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Generalized Linear Model (GLM)

I Generalization of ordinary linear regression model that allows
for response variables that have other than a normal
distribution (such as binary response with disease vs no
disease).

I The linear model is related to the response variable via a link
function.

I Logistic regression is a special case of GLM when the link
function is logit link.
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Admission data

#Binary response: admit, 1 admit, 0 no admission.

#Three predictor variables: gre, gpa and rank.

#variables gre and gpa are continuous.

#The variable rank is categorical

> head(ex.data)

admit gre gpa rank

1 0 380 3.61 3

2 1 660 3.67 3

3 1 800 4.00 1

4 1 640 3.19 4

5 0 520 2.93 4

6 1 760 3.00 2

what happen if we fit a simple linear regression model by using
“admit” as response variable, and “gpa” as predictor variable?
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Figure 1: Fitted line plot
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Odds ratio

I Let’s say that the probability of success is 0.8, thus

p = 0.8, q = 1− p = 0.2

I The odds of success are defined as
odds(success) = p/q = 0.8/0.2 = 4,
—- that is, the odds of success are 4 to 1.
Odds(success)

> 1, or p > 0.5 a success is more likely than a failure
= 1, or p = 0.5 same likelihood of success and failure
< 1, or p < 0.5 a success is less likely than a failure

I The odds of failure would be
odds(failure) = q/p = 0.2/0.8 = 0.25,
—-that is, the odds of failure are 1 to 4.
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I Odds ratio 1
OR1 = odds(success)/odds(failure) = 4/0.25 = 16
the odds of success are 16 times greater than for failure.

I Odds ratio 2
OR2 = odds(failure)/odds(success) = 0.25/4 = 0.0625
the odds of failure are one-sixteenth the odds of success.
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In medical examples, we often interpret the relative risk and odds
ratio. Suppose individuals can be classified according to whether
they have been exposed to a risk factor and ultimately whether
they developed a specific disease.

yi =

{
1 if developing disease
0 if not

Ei =

{
1 if exposed
0 if not

Let P(yi = 1|Ei = 1) = p1 and P(yi = 1|Ei = 0) = p2

Outcome Exposed population non-exposed population

Diseased p1 p2
Non-diseased 1− p1 1− p2
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Relative risk and odds ratio

Outcome Exposed population non-exposed population

Diseased p1 p2
Non-diseased 1− p1 1− p2

I Relative ratio
RR = p1/p2

is the probability of disease in the exposed population divided
by the probability in the non-exposed population.

I The odds of having the disease for the exposed population is
p1/(1− p1).

I The odds of having the disease for the non-exposed
population is p2/(1− p2).

I The odds ratio is

OR =
p1/(1− p1)

p2/(1− p2)
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The odds ratio is

OR =
p1/(1− p1)

p2/(1− p2)

I OR > 1→ more likely to develop diseases given exposed
versus not exposed

I OR < 1→ less likely to develop diseases given exposed versus
not exposed

I OR = 1→ as likely to develop diseases given exposed versus
not exposed
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Regression models for probability of pay bill on time

Example: credit-scoring g {P(a subject pays a bill on time) } ∼
size of the bill + annual income +occupation + mortage and debt
obligations +percentage of bills paid on time in the past + · · ·
Question: How do we relate the outcome, y (binary, pays a bill on
time or not one time) , to an exposure, x?

g(E (yi |xi ]) = g(µi ) = β0 + β1xi

E (yi |xi ] = µi = g−1(β0 + β1xi )

g() is called a link function, when g(µ) = ln

(
µ

1− µ

)
, we call the

link function a logit function, and the regression is called logistic
regression.
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Logistic Regression

I y : a binary outcome
x : explanatory variable

yi
indep∼ Bernoulli(µi )

µi = P(yi = 1|X = x) = 1− P(yi = 0|X = x)

logit(µi ) = ln

(
µi

1− µi

)
= β0 +β1xi1 +β2xi2 + · · ·+βpxi(p−1)

or

µi =
exp(β0 + β1xiβ1xi1 + β2xi2 + · · ·+ βpxi(p−1)

