
Review simple linear regression

Normal error regression model:

Yi = β0 + β1Xi + εi

I yi : observed response in the ith trial

I xi : a known constant, the level of the predictor variable in the ith trial

I β0 and β1: parameters

I εi
iid∼ N(0, σ2) for i = 1, 2, · · · , n
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Example: Growth hormone is used as a prescription drug in medicine to
treat children’s growth disorders. In the medical study of short children,
clinicians want to use the statistical relation to predict growth hormone
deficiencies in short children by using simple measurements such as
gender, age and various body measurements of the children.

I Gender, age and other body measurements affect the growth hormone
in important and distinctive ways

I A single predictor variable in the model would have provided an
inadequate description

I In situation of this type, predictions from a simple linear regression
model are too imprecise to be useful

I Containing additional predictor variables, typically is more helpful in
providing sufficiently precise predictions of the response variable.
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Multiple Regression

I Multiple–More than one predictor variable

I Yi is the response variable

I Xi1,Xi2, · · ·Xi ,p−1 are the p − 1 explanatory variables for cases i = 1
to n

I Potential problem: These predictor variables are likely to be
themselves correlated

ADA2 January 22, 2019 3 / 76



General multiple linear regression model

Yi = β0 + β1Xi1 + β2Xi2 + · · ·+ βp−1Xi ,p−1 + εi ,

I i = 1, 2, · · · , n
I Yi is the value of the response variable for the ith case

I Xi1,Xi2, · · · ,Xi ,p−1 are known constants, Xik is the value of the kth
explanatory variable for the ith case

I β0, β1, · · · , βp−1 are parameters, p − 1 predictors, p parameters

I εi
iid∼ N(0, σ2)
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Geometry of one-predictor model

Example: A person’s muscle mass is expected to decrease with age. To
explore this relationship in women, a nutritionist randomly selected 15
women from each 10-year age group, beginning with age 40 and ending
with age 79 with a total number of 60 women.
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Geometry of two-predictor model

Model: E (Y ) = β0 + β1X1 + β2X2
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Meaning of regression coefficients

Model: E (Y ) = β0 + β1X1 + β2X2

I β0 is the Y intercept of the regression plane. If the scope of the
model includes X1 = 0,X2 = 0, then β0 represents the mean response
E (Y ) at X1 = 0,X2 = 0. Otherwise, β0 does not have any particular
meaning

I βk represents the change in the mean response E (Y ) for a unit
change in Xk while all other Xj ’s are held constant
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Interaction effects—-cross product

Suppose X1 and X2 interact, we can express a form of interaction in the
regression model by adding the term X1X2

Yi = β0 + β1Xi1 + β2Xi2 + β3Xi1Xi2 + εi

I Mean of Y at X1 is β0 + β1X1 + β2X2 + β3X1X2

I Mean of Y at X1 + 1 is β0 + β1(X1 + 1) + β2X2 + β3(X1 + 1)X2 =
β0 + β1X1 + β1 + β2X2 + β3X1X2 + β3X2

I Change in mean of Y is β1 + β3X2

I X1 and X2 interact since the change in the mean of Y for unit change
in X1 depends on X2
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Interaction effects: bends the plane
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Parameter Estimation

Least Squares: Want to minimize the sum of squared residuals:

Q =
n∑

i=1

(Yi − β0 − β1Xi1 − · · · − βp−1Xi ,p−1)2

Fitted values and residuals

I Fitted values Ŷi = b0 + b1Xi1 + b2Xi2 + · · ·+ bp−1Xi ,p−1

I Residuals ei = Yi − Ŷi
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ANOVA Table

Decomposition of SSTO: SSTO=SSR + SSE
SSTO =

∑n
i=1(yi − ȳ)2

SSE =
∑n

i=1(yi − ŷi )
2

SSR =
∑n

i=1(ŷi − ȳ)2

ŷi = b0 + b1xi1 + · · ·+ bp−1xi ,p−1

Source SS df MS F-test

Regression SSR p-1 MSR = SSR/(p-1) F =MSR/MSE

Error SSE n-p MSE = SSE/(n-p)

Total SSTO n-1
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F-test for significance of regression:

H0 : β1 = β2 = · · ·βp−1 = 0

Hα : not all βk(k = 1, 2, · · · p − 1) equal zero

Test statistic and decision rule:

F ∗ = MSR/MSE

I If H0 is true, F = MSR/MSE has an F distribution with
(p − 1, n − p) degrees of freedom.

