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Topics:

I Become familiar with model selection criteria

I Understand when/how to use selection algorithms such as stepwise
and best subsets

I Understand how to validate a model
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General multiple linear regression model

Yi = β0 + β1Xi1 + β2Xi2 + · · ·+ βp−1Xi ,p−1 + εi ,

I i = 1, 2, · · · , n
I Yi is the value of the response variable for the ith case

I Xi1,Xi2, · · · ,Xi ,p−1 are known constants, Xik is the value of the kth
explanatory variable for the ith case

I β0, β1, · · · , βp−1 are parameters, p − 1 predictors, p parameters

I εi
iid∼ N(0, σ2)
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Multiple Regression

I Multiple–More than one predictor variable

I Yi is the response variable

I Xi1,Xi2, · · ·Xi ,p−1 are the p − 1 explanatory variables for cases i = 1
to n

I Potential problem: These predictor variables are likely to be
themselves correlated
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I models with lots of predictors (especially interactions) are harder to
interpret

I models with lots of predictors will tend to have larger confidence
intervals for their estimates

I models with too many predictors can be ”overfitted”–they account for
the current data but are unlikley to generalize well to future data sets

I often we have more predictors than observations!

I often predictors are very closely related, and so have redundant
information (collinearity, more on this later)

Problems: have a set of predictor variables, how do you select a subset of
these that is in some way “best” for predicting the response?

I Subset size, how many explanatory variables should be used to
construct the regression model

I Given the subset size, which variables should we choose?

Chapters 3 and 10: Variable Selection and Model BuildingStat 428/528: Advanced Data Analysis 2 Instructor: Yan Lu 5 / 65



Model selection

Often, philosophers are interested in big scientific theories, such as
Copernicus’s sun-centered solar system versus earth-centered solar system
models, Darwin’s theory of natural selection, Freud’s theories about the
subconscious, Relativity, etc. In statistics, our goals are usually more

modest, and often we are not looking for models that are literally true.
I We are usually quite happy with models that find relationships

between variables that are approximately correct and that find trends
in the data rather than exact relationships.

I A famous saying from the statistician George Box is

”All models are wrong, but some are useful”

—— Here usefulness might mean that we can make predictions that
help us plan for the future, or that we can be convinced that certain
variables are more important than others for understanding things like
graduation rates.
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Notations:

I P − 1: total possible number of predictor variables

I p − 1: number of predictor variables selected in a regression model, p
is the number of parameters in the model.

I p − 1 ≤ P − 1, n > p

I For any set of p − 1 predictors, 2p−1 alternative models can be
constructed, including the one with no X variables.
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Criteria for Model Selection

1. R2
p or SSEp Criterion

I R2
p is the coefficient of Multiple Determination for model with p − 1

predictors

I R2
p = 1− SSEp/SSTO

I Plot R2
p v.s p, R2

p will increase as p − 1 increases.

I The R2
p plot will tend to level off at some point. Take the model to

be the one where there is no more “meaningful” increase in R2
p .

I A drawback to R2 is that the addition of any variable to the model
(significant or not) will increase R2.
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Example 1

Goal: Anthropologists conducted a study to determine the long-term
effects of an environmental change on systolic blood pressure.
—–They measured the blood pressure and several other characteristics of
39 Indians who migrated from a very primitive environment high in the
Andes into the mainstream of Peruvian society at a lower altitude.
—– All of the Indians were males at least 21 years of age, and were born
at a high altitude.
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> fn.data <- "http://statacumen.com/teach/ADA2/

ADA2_notes_Ch02_indian.dat"

> indian <- read.table(fn.data, header=TRUE)

>indian$yrage <- indian$yrmig / indian$age

> indian

id age yrmig wt ht chin fore calf pulse sysbp diabp yrage

1 21 1 71.0 1629 8.0 7.0 12.7 88 170 76 0.04761905

2 22 6 56.5 1569 3.3 5.0 8.0 64 120 60 0.27272727

3 24 5 56.0 1561 3.3 1.3 4.3 68 125 75 0.20833333

4 24 1 61.0 1619 3.7 3.0 4.3 52 148 120 0.04166667

5 25 1 65.0 1566 9.0 12.7 20.7 72 140 78 0.04000000

6 27 19 62.0 1639 3.0 3.3 5.7 72 106 72 0.70370370

7 28 5 53.0 1494 7.3 4.7 8.0 64 120 76 0.17857143

8 28 25 53.0 1568 3.7 4.3 0.0 80 108 62 0.89285714

9 31 6 65.0 1540 10.3 9.0 10.0 76 124 70 0.19354839

10 32 13 57.0 1530 5.7 4.0 6.0 60 134 64 0.40625000
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> signif(i.cor$r[1, ], 3)

sysbp wt ht chin fore calf pulse yrage

1.000 0.521 0.219 0.170 0.272 0.251 0.133 -0.276
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> # The leaps package provides best subsets with other selection criteria.