1 + exp(β0 + β1xiβ1xi1 + β2xi2 + · · ·+ βpxi(p−1)

I ln

(
µ

1− µ

)
is called a logit link function, logit transformed

probability
I the logit transformed probability is linearly related to x with

intercept β0 and slopes β1, · · · , βp−1
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Consider the simple logistic regression model for the disease case,

yi =

{
1 if developing disease
0 if not

, Ei =

{
1 if exposed
0 if not

I yi
indep∼ Bernoulli(µi ) where µi = P(yi = 1|Ei ) =

p(develop disease given exposure status), µi can take on
values of p1 and p2

I ln

(
µi

1− µi

)
= β0 + β1Ei

——Ei = 1, µi = p1

ln

(
p1

1− p1

)
= β0 + β1 = log odds of disease given exposed

——Ei = 0, µi = p2

ln

(
p2

1− p2

)
= β0 = log odds of disease given not exposed
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β1 = log odds of disease given exposed− log odds of disease given not exposed

= ln

(
p1

1− p1

)
− ln

(
p2

1− p2

)
= ln

(
p1/(1− p1)

p2/(1− p2)

)

eβ1 =
p1/(1− p1)

p2/(1− p2)
= OR

this is an unadjusted OR—measures association between exposure
and disease without consideration of other factors.
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More complicated model

Suppose xi is continuous, Ei is binary as before

ln

(
µi

1− µi

)
= β0 + β1Ei + β2xi

——Ei = 1, µi = p1

ln

(
p1

1− p1

)
= (β0 + β1) + β2xi

——Ei = 0, µi = p2

ln

(
p2

1− p2

)
= β0 + β2xi

I β1 measure the change in intercepts between exposed (E = 1)
and non-exposed individuals (E = 0), called adjusted
log(OR).

I β0: intercept for non-exposed individuals (E = 0)–the
“baseline group” to which other groups are compared
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I OR—measures association between exposure and disease
without consideration of other factors

I Adjusted OR—are ORs obtained from multi variable models,
which adjust effects relative to other factors included in the
model. We need to always specify what other effects are
included in model.
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Fix E and vary x → x + 1

ln

(
µ

1− µ

)
= β0 + β1E + β2(x + 1)

= β0 + β1E + β2x + β2

I β0 + β1E + β2x : log odds when X = x

I β2: increase in log odds of developing the disease when
X = x → X = x + 1 holding E fixed. This is adjusted
log(OR) for exposure, and eβ2 is the corresponding adjusted
OR.
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Another model

ln

(
µi

1− µi

)
= β0 + β1Ei + β2xi + β3(Ei ∗ xi )

a model where each exposure group has its own intercept and
slope.
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The logistic family of distributions

The logistic family of distributions has density (for any real x):

f (x |µ, σ) =
e−

x−µ
σ

σ
(

1 + e−
x−µ
σ

)2
and cdf

F (x) =
1

1 + e−
x−µ
σ

=
e

x−µ
σ

1 + e
x−µ
σ
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The logistic family of distributions

If we plug in µ = 0 and σ = 1, we get

f (x) =
e−x

(1 + e−x)2

F (x) =
1

1 + e−x
=

ex

1 + ex

Part of the motivation for logistic regression is we imagine that
there is some threshold t, and if T ≤ t, then the event occurs, so
Y = 1. Thus, P(Y = 1) = P(T ≤ t) where T has this logistic
distribution, so the CDF of T is used to model this probability.
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Figure 2: Shape of the logistic curve

The shape suggests that for some values of the predictor(s), the
probability remains low. Then, there is some threshhold value of
the predictor(s) at which the estimated probability of event begins
to increase.
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The logistic distribution

The logistic distribution looks very different from the normal
distribution but has similar (but not identical) shape and cdf when
plotted. For µ = 0 and σ = 1, the logistic distribution has mean 0
but variance π3/3 so we will compare the logistic distribution with
mean 0 and σ = 1 to a N(0, π2/3).

