
ANCOVA

ANCOVA (Analysis of covariance) is a linear model that allows you to
compare two (or more) groups while adjusting for one or more quantitative
covariates.
Similarly, you might be interested in comparing the relationship between
the quantitative variables while accounting for group differences.
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ANCOVA

As a made up example, suppose you have a sample of books of different
lengths, some of which are hardcover, some softcover. Maybe these are
books you buy at the beginning of a semester. You want to model price as
a function of book length and book cover (hard cover or soft cover).

I You might think that longer books tend to be more expensive. This
might be true within categories (longer novels might be more
expensive than shorter novels, longer hardback textbooks tend to be
more expensive than shorter hardback textbooks).

I But if you ignore the category, it might be hard to compare.

title category length price

Applied Linear Statistical Models soft 1396 54.64
It soft 1000 12.95
War & Peace soft 1300 14.95
Wizard of Oz (5 volumes) hard 1200 7.98
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ANCOVA

As another example, suppose you recruit 20 patients for a study

I wish to determine whether treatment A or treatment B is more
effective.

I patients are assigned randomly to treatments, however, we notice that
due to the small sample size, patients receiving treatment A tend to
be younger than those receiving treatment B.

I In this case, although randomization should have helped, you might
wish to additionally take into account age information of patients in
determining the effects of the two treatments.
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Example: Suppose that you are interested in comparing the typical
lifetime (hours) of two tool types (A and B).

I A simple analysis is to make side-by-side boxplots followed by a
two-sample test of equal means (or medians).

I The standard two-sample test using the pooled variance estimator is a
special case of the one-way ANOVA with two groups.

I The summaries suggest that the distribution of lifetimes for the tool
types are different.
—— In the output below, µi is population mean lifetime for tool type
i(i = A,B).
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tools <- read.table("http://statacumen.com/teach/ADA2/ADA2_notes_Ch07_tools.dat"

, header = TRUE)

tools

lifetime rpm type

1 18.73 610 A

2 14.52 950 A

3 17.43 720 A

4 14.54 840 A

5 13.44 980 A

6 24.39 530 A

7 13.34 680 A

8 22.71 540 A

9 12.68 890 A

10 19.32 730 A

11 30.16 670 B

12 27.09 770 B

13 25.40 880 B

14 26.05 1000 B

15 33.49 760 B

16 35.62 590 B

17 26.07 910 B

18 36.78 650 B

19 34.95 810 B

20 43.67 500 B
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Figure: Boxplot of the two tool types
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> t.summary <- t.test(lifetime ~ type, data = tools)

> t.summary

Welch Two Sample t-test

data: lifetime by type

t = -6.435, df = 15.93, p-value = 8.422e-06

alternative hypothesis: true difference in means is not equal

to 0

95 percent confidence interval:

-19.70128 -9.93472

sample estimates:

mean in group A mean in group B

17.110 31.928
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Comments:

I Side by side box plot and two sample t-test comparing mean lifetimes
of tool types indicates a difference between means.

I These comparisons are potentially misleading because the samples
may not be com- parable.
—– A one-way ANOVA is most appropriate for designed experiments
where all the factors influencing the response, other than the
treatment (tool type), are controlled by the experimenter.

I The tools were operated at different speeds.
—— If speed influences lifetime, then the observed differences in
lifetimes could be due to differences in speeds at which the two tool
types were operated.

I Need to compare groups (tools) after ad- justing the lifetimes to
account for the influence of a measurement variable, speed.
——-The appropriate statistical technique for handling this problem is
called analysis of covariance (ANCOVA).
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ANCOVA

The simplest approach to ANCOVA is to adjust the intercept for each
group. The model is

response = Grand mean + group + covariate

or
yij = µ+ αi + βxij + εij

where µi = µ+ αi is the intercept for group i .

I The effect of the model is that there is a separate regression line for
each group, but the regression lines are assumed to be parallel.

