Stat 428/528: Advanced Data Analysis 2

Chapters 3 and 10: Variable Selection and Model Building

Instructor: Yan Lu

THE UNIVERSITY OF
NEW MEXICO.

Topics:

- Become familiar with model selection criteria
- Understand when/how to use selection algorithms such as stepwise and best subsets
- Understand how to validate a model

General multiple linear regression model

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\cdots+\beta_{p-1} X_{i, p-1}+\epsilon_{i}
$$

- $i=1,2, \cdots, n$
- Y_{i} is the value of the response variable for the i th case
- $X_{i 1}, X_{i 2}, \cdots, X_{i, p-1}$ are known constants, $X_{i k}$ is the value of the k th explanatory variable for the i th case
- $\beta_{0}, \beta_{1}, \cdots, \beta_{p-1}$ are parameters, $p-1$ predictors, p parameters
- $\epsilon_{i} \stackrel{i i d}{\sim} N\left(0, \sigma^{2}\right)$

Multiple Regression

- Multiple-More than one predictor variable
- Y_{i} is the response variable
- $X_{i 1}, X_{i 2}, \cdots X_{i, p-1}$ are the $p-1$ explanatory variables for cases $i=1$ to n
- Potential problem: These predictor variables are likely to be themselves correlated
- models with lots of predictors (especially interactions) are harder to interpret
- models with lots of predictors will tend to have larger confidence intervals for their estimates
- models with too many predictors can be "overfitted"-they account for the current data but are unlikley to generalize well to future data sets
- often we have more predictors than observations!
- often predictors are very closely related, and so have redundant information (collinearity, more on this later)

Problems: have a set of predictor variables, how do you select a subset of these that is in some way "best" for predicting the response?

- Subset size, how many explanatory variables should be used to construct the regression model
- Given the subset size, which variables should we choose?

Model selection

Often, philosophers are interested in big scientific theories, such as Copernicus's sun-centered solar system versus earth-centered solar system models, Darwin's theory of natural selection, Freud's theories about the subconscious, Relativity, etc. In statistics, our goals are usually more modest, and often we are not looking for models that are literally true.

- We are usually quite happy with models that find relationships between variables that are approximately correct and that find trends in the data rather than exact relationships.
- A famous saying from the statistician George Box is
"All models are wrong, but some are useful"
_- Here usefulness might mean that we can make predictions that help us plan for the future, or that we can be convinced that certain variables are more important than others for understanding things like graduation rates.

Notations:

- $P-1$: total possible number of predictor variables
- $p-1$: number of predictor variables selected in a regression model, p is the number of parameters in the model.
- $p-1 \leq P-1, n>p$
- For any set of $p-1$ predictors, 2^{p-1} alternative models can be constructed, including the one with no X variables.

Criteria for Model Selection

1. R_{p}^{2} or $S S E_{p}$ Criterion

- R_{p}^{2} is the coefficient of Multiple Determination for model with $p-1$ predictors
- $R_{p}^{2}=1-S S E_{p} / S S T O$
- Plot R_{p}^{2} v.s p, R_{p}^{2} will increase as $p-1$ increases.
- The R_{p}^{2} plot will tend to level off at some point. Take the model to be the one where there is no more "meaningful" increase in R_{p}^{2}.
- A drawback to R^{2} is that the addition of any variable to the model (significant or not) will increase R^{2}.

Example 1

Goal: Anthropologists conducted a study to determine the long-term effects of an environmental change on systolic blood pressure.
-They measured the blood pressure and several other characteristics of 39 Indians who migrated from a very primitive environment high in the Andes into the mainstream of Peruvian society at a lower altitude. - All of the Indians were males at least 21 years of age, and were born at a high altitude.
> fn.data <- "http://statacumen.com/teach/ADA2/ ADA2_notes_Ch02_indian.dat"
> indian <- read.table(fn.data, header=TRUE)
>indian\$yrage <- indian\$yrmig / indian\$age
> indian
id age yrmig wt ht chin fore calf pulse sysbp diabp

| 1 | 21 | 1 | 71.0 | 1629 | 8.0 | 7.0 | 12.7 | 88 | 170 | 76 | 0.0476 |
| :--- | :--- | ---: | :--- | :--- | :--- | :--- | :--- | ---: | :--- | :--- | :--- | :--- |
| 2 | 22 | 6 | 56.5 | 1569 | 3.3 | 5.0 | 8.0 | 64 | 120 | 60 | 0.2727 |
| 3 | 24 | 5 | 56.0 | 1561 | 3.3 | 1.3 | 4.3 | 68 | 125 | 75 | 0.2083 |
| 4 | 24 | 1 | 61.0 | 1619 | 3.7 | 3.0 | 4.3 | 52 | 148 | 120 | 0.04166 |
| 5 | 25 | 1 | 65.0 | 1566 | 9.0 | 12.7 | 20.7 | 72 | 140 | 78 | 0.0400 |
| 6 | 27 | 19 | 62.0 | 1639 | 3.0 | 3.3 | 5.7 | 72 | 106 | 72 | 0.7037 |
| 7 | 28 | 5 | 53.0 | 1494 | 7.3 | 4.7 | 8.0 | 64 | 120 | 76 | 0.1785 |
| 8 | 28 | 25 | 53.0 | 1568 | 3.7 | 4.3 | 0.0 | 80 | 108 | 62 | 0.8928 |
| 9 | 31 | 6 | 65.0 | 1540 | 10.3 | 9.0 | 10.0 | 76 | 124 | 70 | 0.1935 |
| 10 | 32 | 13 | 57.0 | 1530 | 5.7 | 4.0 | 6.0 | 60 | 134 | 64 | 0.406 |

```
> signif(i.cor$r[1, ], 3)
\begin{tabular}{lrrrrrrr} 
sysbp & wt & ht & chin & fore & calf & pulse & yrage \\
1.000 & 0.521 & 0.219 & 0.170 & 0.272 & 0.251 & 0.133 & -0.276
\end{tabular}
```

