u}_{h} \pm s\left\{\hat{u}_{h}\right\} t_{n-p}(1-\alpha / 2)
\end{aligned}
$$

Prediction of $Y_{h(\text { new })}$

Predict a new observation Y_{h} at \mathbf{X}_{h}. We want a prediction of Y_{h} based on a set of predictor values with an interval that expresses the uncertainty in our prediction. As in SLR this interval is centered at Y_{h} and is wider than the interval for the mean.

$$
\begin{aligned}
& Y_{h}=\mathbf{X}_{h}^{T} \boldsymbol{\beta}+\epsilon_{h} \\
& \hat{Y}_{h}=\hat{u}_{h}=\mathbf{X}_{h}^{T} \mathbf{b}
\end{aligned}
$$

$$
\begin{aligned}
s^{2}\{\text { pred }\} & =\operatorname{var}\left(Y_{h(\text { new })}-\hat{Y}_{h}\right) \\
& =\operatorname{var}\left(Y_{h(\text { new })}\right)+\operatorname{var}\left(\hat{Y}_{h}\right) \\
& =\operatorname{MSE}\left(1+\mathbf{X}_{h}^{T}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}_{h}\right)
\end{aligned}
$$

Cl for $Y_{h(\text { new })}: \hat{Y}_{h} \pm s\{$ pred $\} t_{n-p}(1-\alpha / 2)$

Extra sum of squares

Extra sum of squares are used to Measure the effect of adding variables to a regression model, Suppose x_{1} is in the regression model and we add the predictor variable x_{2}, what is the effect of adding x_{2} to the model that already contain x_{1} ?

- $\operatorname{SSE}\left(x_{1}\right)=$ SSError for the model containing x_{1}
$\operatorname{SSR}\left(x_{1}\right)=$ SSRegression for the model containing x_{1}, $\operatorname{SSE}\left(x_{1}\right)+\operatorname{SSR}\left(x_{1}\right)=\operatorname{SSTO}$
- Adding x_{2} to the model, we get $\operatorname{SSE}\left(x_{1}, x_{2}\right)$ and $\operatorname{SSR}\left(x_{1}, x_{2}\right)$ $-\operatorname{SSR}\left(x_{1}, x_{2}\right)$ gives a measure of the effect of both x_{1}, x_{2}
-The effect of adding x_{2} to the model that contains x_{1} is measured by

$$
\operatorname{SSR}\left(x_{2} \mid x_{1}\right)=\operatorname{SSR}\left(x_{1}, x_{2}\right)-\operatorname{SSR}\left(x_{1}\right)
$$

$—$ —SSR $\left(x_{2} \mid x_{1}\right)$ measures the "marginal" effect of adding x_{2} to the model that already contains x_{1}

- The definition of extra sum of squares can be extended to any number of variables

ANOVA table for decompostion with x_{1} first, then x_{2} added, then x_{3}

Source	SS	df	MS
x_{1}	$S S R\left(x_{1}\right)$	1	$M S R\left(x_{1}\right)=\operatorname{SSR}\left(x_{1}\right) / 1$
$x_{2} \mid x_{1}$	$S S R\left(x_{2} \mid x_{1}\right)$	1	$M S R\left(x_{2} \mid x_{1}\right)=\operatorname{SSR}\left(x_{2} \mid x_{1}\right) / 1$
$x_{3} \mid x_{1}, x_{2}$	$\operatorname{SSR}\left(x_{3} \mid x_{1}, x_{2}\right)$	1	$M S R\left(x_{3} \mid x_{1}, x_{2}\right)=\operatorname{SSR}\left(x_{3} \mid x_{1}, x_{2}\right) / 1$
Regression	$S S R$	3	$M S R=\operatorname{SSR} / 3$
Error	SSE	$n-4$	$M S E=\operatorname{SSE} /(n-4)$
Total	SSTO	$n-1$	

Three type of sum of squares (SS)

- Type I sum of squares are "sequential. In essence the factors are tested in the order they are listed in the model. $\operatorname{Im}\left(y \sim x_{1}+x_{2}+x_{1} * x_{2}\right.$, data $\left.=e x . d a t a\right)$

$$
\operatorname{SSR}\left(x_{1}\right), \operatorname{SSR}\left(x_{2} \mid x_{1}\right), \operatorname{SSR}\left(x_{1} * x_{2} \mid x_{1}, x_{2}\right)
$$