> library(leaps)

> # First, fit the full model

> lm.indian.full <- lm(sysbp ~ wt + ht + chin + fore + calf

+ pulse + yrage, data = indian)

> summary(lm.indian.full)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 106.45766 53.91303 1.975 0.057277 .

wt 1.71095 0.38659 4.426 0.000111 ***

ht -0.04533 0.03945 -1.149 0.259329

chin -1.15725 0.84612 -1.368 0.181239

fore -0.70183 1.34986 -0.520 0.606806

calf 0.10357 0.61170 0.169 0.866643

pulse 0.07485 0.19570 0.383 0.704699

yrage -29.31810 7.86839 -3.726 0.000777 ***

---

Residual standard error: 9.994 on 31 degrees of freedom

Multiple R-squared: 0.5259,Adjusted R-squared: 0.4189

F-statistic: 4.913 on 7 and 31 DF, p-value: 0.0008079
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> # R^2 -- for each model size, report best subset of

size 5

X.indian <- indian[,c(4:9,12)]

leaps.r2 <- leaps(x = X.indian, y = indian$sysbp

, method = ’r2’

,nbest = 5, names =c("wt","ht", "chin",

"fore", "calf", "pulse","yrage"))

> leaps.r2

$which

wt ht chin fore calf pulse yrage

1 TRUE FALSE FALSE FALSE FALSE FALSE FALSE

1 FALSE FALSE FALSE FALSE FALSE FALSE TRUE

1 FALSE FALSE FALSE TRUE FALSE FALSE FALSE

1 FALSE FALSE FALSE FALSE TRUE FALSE FALSE

1 FALSE TRUE FALSE FALSE FALSE FALSE FALSE

2 TRUE FALSE FALSE FALSE FALSE FALSE TRUE

2 TRUE FALSE TRUE FALSE FALSE FALSE FALSE
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$label

[1] "(Intercept)" "wt" "ht" "chin"

"fore" "calf" "pulse" "yrage"

$label

[1] "(Intercept)" "wt" "ht" "chin" "fore" "calf" "pulse" "yrage"

$size

[1] 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 5 5 5 5 5 6 6 6 6 6 7 7 7 7 7 8

$r2

[1] 0.27182072 0.07625642 0.07413652 0.06289527 0.04801119 0.47310778 0.29381129 0.27437355 0.27275566 0.27212880 0.50332663 0.48084699

[13] 0.47773431 0.47674226 0.47400828 0.52071413 0.50513668 0.50336023 0.50332702 0.49307566 0.52343597 0.52134520 0.52103997 0.50564205

[25] 0.50517225 0.52547798 0.52367894 0.52178233 0.50572524 0.49730910 0.52591643

# plot model R^2 vs size of model

plot(leaps.r2$size, leaps.r2$r2, main = "R2")
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Figure: R2 v.s. size
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> leaps.r2$which[order(-leaps.r2$r2)[1:5],]

wt ht chin fore calf pulse yrage

7 TRUE TRUE TRUE TRUE TRUE TRUE TRUE

6 TRUE TRUE TRUE TRUE FALSE TRUE TRUE

6 TRUE TRUE TRUE TRUE TRUE FALSE TRUE

5 TRUE TRUE TRUE TRUE FALSE FALSE TRUE

6 TRUE TRUE TRUE FALSE TRUE TRUE TRUE

> leaps.r2$r2[order(-leaps.r2$r2)[1:5]]

[1] 0.5259164 0.5254780 0.5236789 0.5234360 0.5217823

All the five best models are with most of the variables.

Chapters 3 and 10: Variable Selection and Model BuildingStat 428/528: Advanced Data Analysis 2 Instructor: Yan Lu 14 / 65



# report the best model (indicate which terms are

in the model)

> best.model.r2 <- leaps.r2$which[which((leaps.r2$r2 ==

max(leaps.r2$r2))),]

> # these are the variable names for the best model

> names(best.model.r2)[best.model.r2]

[1] "(Intercept)" "wt" "ht" "chin"

"fore" "calf" "pulse" "yrage"

>
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2. R2
a,p or MSEp Criterion

R2
a,p = 1− SSEp/(n − p)

SSTO/(n − 1)

= 1− MSEp

SSTO/(n − 1)

I R2
a,p increases if and only if MSEp decreases. This is the same as

using MSE .

I Select the subset with the largest R2
a,p or there is no meaningful

increase in R2
a,p
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# adj-R^2 -- for each model size, report best

subset of size 5

# adj-R^2 -- for each model size, report best subset of size 5

leaps.adjr2 <- leaps(x = X.indian, y = indian$sysbp

, method = ’adjr2’

, nbest = 5, names =c("wt","ht", "chin",

"fore", "calf", "pulse","yrage"))

# plot model R^2 vs size of model

plot(leaps.adjr2$size, leaps.adjr2$adjr2, main = "Adj-R2")
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Figure: Adjusted R2 v.s. size
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> leaps.adjr2$which[order(-leaps.adjr2$adjr2)[1:5],]

wt ht chin fore calf pulse yrage

4 TRUE TRUE TRUE FALSE FALSE FALSE TRUE

3 TRUE FALSE TRUE FALSE FALSE FALSE TRUE

5 TRUE TRUE TRUE TRUE FALSE FALSE TRUE

5 TRUE TRUE TRUE FALSE FALSE TRUE TRUE

5 TRUE TRUE TRUE FALSE TRUE FALSE TRUE

> leaps.adjr2$adjr2[order(-leaps.adjr2$adjr2)[1:5]]