The two distributions have the same first, second, and third
moment, but have different fourth moments, with the logistic
distribution being slightly more peaked. The two densities disagree
more in the tails also, with the logistic distribution having larger
tails (probabilities of extreme events are larger).
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The logistic distribution

In R, you can get the density, cdf, etc. for the logistic distribution
using

> dlogis()

> plogis()

> rlogis()

> qlogis()

As an example

> plogis(-8)

[1] 0.0003353501

> pnorm(-8,0,pi/sqrt(3))

[1] 5.153488e-06
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Logistic versus normal
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Figure 3: Pdfs of logistic versus normal distributions with the same mean
and variance
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Logistic versus normal
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Figure 4: Cdfs of logistic versus normal distributions with the same mean
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Example continued: admission data

#Binary response: admit, 1 admit, 0 no admission.

#Three predictor variables: gre, gpa and rank.

#variables gre and gpa are continuous, rank is categorical

> head(ex.data)

admit gre gpa rank

1 0 380 3.61 3

2 1 660 3.67 3

3 1 800 4.00 1

4 1 640 3.19 4

5 0 520 2.93 4

6 1 760 3.00 2

Interest: whether gpa of the student was related to the probability
that the student got admitted.

logit(µi ) = β0 + β1gpai

where µi = P(ith student got admitted |gpai )
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> nrow(ex.data)

[1] 400

> tapply(ex.data$gpa,ex.data$rank,mean)

1 2 3 4

3.453115 3.361656 3.432893 3.318358

> tapply(ex.data$gre,ex.data$rank,mean)

1 2 3 4

611.8033 596.0265 574.8760 570.1493

> xtabs(~admit + rank, data = ex.data)

rank

admit 1 2 3 4

0 28 97 93 55

1 33 54 28 12
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Fitting glm in R, we have the following results

myfit_gpa <- glm(admit ~ gpa, data = ex.data,

family = "binomial")

summary(myfit_gpa)

Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.3576 1.0353 -4.209 2.57e-05 ***

gpa 1.0511 0.2989 3.517 0.000437 ***

I The fitted model is

logit(µi ) = −4.3576 + 1.0511 ∗ gpai

I The column labelled “z value” is the Wald test statistic.
3.517 = 1.0511/0.2989, since p-value << 0, reject
H0 : β1 = 0, conclude that GPA has an significant effect on
log odds of admission.

27 / 66



2.5 3.0 3.5 4.0

−2
.0

−1
.5

−1
.0

−0
.5

Fitted model on log odds scale

gpa

log
 od

ds
 of

 ad
mi

ss
ion

Figure 5: Fitted model on log-odds scale
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Figure 6: Fitted model on odds scale
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Figure 7: Fitted model on probability scale
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Confidence intervals for the coefficients and the odds ratios

logit(µi ) = β0 + β1xi1 + · · ·+ βp−1xi(p−1) = x′iβ

I A (1− α)× 100% confidence interval for
βj , j = 0, 1, · · · , p − 1 can be calculated as

β̂j ± Z1−α/2ŝe(β̂j)

I The (1− α)× 100% confidence interval for the odds ratio
over a one unit change in xj is[

exp(β̂j − Z1−α/2ŝe(β̂j)), exp(β̂j + Z1−α/2ŝe(β̂j))
]
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Example

Fit admission status with gre, gpa and rank

###fit data with all variables

myfit <- glm(admit ~ gre + gpa + rank, data = ex.data,

family = "binomial")

summary(myfit)

Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) -3.989979 1.139951 -3.500 0.000465 ***

## gre 0.002264 0.001094 2.070 0.038465 *

## gpa 0.804038 0.331819 2.423 0.015388 *

## rank2 -0.675443 0.316490 -2.134 0.032829 *

## rank3 -1.340204 0.345306 -3.881 0.000104 ***

## rank4 -1.551464 0.417832 -3.713 0.000205 ***
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Example

I All predictors are significant, with gpa being a slightly
stronger predictor than GRE score.