- Type III SS are "partial. In essence, every term in the model is tested in light of every other term in the model. That means the main effects are tested in light of interaction terms as well as in light of other main effects.

$$
\operatorname{SSR}\left(x_{1} \mid x_{2}, x_{1} * x_{2}\right), \operatorname{SSR}\left(x_{2} \mid x_{1}, x_{1} * x_{2}\right), \operatorname{SSR}\left(x_{1} * x_{2} \mid x_{1}, x_{2}\right)
$$

- Type II SS are similar to Type III, except that they preserve the principle of marginality. This means that main factors are tested in light of one another, but not in light of the interaction term.

Example 1

Goal: Anthropologists conducted a study to determine the long-term effects of an environmental change on systolic blood pressure.
-They measured the blood pressure and several other characteristics of 39 Indians who migrated from a very primitive environment high in the Andes into the mainstream of Peruvian society at a lower altitude. - All of the Indians were males at least 21 years of age, and were born at a high altitude.

Question of interest: is there a relationship between the systolic blood pressure and how long the Indians lived in their new environment as measured by the fraction of their life spent in the new environment?

```
# Create the "fraction of their life" variable
# yrage = years since migration divided by age
indian$yrage <- indian$yrmig / indian$age
plot(indian$yrage,indian$sysbp,main="scatterplot of
sysbp v.s. yage")
```

scatterplot of sysbp v.s. yage

Figure: Scatterplot of sysbp v.s. yage

Fit a simple linear regression model

```
lm.sysbp.yrage <- lm(sysbp ~ yrage, data = indian)
# use Anova() from library(car) to get ANOVA table
library(car)
Anova(lm.sysbp.yrage, type=3) # (Type 3 SS)
anova(lm.sysbp.yrage) #Type 1 SS
# use summary() to get t-tests of parameters
summary(lm.sysbp.yrage)
```

> summary(lm.sysbp.yrage)
Call:

Residuals:
Min 1Q Median 3Q Max
$\begin{array}{lllll}-17.161 & -10.987 & -1.014 & 6.851 & 37.254\end{array}$
Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$

(Intercept)	133.496	4.038	33.060	$<2 \mathrm{e}-16{ }^{* * *}$
yrage	-15.752	9.013	-1.748	0.0888

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . $0.1 \quad 1$ Residual standard error: 12.77 on 37 degrees of freedom Multiple R-squared: 0.07626, Adjusted R-squared: 0.05129 F-statistic: 3.054 on 1 and 37 DF, p-value: 0.08881

$$
\hat{y}=133.496-15.752 x
$$

- suggests that average systolic blood pressure decreases as the fraction of life spent in modern society increases.
- However, the t-test of $H_{0}: \beta_{1}=0$ is not significant at the 5% level (p-value $=0.08881$).
——there is no linear relationship between systolic blood pressure and the fraction of life spent in a modern society
- $R^{2}=0.07626$ suggests that yrage fraction does not explain a substantial amount of the variation in the systolic blood pressures.

```
> Anova(lm.sysbp.yrage, type=3)
```

Anova Table (Type III tests)

Response: sysbp

	Sum Sq	Ff	value	$\operatorname{Pr}(>F)$
(Intercept)	178221	1	1092.9484	$<2 \mathrm{e}-16$

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
> anova(lm.sysbp.yrage) \#type I
Analysis of Variance Table

Response: sysbp
Df Sum Sq Mean Sq F value $\operatorname{Pr}(>F)$
yrage $1498.1 \quad 498.06 \quad 3.05440 .08881$.
Residuals 376033.4163 .06

Taking Weight Into Consideration

```
# fit the multiple linear regression model, (" + wt" added)
lm.sysbp.yrage.wt <- lm(sysbp ~ yrage + wt, data = indian)
library(car)
Anova(lm.sysbp.yrage.wt, type=3)
anova(lm.sysbp.yrage.wt) #sequential ss
summary(lm.sysbp.yrage.wt)
```

> summary(lm.sysbp.yrage.wt)

Call:
lm(formula $=$ sysbp \sim yrage + wt, data $=$ indian)

