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PCA

Principal component analysis (PCA) is a multivariate technique for
understanding variation, and for summarizing measurement data possibly
through variable reduction.

I Principal components (the variables created in PCA) are sometimes
used in addition to, or in place of, the original variables in certain
analyses.

I Given data on p variables or features X1,X2, · · · ,Xp , PCA uses a
rotation of the original coordinate axes to produce a new set of p
uncorrelated variables, called principal components,
——-that are unit-length linear combinations of the original variables.
—– A unit-length linear combination a1X1 + a2X2 + · · · + apXp has
a21 + a22 + · · · + a2p = 1.

Chapters 13: Principal Component Analysis (PCA)Stat 428/528: Advanced Data Analysis 2 April 17, 2019 2 / 40



The idea of principal components is to find linear combinations of variables
that explain variation in the data.

Typically, we have a single sample and many variables, all of which are
considered random.

Principal components is generally used more to describe the data rather
than doing inference, and so doesnt assume that the data are multivariate
normal, although the ideas are easier to visualize when the data is
multivariate normal and 2-dimensional.
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A crude example for the chile data, is that if we just looked at length and
width, we might construct two new variables:
size = length+width
shape = length - width

I we’ve transformed the two variables of length and width into two new
variables, size and shape.
—–This doesnt reduce the dimensions of the data,
—–but these two new variables might give a nice way to interpret the
variation in the data,
—–and they dont lose any of the information in the original data.

I Typically, with principal components, we transform n observations of
p variables into n observations of a new set of p variables, where the
new variables are linear combinations of the old variables.
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The principal components have the following properties.

I The first principal component

PRIN1 = a11X1 + a12X2 + · · · + a1pXp

has the largest variability among all unit-length linear combinations of
the original variables.

I The second principal component

PRIN2 = a21X1 + a22X2 + · · · + a2pXp

has the largest variability among all unit-length linear combinations of
X1,X2, · · · ,Xp that are uncorrelated with PRIN1
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I In general, the j th principal component PRINj for j = 1, 2, · · · , p, has
the largest variability among all unit- length linear combinations of the
features that are uncorrelated with PRIN1, PRIN2, . . . , PRIN(j-1).

I The last or p th principal component PRINp has the smallest
variability among all unit-length linear combinations of the features.
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Example: Temperature Data
The following temperature example includes mean monthly temperatures
in January and July for 64 U.S. cities.

> head(temp)

city january july id

1 mobile 51.2 81.6 1

2 phoenix 51.2 91.2 2

3 little rock 39.5 81.4 3

4 sacramento 45.1 75.2 4

5 denver 29.9 73.0 5

6 hartford 24.8 72.7 6
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The princomp() procedure is used for PCA.

I By default the principal components are computed based on the
covariance matrix.

I The correlation matrix may also be used with the cor = TRUE option.

I The principal component scores are the values of the principal
components across cases.

I The principal component scores PRIN1, PRIN2, . . . , PRINp are
centered to have mean zero.
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> # perform PCA on covariance matrix

> temp.pca <- princomp( ~ january + july, data = temp)

> # standard deviation and proportion of variation for

each component

> summary(temp.pca)

Importance of components:

Comp.1 Comp.2

Standard deviation 12.3217642 3.0004557

Proportion of Variance 0.9440228 0.0559772

Cumulative Proportion 0.9440228 1.0000000

> # coefficients for PCs

> loadings(temp.pca)

Loadings:

Comp.1 Comp.2

january -0.939 0.343

july -0.343 -0.939
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Comp.1 Comp.2

SS loadings 1.0 1.0

Proportion Var 0.5 0.5

Cumulative Var 0.5 1.0

> # scores are coordinates of each observation on PC scale

> head(temp.pca$scores)

Comp.1 Comp.2

1 -20.000106 0.9239612

2 -23.291460 -8.0941867

3 -8.940669 -2.8994977

4 -12.075589 4.8446790

5 2.957414 1.7000283

6 7.851160 0.2333138
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PCA is effectively doing a location shift (to the origin, zero) and a rotation
of the data.
When the correlation is used for PCA (instead of the covariance), it also
performs a scaling so that the resulting PC scores have unit-variance in all
directions.
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Figure: Plot original data with PCA vectors overlayed
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Figure: plot PCA scores (data on PC-scale centered at 0)
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Some comments on the output:

1. You can visualize PCA when p = 2.
——-In the temperature plot, the direction of maximal variability
corresponds to the first PC axis.
—– The PRIN1 score for each city is obtained by projecting the
temperature pairs perpendicularly onto this axis.
——The direction of minimum variation corresponds to the second
PC axis, which is perpendicular to the first PC axis.
——The PRIN2 score for each city is obtained by projecting the
temperature pairs onto this axis.
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2. The total variance is the sum of variances for the monthly
temperatures: 163.38 = 137.18 + 26.20.