> \# The leaps package provides best subsets with other select
> library(leaps)
> \# First, fit the full model
> lm.indian.full <- lm(sysbp ~ wt + ht + chin + fore + calf

+ pulse + yrage, data = indian)
> summary(lm.indian.full)

Coefficients:

	Estima	Std. Error	t value)	
(Intercept)	106.45766	53.91303	1.975	0.057277	
wt	1.71095	0.38659	4.426	0.000111	***
ht	-0.04533	0.03945	-1.149	0.259329	
chin	-1.15725	0.84612	-1.368	0.181239	
fore	-0.70183	1.34986	-0.520	0.606806	
calf	0.10357	0.61170	0.169	0.866643	
pulse	0.07485	0.19570	0.383	0.704699	
yrage	-29.31810	7.86839	-3.726	0.000777	

> \# R^2 -- for each model size, report best subset of size 5
X.indian <- indian[, $c(4: 9,12)]$
leaps.r2 <- leaps(x = X.indian, y = indian\$sysbp
, method = 'r2'
,nbest = 5, names =c("wt","ht", "chin",
"fore", "calf", "pulse", "yrage"))
> leaps.r2
\$which
wt ht chin fore calf pulse yrage
1 TRUE FALSE FALSE FALSE FALSE FALSE FALSE
1 FALSE FALSE FALSE FALSE FALSE FALSE TRUE
1 FALSE FALSE FALSE TRUE FALSE FALSE FALSE
1 FALSE FALSE FALSE FALSE TRUE FALSE FALSE
1 FALSE TRUE FALSE FALSE FALSE FALSE FALSE
2 TRUE FALSE FALSE FALSE FALSE FALSE TRUE
2 TRUE FALSE TRUE FALSE FALSE FALSE FALSE

\$label

[1] "(Intercept)" "wt"	"ht"	"chin"
"fore" "calf"	"pulse"	"yrage"
\$label		
[1] "(Intercept)" "wt"	"ht"	"chin"
\$size		
[1] 22222333		

\$r2
[1] 0.271820720 .076256420 .074136520 .062895270 .04801119
[13] 0.477734310 .476742260 .474008280 .520714130 .50513668
[25] 0.505172250 .525477980 .523678940 .521782330 .50572524
\# plot model R^2 vs size of model
plot(leaps.r2\$size, leaps.r2\$r2, main = "R2")

R2


```
> leaps.r2$which[order(-leaps.r2$r2)[1:5],]
    wt ht chin fore calf pulse yrage
7 TRUE TRUE TRUE TRUE TRUE TRUE TRUE
6 \text { TRUE TRUE TRUE TRUE FALSE TRUE TRUE}
6 TRUE TRUE TRUE TRUE TRUE FALSE TRUE
5 \text { TRUE TRUE TRUE TRUE FALSE FALSE TRUE}
6 TRUE TRUE TRUE FALSE TRUE TRUE TRUE
> leaps.r2$r2[order(-leaps.r2$r2)[1:5]]
[1] 0.5259164 0.5254780 0.5236789 0.5234360 0.5217823
```

All the five best models are with most of the variables.

> \# report the best model (indicate which terms are in the model)
> best.model.r2 <- leaps.r2\$which[which((leaps.r2\$r2 == max(leaps.r2\$r2))),]
> \# these are the variable names for the best model
> names(best.model.r2) [best.model.r2]

[1] "(Intercept)" "wt" "ht"	"chin"	
"fore"	"calf"	"pulse"

2. $R_{a, p}^{2}$ or $M S E_{p}$ Criterion

$$
\begin{gathered}
R_{a, p}^{2}=1-\frac{\operatorname{SSE}_{p} /(n-p)}{\operatorname{SSTO} /(n-1)} \\
\quad=1-\frac{M S E_{p}}{\operatorname{SSTO} /(n-1)}
\end{gathered}
$$

- $R_{a, p}^{2}$ increases if and only if $M S E_{p}$ decreases. This is the same as using MSE.
- Select the subset with the largest $R_{a, p}^{2}$ or there is no meaningful increase in $R_{\mathrm{a}, \mathrm{p}}^{2}$

```
# adj-R^2 -- for each model size, report best
    subset of size 5
# adj-R^2 -- for each model size, report best subset of size
leaps.adjr2 <- leaps(x = X.indian, y = indian$sysbp
                            , method = 'adjr2'
                            , nbest = 5, names =c("wt","ht", "chin",
"fore", "calf", "pulse","yrage"))
# plot model R^2 vs size of model
plot(leaps.adjr2$size, leaps.adjr2$adjr2, main = "Adj-R2")
```