Coefficients:

	Estimate	Std. Error t value $\operatorname{Pr}(>\|t\|)$			
(Intercept)	60.8959	14.2809	4.264	0.000138	$* * *$
yrage	-26.7672	7.2178	-3.708	0.000699	$* * *$
wt	1.2169	0.2337	5.207	$7.97 e-06$	$* * *$

Signif. codes: 0 *** 0.001 ** $0.01 * 0.05$. 0.11

Residual standard error: 9.777 on 36 degrees of freedom Multiple R-squared: 0.4731, Adjusted R-squared: 0.4438 F-statistic: 16.16 on 2 and 36 DF , p-value: 9.795e-06

```
> Anova(lm.sysbp.yrage.wt, type=3)
Anova Table (Type III tests)
Response: sysbp
Sum Sq Df F value Pr(>F)
(Intercept) 1738.2 1 18.183 0.0001385 ***
yrage 1314.7 1 13.753 0.0006991 ***
wt 2592.0 1 27.115 7.966e-06 ***
Residuals 3441.4 36
```

> anova(lm.sysbp.yrage.wt) \#sequential ss
Analysis of Variance Table

Response: sysbp
Df Sum Sq Mean Sq F value $\operatorname{Pr}(>F)$

yrage	1	498.1	498.06	5.2102	0.02846	$*$
wt	1	2592.0	2592.01	27.1149	$7.966 \mathrm{e}-06$	***
Residuals	36	3441.4	95.59			

Findings:

- Fitted regression lines
——SLR: $\hat{y}=133.496-15.752$ yrage
—MLR: $\hat{y}=60.89-26.76$ yrage $+1.21 w t$
Table : comparison of some numbers from SLR and MLR

	$d f_{R}$	$d f_{E}$	SSE	SSR	R^{2}	$\hat{\sigma}^{2}$
SLR	1	$39-2=37$	6033.37	498.1	0.076	163.06
MLR	2	$39-3=36$	3441.36	3090	0.473	95.59
Diff			2592	2592		

- SSTO does not depend on the number of predictors so it stays the same.
- SSE, or the part of the variation in the response unexplained by the regression model, never increases when new predictors are added. (You cant add a predictor and explain less variation.)
- Adding the weight variable to the model increases R^{2} by 40%. That is, weight explains 40% of the variation in systolic blood pressure not already explained by fraction.

F overall test

$$
H_{0}: \beta_{1}=\beta_{2}=0 \text { v.s. at least one of them is not equal to } 0
$$

Test of no relationship between the average systolic blood pressure and fraction and weight, assuming the relationship is linear.

$$
\begin{gathered}
S S R=498+2592=3090, M S R=3090 / 2=1545 \\
M S E=95.59 \\
F_{\text {obs }}=M S R / M S E=1545 / 95.59=16.163
\end{gathered}
$$

compare with $F(2,36,0.95)=3.259446$, reject H_{0}, conclude that either fraction or weight, or both, are important for explaining the variation in systolic blood pressure.

- Residual standard error: 9.777 on 36 degrees of freedom Multiple R-squared: 0.4731, Adjusted R-squared: 0.4438 F-statistic: 16.16 on 2 and 36 DF, p-value: 9.795e-06

Individual t test

$$
H_{0}: \beta_{2}=0 \text { v.s. } \beta_{2} \neq 0
$$

whether adding weight to the model explains a significant part of the variation in systolic blood pressure not explained by yrage fraction.

$$
t_{o b s}=\frac{b_{2}-0}{S E\left(b_{2}\right)}=\frac{1.217}{0.234}=5.207
$$

compare to t critical value with 36 degrees of freedom 2.028094, we reject H_{0}, conclude that weight is significant in explaining the variation in systolic blood pressure when yrage fraction is already in the model.

