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Chapter 1 Linear Regression with One Predictor Variable

Statisticians typically analyze data by creating probability models

for the data.

• A model for the data is simply a statement of the assumptions

• Assumptions about the data: typically, the observations are independent,

have equal variances, and that either the observations are normally distrib-

uted or involve large sample sizes

• Point estimation

• Interval estimation: confidence intervals, prediction intervals

• Tests of a null hypothesis

• Validity of the model: diagnostics
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Inference on single parameters: four things

1. the parameter of interest, Par

2. the estimate of the parameter, Est

3. the standard error of the estimate, SE(Est)

4. the appropriate reference distribution

Est - Par

SE(Est)

has a distribution that is some member of the family of t distri-

butions, say t(df), where df specifies the degrees of freedom.
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Linear Regression with One Predictor Variable

Example: Price Analysis for Diamond Rings

Variables

• Response variable (dependent variable) Y : price in dollars;

• Predictor variable (independent variable) X : weight of dia-

mond in carats;

• Want to discover the relationship between price for diamond

rings and weight of diamond in carats
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Regression analysis

• A statistical methodology that utilizes the relation between re-

sponse variable and predictor variable, so that a response vari-

able can be predicted from the predictor variables

• The term “regression” was coined by Francis Galton (1822-

1911, England) to describe a biological phenomenon. The

phenomenon was that the heights of descendants of tall an-

cestors tend to regress down towards a normal average (a phe-

nomenon also known as regression toward the mean).
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• Galton’s work was later extended by Yule, Pearson and Fisher

to a more general statistical context.
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Relations between variables

Functional relation between two variables: expressed by a math-

ematical formula

Example: consider a product’s sale

• y: Dollar sales

• x: Number of units sold

• Selling price: $2 per unit

• The relation between dollar sales and number of units sold is

expressed by the equation y = 2x
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Statistical relation between two variables

• Not a perfect relation

• In general, the observations for a statistical relation do not fall

directly on the curve of relationship

• Statistical relation could be very useful, even though they do

not have the exactitude of a functional relation
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Example: A person’s muscle mass is expected to decrease

with age. To explore this relationship in women, a nutrition-

ist randomly selected 15 women from each 10-year age group,

beginning with age 40 and ending with age 79 with a total num-

ber of 60 women.

• Scatterplot of data
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• In statistical terminology, each point in the scatter plot repre-

sents a trial or a case

• Plot suggests a negative relation between age and muscle mass

in women

• Clearly, the relation is not a perfect one

• Variation in muscle mass is not accounted for by age
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Plot a line of relationship that describes the statistical relation

between muscle mass and age
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• The line indicates the general tendency by which muscle mass

vary with age

• Most of the points do not fall directly on the line of statistical

relationship

• The scattering of points around the line represents variation in

muscle mass that is not associated with age and that is usually

considered to be of a random nature
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Simple linear regression and multiple linear regression

• One response variable for both simple linear and multiple linear

regression

• Simple linear regression—one predictor variable

• Multiple linear regression—more than one predictor variable
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Regression models

A regression model is a formal means of expressing

• A tendency of the response variable Y to vary with the predic-

tor variable X in a systematic fashion

• A scattering of points around the curve of statistical relationship

by assuming that

(1). There is a probability distribution of Y for each level of X

(2). The means of these probability distributions vary in some sys-

tematic fashion with X
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Regression and Causality

Example:

• Subjects: a sample of young children aged 5− 10

• Predictor variable X : size of vocabulary

• Response variable Y : writing speed

• Data shows a positive regression relation

Question: Can we draw the conclusion from the data that an

increase in vocabulary causes a faster writing speed?
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• No, the positive relation discovered from the data doesn’t imply

that an increase in vocabulary causes a faster writing speed

• Other explanatory variables, such as age of the child and amount

of education, affect both the vocabulary X and the writing

speed Y

• The existence of a statistical relation between the response

variable Y and the predictor variable X does not imply in any

way that Y depends causally on X

• Regression analysis by itself provides no information about causal

patterns and must be supplemented by additional analyses to

obtain insights about causal relations
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Use of R software