I The effect of belonging to a particular group is to shift the regression
line up or down.
——Typically, the main interest is in testing whether αi = 0 for each
i , meaning that there is no difference in regression line among the
groups.
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Example continued
A natural way to account for the effect of speed is through a multiple
regression model with lifetime as the response and two predictors,
——speed and tool type.
—— A binary categorical variable, here tool type, is included in the model
as a dummy variable or indicator variable

Xi =

{
1 if tool i is from type B
0 if tool i is from type A
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Consider the model

Tool lifetime = β0 + β1Xi + β2rpm + εi ,

where

Xi =

{
1 if tool i is from type B
0 if tool i is from type A

For type A tools, the model simplifies to:

Tool lifetime = β0 + β2rpm + εi ,

For type B tools, the model simplifies to:

Tool lifetime = (β0 + β1) + β2rpm + εi .

This ANCOVA model fits two regression lines, one for each tool type, but
restricts the slopes of the regression lines to be identical.
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Tool lifetime = β0 + β1Xi + β2rpm + εi ,

I β2 = slope of population regression lines for tool types A and B.

I β0=intercept of population regression line for tool A (called the
reference group).

I β0 + β1 is the intercept of population regression line for tool B.
——-β1 is the difference between tool B and tool A intercepts.
——A test of H0 : β1 = 0 is the primary interest, and is interpreted as
a comparison of the tool types, after adjusting or allowing for the
speeds at which the tools were operated.
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Figure: Tool data, lifetime by rmp with categorical types
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The ANCOVA model is plausible. The relationship between lifetime and
speed is roughly linear within tool types, with similar slopes but unequal
intercepts across groups.
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> lm.l.r.t <- lm(lifetime ~ rpm + type, data = tools)

> summary(lm.l.r.t)

Call:

lm(formula = lifetime ~ rpm + type, data = tools)

Residuals:

Min 1Q Median 3Q Max

-5.5527 -1.7868 -0.0016 1.8395 4.9838

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 36.98560 3.51038 10.536 7.16e-09 ***

rpm -0.02661 0.00452 -5.887 1.79e-05 ***

typeB 15.00425 1.35967 11.035 3.59e-09 ***

Residual standard error: 3.039 on 17 degrees of freedom

Multiple R-squared: 0.9003,Adjusted R-squared: 0.8886

F-statistic: 76.75 on 2 and 17 DF, p-value: 3.086e-09
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I The t-test of
H0 : β1 = 0

checks whether the intercepts for the population regression lines for
the two tool types are equal, assuming equal slopes.
——-The t-test p − value < 0.0001 suggests that there is a
significant difference between the mean lifetimes of the two tool
types, after adjusting for the effect of the speeds at which the tools
were operated.
——The estimated difference in average lifetime between the two
tool types is 15 hours, regardless of the speed.

I The LS lines indicate that the average lifetime of either type tool
decreases by 0.0266 hours for each increase in 1 RPM. Regardless of
the the type.

ADA2 March 19, 2019 16 / 52



Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 36.98560 3.51038 10.536 7.16e-09 ***

rpm -0.02661 0.00452 -5.887 1.79e-05 ***

typeB 15.00425 1.35967 11.035 3.59e-09 ***

For tool type A, the fitted relationship is

Predicted Lifetime = 36.99− 0.0266rpm.

For tool type B, the fitted relationship is

Predicted Lifetime = (36.99 + 15.00)− 0.0266rpm = 51.99− 0.0266rpm

——-the model predicts that type B tools will last 15 hours longer than
type A tools.
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Figure: Tool data, diagnostic plot
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Comments:

I The plot of residuals against the fitted values shows no gross
abnormalities, but suggests that the variability about the regression
line for tool type A is somewhat smaller than the variability for tool
type B.

I Cook’s distance are all less than 1, no influential point observed.

I The QQ-plot does not show any gross deviations from a straight line.
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Generalizing the ANCOVA Model to Allow Unequal
Slopes

I Introduce a flexible approach for checking equal slopes and equal
intercepts in ANCOVA-type models.