Coefficients:

	Estimate	Std. Error	t value $\operatorname{Pr}(>\|t\|)$		
(Intercept)	60.8959	14.2809	4.264	0.000138	$* * *$
yrage	-26.7672	7.2178	-3.708	$0.000699^{* * *}$	
wt	1.2169	0.2337	5.207	$7.97 e-06$	$* * *$

Confidence Intervals

$$
b_{i} \pm t_{c r i t} * S E\left(b_{i}\right)
$$

> confint(lm.sysbp.yrage.wt, level=.95)

$$
2.5 \% \quad 97.5 \%
$$

(Intercept) 31.932954289 .858895
yrage -41.4055934-12.128836
$\begin{array}{lll}\text { wt } & 0.7429167 & 1.690796\end{array}$

Confidence Intervals of the mean

```
> newdata <- data.frame(yrage=c(0.05,0.03), wt=c(58,64))
> predict(lm.sysbp.yrage.wt, newdata=newdata,
interval="confidence", level=.95)
    fit lwr upr
1 130.1352 124.3695 135.9010
2 137.9717 131.7534 144.1901
> newdata <- data.frame(yrage=c(0.05,0.03), wt=c(58,64))
## 95% CI's for E(Y) using Bonferroni Correction
predict(lm.sysbp.yrage.wt, newdata=newdata,
interval="confidence", level=1-.05/2)
    fit lwr upr
1 130.1352 123.4855 136.7850
2 137.9717 130.7999 145.1435
```


Prediction Intervals of the mean

```
> newdata <- data.frame(yrage=c(0.05,0.03), wt=c(58,64))
> predict(lm.sysbp.yrage.wt, newdata=newdata,
interval="prediction", level=.95)
    fit lwr upr
1 130.1352 109.4849 150.7855
2 137.9717 117.1905 158.7529
> predict(lm.sysbp.yrage.wt, newdata=newdata,
interval="prediction", level=1-.05/2)
    fit lwr upr
1 130.1352 106.3186 153.9519
2 137.9717 114.0041 161.9393
```


Comments

- The t -test for $H_{0}: \beta_{1}=0$ is highly significant (p -value $=0.0007$) —— this implies that fraction is important in explaining the variation in systolic blood pressure by including weight in the model as a predictor.
——Weight is called a suppressor variable. Ignoring weight suppresses the relationship between systolic blood pressure and yrage fraction.

$$
\hat{y}=60.89-26.76 y r a g e+1.21 w t
$$

Fix $w t=50 \mathrm{~kg}, \hat{y}=121.39-26.76$ yrage
Fix $w t=60 \mathrm{~kg}, \hat{y}=133.49-26.76 \mathrm{yrage}$
--the average systolic blood pressure decreases by 26.76 for each increase of 1 on fraction, regardless of ones weight.
——-Recall SLR: $\hat{y}=133.496-15.752$ yrage the average systolic blood pressure decreases by 15.75 for each increase of 1 on fraction.

- On the other hand, a predictor that is highly correlated with the response may be unimportant in a multiple regression model once other predictors are included in the model.
-_ In multiple regression "everything depends on everything else.
- Interpretation: $b_{1}=-26.76$ indicates that the predicted systolic blood pressure decreases as yrage fraction increases holding weight constant.
-- the predicted systolic blood pressure decreases by 26.76 for each unit increase in fraction, holding weight constant at any value. --Similarly, the predicted systolic blood pressure increases by 1.21 for each unit increase in weight, holding yrage fraction constant at any level.
- $R^{2}=\frac{S S R}{S S T O}$ is the ratio of explained and total variation, or proportion of variation in Y that is accounted for by the regression relationship with X s
Limitations of R^{2}
Misunderstanding 1: A high coefficient of determination indicates that useful predictions can be made.
__ R^{2} measures only a relative reduction from SSTO and provides no information about absolute precision for estimating a mean response or predicting a new observation

Misunderstanding 2: A high coefficient of determination indicates that the estimated regression line is a good fit.

Regression Plot

Misunderstanding 3: A low coefficient of determination indicates that x and y are not related.

- Adjusted R^{2} takes into account the number of predictor variables and the sample size, i.e., it is adjusted based on the $d f$. Adjusted R^{2} becomes more relevant as a diagnostic tool when used in multiple regression.

$$
\text { Adjusted } R^{2}=1-\left(1-R^{2}\right) \frac{n-1}{n-p}
$$

- n : number of observations in the sample
$-p$: number of parameters, or number of predictor variables +1 _-_ From this formula, you can see that when the number of observations is small and the number of predictors is large, there will be a much greater difference between R-square and adjusted R-square. By contrast, when the number of observations is very large compared to the number of predictors, the value of R -square and adjusted R-square will be much closer because the ratio of $(n-1) /(n-p)$ will approach 1 .