I Reject H0, if F ∗ > F (1− α, p − 1, n − p)
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Coefficient of Multiple Determination R2

R2 = proportion of variation in y accounted for by the multiple linear
regression model in x1, x2, · · · , xp−1

= SSR/SSTO
I 0 ≤ R2 ≤ 1
I R2 is the square of correlation between yi and ŷi
I R2 = 1 if yi = ŷi for all i
I R2 = 0 if b1 = b2 = · · · = bp−1 = 0
I A large R2 value does not necessarily imply that the fitted model is a

useful one or that the fit is “good”.
I The addition of more predictors to the regression model will result in

an increase in the value of R2.
I Adjusted R2

R2
a = 1− SSE/(n − p)

SSTO/(n − 1)

The adjusted R2 can decrease as more predictors are added to the
model.
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Inference for individual regression coefficient

I Distribution of bk :
bk − βk
s(bk)

∼ t(n − p) k = 0, 1, · · · , p − 1

I a (1− α)100% confidence interval for βk

bk ± tn−p(1− α/2)s{bk}

I Significant test for βk

H0 : βk = 0 v.s βk 6= 0

t∗ =
bk

s{bk}
If H0 is true, t∗ has a t-distribution with n − p degrees of freedom.

Alternative Reject H0 if
Hα : βk > 0 t∗ > t(1− α; n − p)
Hα : βk < 0 t∗ < −t(1− α; n − p)
Hα : βk 6= 0 |t∗| > t(1− α/2; n − p)
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Let
β = (β0, β1, · · · , βp−1)T

b = (b0, b1, · · · , bp−1)T

Xh = (1,Xh,1,Xh,2, · · · ,Xh,p−1)T
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Estimation of E (Yh)

We want a point estimate and a confidence interval for the mean
corresponding to the set of explanatory variables Xh.
Yi = β0 + β1Xi1 + β2Xi2 + · · ·+ βp−1Xi ,p−1 + εi ,
Xh = (1,Xh,1,Xh,2, · · · ,Xh,p−1)T

Yh = β0 + β1Xh1 + β2Xh2 + · · ·+ βp−1Xh,p−1 + εh
E (Yh) = β0 + β1Xh1 + β2Xh2 + · · ·+ βp−1Xh,p−1

or E (Yh) = uh = XT
h β

ûh = XT
h b

s2{ûh} = XT
h s

2{b}Xh = MSEXT
h (XTX)−1Xh

95% CI ûh ± s{ûh}tn−p(1− α/2)

ADA2 January 22, 2019 17 / 76



Prediction of Yh(new)

Predict a new observation Yh at Xh. We want a prediction of Yh based on
a set of predictor values with an interval that expresses the uncertainty in
our prediction. As in SLR this interval is centered at Yh and is wider than
the interval for the mean.
Yh = XT

h β + εh
Ŷh = ûh = XT

h b

s2{pred} = var(Yh(new) − Ŷh)

= var(Yh(new)) + var(Ŷh)

= MSE (1 + XT
h (XTX)−1Xh)

CI for Yh(new): Ŷh ± s{pred}tn−p(1− α/2)
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Extra sum of squares

Extra sum of squares are used to Measure the effect of adding variables to
a regression model, Suppose x1 is in the regression model and we add the
predictor variable x2, what is the effect of adding x2 to the model that
already contain x1?