[1] 0.4643276 0.4607546 0.4512293 0.4488217 0.4484703
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# report the best model (indicate which

terms are in the model)

best.model.adjr2 <- leaps.adjr2$

which[which((leaps.adjr2$adjr2 == max(leaps.adjr2$adjr2))),]

> # these are the variable names for the best model

> names(best.model.adjr2)[best.model.adjr2]

[1] "wt" "ht" "chin" "yrage"

>

Model with only “wt”,“chin” and “yrage” is with adjusted R2 of
0.4643276 compared to the best model (“wt”, “ht” “chin”, “yrage”) with
adjusted R2 of 0.4607. For simplicity, it is actually better to select the
model with “wt”,“chin” and “yrage” according to adjusted R2 criterion
consider assumptions are all met.
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3. Mallow’s Cp criterion

I Mallow’s criterion tries to find the model that minimizes

1

σ2

n∑
i=1

E [(ŷi − E (yi ))2]

I Mallows found an estimate for this criterion called Cp with

Cp =
SSEp

MSE(Full)
− (n − 2p).

The full model is good at prediction, but if there is multicollinearity,
our interpretations of the parameter estimates may not makes sense.
A subset model is good if there is not substantial bias in the predicted
values (relative to the full model). The Cp criterion looks at the ratio
of error SS for the model with p variables to the MSE of the full
model, then adds a penalty for the number of variables. SSEp is
based on a specific choice of p − 1 predictors; while MSE(Full) is
based on the full set of variables.
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I Adequately fitted model have Cp ≈ p. Models with lack of fit have
Cp > p. In considering possible models we would generally consider
any subset with Cp ≤ p.

I Select as the “best” subset, the one with the smallest Cp value.
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# Cp -- for each model size, report best subset of size 3

leaps.Cp <- leaps(x = X.indian, y = indian$sysbp

, method = ’Cp’

, nbest = 3, names = c("wt","ht", "chin",

"fore", "calf", "pulse","yrage"))

# plot model R^2 vs size of model

plot(leaps.Cp$size, leaps.Cp$Cp, main = "Cp")

lines(leaps.Cp$size, leaps.Cp$size)

# adds the line for Cp = p
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Figure: R2 v.s. size
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> leaps.Cp$which[order(leaps.Cp$Cp)[1:5],]

wt ht chin fore calf pulse yrage

2 TRUE FALSE FALSE FALSE FALSE FALSE TRUE

3 TRUE FALSE TRUE FALSE FALSE FALSE TRUE

4 TRUE TRUE TRUE FALSE FALSE FALSE TRUE

3 TRUE FALSE FALSE TRUE FALSE FALSE TRUE

3 TRUE FALSE FALSE FALSE TRUE FALSE TRUE

> leaps.Cp$Cp[order(leaps.Cp$Cp)[1:5]]

[1] 1.453122 1.477132 2.340175 2.947060 3.150596

Model with “wt” and “yrage” is with cp value of 1.453122 < p = 3,
choose this model according to Cp criterion.
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4. AIC and BIC
These criteria are motivated from information theory (AIC) and from
Bayesian statistics. They are Criteria based on log(likelihood) plus a
penalty for more complexity. We want to choose models that minimize
AIC and BIC.

AIC = −2ln(L) + 2p

BIC = −2ln(L) + p[ln(n)]

L is the maximized value of the likelihood function for the estimated
model.
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# best subset, returns results sorted by BIC

f.bestsubset <- function(form, dat, nbest = 5){

library(leaps)

bs <- regsubsets(form, data=dat, nvmax=30, nbest=nbest,

method="exhaustive");

bs2 <- cbind(summary(bs)$which

, (rowSums(summary(bs)$which)-1)

, summary(bs)$rss

, summary(bs)$rsq

, summary(bs)$adjr2

, summary(bs)$cp

, summary(bs)$bic);

cn <- colnames(bs2);

cn[(dim(bs2)[2]-5):dim(bs2)[2]]

<- c("SIZE", "rss", "r2", "adjr2", "cp", "bic");

colnames(bs2) <- cn;

ind <- sort.int(summary(bs)$bic, index.return=TRUE);

bs2 <- bs2[ind$ix,]; return(bs2);}
Chapters 3 and 10: Variable Selection and Model BuildingStat 428/528: Advanced Data Analysis 2 Instructor: Yan Lu 27 / 65



# perform on our model

i.best <- f.bestsubset(formula(sysbp ~ wt + ht + chin

+ fore + calf + pulse + yrage)

, indian)

op <- options(); # saving old options

options(width=90) # setting command window

output text width wider

i.best

options(op); # reset (all) initial options
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> i.best