Adj-R2


```
> leaps.adjr2$which[order(-leaps.adjr2$adjr2)[1:5],]
        wt ht chin fore calf pulse yrage
4 TRUE TRUE TRUE FALSE FALSE FALSE TRUE
3 TRUE FALSE TRUE FALSE FALSE FALSE TRUE
5 TRUE TRUE TRUE TRUE FALSE FALSE TRUE
5 TRUE TRUE TRUE FALSE FALSE TRUE TRUE
5 TRUE TRUE TRUE FALSE TRUE FALSE TRUE
> leaps.adjr2$adjr2[order(-leaps.adjr2$adjr2)[1:5]]
[1] 0.4643276 0.4607546 0.4512293 0.4488217 0.4484703
```

```
# report the best model (indicate which
terms are in the model)
best.model.adjr2 <- leaps.adjr2$
which[which((leaps.adjr2$adjr2 == max(leaps.adjr2$adjr2))),]
> # these are the variable names for the best model
> names(best.model.adjr2) [best.model.adjr2]
[1] "wt" "ht" "chin" "yrage"
>
Model with only "wt", "chin" and "yrage" is with adjusted \(R^{2}\) of 0.4643276 compared to the best model ("wt", "ht" "chin", "yrage") with adjusted \(R^{2}\) of 0.4607 . For simplicity, it is actually better to select the model with "wt", "chin" and "yrage" according to adjusted \(R^{2}\) criterion consider assumptions are all met.
```

3. Mallow's C_{p} criterion

- Mallow's criterion tries to find the model that minimizes

$$
\frac{1}{\sigma^{2}} \sum_{i=1}^{n} E\left[\left(\hat{y}_{i}-E\left(y_{i}\right)\right)^{2}\right]
$$

- Mallows found an estimate for this criterion called C_{p} with

$$
C_{p}=\frac{S S E_{p}}{M S E_{(\text {Full })}}-(n-2 p)
$$

The full model is good at prediction, but if there is multicollinearity, our interpretations of the parameter estimates may not makes sense. A subset model is good if there is not substantial bias in the predicted values (relative to the full model). The C_{p} criterion looks at the ratio of error $S S$ for the model with p variables to the MSE of the full model, then adds a penalty for the number of variables. $S S E_{p}$ is based on a specific choice of $p-1$ predictors; while $M S E_{(F u l)}$ is based on the full set of variables.

- Adequately fitted model have $C_{p} \approx p$. Models with lack of fit have $C_{p}>p$. In considering possible models we would generally consider any subset with $C_{p} \leq p$.
- Select as the "best" subset, the one with the smallest C_{p} value.

```
# Cp -- for each model size, report best subset of size 3
leaps.Cp <- leaps(x = X.indian, y = indian$sysbp
, method = 'Cp'
, nbest = 3, names = c("wt","ht", "chin",
"fore", "calf", "pulse","yrage"))
# plot model R^2 vs size of model
plot(leaps.Cp$size, leaps.Cp$Cp, main = "Cp")
    lines(leaps.Cp$size, leaps.Cp$size)
        # adds the line for Cp = p
```


Cp

> leaps.Cp\$which[order(leaps.Cp\$Cp) [1:5],] wt ht chin fore calf pulse yrage 2 TRUE FALSE FALSE FALSE FALSE FALSE TRUE 3 TRUE FALSE TRUE FALSE FALSE FALSE TRUE 4 TRUE TRUE TRUE FALSE FALSE FALSE TRUE 3 TRUE FALSE FALSE TRUE FALSE FALSE TRUE 3 TRUE FALSE FALSE FALSE TRUE FALSE TRUE
> leaps.Cp\$Cp[order (leaps.Cp\$Cp) [1:5]]
[1] 1.4531221 .4771322 .3401752 .9470603 .150596
Model with "wt" and "yrage" is with cp value of $1.453122<p=3$, choose this model according to Cp criterion.

4. $A I C$ and $B I C$

These criteria are motivated from information theory (AIC) and from Bayesian statistics. They are Criteria based on $\log ($ likelihood) plus a penalty for more complexity. We want to choose models that minimize AIC and BIC.

$$
\begin{gathered}
A I C=-2 \ln (L)+2 p \\
B I C=-2 \ln (L)+p[\ln (n)]
\end{gathered}
$$

L is the maximized value of the likelihood function for the estimated model.
\# best subset, returns results sorted by BIC f.bestsubset <- function(form, dat, nbest = 5)\{ library (leaps)
bs <- regsubsets(form, data=dat, nvmax=30, nbest=nbest, method="exhaustive");
bs2 <- cbind(summary(bs)\$which
, (rowSums(summary(bs)\$which)-1)
, summary(bs)\$rss
, summary(bs)\$rsq
, summary(bs)\$adjr2
, summary(bs)\$cp
, summary(bs)\$bic);
cn <- colnames (bs2);
cn[(dim(bs2) [2]-5): $\operatorname{dim}(\mathrm{bs} 2)$ [2]]

```
        <- c("SIZE", "rss", "r2", "adjr2", "cp", "bic");
```

colnames(bs2) <- cn;
ind <- sort.int(summary(bs)\$bic, index.return=TRUE);
bs2 <- bs2[ind\$ix,]; return(bs2);\}

```
# perform on our model
i.best <- f.bestsubset(formula(sysbp ~ wt + ht + chin
+ fore + calf + pulse + yrage)
    , indian)
    op <- options(); # saving old options
    options(width=90) # setting command window
    output text width wider
i.best
    options(op); # reset (all) initial options
```

> i.best
(Intercept) wt ht chin fore calf pulse yrage SIZE

2	1	1	0	0	0	0	0	1	2
3	1	1	0	1	0	0	0	1	3
3	1	1	0	0	1	0	0	1	3
3	1	1	0	0	0	1	0	1	3
3	1	1	1	0	0	0	0	1	3
rss		2							

3243.9900 .503326630 .46075463
3390.8150 .480846990 .43634816
3411.1450 .477734310 .43296868
3417.6240 .476742260 .43189159
cp bic
$2 \quad 1.453122-13.9989263$
$31.477132-12.6388375$
$3 \quad 2.947060-10.9124614$
$3 \quad 3.150596-10.6793279$

- R^{2} select the model with all the 7 variables since R^{2} always increase when there is variable added. according to the plot of R^{2} v.s. size of the model, R^{2} tend to increase and then level off when size is 4, i.e., 3 variables
- Adjusted R^{2} select the model with "wt "ht", "chin" and "yrage" (0.9943862). For simplicity, model with "wt, "chin" and "yrage" performs well with adjusted R^{2} of 0.9943487 .
- Cp select model with "wt" and "yrage" with the smallest cp value of $1.453122<p=3$.
- BIC select model with "wt" and "yrage" with the smallest BIC value of -13.9989263.