I SSE (x1) = SSError for the model containing x1
SSR(x1) = SSRegression for the model containing x1,
SSE (x1) + SSR(x1) = SSTO

I Adding x2 to the model, we get SSE (x1, x2) and SSR(x1, x2)
——SSR(x1, x2) gives a measure of the effect of both x1, x2
—–The effect of adding x2 to the model that contains x1 is measured
by

SSR(x2|x1) = SSR(x1, x2)− SSR(x1)

——-SSR(x2|x1) measures the “marginal” effect of adding x2 to the
model that already contains x1

I The definition of extra sum of squares can be extended to any
number of variables
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ANOVA table for decompostion with x1 first, then x2 added, then x3
Source SS df MS
x1 SSR(x1) 1 MSR(x1) = SSR(x1)/1

x2|x1 SSR(x2|x1) 1 MSR(x2|x1) = SSR(x2|x1)/1
x3|x1, x2 SSR(x3|x1, x2) 1 MSR(x3|x1, x2) = SSR(x3|x1, x2)/1

Regression SSR 3 MSR = SSR /3
Error SSE n − 4 MSE = SSE/(n − 4)
Total SSTO n − 1
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Three type of sum of squares (SS)

I Type I sum of squares are “sequential. In essence the factors are
tested in the order they are listed in the model.
lm(y ∼ x1 + x2 + x1 ∗ x2, data = ex .data)

SSR(x1), SSR(x2|x1),SSR(x1 ∗ x2|x1, x2)

I Type III SS are “partial. In essence, every term in the model is tested
in light of every other term in the model. That means the main
effects are tested in light of interaction terms as well as in light of
other main effects.

SSR(x1|x2, x1 ∗ x2),SSR(x2|x1, x1 ∗ x2),SSR(x1 ∗ x2|x1, x2)

I Type II SS are similar to Type III, except that they preserve the
principle of marginality. This means that main factors are tested in
light of one another, but not in light of the interaction term.
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Example 1

Goal: Anthropologists conducted a study to determine the long-term
effects of an environmental change on systolic blood pressure.
—–They measured the blood pressure and several other characteristics of
39 Indians who migrated from a very primitive environment high in the
Andes into the mainstream of Peruvian society at a lower altitude.
—– All of the Indians were males at least 21 years of age, and were born
at a high altitude.

ADA2 January 22, 2019 22 / 76



> fn.data <- "http://statacumen.com/teach/ADA2/

ADA2_notes_Ch02_indian.dat"

> indian <- read.table(fn.data, header=TRUE)

> indian

id age yrmig wt ht chin fore calf pulse sysbp diabp

1 1 21 1 71.0 1629 8.0 7.0 12.7 88 170 76

2 2 22 6 56.5 1569 3.3 5.0 8.0 64 120 60

3 3 24 5 56.0 1561 3.3 1.3 4.3 68 125 75

4 4 24 1 61.0 1619 3.7 3.0 4.3 52 148 120

5 5 25 1 65.0 1566 9.0 12.7 20.7 72 140 78

6 6 27 19 62.0 1639 3.0 3.3 5.7 72 106 72

7 7 28 5 53.0 1494 7.3 4.7 8.0 64 120 76

8 8 28 25 53.0 1568 3.7 4.3 0.0 80 108 62

9 9 31 6 65.0 1540 10.3 9.0 10.0 76 124 70
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Question of interest: is there a relationship between the systolic blood
pressure and how long the Indians lived in their new environment as
measured by the fraction of their life spent in the new environment?

# Create the "fraction of their life" variable

# yrage = years since migration divided by age

indian$yrage <- indian$yrmig / indian$age

plot(indian$yrage,indian$sysbp,main="scatterplot of

sysbp v.s. yage")
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Figure : Scatterplot of sysbp v.s. yage
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Fit a simple linear regression model

lm.sysbp.yrage <- lm(sysbp ~ yrage, data = indian)

# use Anova() from library(car) to get ANOVA table

library(car)

Anova(lm.sysbp.yrage, type=3) # (Type 3 SS)

anova(lm.sysbp.yrage) #Type 1 SS

# use summary() to get t-tests of parameters

summary(lm.sysbp.yrage)
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> summary(lm.sysbp.yrage)

Call:

lm(formula = sysbp ~ yrage, data = indian)

Residuals:

Min 1Q Median 3Q Max

-17.161 -10.987 -1.014 6.851 37.254

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 133.496 4.038 33.060 <2e-16 ***

yrage -15.752 9.013 -1.748 0.0888 .

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 12.77 on 37 degrees of freedom

Multiple R-squared: 0.07626, Adjusted R-squared: 0.05129

F-statistic: 3.054 on 1 and 37 DF, p-value: 0.08881
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ŷ = 133.496− 15.752x

I suggests that average systolic blood pressure decreases as the fraction
of life spent in modern society increases.