> # variance of data (on diagonals,covariance of off-diags)

> var(temp[,c("january","july")])

january july

january 137.1811 46.72910

july 46.7291 26.20035

> # sum of variance

> sum(diag(var(temp[,c("january","july")])))

[1] 163.3814

> # variance of PC scores

> var(temp.pca$scores)

Comp.1 Comp.2

Comp.1 1.542358e+02 1.831125e-15

Comp.2 1.831125e-15 9.145635e+00

> # sum is same as original data

> sum(diag(var(temp.pca$scores)))

[1] 163.3814
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> eigen(var(temp[,c("january","july")]))

eigen() decomposition

$values

[1] 154.235808 9.145635

$vectors

[,1] [,2]

[1,] -0.9393904 0.3428493

[2,] -0.3428493 -0.9393904
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3. The eigenvalues of the covariance matrix are variances for the PCs.
The variability of
PRIN1 = +0.939 JAN + 0.343 JULY
is 154.236.

The variability of
PRIN2 =-0.343 JAN + 0.939 JULY
is 9.146.

The proportion of the total variability due to PRIN1 is 0.944 =
154.23/163.38.

The proportion of the total variability due to PRIN2 is 0.056 =
9.146/163.38.

4. Almost all of the variability (94.4%) in the original temperatures is
captured by the first PC. The second PC accounts for the remaining
5.6% of the total variability.
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5. PRIN1 weights the January temperature about three times the July
temperature. This is sensible because PRIN1 maximizes variation
among linear combinations of the January and July temperatures.
January temperatures are more variable, so they are weighted heavier
in this linear combination.

6. The PCs PRIN1 and PRIN2 are standardized to have mean zero. This
explains why some PRIN1 scores are negative, even though PRIN1 is
a weighted average of the January and July temperatures, each of
which is non-negative.
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PCA on Correlation Matrix

The features are standardized to have mean zero and variance one by
using the Z-score transformation: (Obs Mean)/Std Dev. The PCA is then
performed on the standardized data.

temp.z <- temp

# manual z-score

temp.z$january <- (temp.z$january - mean(temp.z$january))

/ sd(temp.z$january)

# z-score using R function scale()

temp.z$july <- scale(temp.z$july)

# the manual z-score and scale() match

all.equal(temp.z$january, as.vector(scale(temp.z$january)))

# scale() includes attributes for the mean() and sd() used

for z-scoring

str(temp.z)

head(temp.z)
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> head(temp.z)

city january july id

1 mobile 1.6311459 1.17005226 1

2 phoenix 1.6311459 3.04555476 2

3 little rock 0.6322075 1.13097929 3

4 sacramento 1.1103319 -0.08028274 4

5 denver -0.1874344 -0.51008540 5

6 hartford -0.6228691 -0.56869485 6
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> # perform PCA on correlation matrix

> temp.pca2 <- princomp( ~ january + july, data = temp,

cor = TRUE)

> # standard deviation and proportion of variation for each component

> summary(temp.pca2)

Importance of components:

Comp.1 Comp.2

Standard deviation 1.3339592 0.4696305

Proportion of Variance 0.8897236 0.1102764

Cumulative Proportion 0.8897236 1.0000000

> # coefficients for PCs

> loadings(temp.pca2)

Loadings:

Comp.1 Comp.2

january 0.707 -0.707

july 0.707 0.707
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Comp.1 Comp.2

SS loadings 1.0 1.0

Proportion Var 0.5 0.5

Cumulative Var 0.5 1.0

> # scores are coordinates of each observation on

PC scale

> head(temp.pca2$scores)

Comp.1 Comp.2

1 1.9964045 -0.3286199

2 3.3330689 1.0080444

3 1.2566173 0.3554730

4 0.7341125 -0.8485470

5 -0.4971200 -0.2299523

6 -0.8492236 0.0386098
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The standardized features are dimensionless, so the PCs are not influenced
by the original units of measure, nor are they affected by the variability in
the features.

The only important factor is the correlation between the features, which is
not changed by standardization.

The PCs from the correlation matrix are
PRIN1 = +0.707 JAN + 0.707 JULY
and
PRIN2 = - 0.707 JAN + 0.707 JULY.
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PCA is an exploratory tool, so neither a PCA on the covariance matrix nor
a PCA on the correlation matrix is always the “right” method. You can do
both and see which analysis is more informative.
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Interpreting Principal Components

The coefficients or loadings in a principal component reflect the relative
contribution of the features to the linear combination.
——Most researchers focus more on the signs of the coefficients than on
the magnitude of the coefficients.
——The principal components are then interpreted as weighted averages
or comparisons of weighted averages.
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Example:
The difference Z = X − Y is a comparison of X and Y .

I The sign and magnitude of Z indicates which of X and Y is larger,
and by how much.