(Intercept) wt ht chin fore calf pulse yrage SIZE

2 1 1 0 0 0 0 0 1 2

3 1 1 0 1 0 0 0 1 3

3 1 1 0 0 1 0 0 1 3

3 1 1 0 0 0 1 0 1 3

3 1 1 1 0 0 0 0 1 3

rss r2 adjr2

3441.363 0.47310778 0.44383599

3243.990 0.50332663 0.46075463

3390.815 0.48084699 0.43634816

3411.145 0.47773431 0.43296868

3417.624 0.47674226 0.43189159

cp bic

2 1.453122 -13.9989263

3 1.477132 -12.6388375

3 2.947060 -10.9124614

3 3.150596 -10.6793279

3 3.215466 -10.6053171
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I R2 select the model with all the 7 variables since R2 always increase
when there is variable added.
according to the plot of R2 v.s. size of the model, R2 tend to increase
and then level off when size is 4, i.e., 3 variables

I Adjusted R2 select the model with “wt“ht”, “chin” and “yrage”
(0.9943862). For simplicity, model with “wt, “chin” and “yrage”
performs well with adjusted R2 of 0.9943487.

I Cp select model with “wt” and “yrage” with the smallest cp value of
1.453122 < p = 3.

I BIC select model with “wt” and “yrage” with the smallest BIC value
of -13.9989263.

For simplicity, model with “wt” and “yrage”may be preferred.

I Check model assumptions of this model
All the assumptions seems not violated (chapter 2)

I We then decide this is the final model for use
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Comments

I The different criteria will not always give the identical answer.

I The all subsets method is good for identifying a collection of possible
models. One should not necessarily use the model that is declared
“best” by any method.

I There might be several subsets that provide a good fit. The final
selection of a model should involve residual analysis and knowledge of
the subject matter.
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Comments:

I As the number of predictors increases, the number of possible models
blows up! We need clever computer algorithms to find the really good
models.
Two possible approaches:

I If p − 1 is less than 30, use best subsets procedures

I If p − 1 is greater than 30, use stepwise procedures: These are
“greedy” algorithms that first find the best single term model. Given
that term, add the next best term, and so on.
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Stepwise Regression analysis

I A computationally available method for subset selection

I Evaluate the variables one at a time and look at a sequence of models

I Backwards elimination (start with full additive model)

I Forward elimination (start with intercept model)

I Stepwise methods (variables can be both added and deleted)
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Backwards elimination

I Begins with the full model and sequentially eliminates from the model
the least important variable. Importance of the variable is judged by
the size t or F statistic or the p-value.

I

F ∗
i =

MSR(xi |x1, · · · , xp−1 except xi )

MSE (x1, x2, · · · , xp−1)
, for i = 1, 2, · · · , p − 1.

Find the smallest F ∗
i , If the smallest F ∗

i < F − out (predetermined
value), remove xi ; or find the largest p-value that is greater than the
nominal level, remove that variable associated.

I After the variable with the smallest F statistic is dropped, the model
is refitted and the F statistic is recalculated. Again, the variable with
the smallest F statistic is dropped

I Process ends when all of F statistics are greater than some
predetermined level (predetermined value can change depending on
the step).
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> # First, fit the full model

> lm.indian.full <- lm(sysbp ~ wt + ht + chin + fore + calf

+ pulse + yrage, data = indian)

> summary(lm.indian.full)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 106.45766 53.91303 1.975 0.057277 .

wt 1.71095 0.38659 4.426 0.000111 ***

ht -0.04533 0.03945 -1.149 0.259329

chin -1.15725 0.84612 -1.368 0.181239

fore -0.70183 1.34986 -0.520 0.606806

calf 0.10357 0.61170 0.169 0.866643

pulse 0.07485 0.19570 0.383 0.704699

yrage -29.31810 7.86839 -3.726 0.000777 ***

---

Residual standard error: 9.994 on 31 degrees of freedom

Multiple R-squared: 0.5259,Adjusted R-squared: 0.4189

F-statistic: 4.913 on 7 and 31 DF, p-value: 0.0008079
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The least important variable in the full model, as judged by the p-value, is
calf skin fold.

This variable, upon omission, reduces R2 the least, or equivalently,
increases the Residual SS the least.

The p-value of 0.87 exceeds the default 0.10 cut-off, so calf will be the
first to be omitted from the model.

Below, we will continue in this way. After deleting calf , the six predictor
model can be fitted. The least important predictor left is pulse . This
variable is omitted from the model because the p-value for including it
exceeds the 0.10 threshold.
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> lm.indian2.red <- lm.indian.full;

> lm.indian2.red <- update(lm.indian2.red, ~ . - calf );

> summary(lm.indian2.red)

Call:

lm(formula = sysbp ~ wt + ht + chin + fore + pulse + yrage,

data = indian)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 106.13739 53.05581 2.000 0.053993 .

wt 1.70900 0.38051 4.491 8.65e-05 ***

ht -0.04478 0.03871 -1.157 0.256008

chin -1.14165 0.82823 -1.378 0.177635

fore -0.56731 1.07462 -0.528 0.601197

pulse 0.07103 0.19142 0.371 0.713018

yrage -29.54000 7.63983 -3.867 0.000509 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 9.841 on 32 degrees of freedom

Multiple R-squared: 0.5255,Adjusted R-squared: 0.4365

F-statistic: 5.906 on 6 and 32 DF, p-value: 0.0003103
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This procedure is repeated until all predictors remain significant at a 0.10
significance level.