For simplicity, model with "wt" and "yrage" may be preferred.

- Check model assumptions of this model All the assumptions seems not violated (chapter 2)
- We then decide this is the final model for use

Comments

- The different criteria will not always give the identical answer.
- The all subsets method is good for identifying a collection of possible models. One should not necessarily use the model that is declared "best" by any method.
- There might be several subsets that provide a good fit. The final selection of a model should involve residual analysis and knowledge of the subject matter.

Comments:

- As the number of predictors increases, the number of possible models blows up! We need clever computer algorithms to find the really good models.

Two possible approaches:

- If $p-1$ is less than 30 , use best subsets procedures
- If $p-1$ is greater than 30 , use stepwise procedures: These are "greedy" algorithms that first find the best single term model. Given that term, add the next best term, and so on.

Stepwise Regression analysis

- A computationally available method for subset selection
- Evaluate the variables one at a time and look at a sequence of models
- Backwards elimination (start with full additive model)
- Forward elimination (start with intercept model)
- Stepwise methods (variables can be both added and deleted)

Backwards elimination

- Begins with the full model and sequentially eliminates from the model the least important variable. Importance of the variable is judged by the size t or F statistic or the p -value.

$$
F_{i}^{*}=\frac{\operatorname{MSR}\left(x_{i} \mid x_{1}, \cdots, x_{p-1} \quad \text { except } \quad x_{i}\right)}{\operatorname{MSE}\left(x_{1}, x_{2}, \cdots, x_{p-1}\right)}, \quad \text { for } \quad i=1,2, \cdots, p-1
$$

Find the smallest F_{i}^{*}, If the smallest $F_{i}^{*}<F$ - out (predetermined value), remove x_{i}; or find the largest p -value that is greater than the nominal level, remove that variable associated.

- After the variable with the smallest F statistic is dropped, the model is refitted and the F statistic is recalculated. Again, the variable with the smallest F statistic is dropped
- Process ends when all of F statistics are greater than some predetermined level (predetermined value can change depending on the step).
> \# First, fit the full model
> lm.indian.full <- lm(sysbp ~ wt + ht + chin + fore + calf
+ pulse + yrage, data = indian)
> summary(lm.indian.full)

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$

(Intercept)	106.45766	53.91303	1.975	0.057277	.
wt	1.71095	0.38659	4.426	0.000111	***
ht	-0.04533	0.03945	-1.149	0.259329	
chin	-1.15725	0.84612	-1.368	0.181239	
fore	-0.70183	1.34986	-0.520	0.606806	
calf	0.10357	0.61170	0.169	0.866643	
pulse	0.07485	0.19570	0.383	0.704699	
yrage	-29.31810	7.86839	-3.726	0.000777	$* * *$

Residual standard error: 9.994 on 31 degrees of freedom
Multiple R-squared: 0.5259,Adjusted R-squared: 0.4189

The least important variable in the full model, as judged by the p-value, is calf skin fold.

This variable, upon omission, reduces R^{2} the least, or equivalently, increases the Residual $S S$ the least.

The p-value of 0.87 exceeds the default 0.10 cut-off, so calf will be the first to be omitted from the model.

Below, we will continue in this way. After deleting calf, the six predictor model can be fitted. The least important predictor left is pulse. This variable is omitted from the model because the p-value for including it exceeds the 0.10 threshold.
> lm.indian2.red <- lm.indian.full;
> lm.indian2.red <- update(lm.indian2.red, ~ . - calf);
> summary(lm.indian2.red)
Call:
lm(formula $=$ sysbp ~ wt + ht + chin + fore + pulse + yrage, data $=$ indian)
Coefficients:

	Estimate	Std. Error	t value $\operatorname{Pr}(>\|\mathrm{t}\|)$		
(Intercept)	106.13739	53.05581	2.000	0.053993	.
wt	1.70900	0.38051	4.491	$8.65 \mathrm{e}-05$	***
ht	-0.04478	0.03871	-1.157	0.256008	
chin	-1.14165	0.82823	-1.378	0.177635	
fore	-0.56731	1.07462	-0.528	0.601197	
pulse	0.07103	0.19142	0.371	0.713018	
yrage	-29.54000	7.63983	-3.867	0.000509	***

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.11

This procedure is repeated until all predictors remain significant at a 0.10 significance level.

Next page is the final model according to this criterion. Only "wt" and "yrage" are left in the model.

