
Polynomial regression

Instead of transforming responses, another possibility is to either transform
predictor variables or add polynomial functions of predictor variables.

I This is especially done when the relationship between response and
predictors appears to be curvilinear

I In this case the response might be considered a polynomial (e.g.,
quadratic, cubic, etc.) function of the predictor(s).

I We can fit a quadratic, cubic, etc. relationship by defining squares,
cubes, etc., and use them as additional explanatory variables

I We can also do this with more than one explanatory variable, in
which case we also often include an interaction term. When we do
this we generally create a multicollinearity problem, which can often
be corrected by standardization or centering.
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Figure: Simulated data study
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Figure: Simulated data study 2
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Polynomial regression

If there is only one predictor variable, the model can be written as

yi = β0 + β1xi + β2x
2
i + β3x

3
i + · · · + βpx

p
i + ε

Often, only p = 2 or p = 3 is used. Here are some examples in R:

x <- seq(-3,3,0.01);

y21 <- x^2-5;

y22 <- -(x+1)^2+3;

y31 <- (x+1)^2*(x-3);

y32 <- -(x-.2)^2*(x+.5)-10;

plot( x, y21, type="l", main="Quadratics", ylab="y")

points(x, y22, type="l", lt=2)

plot( x, y31, type="l", main="Cubics", ylab="y")

points(x, y32, type="l", lt=2)
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Polynomial regression

Note that

I a polynomial relationship might be useful even if the maximum and
minimum points are not within the range of the predictor (for
example on the left hand graph if only x > 0 is observed),
——- simply because it allows a nonlinear relationship.

I A linear regression is a special case of polynomial regression. For
example, in the model

yi = β0 + β1xi + β2x
2
i + εi

——-If β2 = 0, then the model reduces to simple linear regression.
—— Testing the null hypothesis H0 : β2 = 0 in this case could be
used to decide whether the relationship is linear versus quadratic.
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Polynomial regression

Polynomial regression can be fit by using new predictor variables based on
powers of the original predictor x. Here is a toy example using powers up
to x4 with only 5 observations:

> x <- rnorm(5)

> y <- x+runif(5)

> x2 <- x^2

> x3 <- x^3

> x4 <- x^4

> myfit <- lm(y ~ x + x2 + x3 + x4)

> summary(a)

> x

[1] 0.6292986 0.6346305 -0.2228644 -1.1363222 -0.8370428

> y

[1] -0.05138843 2.54694578 0.91717318 -1.25256085 -0.66412987
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> summary(myfit)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -28.190 NA NA NA

x -145.540 NA NA NA

x2 -1.357 NA NA NA

x3 343.781 NA NA NA

x4 220.553 NA NA NA

Residual standard error: NaN on 0 degrees of freedom

Multiple R-squared: 1,Adjusted R-squared: NaN

F-statistic: NaN on 4 and 0 DF, p-value: NA
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Polynomial regression

I with n observations, a polynomial regression with p = n− 1 predictors
can exactly fit the data.
——it tends to make some extreme predictions for potential data
values that weren’t observed.

I it doesn’t allow any extra information to estimate uncertainty. As a
result, the standard errors and p-values cannot be given.

I This results in overfitting. The idea of overfitting is that the model
fits the particular observations but is unlikely to generalize to a new
data set collected from the same population.

I extrapolation beyond the range of the data can be dangerous in linear
regression, the situation is even worse in polynomial regression since it
can lead to extreme predictions.

I Another issue in polynomial regression is that measurement scale
(e.g., Celsius versus Fahrenheit), now can affect the results (p-vlaues,
predicted values, etc.).
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Polynomial regression

Amazingly, by having just one less parameter, you can suddenly get standard
errors and p-values for all parameters.

I none of the p-values indicates significance even though the curve essentially
goes through three of the five data points. With a small ratio of sample size
to parameters, it is difficult to find significance.

> a2 <- lm(y ~ x + x2 + x3)

> summary(a2)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.2830 2.5999 0.493 0.708

x 1.4618 4.7427 0.308 0.810

x2 -1.7765 7.4583 -0.238 0.851

x3 -0.9551 8.7390 -0.109 0.931
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Polynomial regression: cubic fit
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Polynomial regression: cubic fit
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Polynomial regression: cubic fit

We also see that interpolation seems more reasonable in the cubic model
compared to the quartic, but that extrapolation (beyond the range of the
data) will lead to some very extreme predictions.
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Polynomial regression: cubic fit

Although a simple linear regression is also not significant, the p-values have gone
down and the standard errors are much smaller.

> a3 <- lm(y ~ x)

> summary(a3)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.5536 0.5283 1.048 0.372

x 1.3643 0.7009 1.946 0.147

Residual standard error: 1.145 on 3 degrees of freedom

Multiple R-squared: 0.5581,Adjusted R-squared: 0.4108

F-statistic: 3.788 on 1 and 3 DF, p-value: 0.1468
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It is also possible to have two or more predictors

I Each of which could be fit with quadratic, cubic or higher order terms.