Next page is the final model according to this criterion. Only “wt” and
“yrage” are left in the model.
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Call:

lm(formula = sysbp ~ wt + yrage, data = indian)

Residuals:

Min 1Q Median 3Q Max

-18.4330 -7.3070 0.8963 5.7275 23.9819

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 60.8959 14.2809 4.264 0.000138 ***

wt 1.2169 0.2337 5.207 7.97e-06 ***

yrage -26.7672 7.2178 -3.708 0.000699 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 9.777 on 36 degrees of freedom

Multiple R-squared: 0.4731,Adjusted R-squared: 0.4438

F-statistic: 16.16 on 2 and 36 DF, p-value: 9.795e-06
Chapters 3 and 10: Variable Selection and Model BuildingStat 428/528: Advanced Data Analysis 2 Instructor: Yan Lu 39 / 65



Use step function for model selection

## step() function specification

## The first two arguments of step(object, scope, ...) are

# object = a fitted model object.

# scope = a formula giving the terms to be considered for

adding or dropping

## default is AIC

# for BIC, include k = log(nrow( [data.frame name] ))

# test="F" includes additional information

# for parameter estimate tests that we’re

familiar with
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> lm.indian.backward.red.BIC <- step(lm.indian.full

+ , direction = "backward", test = "F",

k = log(nrow(indian)))

Start: AIC=199.91

sysbp ~ wt + ht + chin + fore + calf + pulse + yrage

Df Sum of Sq RSS AIC F value Pr(>F)

- calf 1 2.86 3099.3 196.28 0.0287 0.8666427

- pulse 1 14.61 3111.1 196.43 0.1463 0.7046990

- fore 1 27.00 3123.4 196.59 0.2703 0.6068061

- ht 1 131.88 3228.3 197.88 1.3203 0.2593289

- chin 1 186.85 3283.3 198.53 1.8706 0.1812390

<none> 3096.4 199.91

- yrage 1 1386.76 4483.2 210.68 13.8835 0.0007773 ***

- wt 1 1956.49 5052.9 215.35 19.5874 0.0001105 ***

---
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Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Step: AIC=196.28

sysbp ~ wt + ht + chin + fore + pulse + yrage

Df Sum of Sq RSS AIC F value Pr(>F)

- pulse 1 13.34 3112.6 192.79 0.1377 0.7130185

- fore 1 26.99 3126.3 192.96 0.2787 0.6011969

- ht 1 129.56 3228.9 194.22 1.3377 0.2560083

- chin 1 184.03 3283.3 194.87 1.9000 0.1776352

<none> 3099.3 196.28

- yrage 1 1448.00 4547.3 207.57 14.9504 0.0005087 ***

- wt 1 1953.77 5053.1 211.69 20.1724 8.655e-05 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Step: AIC=192.79

Chapters 3 and 10: Variable Selection and Model BuildingStat 428/528: Advanced Data Analysis 2 Instructor: Yan Lu 40 / 65



sysbp ~ wt + ht + chin + fore + yrage

Df Sum of Sq RSS AIC F value Pr(>F)

- fore 1 17.78 3130.4 189.35 0.1885 0.667013

- ht 1 131.12 3243.8 190.73 1.3902 0.246810

- chin 1 198.30 3310.9 191.53 2.1023 0.156514

<none> 3112.6 192.79

- yrage 1 1450.02 4562.7 204.04 15.3730 0.000421 ***

- wt 1 1983.51 5096.2 208.35 21.0290 6.219e-05 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Step: AIC=189.35

sysbp ~ wt + ht + chin + yrage

Df Sum of Sq RSS AIC F value Pr(>F)

- ht 1 113.57 3244.0 187.07 1.2334 0.2745301

Chapters 3 and 10: Variable Selection and Model BuildingStat 428/528: Advanced Data Analysis 2 Instructor: Yan Lu 40 / 65



- chin 1 287.20 3417.6 189.11 3.1193 0.0863479 .

<none> 3130.4 189.35

- yrage 1 1445.52 4575.9 200.49 15.7000 0.0003607 ***

- wt 1 2263.64 5394.1 206.90 24.5857 1.945e-05 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Step: AIC=187.07

sysbp ~ wt + chin + yrage

Df Sum of Sq RSS AIC F value Pr(>F)

- chin 1 197.37 3441.4 185.71 2.1295 0.1534065

<none> 3244.0 187.07

- yrage 1 1368.44 4612.4 197.14 14.7643 0.0004912 ***

- wt 1 2515.33 5759.3 205.80 27.1384 8.512e-06 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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Step: AIC=185.71

sysbp ~ wt + yrage

Df Sum of Sq RSS AIC F value Pr(>F)

<none> 3441.4 185.71

- yrage 1 1314.7 4756.1 194.67 13.753 0.0006991 ***

- wt 1 2592.0 6033.4 203.95 27.115 7.966e-06 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

> summary(lm.indian.backward.red.BIC)

Call:

lm(formula = sysbp ~ wt + yrage, data = indian)

Residuals:

Min 1Q Median 3Q Max
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-18.4330 -7.3070 0.8963 5.7275 23.9819

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 60.8959 14.2809 4.264 0.000138 ***

wt 1.2169 0.2337 5.207 7.97e-06 ***

yrage -26.7672 7.2178 -3.708 0.000699 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 9.777 on 36 degrees of freedom

Multiple R-squared: 0.4731,Adjusted R-squared: 0.4438

F-statistic: 16.16 on 2 and 36 DF, p-value: 9.795e-06
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Comments:

I The backward elimination procedure eliminates five variables from the
full model, in the following order: calf skin fold (calf), pulse rate
(pulse) , forearm skin fold (fore) , height (ht) , and chin skin fold
(chin).