I However, the t-test of H0 : β1 = 0 is not significant at the 5% level
(p-value=0.08881).
——there is no linear relationship between systolic blood pressure and
the fraction of life spent in a modern society

I R2 = 0.07626 suggests that yrage fraction does not explain a
substantial amount of the variation in the systolic blood pressures.
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> Anova(lm.sysbp.yrage, type=3)

Anova Table (Type III tests)

Response: sysbp

Sum Sq Df F value Pr(>F)

(Intercept) 178221 1 1092.9484 < 2e-16 ***

yrage 498 1 3.0544 0.08881 .

Residuals 6033 37

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

> anova(lm.sysbp.yrage) #type I

Analysis of Variance Table

Response: sysbp

Df Sum Sq Mean Sq F value Pr(>F)

yrage 1 498.1 498.06 3.0544 0.08881 .

Residuals 37 6033.4 163.06

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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Taking Weight Into Consideration

# fit the multiple linear regression model, (" + wt" added)

lm.sysbp.yrage.wt <- lm(sysbp ~ yrage + wt, data = indian)

library(car)

Anova(lm.sysbp.yrage.wt, type=3)

anova(lm.sysbp.yrage.wt) #sequential ss

summary(lm.sysbp.yrage.wt)
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> summary(lm.sysbp.yrage.wt)

Call:

lm(formula = sysbp ~ yrage + wt, data = indian)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 60.8959 14.2809 4.264 0.000138 ***

yrage -26.7672 7.2178 -3.708 0.000699 ***

wt 1.2169 0.2337 5.207 7.97e-06 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 9.777 on 36 degrees of freedom

Multiple R-squared: 0.4731, Adjusted R-squared: 0.4438

F-statistic: 16.16 on 2 and 36 DF, p-value: 9.795e-06
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> Anova(lm.sysbp.yrage.wt, type=3)

Anova Table (Type III tests)

Response: sysbp

Sum Sq Df F value Pr(>F)

(Intercept) 1738.2 1 18.183 0.0001385 ***

yrage 1314.7 1 13.753 0.0006991 ***

wt 2592.0 1 27.115 7.966e-06 ***

Residuals 3441.4 36

> anova(lm.sysbp.yrage.wt) #sequential ss

Analysis of Variance Table

Response: sysbp

Df Sum Sq Mean Sq F value Pr(>F)

yrage 1 498.1 498.06 5.2102 0.02846 *

wt 1 2592.0 2592.01 27.1149 7.966e-06 ***

Residuals 36 3441.4 95.59

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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Findings:

I Fitted regression lines
—–SLR: ŷ = 133.496− 15.752yrage
—–MLR: ŷ = 60.89− 26.76yrage + 1.21wt

Table : comparison of some numbers from SLR and MLR

dfR dfE SSE SSR R2 σ̂2

SLR 1 39-2=37 6033.37 498.1 0.076 163.06
MLR 2 39-3=36 3441.36 3090 0.473 95.59
Diff 2592 2592

I SSTO does not depend on the number of predictors so it stays the
same.

I SSE, or the part of the variation in the response unexplained by the
regression model, never increases when new predictors are added.
(You cant add a predictor and explain less variation.)

ADA2 January 22, 2019 33 / 76



I Adding the weight variable to the model increases R2 by 40%. That
is, weight explains 40% of the variation in systolic blood pressure not
already explained by fraction.
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F overall test

H0 : β1 = β2 = 0 v.s. at least one of them is not equal to 0

Test of no relationship between the average systolic blood pressure and
fraction and weight, assuming the relationship is linear.

I

SSR = 498 + 2592 = 3090,MSR = 3090/2 = 1545

MSE = 95.59

Fobs = MSR/MSE = 1545/95.59 = 16.163

compare with F (2, 36, 0.95) = 3.259446, reject H0, conclude that
either fraction or weight, or both, are important for explaining the
variation in systolic blood pressure.