I The algorithm also provides a way to build regression models in
studies where the primary interest is comparing the regression lines
across groups rather than comparing groups after adjusting for a
regression effect.

I The approach can be applied to an arbitrary number of groups and
predictors.
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Example: IQ scores of identical twins

I One raised in a foster home (IQ score is denoted as IQF) and the
other raised by natural parents (IQ score is denoted as IQN).

I The 27 pairs are divided into three groups by social status of the
natural parents (H=high, M=medium, L=low).

I Want to examine the regression of IQF on IQN for each of the three
social classes.
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> twins

IQF IQN status

1 82 82 H

2 80 90 H

3 88 91 H

4 108 115 H

5 116 115 H

6 117 129 H

7 132 131 H

8 71 78 M

9 75 79 M

10 93 82 M

11 95 97 M

12 88 100 M

13 111 107 M

14 63 68 L

15 77 73 L

16 86 81 L

17 83 85 L

18 93 87 L

19 97 87 L

20 87 93 L

21 94 94 L

22 96 95 L

23 112 97 L

24 113 97 L

25 106 103 L

26 107 106 L

27 98 111 L
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Indicator variable and coding

I in order that such a qualitative variable can be used in a regression
model, indicator variables that take on the values 0 and 1 for the
classes of the qualitative variable must be employed

I if there are c categories, need to use c − 1 indicator variables to
distinguish them

Let I1 =

{
1 if H status families
0 otherwise

, I2 =

{
1 if M status families
0 otherwise

The indicators I1 and I2 jointly assume 3 values:

Status I1 I2
L 0 0
M 0 1
H 1 0
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The most general model allows separate slopes and intercepts for each
group:

IQF = β0 + β1I1 + β2I2 + β3IQN + β4I1IQN + β5I2IQN + ε.

If status = L, then I1 = I2 = 0. For these families

IQF = β0 + β3IQN + ε.

If status = M, then I1 = 0 and I2 = 1. For these families

IQF = β0 + β2(1) + β3IQN + β5IQN + ε

= (β0 + β2) + (β3 + β5)IQN + ε

If status = H, then I1 = 1 and I2 = 0. For these families

IQF = β0 + β1(1) + β3IQN + β4IQN + ε

= (β0 + β1) + (β3 + β4)IQN + ε
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I The regression coefficients β0 and β3 are the intercept and slope for
the L status population regression line. L status families is treated as
a baseline or reference group.

I The other parameters measure differences in intercepts and slopes
across the three groups, using L status families as a baseline or
reference group.

I β1 = difference between the intercepts of the H and L population
regression lines.
β2 = difference between the intercepts of the M and L population
regression lines.
β4 = difference between the slopes of the H and L population
regression lines.
β5 = difference between the slopes of the M and L population
regression lines.
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Figure: Twin data
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twins <-read.table("http://statacumen.com/teach/ADA2/ADA2_notes_Ch07_twins.dat", header = TRUE)

# set "L" as baseline level

twins$status <-relevel(twins$status, "L’’)

lm.f.n.s.ns <- lm(IQF ~ IQN*status, data = twins)

summary(lm.f.n.s.ns)

> summary(lm.f.n.s.ns)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.20461 16.75126 0.430 0.672

IQN 0.94842 0.18218 5.206 3.69e-05 ***

statusH -9.07665 24.44870 -0.371 0.714

statusM -6.38859 31.02087 -0.206 0.839

IQN:statusH 0.02914 0.24458 0.119 0.906

IQN:statusM 0.02414 0.33933 0.071 0.944

---

Residual standard error: 7.921 on 21 degrees of freedom

Multiple R-squared: 0.8041,Adjusted R-squared: 0.7574

F-statistic: 17.24 on 5 and 21 DF, p-value: 8.31e-07
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I For the baseline group with status = L,

Predicted IQF = 7.20 + 0 + (0.948 + 0)IQN = 7.20 + 0.948IQN.