I The log-odds of being accepted increases by .804 for every
unit increase in GPA when other variables held constant.
——- Of course a unit increase in GPA (from 3.0 to 4.0) is
huge.

I The log-odds of being admitted to grad school is
−3.99+.002gre+.804gpa−.675rank2−1.34rank3−1.55rank4,
so the probability of being admitted to grad school p is

p =
e(−3.99+.002gre+.804gpa−.675rank2−1.34rank3−1.55rank4)

1 + e(−3.99+.002gre+.804gpa−.675rank2−1.34rank3−1.55rank4)

Note that the default is that the school has rank1.
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Example

I Fitted probability
The first observation is

> ex.data[1,]

admit gre gpa rank

1 0 380 3.61 3

For this individual, the predicted probability of admission is

p =
e−3.99+.002(380)+.804(3.61)−1.34

1 + e−3.99+.002(380)+.804(3.61)−1.34
= 0.1726

(If you only use as many decimals as I did here, you’ll get
0.159 due to round off error).

You can get the predicted probabilities for this individual by

> myfit$fitted.values[1]

1

0.1726265
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Figure 8: Fitted model on probability scale
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Example

> names(myfit)

[1] "coefficients" "residuals" "fitted.values"

[4] "effects" "R" "rank"

[7] "qr" "family" "linear.predictors"

[10] "deviance" "aic" "null.deviance"

[13] "iter" "weights" "prior.weights"

[16] "df.residual" "df.null" "y"

[19] "converged" "boundary" "model"

[22] "call" "formula" "terms"

[25] "data" "offset" "control"

[28] "method" "contrasts" "xlevels"

>
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I odds ratio with one unit change in gpa when all other
variables are held constant is

exp(0.804038) = 2.2345448

I 95% CI of odds ratio for one unit change in gpa is
[exp(0.8040− 1.96 ∗ 0.3318), exp(0.8040 + 1.96 ∗ 0.3318)] =
[e0.1537, e1.4543] = [1.1661, 4.2816]
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exp(cbind(OR = coef(myfit), confint(myfit)))

## Waiting for profiling to be done...

## OR 2.5 % 97.5 %

## (Intercept) 0.0185001 0.001889165 0.1665354

## gre 1.0022670 1.000137602 1.0044457

## gpa 2.2345448 1.173858216 4.3238349

## rank2 0.5089310 0.272289674 0.9448343

## rank3 0.2617923 0.131641717 0.5115181

## rank4 0.2119375 0.090715546 0.4706961
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Model selection

myfit0<-glm(admit ~ 1, data = ex.data, family = "binomial")

upper<-formula(~gre+gpa+rank,data=ex.data)

model.aic = step(myfit0, scope=list(lower= ~., upper= upper))

## Start: AIC=501.98

## admit ~ 1

##

## Df Deviance AIC

## + rank 3 474.97 482.97

## + gre 1 486.06 490.06

## + gpa 1 486.97 490.97

## <none> 499.98 501.98

The Akaike information criterion (AIC) is an estimator of the
relative quality of statistical models for a given set of data.

I Given a collection of models for the data, AIC estimates the
quality of each model, relative to each of the other models.

I AIC provides a means for model selection.
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## Step: AIC=472.88

## admit ~ rank + gpa

##

## Df Deviance AIC

## + gre 1 458.52 470.52

## <none> 462.88 472.88

## - gpa 1 474.97 482.97

## - rank 3 486.97 490.97

##

## Step: AIC=470.52

## admit ~ rank + gpa + gre

##

## Df Deviance AIC

## <none> 458.52 470.52

## - gre 1 462.88 472.88

## - gpa 1 464.53 474.53

## - rank 3 480.34 486.34
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I The smallest AIC = 470.52, with variables rank, gpa and gre