Call:
$\operatorname{lm}($ formula $=$ sysbp \sim wt + yrage, data $=$ indian)

Residuals:

Min	$1 Q$	Median	3Q	Max
-18.4330	-7.3070	0.8963	5.7275	23.9819

Coefficients:

	Estimate	Std. Error t value $\operatorname{Pr}(>\|\mathrm{t}\|)$			
(Intercept)	60.8959	14.2809	4.264	0.000138	$* * *$
wt	1.2169	0.2337	5.207	$7.97 \mathrm{e}-06$	$* * *$
yrage	-26.7672	7.2178	-3.708	$0.000699^{* * *}$	

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.11

Residual standard error: 9.777 on 36 degrees of freedom Multiple R-squared: 0.4731,Adjusted R-squared: 0.4438 F-statistic: 16.16 on 2 and 36 DF , p-value: 9.795e-06

Use step function for model selection

```
## step() function specification
## The first two arguments of step(object, scope, ...) are
# object = a fitted model object.
# scope = a formula giving the terms to be considered for
adding or dropping
## default is AIC
# for BIC, include k = log(nrow( [data.frame name] ))
# test="F" includes additional information
# for parameter estimate tests that we're
familiar with
```

> lm.indian.backward.red.BIC <- step(lm.indian.full

+ , direction = "backward", test = "F",
$\mathrm{k}=\log ($ nrow(indian)))

Start: AIC=199.91
sysbp ~ wt + ht + chin + fore + calf + pulse + yrage
Df Sum of $\mathrm{Sq} \quad$ RSS AIC F value $\operatorname{Pr}(>F)$
$\begin{array}{lllllll}\text { - calf } & 1 & 2.86 & 3099.3 & 196.28 & 0.0287 & 0.8666427\end{array}$

- pulse $1 \quad 14.613111 .1196 .430 .14630 .7046990$
- fore $1 \quad 27.003123 .4196 .59 \quad 0.27030 .6068061$
- ht $1131.883228 .3197 .88 \quad 1.32030 .2593289$
- chin $1 \quad 186.853283 .3198 .531 .87060 .1812390$
<none> 3096.4199 .91
- yrage $1 \quad 1386.764483 .2210 .6813 .88350 .0007773$ ***
- wt 11956.495052 .9215 .3519 .58740 .0001105 ***

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.11

Step: AIC=196.28
sysbp ~ wt + ht + chin + fore + pulse + yrage

Df Sum of Sq RSS AIC F value $\operatorname{Pr}(>F)$

- pulse $1 \quad 13.343112 .6192 .79 \quad 0.13770 .7130185$
- fore $1 \quad 26.993126 .3192 .96 \quad 0.27870 .6011969$
- ht $1 \quad 129.563228 .9194 .22 \quad 1.33770 .2560083$
- chin $1 \quad 184.033283 .3194 .871 .90000 .1776352$
<none> 3099.3196 .28
- yrage $1 \quad 1448.004547 .3207 .5714 .95040 .0005087$ ***
- wt $11953.775053 .1211 .6920 .17248 .655 \mathrm{e}-05$ ***

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.11

Step: AIC=192.79
sysbp ~ wt + ht + chin + fore + yrage

	Df	Sum of Sq	RSS	AIC F value	$\operatorname{Pr}(>F)$	
- fore	1	17.78	3130.4	189.35	0.1885	0.667013
- ht	1	131.12	3243.8	190.73	1.3902	0.246810
- chin	1	198.30	3310.9	191.53	2.1023	0.156514
<none>			3112.6	192.79		
- yrage	1	1450.02	4562.7	204.04	15.3730	0.000421

Signif. codes: 0 *** 0.001 ** $0.01 * 0.05$. 0.11
Step: AIC=189.35
sysbp ~ wt + ht + chin + yrage
Df Sum of Sq RSS AIC F value $\operatorname{Pr}(>F)$
$\begin{array}{llllllll}\text { - ht } & 1 & 113.57 & 3244.0 & 187.07 & 1.2334 & 0.2745301\end{array}$

| - chin | 1 | 287.20 | 3417.6 | 189.11 | 3.1193 | 0.0863479 | |
| :--- | :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- |
| <none> | | | 3130.4 | 189.35 | | | |
| - yrage | 1 | 1445.52 | 4575.9 | 200.49 | 15.7000 | 0.0003607 | *** |
| - wt | 1 | 2263.64 | 5394.1 | 206.90 | 24.5857 | $1.945 \mathrm{e}-05$ | *** |

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.11

Step: AIC=187.07
sysbp ~ wt + chin + yrage
Df Sum of Sq RSS AIC F value $\operatorname{Pr}(>F)$

- chin $1 \quad 197.37 \quad 3441.4185 .71 \quad 2.12950 .1534065$
<none> 3244.0187 .07
- yrage $1 \quad 1368.444612 .4197 .1414 .76430 .0004912$ ***
- wt $1 \quad 2515.335759 .3205 .8027 .13848 .512 \mathrm{e}-06$ ***

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . $0.1 \quad 1$

Step: AIC=185.71

sysbp ~ wt + yrage

$$
\text { Df Sum of } \mathrm{Sq} \quad \text { RSS } \quad \text { AIC } F \text { value } \quad \operatorname{Pr}(>F)
$$

<none> 3441.4185 .71

- yrage $1 \quad 1314.74756 .1194 .6713 .7530 .0006991$ ***
- wt $12592.06033 .4203 .9527 .1157 .966 \mathrm{e}-06$ ***

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.11
> summary(lm.indian.backward.red.BIC)

Call:

Residuals:
Min
1Q
Median
3Q Max

```
-18.4330 -7.3070 0.8963 5.7275 23.9819
```

Coefficients:

	Estimate	Std. Error t value $\operatorname{Pr}(>\|\mathrm{t}\|)$				
(Intercept)	60.8959	14.2809	4.264	0.000138	$* * *$	
wt	1.2169	0.2337	5.207	$7.97 e-06$	$* * *$	
yrage	-26.7672	7.2178	-3.708	$0.000699^{* * *}$		

Signif. codes:	$0 * * *$	$0.001 * *$	$0.01 *$	0.05	0.1	1

Residual standard error: 9.777 on 36 degrees of freedom Multiple R-squared: 0.4731,Adjusted R-squared: 0.4438 F-statistic: 16.16 on 2 and 36 DF, p-value: 9.795e-06

Comments:

- The backward elimination procedure eliminates five variables from the full model, in the following order: calf skin fold (calf), pulse rate (pulse), forearm skin fold (fore), height (ht), and chin skin fold (chin).
- The model selected by backward elimination includes two predictors: weight (wt) and fraction (yrage).
- As we progress from the full model to the selected model, R^{2} decreases as follows: $0.53,0.53,0.52,0.52,0.50$, and 0.47 . The decrease is slight across this spectrum of models.
- Using a mechanical approach, we are led to a model with weight and years by age fraction as predictors of systolic blood pressure.
- we should closely examine this model.