I Residual standard error: 9.777 on 36 degrees of freedom Multiple
R-squared: 0.4731, Adjusted R-squared: 0.4438 F-statistic: 16.16 on
2 and 36 DF, p-value: 9.795e-06
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Individual t test

H0 : β2 = 0 v.s.β2 6= 0

whether adding weight to the model explains a significant part of the
variation in systolic blood pressure not explained by yrage fraction.

tobs =
b2 − 0

SE (b2)
=

1.217

0.234
= 5.207

compare to t critical value with 36 degrees of freedom 2.028094, we reject
H0, conclude that weight is significant in explaining the variation in
systolic blood pressure when yrage fraction is already in the model.

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 60.8959 14.2809 4.264 0.000138 ***

yrage -26.7672 7.2178 -3.708 0.000699 ***

wt 1.2169 0.2337 5.207 7.97e-06 ***
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Confidence Intervals

bi ± tcrit ∗ SE (bi )

> confint(lm.sysbp.yrage.wt, level=.95)

2.5 % 97.5 %

(Intercept) 31.9329542 89.858895

yrage -41.4055934 -12.128836

wt 0.7429167 1.690796
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Confidence Intervals of the mean

> newdata <- data.frame(yrage=c(0.05,0.03), wt=c(58,64))

> predict(lm.sysbp.yrage.wt, newdata=newdata,

interval="confidence", level=.95)

fit lwr upr

1 130.1352 124.3695 135.9010

2 137.9717 131.7534 144.1901

> newdata <- data.frame(yrage=c(0.05,0.03), wt=c(58,64))

## 95% CI’s for E(Y) using Bonferroni Correction

predict(lm.sysbp.yrage.wt, newdata=newdata,

interval="confidence", level=1-.05/2)

fit lwr upr

1 130.1352 123.4855 136.7850

2 137.9717 130.7999 145.1435
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Prediction Intervals of the mean

> newdata <- data.frame(yrage=c(0.05,0.03), wt=c(58,64))

> predict(lm.sysbp.yrage.wt, newdata=newdata,

interval="prediction", level=.95)

fit lwr upr

1 130.1352 109.4849 150.7855

2 137.9717 117.1905 158.7529

> predict(lm.sysbp.yrage.wt, newdata=newdata,

interval="prediction", level=1-.05/2)

fit lwr upr

1 130.1352 106.3186 153.9519

2 137.9717 114.0041 161.9393
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Comments

I The t-test for H0 : β1 = 0 is highly significant (p-value=0.0007)
—— this implies that fraction is important in explaining the variation
in systolic blood pressure by including weight in the model as a
predictor.
——Weight is called a suppressor variable. Ignoring weight suppresses
the relationship between systolic blood pressure and yrage fraction.

ŷ = 60.89− 26.76yrage + 1.21wt

Fix wt = 50kg , ŷ = 121.39− 26.76yrage
Fix wt = 60kg , ŷ = 133.49− 26.76yrage
——-the average systolic blood pressure decreases by 26.76 for each
increase of 1 on fraction, regardless of ones weight.
——-Recall SLR: ŷ = 133.496− 15.752yrage
the average systolic blood pressure decreases by 15.75 for each
increase of 1 on fraction.
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I On the other hand, a predictor that is highly correlated with the
response may be unimportant in a multiple regression model once
other predictors are included in the model.
——– In multiple regression “everything depends on everything else.

I Interpretation: b1 = −26.76 indicates that the predicted systolic
blood pressure decreases as yrage fraction increases holding weight
constant.
——- the predicted systolic blood pressure decreases by 26.76 for
each unit increase in fraction, holding weight constant at any value.
—–Similarly, the predicted systolic blood pressure increases by 1.21
for each unit increase in weight, holding yrage fraction constant at
any level.
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I R2 =
SSR

SSTO
is the ratio of explained and total variation, or

proportion of variation in Y that is accounted for by the regression
relationship with X s
Limitations of R2

Misunderstanding 1: A high coefficient of determination indicates
that useful predictions can be made.
———R2 measures only a relative reduction from SSTO and provides
no information about absolute precision for estimating a mean
response or predicting a new observation
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Misunderstanding 2: A high coefficient of determination indicates that the
estimated regression line is a good fit.