I The second smallest one with AIC =472.88, with variables
rank and gpa

I By model comparison for these two models, we would like to
choose the full model with rank, gpa and gre.
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myfit <- glm(admit ~ gre + gpa + rank, data = ex.data,

family = "binomial")

myfit3<-glm(admit ~ gpa+rank, data = ex.data,

family = "binomial")

anova(myfit3,myfit)

qchisq(0.95,1)

pchisq(4.3578,1,lower.tail = FALSE)

> anova(myfit3,myfit)

Analysis of Deviance Table

Model 1: admit ~ gpa + rank

Model 2: admit ~ gre + gpa + rank

Resid. Df Resid. Dev Df Deviance

1 395 462.88

2 394 458.52 1 4.3578

> qchisq(0.95,1)

[1] 3.841459

> pchisq(4.3578,1,lower.tail = FALSE)

[1] 0.03683985 42 / 66



Wald test

#test that the coefficient for rank=2 is equal to the

coefficient for rank=3

coef(myfit)

(Intercept) gre gpa rank2

-3.989979073 0.002264426 0.804037549 -0.675442928

rank3 rank4

-1.340203916 -1.551463677

l <- cbind(0, 0, 0, 1, -1, 0)

wald.test(b = coef(myfit), Sigma = vcov(myfit), L = l)

## Wald test:

## Chi-squared test:

## X2 = 5.5, df = 1, P(> X2) = 0.019

Since p-value for the test is 0.019, conclude that the coefficient for
rank=2 is not equal to the coefficient for rank=3, or there is a
significant difference between the effect on log odds of admission
from rank 2 and rank 3 university applicants.
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Assessment of model fit

I Model selection

I Residuals: can be useful for identifying potential outliers
(observations not well fit by the model) or misspecified
models. Residuals not very useful in logistic regression.
—-Raw residual
—Deviance residuals
—-Pearson residuals

I Influence
—–Cook’s distance: measures the influent of case i on all of
the fitted gi s
—–Leverage

I Prediction
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Example: logistic regression

log
µi

1− µi
= β̂0 + β̂1xi1 + β̂2xi2

I µ̂i : fitted probabilities

I raw residual: yi − µ̂i

I Pearson residuals: Γi =
yi − µ̂i√
µ̂i (1− µ̂i )

—this is based on the idea of subtracting off the mean and dividing
by the standard deviation
—-if we replace µ̂i by µi , then Γi has mean 0 and variance 1.

I Deviance residuals: based on the contribution of each point to the
likelihood
—For logistic regression, l =

∑n
i=1

{
yi logµ̂i + (1− yi )log(̂1− µi )

}
—-

dj = sign(yj − µ̂j)

√
−2
{
yi logµ̂i + (1− yi )log(̂1− µi )

}
if yi = 1, sign(yj − µ̂j) = 1
—-if yi = 0, sign(yj − µ̂j) = −1
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I Each of these type of residuals can be squared and added
together to create an (residual sum of squares) RSS-like
statistic
—-Deviance: D =

∑n
i=1 d

2
i

—-Pearson statistic: X 2 =
∑n

i=1 Γ2
i
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I Influential data, if removing the observation substantially
changes the estimate of coefficients or fitted probabilities

I An observation with an extreme value on a predictor variable
is called a point with high leverage.
—– Leverage is a measure of how far an independent variable
deviates from its mean. In fact, the leverage indicates the
geometric extremeness of an observation in the
multi-dimensional covariate space.
—-These leverage points can have an unusually large effect on
the estimate of logistic regression coefficients
—–Leverages greater than 2h̄ or 3h̄ cause concerns, where
h̄ = p/n
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plot(hatvalues(myfit))
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Figure 9: Leverage v.s index (myfit)
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> highleverage <- which(hatvalues(myfit) > .045)

#0.45 = 3*p/n = 3*6/400

> hatvalues(myfit)[highleverage]

373

0.04921401

> ex.data[373,]

admit gre gpa rank

373 1 680 2.42 1

> myfit$fit[373]