Forward selection

- Begins with an initial model (could be intercept only) and adds variables to the model one at a time. Importance of the variable is judged by the size t or F statistic.

$$
F_{k}^{*}=\frac{\operatorname{MSR}\left(x_{k}\right)}{\operatorname{MSE}\left(x_{k}\right)}
$$

enter the variable with the largest F_{k}^{*} provided this $F_{k}^{*}>F-I N$ (predetermined value) or the corresponding P-value is less than a predetermined α

- One variable in the regression equation, say x_{h}. Compute all two variable regression equation between y and x_{h} and x_{k} for $k \neq h$, calculate

$$
F_{k}^{*}=\frac{\operatorname{MSR}\left(x_{k} \mid x_{h}\right)}{\operatorname{MSE}\left(x_{k}, x_{h}\right)}
$$

enter the variable with the largest F_{k}^{*} value provided this $F_{k}^{*}>F-I N$

- Procedure ends when none of the F statistic is greater than a predetermined level.
\#forward selection
\# start with an empty model (just the intercept 1)
lm.indian.empty <- lm(sysbp ~ 1, data = indian)
\# Forward selection, BIC with F-tests
lm.indian.forward.red.AIC <- step(lm.indian.empty
, sysbp ~ wt + ht + chin + fore + calf + pulse + yrage , direction = "forward", test = "F")

Start: AIC=201.71

sysbp ~ 1							
	Df	Sum of Sq	RSS	AIC	F value	$\operatorname{Pr}(>F)$	
+ wt	1	1775.38	4756.1	191.34	13.8117	0.0006654	$* * *$
+ yrage	1	498.06	6033.4	200.62	3.0544	0.0888139.	.
+ fore	1	484.22	6047.2	200.71	2.9627	0.0935587	.
+ calf	1	410.80	6120.6	201.18	2.4833	0.1235725	
<none>			6531.4	201.71			

+ ht	1	313.58	6217.9	201.79	1.8660	0.1801796
+ chin	1	189.19	6342.2	202.57	1.1037	0.3002710
+ pulse	1	114.77	6416.7	203.02	0.6618	0.4211339

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.11
Step: AIC=191.34
sysbp ~ wt
Df Sum of Sq RSS AIC F value $\operatorname{Pr}(>F)$

+ yrage 11314.693441 .4180 .7213 .75300 .0006991 ***
<none> 4756.1191 .34
+ chin $1 \quad 143.634612 .4192 .15 \quad 1.12100 .2967490$
+ calf $1 \quad 16.674739 .4193 .20 \quad 0.12670 .7240063$
+ pulse $1 \quad 6.114749 .9193 .290 .04630 .8308792$
$\begin{array}{llllllll}+h t & 1 & 2.01 & 4754.0 & 193.32 & 0.0152 & 0.9024460\end{array}$
$\begin{array}{lllllll}+ \text { fore } 1 & 1.16 & 4754.9 & 193.33 & 0.0088 & 0.9257371\end{array}$

Signif. codes: 0 *** 0.001 ** $0.01 * 0.05$. $0.1 \quad 1$
Step: AIC=180.72
sysbp ~ wt + yrage

	Df	Sum of Sq	RSS	AIC	F value	$\operatorname{Pr}(>F)$
+ chin	1	197.372	3244.0	180.42	2.1295	0.1534
<none>			3441.4	180.72		
+ fore	1	50.548	3390.8	182.15	0.5218	0.4749
+ calf	1	30.218	3411.1	182.38	0.3101	0.5812
+ ht	1	23.738	3417.6	182.45	0.2431	0.6251
+ pulse	1	5.882	3435.5	182.66	0.0599	0.8081

Step: AIC=180.42
sysbp ~ wt + yrage + chin

	Df	Sum of Sq	RSS	AIC	F	value
<none>			3244.0	180.42		
+ ht	1	113.565	3130.4	181.03	1.2334	0.2745
+ pulse	1	11.822	3232.2	182.28	0.1244	0.7265
+ fore	1	0.219	3243.8	182.42	0.0023	0.9620
+ calf	1	0.003	3244.0	182.42	0.0000	0.9959
> summary (lm.indian.forward.red.AIC)						

Call:

Residuals:

Min	$1 Q$	Median	3Q	Max
-16.6382	-6.6316	0.4521	6.3593	24.2086

Coefficients:

	Estimate	Std. Error	t value $\operatorname{Pr}(>\|t\|)$		
(Intercept)	52.9092	15.0895	3.506	$0.001266{ }^{* *}$	
wt	1.4407	0.2766	5.209	$8.51 \mathrm{e}-06{ }^{* * *}$	
yrage	-27.3522	7.1185	-3.842	0.000491	$* *$
chin	-1.0135	0.6945	-1.459	0.153407	

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.11
Residual standard error: 9.627 on 35 degrees of freedom Multiple R-squared: 0.5033,Adjusted R-squared: 0.4608 F-statistic: 11.82 on 3 and 35 DF, p-value: 1.684e-05