ADA2 January 22, 2019 44 / 76



Misunderstanding 3: A low coefficient of determination indicates that x
and y are not related.
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I Adjusted R2 takes into account the number of predictor variables and
the sample size, i.e., it is adjusted based on the df . Adjusted R2

becomes more relevant as a diagnostic tool when used in multiple
regression.

Adjusted R2 = 1− (1− R2)
n − 1

n − p

—n: number of observations in the sample
—p: number of parameters, or number of predictor variables +1
——- From this formula, you can see that when the number of
observations is small and the number of predictors is large, there will
be a much greater difference between R-square and adjusted
R-square. By contrast, when the number of observations is very large
compared to the number of predictors, the value of R-square and
adjusted R-square will be much closer because the ratio of
(n − 1)/(n − p) will approach 1.
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Diagnostics

I Appropriate Regression Model
–Pairwise Plots Yi v.s Xij for j = 1, 2, · · · , p − 1, i.e, p − 1 plots of Y
v.s X for each predictor
–3D plot, plot Y v.s Xj and Xk and look for trends

–Residual plots, ei v.s Ŷi , ei v.s Xij , j = 1, · · · , p− 1, ei v.s pair of X’s
I Constancy of Error Variance

–Check ei v.s Ŷi , ei v.s Xij , j = 1, 2, · · · , p − 1
–Use Brusch-Pagan test, one variable at a time or all variables
together

I Normality
–Histogram Plot
–Normal probability plot of residuals
–Tests, Lilliefors’ test, correlation test

I Outliers
–Plot studentized deleted residual (rstudent) v.s Ŷi , v.s Xij ’s,
j = 1, 2, · · · , p − 1
–Normal probability Plot
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I Independence
– Check plot of ei v.s time if possible

I Remedies:
– Try transformations of Y and/or X’s, polynomials in X’s are often
used to deal with curvature
– May eliminate some of the X’s (this is called variable selection)
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Indian example continued

Scatterplot matrix and correlation matrix

pairs(sysbp ~ yrage+wt,data=indian,

main="pairwise scatter plot matrix")

cor(cbind(indian$sysbp,indian$yrage,indian$wt))

[,1] [,2] [,3]

[1,] 1.0000000 -0.2761457 0.5213643

[2,] -0.2761457 1.0000000 0.2930830

[3,] 0.5213643 0.2930830 1.0000000
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Added variable plot:

I Fit regression y ∼ x1, obtain residual ei (y |x1)

I Fit regression x2 ∼ x1, obtain residual ei (x2|x1)

I plot the residuals ei (y |x1) against residuals ei (x2|x1).
—–If there seems to be no relationship between them, x2 will not be
important;
—— if the plot looks clearly linear, x2 will be important.
—–if the plot looks curved, this may be an indication for
transformation on x2
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myfit1 <- lm(wt ~ yrage, data = indian)

plot(lm.sysbp.yrage$residuals,myfit1$residuals)

#or library(car) avPlots(lm.sysbp.yrage.wt)
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We have seen a linear relationship from the plot of ei (sysbp|yrage) against
residuals ei (wt|yrage). , therefore, “wt” is important to add to the model.

In general, the added variable plot or the partial regression residual plot
compares the residuals from two model fits.

I First, we “adjust Y for all the other predictors in the model except
the selected one.

I Then, we “adjust the selected variable Xsel for all the other predictors
in the model.

I Lastly, plot the residuals from these two models against each other to
see what relationship still exists between Y and Xsel after accounting
for their relationships with the other predictors.
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Diagnostic plots

par(mfrow=c(2,3))

plot(lm.sysbp.yrage.wt,which=c(1,4)) #residual v.s fitted value,

cooked distance

plot(indian$yrage, lm.sysbp.yrage.wt$residuals,

main="Residuals vs yrage")

# horizontal line at zero

abline(h = 0, col = "gray75")

plot(indian$wt, lm.sysbp.yrage.wt$residuals,

main="Residuals vs wt")

abline(h = 0, col = "gray75")

library(car)

qqPlot(lm.sysbp.yrage.wt$residuals, las = 1, main="QQ Plot")

lev<-hatvalues(lm.sysbp.yrage.wt)

plot(lev)
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> library(lmtest)

> bptest(sysbp~yrage+wt,data=indian,studentize=FALSE)

#test constant variance

Breusch-Pagan test

data: sysbp ~ yrage + wt

BP = 2.3797, df = 2, p-value = 0.3043

> shapiro.test(rstandard(lm.sysbp.yrage.wt))

Shapiro-Wilk normality test

data: rstandard(lm.sysbp.yrage.wt)

W = 0.98081, p-value = 0.733
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I Residual v.s fitted value plot didn’t show obvious pattern
Residual v.s. yrage and residual v.s. wt didn’t show pattern either
BP testis with a p-value of 0.3043
Constant variance assumption and linearity assumption seem to be
met.