• Download a copy from www.r-project.org

• Practice using R handout1
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Review: Regression analysis

• Discover the relationship between response variable and pre-

dictor variable

• Statistical relationship, not a perfect exact relationship: the value

of the variable to be predicted do not fall exactly on a curve

• Assume a distribution of possible y values for each x value,

usually assume a normal distribution
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Simple linear regression model—one predictor variable
Data: (x1, y1), (x2, y2), · · · (xn, yn) could be arise in two ways

• Experimental setting, control x values and observe y values

Example: An insurance company wishes to study the relation between pro-

ductivity of its analysts in processing claims and length of training.

—Nine analysts are to be used in the study

—Three of them are selected at random and trained for two weeks, three

for three weeks, and three for 5 weeks

—Observe the productivity of the analysts during the next 10 weeks

• Observational setting, the value of x and y come as pairs from nonexperi-

mental studies, we do not set the x value first

Example: height, weight
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• Notes:

—Regression analyses are frequently based on observational

data

—Major limitation of observational data is that they often do not

provide adequate information about cause-and-effect relation-

ships

—When control over the predictor variable(s) is exercised through

random assignments, the resulting experimental data provide

much stronger information about the cause-and-effect relation-

ships than do observational data
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Simple linear regression model

Y = (systematic part) + (random part)

= (β0 + β1x) + (ε)
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Formal Statement of simple linear regression model with distribution of error

terms unspecified

yi = β0 + β1xi + εi (1)

• yi: the value of the response variable in the ith trial

• xi: a known constant, the value of the predictor variable in the ith trial

• β0 and β1: parameters

• εi: random error term

—E(εi) = 0

—V (εi) = σ2

—εi and εj are uncorrelated, cov(εi, εj) = 0 for i 6= j
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Comments:

• Simple: there is only one predictor variable

• Linear:

—-Linear in the parameters: no parameter appears as an exponent or is

multiplied or divided by another parameter

Example of nonlinear regression model:

y = eβ0+β1x + ε

y = sinβ0β1x + eβ1x + ε

—-Linear in the predictor variable: the predictor variable appears only in the

first power

—-A model that is linear in the parameters and in the predictor variable is

also called a first-order model
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Important features of model:

• yi = β0 + β1xi + εi, the sum of a constant term and the

random term. Hence, yi is a random variable

• E(yi) = E(β0 +β1xi)+E(εi) = β0 +β1xi, V (yi) = σ2.

Regression model (1) implies that the response yi come from

probability distributions whose means are β0+β1xi and whose

variances are σ2. Two responses yi and yj are uncorrelated

• Regression line: E(y) = β0 + β1x

• β1: slope of the regression line gives the change in mean value

of y for a unit change in x
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• β0: y-intercept, β0 is the mean of y when x = 0. So only if

x = 0 is in the domain(scope), β0 is interpretable

• εi: εi = yi − (β0 + β1xi), deviation between the observed y

and the expected mean of y at the given x
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Example: A consultant for an electrical distributor is studying

the relationship between the number of bids requested by con-

struction contractors for basic lighting equipment during a week

and the time required to prepare the bids. Suppose regression

model is applicable and is as follows

yi = 9.5 + 2.1xi + εi

• yi: number of hours required to prepare the bids

• xi: number of bids prepared in a week
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• Regression function: E(y) = 9.5 + 2.1x

if xi = 25, E(yi) = 9.5 + 2.1× 25 = 62

if xi = 45, E(yi) = 9.5 + 2.1× 45 = 104

• εi: the deviation of yi from its mean value E(yi)

—If xi = 45 and yi = 108

—Then the error term εi = yi − E(yi) = 108− 104 = 4

• β1 = 2.1 indicates that the preparation of one additional bid

in a week leads to an increase in the mean of the probability

distribution of y of 2.1 hours

30



• β0 = 9.5 indicates the value of the regression line at x = 0.