Diagnostics

- Appropriate Regression Model -Pairwise Plots Y_{i} v.s $X_{i j}$ for $j=1,2, \cdots, p-1$, i.e, $p-1$ plots of Y v.s \mathbf{X} for each predictor
-3D plot, plot Y v.s X_{j} and X_{k} and look for trends
-Residual plots, e_{i} v.s \hat{Y}_{i}, e_{i} v.s $X_{i j}, j=1, \cdots, p-1, e_{i}$ v.s pair of \mathbf{X} 's
- Constancy of Error Variance
-Check e_{i} v.s \hat{Y}_{i}, e_{i} v.s $X_{i j}, j=1,2, \cdots, p-1$
-Use Brusch-Pagan test, one variable at a time or all variables together
- Normality
-Histogram Plot
-Normal probability plot of residuals
-Tests, Lilliefors' test, correlation test
- Outliers
-Plot studentized deleted residual (rstudent) v.s \hat{Y}_{i}, v.s $X_{i j}$'s,
$j=1,2, \cdots, p-1$
- Independence
- Check plot of e_{i} v.s time if possible
- Remedies:
- Try transformations of Y and/or \mathbf{X} 's, polynomials in \mathbf{X} 's are often used to deal with curvature
- May eliminate some of the \mathbf{X} 's (this is called variable selection)

Indian example continued

Scatterplot matrix and correlation matrix
pairs(sysbp ~ yrage+wt,data=indian, main="pairwise scatter plot matrix") cor (cbind(indian\$sysbp,indian\$yrage,indian\$wt))

$$
\begin{array}{rrrr}
& {[, 1]} & {[, 2]} & {[, 3]} \\
{[1,]} & 1.0000000 & -0.2761457 & 0.5213643 \\
{[2,]} & -0.2761457 & 1.0000000 & 0.2930830 \\
{[3,]} & 0.5213643 & 0.2930830 & 1.0000000
\end{array}
$$

pairwise scatter plot matrix

Added variable plot:

- Fit regression $y \sim x_{1}$, obtain residual $e_{i}\left(y \mid x_{1}\right)$
- Fit regression $x_{2} \sim x_{1}$, obtain residual $e_{i}\left(x_{2} \mid x_{1}\right)$
- plot the residuals $e_{i}\left(y \mid x_{1}\right)$ against residuals $e_{i}\left(x_{2} \mid x_{1}\right)$.
-If there seems to be no relationship between them, x_{2} will not be important;
__ if the plot looks clearly linear, x_{2} will be important. --if the plot looks curved, this may be an indication for transformation on x_{2}

```
myfit1 <- lm(wt ~ yrage, data = indian)
plot(lm.sysbp.yrage$residuals,myfit1$residuals)
#or librarv(car) avPlots(lm.svsbp.vrage.wt)
```


We have seen a linear relationship from the plot of e_{i} (sysbp|yrage) against residuals $e_{i}(w t \mid y r a g e)$., therefore, "wt" is important to add to the model.

In general, the added variable plot or the partial regression residual plot compares the residuals from two model fits.

- First, we "adjust Y for all the other predictors in the model except the selected one.
- Then, we "adjust the selected variable $X_{\text {sel }}$ for all the other predictors in the model.
- Lastly, plot the residuals from these two models against each other to see what relationship still exists between Y and $X_{\text {sel }}$ after accounting for their relationships with the other predictors.

Diagnostic plots

```
par(mfrow=c(2,3))
plot(lm.sysbp.yrage.wt,which=c(1,4)) #residual v.s fitted vall
cooked distance
plot(indian$yrage, lm.sysbp.yrage.wt$residuals,
main="Residuals vs yrage")
# horizontal line at zero
abline(h = 0, col = "gray75")
plot(indian$wt, lm.sysbp.yrage.wt$residuals,
main="Residuals vs wt")
abline(h = 0, col = "gray75")
library(car)
qqPlot(lm.sysbp.yrage.wt$residuals, las = 1, main="QQ Plot")
lev<-hatvalues(lm.sysbp.yrage.wt)
plot(lev)
```


> library (lmtest)
> bptest(sysbp~yrage+wt,data=indian,studentize=FALSE) \#test constant variance