373

0.3765075

> mgre

1 2 3 4

611.8033 596.0265 574.8760 570.1493

> mgpa

1 2 3 4

3.453115 3.361656 3.432893 3.318358
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I Cook’s distance
If β̂ is the MLE of β under the model

g(µi ) = x′iβ

and β̂(−j) is the MLE based on the data but holding out the
jth observation, then cooks distance for case j is

ck =
1

p
(β̂ − β̂(−j))

′[V̂ar(β̂)]−1(β̂ − β̂(−j))

=
1

p
(β̂ − β̂(−j))

′X′ŴX(β̂ − β̂(−j))

Some package doesn’t scale cj by p.
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plot(cooks.distance(myfit))
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Figure 10: Cooks distance v.s index (myfit)
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> max(cooks.distance(myfit))

[1] 0.01941192

> highcook <- which((cooks.distance(myfit)) > .05)

#0.05 is simply a very small critical number in $F$

distribution

> cooks.distance(myfit)[highcook]

named numeric(0)
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Comments:

I In a binomial setup where all ni are big the standardized
deviance residuals should be closed to Gaussian. The normal
probability plot can be used to check this.

I In a binomial setup where xi (number of successes) are very
small in some of the groups numerical problems sometimes
occur in the estimation. This is often seen in very large
standard errors of the parameter estimates.
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I Residuals are less informative for logistic regression than they
are for linear regression:
——yes/no (1 or 0) outcomes contain less information than
continuous ones
—– the fact that the adjusted response depends on the fit
hampers our ability to use residuals as external checks on the
model

I We are making fewer distributional assumptions in logistic
regression, so there is no need to inspect residuals for, say,
skewness or non constant variance

I Issues of outliers and influential observations are just as
relevant for logistic regression and GLM models as they are for
linear regression

I If influential observations are present, it may or may not be
appropriate to change the model, but you should at least
understand why some observations are so influential
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Prediction

Fitted probabilities:

###prediction, fitted probabilities

myfit$fit[1:20] #fitted probabilities

## 1 2 3 4 5

## 0.17262654 0.29217496 0.73840825 0.17838461 0.11835391

6 7 8 9 10

0.36996994 0.41924616 0.21700328 0.20073518 0.51786820

## 11 12 13 14 15

##0.37431440 0.40020025 0.72053858 0.35345462 0.69237989

## 16 17 18 19 20

## 0.18582508 0.33993917 0.07895335 0.54022772 0.57351182
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Predicted probabilities:

mgre<-tapply(ex.data$gre, ex.data$rank, mean)

# mean of gre by rank

mgpa<-tapply(ex.data$gpa, ex.data$rank, mean)

# mean of gpa by rank

newdata1 <- with(ex.data, data.frame(gre = mgre,

gpa = mgpa, rank = factor(1:4)))

newdata1

## gre gpa rank

## 1 611.8033 3.453115 1

## 2 596.0265 3.361656 2

## 3 574.8760 3.432893 3

## 4 570.1493 3.318358 4
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newdata1$rankP <- predict(myfit, newdata = newdata1,

type = "response")

newdata1

## gre gpa rank rankP

## 1 611.8033 3.453115 1 0.5428541

## 2 596.0265 3.361656 2 0.3514055

## 3 574.8760 3.432893 3 0.2195579

## 4 570.1493 3.318358 4 0.1704703

I The predicted probability of being accepted into a graduate
program is 0.5429 for students from the highest prestige
undergraduate institutions (rank= 1), with gre = 611.8 and
gpa=3.45 .
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Translate the estimated probabilities into a predicted
outcome

1. Use 0.5 as a cutoff.
—–if µ̂i for a new observation is greater than 0.5, its
predicted outcome is y = 1.
—- if µ̂i for a new observation is less than or equal to 0.5, its
predicted outcome is y = 0.