I Z = 0 if and only if X = Y , whereas Z < 0 when X < Y and Z > 0
when X > Y .
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In the temperature data, PRIN1 is a weighted average of January and July
temperatures:
PRIN1 = +0.94 JAN + 0.34 JULY.
PRIN2 is a comparison of January and July temperatures:
PRIN2 = - 0.34 JAN + 0.94 JULY.

I Principal components often have positive and negative loadings when
p ≥ 3.

I To interpret the components, group the features with + and - signs
together and then interpret the linear combination as a comparison of
weighted averages.

I You can often simplify the interpretation of principal components by
mentally eliminating features from the linear combination that have
relatively small (in magnitude) loadings or coefficients. This strategy
does not carry over to all multivariate analyses, so I will be careful
about this issue when necessary.
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Example: Painted turtle shells

Jolicouer and Mosimann gave the length, width, and height in mm of the
carapace (shell) for a sample of 24 female painted turtles.

> head(shells)

length width height

1 98 81 38

2 103 84 38

3 103 86 42

4 105 86 42

5 109 88 44

6 123 92 50

Chapters 13: Principal Component Analysis (PCA)Stat 428/528: Advanced Data Analysis 2 April 17, 2019 25 / 40



Figure: Scatterplot of painted turtle shells)
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The plots show that the shell measurements are strongly positively
correlated, which is not surprising.
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Figure: Scatterplot of painted turtle shells)
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PCA on shells using covariance matrix

> # perform PCA on covariance matrix

> shells.pca <- princomp( ~ length + width + height,

data = shells)

> # standard deviation and proportion of variation for each

component

> summary(shells.pca)

Importance of components:

Comp.1 Comp.2 Comp.3

Standard deviation 25.4970668 2.547081962 1.653745717

Proportion of Variance 0.9860122 0.009839832 0.004148005

Cumulative Proportion 0.9860122 0.995851995 1.000000000

> # coefficients for PCs
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> loadings(shells.pca)

Loadings:

Comp.1 Comp.2 Comp.3

length 0.814 0.555 -0.172

width 0.496 -0.818 -0.291

height 0.302 -0.151 0.941

Comp.1 Comp.2 Comp.3

SS loadings 1.000 1.000 1.000

Proportion Var 0.333 0.333 0.333

Cumulative Var 0.333 0.667 1.000
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The three principal components from the raw data are given below.

I PRIN1 = 0.81 Length + 0.50 Width + 0.30 Height
——-a weighted average of the carapace measurements, and can be
viewed as an overall measure of shell size.
——As PC1 increases, length, width and height increase

I PRIN2 = -0.55 Length + (0.82 Width + 0.15 Height)
——measures of shape, a comparison of length with an average of
width and height
——As PC2 increases, width and height increase, while length
decreases.

I PRIN3 = -(0.17 Length + 0.29 Width) + 0.94 Height
——- measures of shape, a comparison of height with length and
width
——-As PC3 increases, height increase, while length and width
decrease.
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I Jolicouer and Mosimann argue that the size of female turtle shells can
be characterized by PRIN1 with little loss of information
—— because this linear com- bination accounts for 98.6% of the
total variability in the measurements.

I The carapace measurements are positively correlated with each other,
so larger lengths tend to occur with larger widths and heights.
—–The primary way the shells vary is with regards to their overall
size, as measured by a weighted average of length, width, and height.
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How many components to keep

There are four typical criteria

I Keep enough principal components so that the proportion of variance
explained meets a threshold, e.g., 80% or 90%.

I Keep components with larger than average eigenvalues, λ̄ =
1

p

∑
i

λi

I Use a scree graph, plotting λi against i , and see where there is a large
break in the eigenvalues

I Test for significance of larger components
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Figure: Scatterplot of painted turtle shells)
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PRIN1 dominate the contribution in explaining variabilities.
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# eigenvalues and eigenvectors of covariance matrix

give PC variance and loadings

>eigen(var(shells[,c("length","width","height")]))

eigen() decomposition

$values

[1] 678.365651 6.769697 2.853783

$vectors

[,1] [,2] [,3]

[1,] 0.8138808 0.5548963 -0.1723025

[2,] 0.4961059 -0.8180268 -0.2910518

[3,] 0.3024516 -0.1514012 0.9410636

λ̄ = (678.37 + 6.77 + 2.85)/3 = 229.33, only λ1 = 678.37 > λ̄, suggest
keeping the first component.
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Large break occurs at i = 1, keep one component.
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Two-dimensional plots of PC1 against PC2
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I No. 24 obsn has the largest PC1, which means overall measure of
shell size is large.

I No. 24 obsn has small PC2, indicating when length is large, average
of width and height is small

I With increase of length, PC1 increase, while PC2 increase and then
decrease.

> shells[24,]

length width height id

24 177 132 67 24

> cbind(mean(shells$length), mean(shells$width),

mean(shells$height))

[,1] [,2] [,3]

[1,] 136.0417 102.5833 52.04167
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Two-dimensional plots of PC1 against PC3, and PC2 against PC3
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