I For the M status group with indicator I2 and product effect I2IQN:

Predicted IQF = 7.20−6.39+(0.948+0.024)IQN = 0.81+0.972IQN.

I For the H status group with indicator I1 and product effect I1IQN:

Predicted IQF = 7.20−9.08+(0.948+0.029)IQN = −1.88+0.977IQN.

I The LS lines are identical to separately fitting simple linear regressions
to the three groups.
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Figure: Twin data, diagnostic plot
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General Model

IQF = β0 + β1I1 + β2I2 + β3IQN + β4I1IQN + β5I2IQN + ε.

IQF = Grand Mean + Status Effect + IQN effect +StatusIQN interaction
+ Residual.

I β0: grand mean

I β1I1 + β2I2: status effect (i.e., the two indicators I1 and I2 allow you
to differentiate among social classes)

I β3IQN: the IQN effect

I β4I1IQN + β5I2IQN: status by IQN interaction

The general model is a special case of the two-factor interaction ANOVA
model because it restricts the means to change linearly with IQN.
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ANCOVA model

The ANCOVA model has main effects for status and IQN but no
interaction:
IQF = Grand Mean + Status Effect + IQN effect + Residual.

I The ANCOVA model is a special case of the additive two-factor
ANOVA model because the plot of the population means has parallel
profiles, but is not equivalent to the additive two-factor ANOVA
model.
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Equal slopes and intercepts model

The model with equal slopes and intercepts has no main effect for status
nor an interaction between status and IQN:
IQF = Grand Mean + IQN effect + Residual.
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One-way ANOVA model

The one-way ANOVA model has no main effect for IQN nor an interaction
between status and IQN:
IQF = Grand Mean + Status Effect + Residual.
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Choosing among models

Full general model:

IQF = β0 + β1I1 + β2I2 + β3IQN + β4I1IQN + β5I2IQN + ε.

Test the hypothesis of equal slopes

H0 : β4 = β5 = 0

I Note that t-tests are used to test either β4 = 0 or β5 = 0

I Fit a reduced model

IQF = β0 + β1I1 + β2I2 + β3IQN

I Reject H0 : β4 = β5 = 0 if the increase in the Residual SS obtained by
deleting I1IQN and I2IQN from the full model is significant.
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Formal test
H0 : β4 = β5 = 0

MSTest =
SSE (R)− SSE (F )

dfE (R)− dfE (F )

and

F =
{SSE (R)− SSE (F )}/(dfE (R)− dfE (F ))

SSE (F )/dfE (F )
=

MSTest

MSE (F )

Reject H0, if F > F (1− α; dfE (R)− dfE (F ), dfE (F ))
The observed F statistic is

F =
{SSE (R)− SSE (F )}/(dfE (R)− dfE (F ))

MSE (F )

=
(1318.4− 1317.5)/(23− 21)

62.7
= 0.0072

which is much smaller than F (2, 21, 0.95) = 3.4668. The test suggests do
not reject H0. Therefore, equal slope model is appropriate.
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lm.f.n.s.ns <- lm(IQF ~ IQN*status, data = twins)

library(car)

> Anova(aov(lm.f.n.s.ns), type=3)

Response: IQF

Sum Sq Df F value Pr(>F)

(Intercept) 11.61 1 0.1850 0.6715

IQN 1700.39 1 27.1035 3.69e-05 ***

status 8.99 2 0.0716 0.9311

IQN:status 0.93 2 0.0074 0.9926

Residuals 1317.47 21

lm.f.n.s <- lm(IQF ~ IQN + status, data = twins)

> Anova(aov(lm.f.n.s), type=3)

Response: IQF

Sum Sq Df F value Pr(>F)