I This approach is reasonable when
(a) it is equally likely in the population of interest that the
outcomes 0 and 1 will occur, and
(b) the costs of incorrectly predicting 0 and 1 are
approximately the same.
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2. Find the best cutoff for the data set on which the logistic
regression model is based.
——we evaluate different cutoff values and for each cutoff
value, calculate the proportion of observations that are
incorrectly predicted.
——select the cutoff value that minimizes the proportion of
incorrectly predicted outcomes.

I This approach is reasonable when
(a) the data set is a random sample from the population of
interest, and
(b) the costs of incorrectly predicting 0 and 1 are the same.
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Example:

logit(µi ) = β0 + β1grei + β2gpai + β3x2i + β4x3i + β5x4i

if we use the cutoff of 0.5, we get the following results

> table(ex.data$admit,fitted(myfit)>.5)

FALSE TRUE

0 254 19

1 97 30

> t1<-table(ex.data$admit,fitted(myfit)>.5)

> (t1[1,2]+t1[2,1])/sum(t1)

[1] 0.29

Recall that 1 means admission, 0 no admission. We misclassify
people (97+19)/400=29% of the time.
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Instead, let’s try finding a classification rule that minimizes
misclassification in our data set.

for(p in seq(.15,.9,.05))

{t1<-table(ex.data$admit,fitted(myfit)>p)

cat(p,(t1[1,2]+t1[2,1])/sum(t1),"\n")}

0.35 0.325

0.4 0.3

0.45 0.3075

0.5 0.29

0.55 0.29

0.6 0.3025

0.65 0.3075

0.7 0.315

Error in t1[2, 1] : subscript out of bounds

> max(fitted(myfit)) [1] 0.7384082

It looks like we can’t do much better than 29%.
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Receiver operating characteristic (ROC) curve

ROC curve is a plot of 1-specificity against sensitivity.

I The ROC curve is created by plotting the true positive rate
(TPR) against the false positive rate (FPR) at various
threshold settings.

I The true-positive rate is also known as sensitivity. The
false-positive rate is also known as the fall-out or probability
of false alarm, and can be calculated as (1 − specificity).

I The ROC curve is the sensitivity as a function of fall-out.
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#Roc curve

p1<-matrix(0,nrow=12,ncol=3)

i=1

for(p in seq(0.15,.7,.05)){

t1<-table(ex.data$admit,fitted(myfit)>p)

p1[i,]=c(p,1-(t1[1,1])/sum(t1[1,]),(t1[2,2])/sum(t1[2,]))

i=i+1

}

plot(p1[,2],p1[,3],type = "o",

xlab="1-specificity/false positive rate",

ylab="sensitivity/true positive rate")

text(p1[,2],p1[,3],p1[,1],cex=1.2)

#p1[,2] false positive rate (type I error)

#p1[,3] true postive rate (power)
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Figure 11: Cooks distance v.s index (myfit)
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dp1<-data.frame(p1)

names(dp1)<-c("cutt off prob","type I error","power")

print(dp1)

> print(dp1)

cutt off prob type I error power

1 0.15 0.835164835 0.96850394

2 0.20 0.695970696 0.85826772

3 0.25 0.553113553 0.79527559

4 0.30 0.410256410 0.66929134

5 0.35 0.278388278 0.57480315

6 0.40 0.179487179 0.44094488

7 0.45 0.128205128 0.30708661

8 0.50 0.069597070 0.23622047

9 0.55 0.047619048 0.18897638

10 0.60 0.025641026 0.10236220

11 0.65 0.018315018 0.07086614

12 0.70 0.003663004 0.01574803
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Comments:

I The area under the ROC curve can give us insight into the
predictive ability of the model.

I If it is equal to 0.5 (an ROC curve with slope = 1), the model
can be thought of as predicting at random.

I Values close to 1 indicate that the model has good predictive
ability.

I It can also be thought of as a plot of the Power as a function
of the Type I Error of the decision rule (when the performance
is calculated from just a sample of the population, it can be
thought of as estimators of these quantities).
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