I QQ plot shows that normality assumption is roughly met.
Shapiro-Wilk test (with a p-value of 0.733) also support the normality
assumptions.

I There is no time order provided for the data, we can’t check
independence assumption. Let’s assume independence assumption is
met.

I Cooks distance is substantially larger for observation 10, leverages are
larger for observations 8 and 39.
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Outliers

rstudent(lm.sysbp.yrage.wt) ##gives rstudent values

1 2 3 4 5 6 7 8 9 10 11

2.92834234 -0.24318932 0.15980796 1.52347845 0.11470330 -1.23933893 -0.06430383 0.77912370 -1.14006156 1.56336665 -1.62309601

outlierTest(lm.sysbp.yrage.wt) ##Reports the Bonferroni

> outlierTest(lm.sysbp.yrage.wt)

No Studentized residuals with Bonferonni p < 0.05

Largest |rstudent|:

rstudent unadjusted p-value Bonferonni p

1 2.928342 0.0059575 0.23234

par(mfrow=c(1,1))

plot(rstudent(lm.sysbp.yrage.wt))

indian[1,]

> indian[1,]

id age yrmig wt ht chin fore calf pulse sysbp yrage

1 1 21 1 71 1629 8 7 12.7 88 170 0.04761905
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Leverage, x outliers

xoutliers <- which(lev > 2*3/39)

xoutliers

lev[xoutliers]

xoutliers2 <- which(lev > 3*3/39)

xoutliers2

8 39

8 39

> indian[8,]

id age yrmig wt ht chin fore calf pulse sysbp yrage

8 8 28 25 53 1568 3.7 4.3 0 80 108 0.8928571

> indian[39,]

id age yrmig wt ht chin fore calf pulse sysbp yrage

39 39 54 40 87 1542 11.3 11.7 11.3 92 152 0.7407407

plot(lev)
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cooks.distance(lm.sysbp.yrage.wt)

max(cooks.distance(lm.sysbp.yrage.wt))

order(cooks.distance(lm.sysbp.yrage.wt))[39]

plot(cooks.distance(lm.sysbp.yrage.wt))

> highcook <- which((cooks.distance(lm.sysbp.yrage.wt))

> qf(0.5,3,36))

> cooks.distance(lm.sysbp.yrage.wt)[highcook]

named numeric(0)
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Multicolinearity and It’s Effect

When the predictor variables are correlated among themselves, we say that
there is multicollinearity.

1. The estimate of any parameter, say β2, depends on all the variables
that are included in the model.

2. The sum of squares for any variable, say x2, depends on all the other
variables that are included in the model. For example, none of
SSR(x2), SSR(x2|x1), and SSR(x2|x3, x4) would typically be equal.

3. A moderate amount of collinearity has little effect on predictions and
therefore little effect on SSE, R2, and the explanatory power of the
model. Collinearity increases the vairance of the β̂ks, making the
estimates of the parameters less reliable. Sometimes a large amount
of collinearity can have an effect on predictions.
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4. Suppose the model

yi = β0 + β1xi1 + β2xi2 + β3xi3 + εi

is fitted and we obtain t statistics for each parameter.
If the t statistic for testing H0 : β1 = 0 is small, we are led to the
model

yi = β0 + β2xi2 + β3xi3 + εi .

If the t statistic for testing H0 : β2 = 0 is small, we are led to the
model

yi = β0 + β1xi1 + β3xi3 + εi .