Stepwise methods

- Alternate between forward selection and backwards elimination
- Arrive at model by dropping a variable, check to see if any variable can be added to the model
- Arrive at a model by adding a variable, check to see if any variable can be dropped
- The value of the F statistic required for dropping a variable is allowed to be different from the value required for adding a variable
- Usually start with an initial model that contains only an intercept
- Stepwise methods gives the same result as forward selection if starting from an initial model; gives the same result as backward elimination if starting from a full model

Stepwise methods:

- Step 1: No variable in the regression equation, compute all one variable regression equation between y and $p-1$ predictors and calculate

$$
F_{k}^{*}=\frac{\operatorname{MSR}\left(x_{k}\right)}{\operatorname{MSE}\left(x_{k}\right)}
$$

enter the variable with the largest F_{k}^{*} provided this $F_{k}^{*}>F-I N$ (predetermined value) or the corresponding P-value is less than a predetermined α

- Step 2: 1 variable in the regression equation, say $x_{k 1}$. Compute all two variable regression equation between y and $x_{k 1}$ and x_{k} for $k \neq k_{1}$, calculate

$$
F_{k}^{*}=\frac{\operatorname{MSR}\left(x_{k} \mid x_{k 1}\right)}{\operatorname{MSE}\left(x_{k}, x_{k 1}\right)}
$$

enter the variable with the largest F_{k}^{*} value provided this $F_{k}^{*}>F-I N$ (predetermined value) or the corresponding P-value is less than a predetermined α

- Step 3, two variables in regression equation, say $x_{k 1}$ and $x_{k 2}$. Determine if any of the variables previously entered should be removed from the regression equation due to the addition of the latest variable.
-Calculate

$$
F_{k 1}^{*}=\frac{\operatorname{MSR}\left(x_{k 1} \mid x_{k 2}\right)}{\operatorname{MSE}\left(x_{k 1}, x_{k 2}\right)}
$$

-If the $F_{k 1}^{*}$ falls below a predetermined value called F-out or the corresponding P-value is greater than a predetermined α, then $x_{k 1}$ is removed from the model

- Suppose there are $r-1$ variables in the regression equation, compute

$$
F_{k}^{*}=\frac{\operatorname{MSR}\left(x_{k} \mid x_{k 1}, x_{k 2}, \cdots, x_{k, r-1}\right)}{\operatorname{MSE}\left(x_{k}, x_{k 1}, \cdots, x_{k, r-1}\right)}
$$

enter the variable with the largest F_{k}^{*} value provided $F_{k}^{*}>F-$ in
-Suppose $x_{k r}$ is added at the above step, compute

$$
\begin{gathered}
F_{k i}^{*}=\frac{\operatorname{MSR}\left(x_{k i} \mid x_{k 1}, \cdots, x_{k r} \quad \text { except } \quad x_{k i}\right)}{\operatorname{MSE}\left(x_{k 1}, x_{k 2}, \cdots, x_{k r}\right)}, \\
\text { for } i=1,2, \cdots, r-1
\end{gathered}
$$

find the smallest $F_{k i}^{*}$, If the smallest $F_{k i}^{*}<F-o u t$, then remove $x_{k i}$ from the equation.

- Go to next step to try to enter another variable, keep gong until no new variable can be entered.
\# Stepwise (both) selection, BIC with F-tests, starting with intermediate model
\# (this is a purposefully chosen "opposite" model,
\# from the forward and backward methods this model
\# includes all the variables dropped and none kept)
lm.indian.intermediate <- lm(sysbp ~ ht + fore + calf + pulse, data = indian)
\# option: trace $=0$ does not print each step of the selectic lm.indian.both.red.BIC <- step(lm.indian.intermediate

```
, sysbp ~ wt + ht + chin + fore + calf
```

+pulse + yrage
, direction = "both", test = "F", k = log(nrow(indian)), trace = 0)
\# the anova object provides a summary of
the selection steps in order
lm.indian.both.red.BIC\$anova
summary(lm.indian.both.red.BIC)
> summary(lm.indian.both.red.BIC)

Call:

Residuals:

Min	$1 Q$	Median	3Q	Max
-18.4330	-7.3070	0.8963	5.7275	23.9819

Coefficients:

	Estimate	Std. Error t value $\operatorname{Pr}(>\|t\|)$			
(Intercept)	60.8959	14.2809	4.264	$0.000138 * * *$	
wt	1.2169	0.2337	5.207	$7.97 e-06$	$* * *$
yrage	-26.7672	7.2178	-3.708	$0.000699^{* * *}$	

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.11

Residual standard error: 9.777 on 36 degrees of freedom

Model selection and case deletion

- Outliers tend to be cases with large residuals --eliminating the largest residuals obviously makes the SSE and MSE smaller
- Variable selection methods tend to identify as good reduced models those with small MSEs --Delete outliers if they are from recording errors (such as obvious typos), experimental accident (drop the tube) etc,.
--Usually after deleting outliers, new data will produce new outliers

Both variable selection and case deletion

- Cause the resulting model to appear better than it probably should
- Tend to give MSEs that are unrealistically small
- Prediction intervals are unrealistically narrow and test statistics are unrealistically large
- Test performed after variable selection or outlier deletion should be viewed as the greatest reasonable evidence against the null hypothesis, with the understanding that more appropriate tests would probably display a lower level of significance.