I With more predictors, you could easily end up with huge numbers of
parameters to estimate, which will require more data.
—– Usually we want as few parameters as possible, and for
polynomial regression, we usually want to just use quadratic or maybe
cubic powers if possible.

With two predictors, each of which could be quadratic, we can have the
model

yi = β0 + β1x1i + β2x2i + β3x
2
1i + β4x

2
2i + β4x1ix2i + εi

This model includes an interaction, which is still quadratic since the total
power of x1x2 is 2.
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Mooney viscosity example

As an example, the data below give the Mooney viscosity at 100 degrees
Celsius (y ) as a function of the filler level (x1) and the naphthenic oil (x2)
level for an experiment involving filled and plasticized elastomer
compounds.

> mooney[1:10,]

oil filler mooney

1 0 0 26

2 0 12 38

3 0 24 50

4 0 36 76

5 0 48 108

6 0 60 157

7 10 0 17

8 10 12 26

9 10 24 37

10 10 36 53

11 10 48 83

12 10 60 124

13 20 0 13

14 20 12 20

15 20 24 27

16 20 36 37

17 20 48 57

18 20 60 87

19 40 0 NA

20 40 12 15

21 40 24 22

22 40 36 27

23 40 48 41

24 40 60 63
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Polynomial regression
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I At each of the 4 oil levels, the relationship between the Mooney
viscosity and filler level (with 6 levels) appears to be quadratic.

I Similarly, the relationship between the Mooney viscosity and oil level
appears quadratic for each filler level (with 4 levels).

I This supports fitting the general quadratic model as a first step in the
analysis.
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The graphic plots two variables—such as Mooney viscocity against oil, and
instead of using a plotting character for each point, replaces it with the value of
the third variable. This is a clever way to get three dimensional information into
an apparently two-dimensional graph, and mostly works if you have a small
number of values in the third variable.

The plots can be generated using ggplot2() using

library(ggplot2)

p <- ggplot(mooney, aes(x = oil, y = mooney, label = filler))

p <- p + geom_text()

p <- p + scale_y_continuous(limits = c(0,

max(mooney$mooney, na.rm=TRUE)))

p <- p + labs(title="Mooney data, mooney by oil with

filler labels")

print(p)

## Warning: Removed 1 rows containing missing values (geom text).

library(ggplot2)

p <- ggplot(mooney, aes(x = filler, y = mooney, label = oil))

p <- p + geom_text()
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Plots like these can also be made in base graphics by plotting an empty plot and
then using the text() command, which is usually used to annotate graphs:

> attach(x)

> plot(oil,mooney,type="n",cex.lab=1.3,cex.axis=1.3)

> text(oil,mooney,as.character(filler))
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Polynomial regression: cubic fit
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From the plots, the relationship between viscosity and both variables appears to
be curvilinear. This suggests adding quadratic terms for both variables.

> oil2 <- oil^2

> filler2 <- filler^2

> oil.m <- lm(mooney ~ oil+filler+oil2+filler2+oil*filler)

> summary(oil.m)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 27.144582 2.616779 10.373 9.02e-09 ***

oil -1.271442 0.213533 -5.954 1.57e-05 ***

filler 0.436984 0.152658 2.862 0.0108 *

oil2 0.033611 0.004663 7.208 1.46e-06 ***

filler2 0.027323 0.002410 11.339 2.38e-09 ***

oil:filler -0.038659 0.003187 -12.131 8.52e-10 ***

---

Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1

Multiple R-squared: 0.9917,Adjusted R-squared: 0.9892

F-statistic: 405.2 on 5 and 17 DF, p-value: < 2.2e-16
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You can also use

lm.m.o2.f2 <- lm(mooney ~ oil + filler + I(oil^2) +

I(filler^2) + I(oil * filler), data = mooney)

summary(lm.m.o2.f2)

# I() is used to create an interpreted object treated

# "as is", so we can include quadratic and cubic terms in

# the formula without creating separate columns in the

#dataset of these terms
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From the output, the regression equation is

Mooney = 27.144 − 1.271 × oil + 0.437 × filler

+ 0.034 × oil2 + 0.027 × filler2 − 0.0387 × oil × filler
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To see how the interaction works, let’s predict some values.