(Intercept) 18.2 1 0.3181 0.5782

IQN 4674.7 1 81.5521 5.047e-09 ***

status 175.1 2 1.5276 0.2383

Residuals 1318.4 23

---
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Or you can use the following to compare the models

> anova(lm.f.n.s.ns,lm.f.n.s)

Analysis of Variance Table

Model 1: IQF ~ IQN * status

Model 2: IQF ~ IQN + status

Res.Df RSS Df Sum of Sq F Pr(>F)

1 21 1317.5

2 23 1318.4 -2 -0.93181 0.0074 0.9926

When comparing the full general model with the reduced equal slope
model, F-value is 0.0074, and p-value is 0.9926. We do not reject the null
hypothesis, and conclude that the equal slope model is appropriate.
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Test equal intercepts

Diagnostics plots of the equal slope model looks good, now we adopt the
equal slope model (full model)

IQF = β0 + β1I1 + β2I2 + β3IQN + ε.

want to further test if equal intercepts model is appropriate or not

H0 : β1 = β2 = 0

Reduced model: IQF = β0 + β3IQN

F =
{SSE (R)− SSE (F )}/(dfE (R)− dfE (F ))

MSE (F )

=
(1493.5− 1318.4)/(25− 23)

1318.4/23

= 1.53

which is much smaller than F (2, 23, 0.95) = 3.42. The test suggests not
rejecting H0. Therefore, equal intercept model is appropriate.
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lm.f.n.s <- lm(IQF ~ IQN + status, data = twins)

library(car)

Anova(aov(lm.f.n.s), type=3)

Response: IQF

Sum Sq Df F value Pr(>F)

(Intercept) 18.2 1 0.3181 0.5782

IQN 4674.7 1 81.5521 5.047e-09 ***

status 175.1 2 1.5276 0.2383

Residuals 1318.4 23

lm.f.n <- lm(IQF ~ IQN, data = twins)

Anova(aov(lm.f.n), type=3)

Anova Table (Type III tests)

Response: IQF

Sum Sq Df F value Pr(>F)

(Intercept) 58.6 1 0.9802 0.3316

IQN 5231.1 1 87.5630 1.204e-09 ***

Residuals 1493.5 25

---
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Figure: Twin data, diagnostic plot for reduced model: IQF = β0 + β3IQN
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> shapiro.test(lm.f.n$residuals)

Shapiro-Wilk normality test

data: lm.f.n$residuals

W = 0.96329, p-value = 0.4377

> library(lmtest)

> bptest(IQF ~ IQN, data = twins,studentize=FALSE)

Breusch-Pagan test

data: IQF ~ IQN

BP = 0.038304, df = 1, p-value = 0.8448

#compare cook’s distance to F(0.5, p, n-p)

> highcook <- which((cooks.distance(lm.f.n)) > qf(0.5,2,25))

> cooks.distance(lm.f.n)[highcook]

named numeric(0)
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Comments:

I The plot of residuals against the fitted values shows no gross
abnormalities.

I The Breusch-Pagan test show BP = 0.038304 with
p − value = 0.8448. Constant variance assumption is not rejected.

I Cook’s distance are all less than 1, when compared with F (0.5, 2, 25),
there is no influential point observed.

I The QQ-plot does not show any gross deviations from a straight line.
Shapiro-Wilk normality test has W = 0.96329 with
p − value = 0.4377, normality assumption is not rejected.
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Suggested final model to use

> summary(lm.f.n)

Call:

lm(formula = IQF ~ IQN, data = twins)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.20760 9.29990 0.990 0.332

IQN 0.90144 0.09633 9.358 1.2e-09 ***

Residual standard error: 7.729 on 25 degrees of freedom

Multiple R-squared: 0.7779,Adjusted R-squared: 0.769

F-statistic: 87.56 on 1 and 25 DF, p-value: 1.204e-09
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Suggested final model to use

The estimated regression line, regardless of social class, is:

Predicted IQF = 9.21 + 0.901 ∗ IQN.