Breusch-Pagan test
data: sysbp ~ yrage + wt
$B P=2.3797, \mathrm{df}=2, \mathrm{p}$-value $=0.3043$
> shapiro.test(rstandard(lm.sysbp.yrage.wt))
Shapiro-Wilk normality test
data: rstandard(lm.sysbp.yrage.wt)
$\mathrm{W}=0.98081, \mathrm{p}$-value $=0.733$

- Residual v.s fitted value plot didn't show obvious pattern Residual v.s. yrage and residual v.s. wt didn't show pattern either BP testis with a p-value of 0.3043
Constant variance assumption and linearity assumption seem to be met.
- QQ plot shows that normality assumption is roughly met. Shapiro-Wilk test (with a p-value of 0.733) also support the normality assumptions.
- There is no time order provided for the data, we can't check independence assumption. Let's assume independence assumption is met.
- Cooks distance is substantially larger for observation 10, leverages are larger for observations 8 and 39.

Outliers

Leverage, x outliers

```
xoutliers <- which(lev > 2*3/39)
xoutliers
lev[xoutliers]
xoutliers2 <- which(lev > 3*3/39)
xoutliers2
    89
    89
> indian[8,]
    id age yrmig wt ht chin fore calf pulse sysbp yrage
```



```
> indian[39,]
    id age yrmig wt ht chin fore calf pulse sysbp yrage
39 39 54 40 87 1542 11.3 11.7 11.3 92 152 0.7407407
plot(lev)
```

```
cooks.distance(lm.sysbp.yrage.wt)
max(cooks.distance(lm.sysbp.yrage.wt))
order(cooks.distance(lm.sysbp.yrage.wt)) [39]
plot(cooks.distance(lm.sysbp.yrage.wt))
> highcook <- which((cooks.distance(lm.sysbp.yrage.wt))
> qf(0.5,3,36))
> cooks.distance(lm.sysbp.yrage.wt)[highcook]
named numeric(0)
```


Multicolinearity and It's Effect

When the predictor variables are correlated among themselves, we say that there is multicollinearity.

1. The estimate of any parameter, say β_{2}, depends on all the variables that are included in the model.
2. The sum of squares for any variable, say x_{2}, depends on all the other variables that are included in the model. For example, none of $\operatorname{SSR}\left(x_{2}\right), \operatorname{SSR}\left(x_{2} \mid x_{1}\right)$, and $\operatorname{SSR}\left(x_{2} \mid x_{3}, x_{4}\right)$ would typically be equal.
3. A moderate amount of collinearity has little effect on predictions and therefore little effect on SSE, R^{2}, and the explanatory power of the model. Collinearity increases the vairance of the $\hat{\beta}_{k} \mathrm{~s}$, making the estimates of the parameters less reliable. Sometimes a large amount of collinearity can have an effect on predictions.
4. Suppose the model

$$
y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\beta_{3} x_{i 3}+\epsilon_{i}
$$

is fitted and we obtain t statistics for each parameter.
If the t statistic for testing $H_{0}: \beta_{1}=0$ is small, we are led to the model

$$
y_{i}=\beta_{0}+\beta_{2} x_{i 2}+\beta_{3} x_{i 3}+\epsilon_{i}
$$

If the t statistic for testing $H_{0}: \beta_{2}=0$ is small, we are led to the model

$$
y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{3} x_{i 3}+\epsilon_{i}
$$

However, if the t statistics for both tests are small, we are not led to the model

$$
y_{i}=\beta_{0}+\beta_{3} x_{i 3}+\epsilon_{i}
$$

Multicollinearity can greatly affect

- the regression coefficient
- the variance of the regression coefficients
- our understanding of the predictor variables and their effect on the response

Two special case (see R handout)

- Uncorrelated Predictor variables: In that case Type I and Type 3 SS will be the same. The contribution of each explanatory variable to the model is the same whether or not the other explanatory variables are in the model.
- Predictor variables are perfectly correlated: The Type 3 SS for the predictor variables involved will be zero because when one is included the other is redundant. It explains NO additional variation over the other variables.