I The model selected by backward elimination includes two predictors:
weight (wt) and fraction (yrage).

I As we progress from the full model to the selected model, R2

decreases as follows: 0.53, 0.53, 0.52, 0.52, 0.50, and 0.47. The
decrease is slight across this spectrum of models.

I Using a mechanical approach, we are led to a model with weight and
years by age fraction as predictors of systolic blood pressure.
—— we should closely examine this model.
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Forward selection
I Begins with an initial model (could be intercept only) and adds

variables to the model one at a time. Importance of the variable is
judged by the size t or F statistic.

I

F ∗
k =

MSR(xk)

MSE (xk)

enter the variable with the largest F ∗
k provided this F ∗

k > F − IN
(predetermined value) or the corresponding P-value is less than a
predetermined α

I One variable in the regression equation, say xh. Compute all two
variable regression equation between y and xh and xk for k 6= h,
calculate

F ∗
k =

MSR(xk |xh)

MSE (xk , xh)
,

enter the variable with the largest F ∗
k value provided this F ∗

k > F − IN
I Procedure ends when none of the F statistic is greater than a

predetermined level.
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#forward selection

# start with an empty model (just the intercept 1)

lm.indian.empty <- lm(sysbp ~ 1, data = indian)

# Forward selection, BIC with F-tests

lm.indian.forward.red.AIC <- step(lm.indian.empty

, sysbp ~ wt + ht + chin + fore + calf + pulse + yrage

, direction = "forward", test = "F")

Start: AIC=201.71

sysbp ~ 1

Df Sum of Sq RSS AIC F value Pr(>F)

+ wt 1 1775.38 4756.1 191.34 13.8117 0.0006654 ***

+ yrage 1 498.06 6033.4 200.62 3.0544 0.0888139 .

+ fore 1 484.22 6047.2 200.71 2.9627 0.0935587 .

+ calf 1 410.80 6120.6 201.18 2.4833 0.1235725

<none> 6531.4 201.71
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+ ht 1 313.58 6217.9 201.79 1.8660 0.1801796

+ chin 1 189.19 6342.2 202.57 1.1037 0.3002710

+ pulse 1 114.77 6416.7 203.02 0.6618 0.4211339

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Step: AIC=191.34

sysbp ~ wt

Df Sum of Sq RSS AIC F value Pr(>F)

+ yrage 1 1314.69 3441.4 180.72 13.7530 0.0006991 ***

<none> 4756.1 191.34

+ chin 1 143.63 4612.4 192.15 1.1210 0.2967490

+ calf 1 16.67 4739.4 193.20 0.1267 0.7240063

+ pulse 1 6.11 4749.9 193.29 0.0463 0.8308792

+ ht 1 2.01 4754.0 193.32 0.0152 0.9024460

+ fore 1 1.16 4754.9 193.33 0.0088 0.9257371
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---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Step: AIC=180.72

sysbp ~ wt + yrage

Df Sum of Sq RSS AIC F value Pr(>F)

+ chin 1 197.372 3244.0 180.42 2.1295 0.1534

<none> 3441.4 180.72

+ fore 1 50.548 3390.8 182.15 0.5218 0.4749

+ calf 1 30.218 3411.1 182.38 0.3101 0.5812

+ ht 1 23.738 3417.6 182.45 0.2431 0.6251

+ pulse 1 5.882 3435.5 182.66 0.0599 0.8081

Step: AIC=180.42

sysbp ~ wt + yrage + chin
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Df Sum of Sq RSS AIC F value Pr(>F)

<none> 3244.0 180.42

+ ht 1 113.565 3130.4 181.03 1.2334 0.2745

+ pulse 1 11.822 3232.2 182.28 0.1244 0.7265

+ fore 1 0.219 3243.8 182.42 0.0023 0.9620

+ calf 1 0.003 3244.0 182.42 0.0000 0.9959

> summary(lm.indian.forward.red.AIC)

Call:

lm(formula = sysbp ~ wt + yrage + chin, data = indian)

Residuals:

Min 1Q Median 3Q Max

-16.6382 -6.6316 0.4521 6.3593 24.2086

Coefficients:
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Estimate Std. Error t value Pr(>|t|)

(Intercept) 52.9092 15.0895 3.506 0.001266 **

wt 1.4407 0.2766 5.209 8.51e-06 ***

yrage -27.3522 7.1185 -3.842 0.000491 ***

chin -1.0135 0.6945 -1.459 0.153407

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 9.627 on 35 degrees of freedom