Model Selection Techniques Only Narrow the Field

Final choice of a model based on:

- p-values, residual plots, other diagnostics
- Parsimony (Occam's Razor): Simple models work best
- The sniff (giggle) test: does the model agree with expectations or theory? Do the signs make sense? Can you explain the results?
- Model validation studies

Model Validation

- The real test of a model or theory: How well does the model predict future observations?
- Problem with your model: the residuals are closer to the observations than they should be! So MSE is too small!!!!
--Why? Because picked the model that best predicts your data set. Your measure of predictive ability is biased.
- Optimism Principle: A model chosen by some selection process provides a more optimistic explanation of data used in its derivation than it does of other data that will arise in a similar fashion.

Getting an unbiased view

- Way 1: Collect n^{*} new observations and compute the mean squared prediction error:

$$
\mathrm{MSPR}=\frac{\sum_{i=1}^{n^{*}}\left(y_{i}-\hat{y}_{i}\right)^{2}}{n^{*}}
$$

$-y_{i}$ is the response variable in the i th validation case

- \hat{y}_{i} is the predicted value for the i th validation case based on the model building data set
$-n^{*}$ is the number of cases in the validation data set.
- Way 2: Cross-validation
—Keep n^{*} cases out of the data set (at random!).
-Base regression on the $n-n^{*}$ cases in the training set.
-Computer the MSPR for the n^{*} cases in the validation set (or test set).
—Usually $n^{*} \approx n / 2$.
- Way 3: K-fold cross-validation (sample size n is small) - Break data into K roughly equal parts. -Of the K subsamples, a single subsample is retained as the validation data for testing the model, and the remaining $K-1$ subsamples are used as training data. -The cross-validation process is then repeated K times (the folds), with each of the K subsamples used exactly once as the validation data.
-The K results from the folds can then be averaged to produce a single estimation.
-When $K=n$, the K-fold cross-validation estimate is identical to leave one out cross-validation.

Transformations:

If the residuals show a problem with

- lack of fit (having the wrong model for the mean)
- heteroscedasticity
- nonnormality

Try y transformation or x transformation or both

- y transformation is more common
- only works when $y_{\max } / y_{\text {min }}$ is reasonably large
- choose a transformation to stabilize variance
- log or square transformations can solve many problems

Table: Variance stabilizing transformations

Data	Distribution	Mean, Variance Relationship	Transformation
Count	Poisson	$\mu_{h} \propto \sigma_{h}^{2}$	$\sqrt{y_{h}}$
Amount	Gamma	$\mu_{h} \propto \sigma_{h}$	$\log \left(y_{h}\right)$
Proportion	Binomial/N	$\mu_{h}\left(1-\mu_{h}\right) / N \propto \sigma_{h}^{2}$	$\sin ^{-1}\left(\sqrt{y_{h}}\right)$

Figure: Circle of Transformations

Figure: Curved x, y plot ($y=\cos x$ in the first quadrant. According to figure ??, need to increase power of both x and y

Figure: Plot of $x^{1.5}, y^{1.5} . y=\cos x$ in the first quadrant. After transformation $x^{*}=x^{1.5}$ and $y^{*}=y^{1.5}$, the curve is much straighter than the one in Figure ??

Power Transformation:

- If the residuals appear to be normal with constant variance, and the relationship is linear, then go ahead with the regression model. No transformation is needed.
- Transformation is used to deal with model violations. Commonly used transformation is the power transformation (Box-Cox transformation)

$$
\begin{aligned}
& y^{*}=\left\{\begin{array}{cc}
y^{\lambda} & \lambda \neq 0 \\
\ln y & \text { if }
\end{array} \lambda=0 .\right.
\end{aligned}
$$

- If the residuals appear to be normal with constant variance, but the relationship is non-linear, try transforming the X 's to make it a straight line. The transformation on Y may materially change the shape of the distribution of the error terms from the normal distribution and may also lead to substantially differing error term variances.
- If the residuals are not randomly scattered around zero, but have trends. Try transforming Y.
- If you choose a transformation, you need to go back and do all the diagnostics all over again.
- Box and Cox (1964) developed a method to suggest an appropriate transformation of the response variable y, so that, the transformed y is appropriate for the simple linear regression model. The transformation are power transformation. The method selects the λ power to minimize the SSE of the regression

$$
y^{\lambda}=\beta_{0}+\beta_{1} x+\varepsilon
$$

and use maximum likelihood to estimate λ. The method runs the regression for a range of transformations between -2 and +2 , pick the one that minimizes $\operatorname{SSE}(\lambda)$. Eventually you would probably suggest the same transformation by eye.

- What transformation to use? Figure ?? gives some general reference.
- Not all scatter plots can be straightened by a power transformation
- Box-Cox suggests a transformation but there is no guarantee it will solve all our problems. We still have to check residuals, assumptions, etc.
- There may be a number of transformations that adequately "straighten" a scatterplot. Pick the transformation that is most interpretable (or the simplest).
- If variable ranges over several orders of magnitude, natural logs transformation usually work; often needed for economic data
- $1 / Y$ often makes intuitive sense: If Y is customers per hour, $1 / Y$ is hours per customer.
- Square root may make sense if you are measuring areas (square-feet, etc).
- If $Y=0$ for some observations, cannot do $1 / Y$ or $\log Y$; just add a constant k to all of the $Y \mathrm{~s}$ first

Example: use boxcox to do transformation

Recall that

```
    lm.sysbp.yrage.wt <- lm(sysbp ~ yrage + wt, data = indian)
library(MASS)
boxcox(lm.sysbp.yrage.wt, lambda = seq(-5, 5, length = 10),
plotit = TRUE)
Since }\lambda=1\mathrm{ is within the 95% Cl of log-likelihood, no need to do
transformation
```


Figure: Box-Cox transformation