Check for multicollinearity

> vif(lm.sysbp.yrage.wt)
yrage wt
1.0939691 .093969

Variance inflation factor (VIF) is the ratio of variance in a model with multiple terms, divided by the variance of a model with one term alone.
Common rules:
VIF less than 5 are considered as small, no concern of multicollinearity.
VIF between 5 to 10 are considered moderate of multicollinearity. VIF greater than 10 are considered as high multicollinearity.

Comments:

- As long as points 1 through 4 are kept in mind, a moderate amount of collinearity is not a big problem.
- The overall F statistic is significant, but none of the individual t test is significant. This indicates multicollinearity problem.
- High multicollinearity among the predictor variables does not prevent the mean square error, measuring the variability of the error terms, from being steadily reduced as additional variables are added to the regression model.
- The precision of fitted values within the range of the observations on the predictor variables is not eroded with the addition of correlated predictor variables into the regression model.

Remedies for Multicollinearity

- Variable selection
- Use biased regression methods such as ridge regression or principle components regression, especially there is an interest in the regression coefficients themselves.

Interaction Regression Models

Additive Model: $y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\epsilon_{i}$
Interaction Model: $y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\beta_{3} x_{i 1} x_{i 2}+\epsilon_{i}$

- When an interaction is present, the effect of the change in the mean response when the value of a predictor variable changes depends on the value of another predictor variable.
- β_{1} and β_{2} no longer indicate the change in the mean response with a unit increase of the predictor variable, with the other predictor variable held constant at any given level. For example, change in the mean response with a unit increase in x_{1} when x_{2} is held constant is $\beta_{1}+\beta_{3} x_{2}$.

Example:

-No interaction

$$
E\{y\}=10+2 x_{1}+5 x_{2}
$$

- when $x_{2}=1$, the response function $E\{y\}$ as a function of x_{1} is

$$
\begin{equation*}
E\{y\}=15+2 x_{1} \tag{1}
\end{equation*}
$$

- when $x_{2}=3$,

$$
\begin{equation*}
E\{y\}=25+2 x_{1} \tag{2}
\end{equation*}
$$

- Line (1) and (2) are parallel.
——Reinforcement Interaction Effect

$$
E\{y\}=10+2 x_{1}+5 x_{2}+.5 x_{1} x_{2}
$$

- when $x_{2}=1$, the response function $E\{y\}$ as a function of x_{1} is

$$
\begin{equation*}
E\{y\}=15+2.5 x_{1} \tag{3}
\end{equation*}
$$

- when $x_{2}=3$,

$$
\begin{equation*}
E\{y\}=25+3.5 x_{1} \tag{4}
\end{equation*}
$$

- Line (3) and (4) are not parallel.
——Interference Interaction Effect

$$
E\{y\}=10+2 x_{1}+5 x_{2}-.5 x_{1} x_{2}
$$

- when $x_{2}=1$, the response function $E\{y\}$ as a function of x_{1} is

$$
\begin{equation*}
E\{y\}=15+1.5 x_{1} \tag{5}
\end{equation*}
$$

- when $x_{2}=3$,

$$
\begin{equation*}
E\{y\}=25+.5 x_{1} \tag{6}
\end{equation*}
$$

- Line (5) and (6) are not parallel.

Figure: Interactions

Reinforcement Interaction Effect

Interference Interation Effect

Check if interaction term need to be included

Plot residual from the additive model vs. interaction terms, if no pattern observed, do not include the interaction term.
if a pattern (not random) is observed, may need to include the interaction term.
plot(indian\$yrage*indian\$wt,lm.sysbp.yrage.wt\$residuals)
No pattern observed, do not suggest adding the interaction term yrage*wt

Figure : Interaction of yrage*wt

Comments:

- High multicollinearity may exist between some of the predictor variables and some of the interaction terms, as well as among some of the interaction terms. A partial remedy to improve computational accuracy is to center the predictor variables
- When the number of predictor variables is large, potential number of interaction terms become very large
- It is desirable to identify in advance, whenever possible, those interactions that are most likely to influence the response variable in important ways. In addition to utilizing a priori knowledge, one can plot the residuals for the additive regression model against the different interaction terms to determine which ones appear to be influential in affecting the response variable
- When the number of predictor variables is large, these plots may need to be limited to interaction terms involving those predictor variables that appear to be the most important on the basis of the initial fit of the additive regression model