Multiple R-squared: 0.5033,Adjusted R-squared: 0.4608

F-statistic: 11.82 on 3 and 35 DF, p-value: 1.684e-05
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Stepwise methods

I Alternate between forward selection and backwards elimination

I Arrive at model by dropping a variable, check to see if any variable
can be added to the model

I Arrive at a model by adding a variable, check to see if any variable
can be dropped

I The value of the F statistic required for dropping a variable is allowed
to be different from the value required for adding a variable

I Usually start with an initial model that contains only an intercept

I Stepwise methods gives the same result as forward selection if starting
from an initial model; gives the same result as backward elimination if
starting from a full model

Chapters 3 and 10: Variable Selection and Model BuildingStat 428/528: Advanced Data Analysis 2 Instructor: Yan Lu 43 / 65



Stepwise methods:

I Step 1: No variable in the regression equation, compute all one
variable regression equation between y and p − 1 predictors and
calculate

F ∗
k =

MSR(xk)

MSE (xk)

enter the variable with the largest F ∗
k provided this F ∗

k > F − IN
(predetermined value) or the corresponding P-value is less than a
predetermined α

I Step 2: 1 variable in the regression equation, say xk1. Compute all
two variable regression equation between y and xk1 and xk for
k 6= k1, calculate

F ∗
k =

MSR(xk |xk1)

MSE (xk , xk1)
,

enter the variable with the largest F ∗
k value provided this

F ∗
k > F − IN (predetermined value) or the corresponding P-value is

less than a predetermined α
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I Step 3, two variables in regression equation, say xk1 and xk2.
Determine if any of the variables previously entered should be
removed from the regression equation due to the addition of the
latest variable.
—Calculate

F ∗
k1 =

MSR(xk1|xk2)

MSE (xk1, xk2)

—If the F ∗
k1 falls below a predetermined value called F-out or the

corresponding P-value is greater than a predetermined α, then xk1 is
removed from the model
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I Suppose there are r − 1 variables in the regression equation, compute

F ∗
k =

MSR(xk |xk1, xk2, · · · , xk,r−1)

MSE (xk , xk1, · · · , xk,r−1)

enter the variable with the largest F ∗
k value provided F ∗

k > F − in
—Suppose xkr is added at the above step, compute

F ∗
ki =

MSR(xki |xk1, · · · , xkr except xki )

MSE (xk1, xk2, · · · , xkr )
,

for i = 1, 2, · · · , r − 1,

find the smallest F ∗
ki , If the smallest F ∗

ki < F − out, then remove xki
from the equation.

I Go to next step to try to enter another variable, keep gong until no
new variable can be entered.
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# Stepwise (both) selection, BIC with F-tests, starting with

intermediate model

# (this is a purposefully chosen "opposite" model,

# from the forward and backward methods this model

# includes all the variables dropped and none kept)

lm.indian.intermediate <- lm(sysbp ~ ht + fore + calf

+ pulse, data = indian)

# option: trace = 0 does not print each step of the selection

lm.indian.both.red.BIC <- step(lm.indian.intermediate

, sysbp ~ wt + ht + chin + fore + calf

+pulse + yrage

, direction = "both", test = "F", k = log(nrow(indian)),

trace = 0)

# the anova object provides a summary of

the selection steps in order

lm.indian.both.red.BIC$anova

summary(lm.indian.both.red.BIC)
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> summary(lm.indian.both.red.BIC)

Call:

lm(formula = sysbp ~ wt + yrage, data = indian)

Residuals:

Min 1Q Median 3Q Max

-18.4330 -7.3070 0.8963 5.7275 23.9819

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 60.8959 14.2809 4.264 0.000138 ***

wt 1.2169 0.2337 5.207 7.97e-06 ***

yrage -26.7672 7.2178 -3.708 0.000699 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 9.777 on 36 degrees of freedom

Multiple R-squared: 0.4731,Adjusted R-squared: 0.4438

F-statistic: 16.16 on 2 and 36 DF, p-value: 9.795e-06
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Model selection and case deletion

I Outliers tend to be cases with large residuals
—-eliminating the largest residuals obviously makes the SSE and
MSE smaller

I Variable selection methods tend to identify as good reduced models
those with small MSEs
—-Delete outliers if they are from recording errors (such as obvious
typos), experimental accident (drop the tube) etc,.
—-Usually after deleting outliers, new data will produce new outliers

Chapters 3 and 10: Variable Selection and Model BuildingStat 428/528: Advanced Data Analysis 2 Instructor: Yan Lu 49 / 65



Both variable selection and case deletion

I Cause the resulting model to appear better than it probably should

I Tend to give MSEs that are unrealistically small

I Prediction intervals are unrealistically narrow and test statistics are
unrealistically large

I Test performed after variable selection or outlier deletion should be
viewed as the greatest reasonable evidence against the null
hypothesis, with the understanding that more appropriate tests would
probably display a lower level of significance.
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Model Selection Techniques Only Narrow the Field

Final choice of a model based on:

I p-values, residual plots, other diagnostics

I Parsimony (Occam’s Razor): Simple models work best

I The sniff (giggle) test: does the model agree with expectations or
theory? Do the signs make sense? Can you explain the results?