However, if the t statistics for both tests are small, we are not led to
the model

yi = β0 + β3xi3 + εi .
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Multicollinearity can greatly affect

I the regression coefficient

I the variance of the regression coefficients

I our understanding of the predictor variables and their effect on the
response
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Two special case (see R handout)

I Uncorrelated Predictor variables: In that case Type I and Type 3 SS
will be the same. The contribution of each explanatory variable to the
model is the same whether or not the other explanatory variables are
in the model.

I Predictor variables are perfectly correlated: The Type 3 SS for the
predictor variables involved will be zero because when one is included
the other is redundant. It explains NO additional variation over the
other variables.
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Check for multicollinearity

> vif(lm.sysbp.yrage.wt)

yrage wt

1.093969 1.093969

Variance inflation factor (VIF) is the ratio of variance in a model with
multiple terms, divided by the variance of a model with one term alone.
Common rules:
VIF less than 5 are considered as small, no concern of multicollinearity.
VIF between 5 to 10 are considered moderate of multicollinearity.
VIF greater than 10 are considered as high multicollinearity.
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Comments:

I As long as points 1 through 4 are kept in mind, a moderate amount
of collinearity is not a big problem.

I The overall F statistic is significant, but none of the individual t test
is significant. This indicates multicollinearity problem.

I High multicollinearity among the predictor variables does not prevent
the mean square error, measuring the variability of the error terms,
from being steadily reduced as additional variables are added to the
regression model.

I The precision of fitted values within the range of the observations on
the predictor variables is not eroded with the addition of correlated
predictor variables into the regression model.
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Remedies for Multicollinearity

I Variable selection

I Use biased regression methods such as ridge regression or principle
components regression, especially there is an interest in the regression
coefficients themselves.
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Interaction Regression Models

Additive Model: yi = β0 + β1xi1 + β2xi2 + εi
Interaction Model: yi = β0 + β1xi1 + β2xi2 + β3xi1xi2 + εi

I When an interaction is present, the effect of the change in the mean
response when the value of a predictor variable changes depends on
the value of another predictor variable.

I β1 and β2 no longer indicate the change in the mean response with a
unit increase of the predictor variable, with the other predictor
variable held constant at any given level. For example, change in the
mean response with a unit increase in x1 when x2 is held constant is
β1 + β3x2.
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Example:

—–No interaction
E{y} = 10 + 2x1 + 5x2

I when x2 = 1, the response function E{y} as a function of x1 is

E{y} = 15 + 2x1 (1)

I when x2 = 3,
E{y} = 25 + 2x1 (2)

I Line (1) and (2) are parallel.
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—–Reinforcement Interaction Effect

E{y} = 10 + 2x1 + 5x2 + .5x1x2

I when x2 = 1, the response function E{y} as a function of x1 is

E{y} = 15 + 2.5x1 (3)

I when x2 = 3,
E{y} = 25 + 3.5x1 (4)

I Line (3) and (4) are not parallel.
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—–Interference Interaction Effect

E{y} = 10 + 2x1 + 5x2 − .5x1x2

I when x2 = 1, the response function E{y} as a function of x1 is

E{y} = 15 + 1.5x1 (5)

I when x2 = 3,
E{y} = 25 + .5x1 (6)

I Line (5) and (6) are not parallel.
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Figure : Interactions
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Check if interaction term need to be included

Plot residual from the additive model vs. interaction terms, if no pattern
observed, do not include the interaction term.
if a pattern (not random) is observed, may need to include the interaction
term.

plot(indian$yrage*indian$wt,lm.sysbp.yrage.wt$residuals)

No pattern observed, do not suggest adding the interaction term yrage*wt
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Figure : Interaction of yrage*wt
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Comments:

I High multicollinearity may exist between some of the predictor
variables and some of the interaction terms, as well as among some of
the interaction terms. A partial remedy to improve computational
accuracy is to center the predictor variables

I When the number of predictor variables is large, potential number of
interaction terms become very large

I It is desirable to identify in advance, whenever possible, those
interactions that are most likely to influence the response variable in
important ways. In addition to utilizing a priori knowledge, one can
plot the residuals for the additive regression model against the
different interaction terms to determine which ones appear to be
influential in affecting the response variable

I When the number of predictor variables is large, these plots may need
to be limited to interaction terms involving those predictor variables
that appear to be the most important on the basis of the initial fit of
the additive regression model
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