I There are no serious inadequacies with this model, based on a
diagnostic analysis.

I The natural parents social class has no impact on the relationship
between the IQ scores of identical twins raised apart.
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Simultaneous testing of regression parameters

IQF = β0 + β1I1 + β2I2 + β3IQN + β4I1IQN + β5I2IQN + ε.

If status = L, IQF = β0 + β3IQN + ε.
If status = M, IQF = (β0 + β2) + (β3 + β5)IQN + ε
If status = H, IQF = (β0 + β1) + (β3 + β4)IQN + ε
Consider these two specific hypotheses:

1. H0 : equal regression lines for status M and L, i.e. β2 = β5 = 0

2. H0 : equal regression lines for status M and H, i.e. β1 = β2 and β4 =
β5
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> lm.f.n.s.ns <- lm(IQF ~ IQN*status, data = twins)

> coef(lm.f.n.s.ns)

(Intercept) IQN statusH statusM

7.20460986 0.94842244 -9.07665352 -6.38858548

IQN:statusH IQN:statusM

0.02913971 0.02414450

I

IQF = β0 + β1I1 + β2I2 + β3IQN + β4I1IQN + β5I2IQN + ε.

I Using R default, it is modeled in ordered of β0, β3, β1, β2, β4, β5
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Wald test

H0 : equal regression lines for status M and L, i.e. β2 = β5 = 0

I Define matrix

mR =

[
0 0 0 1 0 0
0 0 0 0 0 1

]
, β =



β0
β3
β1
β2
β4
β5


so that mR ∗ β =

[
β2
β5

]
I We want to test mR ∗ β =

[
0
0

]
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library(aod)

mR <- as.matrix(rbind(c(0, 0, 0, 1, 0, 0),

c(0, 0, 0, 0, 0, 1)))

> mR

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0 0 0 1 0 0

[2,] 0 0 0 0 0 1

> vR <- c(0, 0)

[1] 0 0

wald.test(b = coef(lm.f.n.s.ns) , Sigma = vcov(lm.f.n.s.ns)

, L = mR, H0 = vR)

Wald test:

Chi-squared test:

X2 = 1.2, df = 2, P(> X2) = 0.55
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wald.test(b = coef(lm.f.n.s.ns) , Sigma = vcov(lm.f.n.s.ns)

, L = mR, H0 = vR)

Wald test:

Chi-squared test:

X2 = 1.2, df = 2, P(> X2) = 0.55

Conclusion: χ2 = 1.2, p − value = 0.55, we do not reject
H0 : β2 = β5 = 0, conclude that the regression lines for status M and L are
not significantly different. We suggests that M and L can be described by
the same regression line.
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H0 : equal regression lines for status M and H, i.e. β1 = β2 and β4 = β5
or

β1 − β2 = 0, and β4 − β5 = 0

I Define matrix

mR =

[
0 0 1 −1 0 0
0 0 0 0 1 −1

]
, β =



β0
β3
β1
β2
β4
β5


so that mR ∗ β =

[
β1 − β2
β4 − β5

]
I We want to test mR ∗ β =

[
0
0

]
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> mR <- as.matrix(rbind(c(0, 0, 1, -1, 0, 0),

c(0, 0, 0, 0, 1, -1)))

> mR

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0 0 1 -1 0 0

[2,] 0 0 0 0 1 -1

> vR <- c(0, 0)

> vR

[1] 0 0

> wald.test(b = coef(lm.f.n.s.ns)

+ , Sigma = vcov(lm.f.n.s.ns)

+ , L = mR, H0 = vR)

Wald test:

Chi-squared test:

X2 = 0.19, df = 2, P(> X2) = 0.91
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Comments:

I The large p − value = 0.91 suggests that M and H can be described
by the same regression line with same slope and intercept.

I The results of these tests are not surprising, given our previous
analysis where we found that the status effect is not significant for all
three groups.

I Any simultaneous linear combination of parameters can be tested in
this way.
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