I Model validation studies
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Model Validation

I The real test of a model or theory: How well does the model predict
future observations?

I Problem with your model: the residuals are closer to the observations
than they should be! So MSE is too small!!!!
—-Why? Because picked the model that best predicts your data set.
Your measure of predictive ability is biased.

I Optimism Principle: A model chosen by some selection process
provides a more optimistic explanation of data used in its derivation
than it does of other data that will arise in a similar fashion.
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Getting an unbiased view

I Way 1: Collect n∗ new observations and compute the mean squared
prediction error:

MSPR =

∑n∗

i=1(yi − ŷi )
2

n∗

—yi is the response variable in the ith validation case
—ŷi is the predicted value for the ith validation case based on the
model building data set
—n∗ is the number of cases in the validation data set.

I Way 2: Cross-validation
—Keep n∗ cases out of the data set (at random!).
—Base regression on the n − n∗ cases in the training set.
—Computer the MSPR for the n∗ cases in the validation set (or test
set).
—Usually n∗ ≈ n/2.
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I Way 3: K -fold cross-validation (sample size n is small)
— Break data into K roughly equal parts.
—Of the K subsamples, a single subsample is retained as the
validation data for testing the model, and the remaining K − 1
subsamples are used as training data.
—The cross-validation process is then repeated K times (the folds),
with each of the K subsamples used exactly once as the validation
data.
—The K results from the folds can then be averaged to produce a
single estimation.
—When K = n, the K -fold cross-validation estimate is identical to
leave one out cross-validation.
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Transformations:

If the residuals show a problem with

I lack of fit (having the wrong model for the mean)

I heteroscedasticity

I nonnormality

Try y transformation or x transformation or both

I y transformation is more common

I only works when ymax/ymin is reasonably large

I choose a transformation to stabilize variance

I log or square transformations can solve many problems
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Table: Variance stabilizing transformations

Data Distribution Mean, Variance Relationship Transformation

Count Poisson µh ∝ σ2h
√
yh

Amount Gamma µh ∝ σh log(yh)
Proportion Binomial/N µh(1− µh)/N ∝ σ2h sin−1(

√
yh)
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Figure: Circle of Transformations
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Figure: Curved x , y plot (y = cosx in the first quadrant. According to figure ??,
need to increase power of both x and y
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Figure: Plot of x1.5, y1.5. y = cosx in the first quadrant. After transformation
x∗ = x1.5 and y∗ = y1.5, the curve is much straighter than the one in Figure ??
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Power Transformation:

I If the residuals appear to be normal with constant variance, and the
relationship is linear, then go ahead with the regression model. No
transformation is needed.

I Transformation is used to deal with model violations. Commonly used
transformation is the power transformation (Box-Cox transformation)

y∗ =

{
yλ λ 6= 0
lny if λ = 0.

x∗ =

{
xλ λ 6= 0
lnx if λ = 0.
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I If the residuals appear to be normal with constant variance, but the
relationship is non-linear, try transforming the X ’s to make it a
straight line. The transformation on Y may materially change the
shape of the distribution of the error terms from the normal
distribution and may also lead to substantially differing error term
variances.

I If the residuals are not randomly scattered around zero, but have
trends. Try transforming Y .

I If you choose a transformation, you need to go back and do all the
diagnostics all over again.
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I Box and Cox (1964) developed a method to suggest an appropriate
transformation of the response variable y , so that, the transformed y
is appropriate for the simple linear regression model. The
transformation are power transformation. The method selects the λ
power to minimize the SSE of the regression

yλ = β0 + β1x + ε

and use maximum likelihood to estimate λ. The method runs the
regression for a range of transformations between -2 and +2, pick the
one that minimizes SSE (λ). Eventually you would probably suggest
the same transformation by eye.
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I What transformation to use? Figure ?? gives some general reference.

I Not all scatter plots can be straightened by a power transformation

I Box-Cox suggests a transformation but there is no guarantee it will
solve all our problems. We still have to check residuals, assumptions,
etc.

I There may be a number of transformations that adequately
“straighten” a scatterplot. Pick the transformation that is most
interpretable (or the simplest).

I If variable ranges over several orders of magnitude, natural logs
transformation usually work; often needed for economic data

I 1/Y often makes intuitive sense: If Y is customers per hour, 1/Y is
hours per customer.

I Square root may make sense if you are measuring areas (square-feet,
etc).

I If Y = 0 for some observations, cannot do 1/Y or logY ; just add a
constant k to all of the Y s first

Chapters 3 and 10: Variable Selection and Model BuildingStat 428/528: Advanced Data Analysis 2 Instructor: Yan Lu 63 / 65



Example: use boxcox to do transformation
Recall that

lm.sysbp.yrage.wt <- lm(sysbp ~ yrage + wt, data = indian)

library(MASS)

boxcox(lm.sysbp.yrage.wt, lambda = seq(-5, 5, length = 10),

plotit = TRUE)

Since λ = 1 is within the 95% CI of log-likelihood, no need to do
transformation
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Figure: Box-Cox transformation
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