> newoil <- c(0,10,20,30,40)

> newfiller <- c(0,0,0,0,0,60,60,60,60,60)

> newoil <- c(newoil,newoil)

> newoil2 <- newoil^2

> newfiller2 <- newfiller^2

> mydata <- data.frame(cbind(newoil,newfiller,

newoil2,newfiller2))

> names(mydata) <- c("oil","filler","oil2","filler2")

> a <- predict(oil.m,mydata)

> a

1 2 3 4 5 6 7 8

27.14458 17.79121 15.15996 19.25082 30.06379 151.72512 119.17636 93.34972

9 10

74.24519 61.86277
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> plot(mydata$oil[1:5],a[1:5],pch=16,cex=1.5,cex.lab=1.3,

cex.axis=1.3,ylim=c(0,160),xlab="oil",ylab="viscosity")

> points(mydata$oil[1:5],a[1:5],type="l")

> points(mydata$oil[1:5],a[6:10],type="l",col="red")

> points(mydata$oil[1:5],a[6:10],pch=16,cex=1.5,

col="red")

> legend(22,160,legend=c("filler=60","filler=0"),

col=c("red","black"),pch=c(16,15),cex=1.3)
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If you forget to match the variable names, here is the error you get (I often forget
to match the names):

> mydata <- data.frame(cbind(newoil,newfiller,newoil2,

newfiller2))

> a <- predict(oil.m,mydata)

Warning message:

’newdata’ had 10 rows but variables found have 24 rows
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Comments:

I all second-order terms, including interactions, are highly significant.

I R2 values are extremely high, suggesting that not much else (for example
cubic terms) would explain more of the response.

I The direction of the effects is hard to interpret because the signs change.
—– For example, the effect of oil decreases viscosity in the first order term,
but increases for the second order term, and the interaction is also negative,
suggesting that as oil level increases, increasing the filler will decrease
viscosity more, and vice versa (as filler increases, increasing oil decreases
viscosity more.

I The plot helps illustrate the idea of the interaction. The relationship
between viscosity and oil is quadratic for both levels of filler (I only plotted
the two extreme values for the filler), but this quadratic relationship depends
on the level of the filler. Similarly, one could make a plot of viscosity versus
filler, and find that the quadratic relationship depends on the oil value.
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Residual plots
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The residual plots look ok. There are potentially a couple of influential
observations (points 6 and 20), but this does not seem bad.

Another possibility is to use the log of the Mooney viscosity. In this case, the log
viscosity still seems to be quadratically related to oil, but linearly related to filler.
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Log transformation on response
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> oil.m2 <- lm(log(mooney) ~ oil + filler + oil2 +

filler2 + oil*filler)

> summary(oil.m2)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.236e+00 3.557e-02 90.970 < 2e-16 ***

oil -3.921e-02 2.903e-03 -13.507 1.61e-10 ***

filler 2.860e-02 2.075e-03 13.781 1.18e-10 ***

oil2 4.227e-04 6.339e-05 6.668 3.96e-06 ***

filler2 4.657e-05 3.276e-05 1.421 0.173

oil:filler -4.231e-05 4.332e-05 -0.977 0.342

Multiple R-squared: 0.9954,Adjusted R-squared: 0.9941
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Here the interaction term isn’t significant so we can remove it and refit the
model. The quadratic term for filler is also not signifcant (after the
interaction is removed), so we can remove that too.

> oil.m3 <- lm(log(mooney) ~ oil + filler + oil2 + filler2 )

> oil.m3

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.251e+00 3.202e-02 101.537 < 2e-16 ***

oil -4.033e-02 2.664e-03 -15.136 1.11e-11 ***

filler 2.838e-02 2.061e-03 13.773 5.32e-11 ***

oil2 4.146e-04 6.277e-05 6.605 3.34e-06 ***

filler2 3.997e-05 3.201e-05 1.248 0.228
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Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.230e+00 2.734e-02 118.139 < 2e-16 ***

oil -4.024e-02 2.702e-03 -14.890 6.26e-12 ***

filler 3.086e-02 5.716e-04 53.986 < 2e-16 ***

oil2 4.097e-04 6.356e-05 6.446 3.53e-06 ***

---

Multiple R-squared: 0.9947,Adjusted R-squared: 0.9939
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Diagnostics plots, looks good
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Both the full quadratic model and the model with log-transformed
responses fit the data very well in terms of R2 and adjusted R2. There are
pros and cons for the two models.

I Pros for the log-viscosity model are that there are fewer parameters
and that it doesn’t have an interaction term, making it easier to
interpret.

I A pro for the quadratic model is that uses the original measurement
scale, which again makes it easier to interpret in another sense,
especially if you are using it to make predictions.
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The predicted log Moody viscosity is given by

̂log(Moodyviscosity) = 3.2297 − 0.0402Oil + 0.0004Oil2 + 0.0309Filler .

I Quadratic models with two or more predictors are often used in
industrial experiments to estimate the optimal combination of
predictor values to maximize or minimize the response, over the range
of predictor variable values where the model is reasonable.
—-(This strategy is called response surface methodology.)
—–For example, we might wish to know what combination of oil level
between 0 and 40 and filler level between 0 and 60 provides the lowest
predicted Mooney viscosity (on the original or log scale). We can
visually approximate the minimizer using the data plots, but one can
do a more careful job of analysis using standard tools from calculus
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