But, linear regression model was formulated to apply to weeks

where the number of bids prepared ranged from 20 to 80, so

β0 does not have any intrinsic meaning of its own here

Question: how to estimate the regression function parameters

β0, β1 and σ2 using information from the available data?
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Least square estimators:

• Consider the deviation of yi from its expected value [yi−(β0+

β1xi)]

• Measure:

Q =
n∑

i=1

(yi − (β0 + β1xi))
2

• Objective: to find estimates b0 and b1 for β0 and β1 respec-

tively, for which Q is minimum
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Steps to find LS estimators

• Take partial derivatives from Q and set to 0

∂Q

∂β0
= −2

n∑

i=1

(yi − β0 − β1xi) = 0

∂Q

∂β1
= −2

n∑
i=1

xi(yi − β0 − β1xi) = 0

• Normal equations
n∑

i=1

yi = nβ0 + β1

n∑

i=1

xi
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n∑

i=1

xiyi = β0

n∑

i=1

xi + β1

n∑

i=1

x2
i

• Solve normal equations to find least square estimators of β0 and β1

b1 =

n∑
i=1

(xi − x̄)(yi − ȳ)

n∑
i=1

(xi − x̄)2

b0 = ȳ − b1x̄

Computational formula

b1 =

n∑
i=1

(xiyi)− (
n∑

i=1

xi)(
n∑

i=1

yi)/n

n∑
i=1

x2
i − (

n∑
i=1

xi)2/n
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• Regression line E(y) = β0 + β1x is estimated by

ŷ = b0 + b1x

Properties of least squares estimators

• Unbiased: E(b0) = β0 and E(b1) = β1
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• b1 is a linear combination of the yi and hence a linear estimator. So is b0.

b1 =

n∑
i=1

(xi − x̄)(yi − ȳ)

n∑
i=1

(xi − x̄)2

=

∑n
i=1(xi − x̄)yi∑n
i=1(xi − x̄)2

=
n∑

i=1

kiyi

where

ki =
xi − x̄∑n

i=1(xi − x̄)2

• b0 and b1 have the smallest possible variance than any other

estimators belonging to the class of unbiased estimators that
36



are linear functions of the observed y values

• ŷ = b0 + b1x is an unbiased estimate of the regression line

E(y) = β0 + β1x
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Figure 1: Unbiased, precise and accurate archers
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Notations: consider model yi = β0 + β1xi + εi

• Predicted (fitted or mean) value of yi at xi: ŷi = b0 + b1xi

—the fitted value ŷi is not the same as yi

—yi is the observed value and ŷi is the predicted value

• Residual ei = yi − ŷi: vertical deviation between yi and the

estimated regression function

• Error term εi = yi − (β0 + β1xi): vertical deviation between

yi and the true regression line

• Residual ei is a prediction of εi

—- ei 6= εi
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Properties of residuals and fitted values

•
n∑

i=1

ei = 0

•
n∑

i=1

e2
i =

n∑
i=1

(yi − (b0 + b1xi))
2 = smallest value of Q

•
n∑

i=1

yi =
n∑

i=1

ŷi, so ȳ = ¯̂y

•
n∑

i=1

xiei = 0, xi’s and ei’s are uncorrelated

•
n∑

i=1

ŷiei = 0, ŷi’s and ei’s are uncorrelated

• the fitted regression line passes through (x̄, ȳ)

ŷ = b0 + b1x = ȳ − b1x̄ + b1x
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Estimation of σ2

To estimate σ2, we find the deviation of each y value from its mean and

square the deviation sum, then divided by a function of n to get an average

deviation

σ̂2 =

n∑
i=1

(yi − (b0 + b1xi))
2

n− 2

=
1

n− 2

n∑
i=1

(yi − ŷi)
2

=
1

n− 2

n∑
i=1

e2
i

where ei is the ith residual yi − ŷi
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Notes:

• Sum of squares due to error or error sum of squares or residual sum of

squares: SSE =
n∑

i=1

(yi − ŷi)
2

• Mean square error or error mean square: MSE = SSE/(n− 2) = σ̂2

Computational formulas for SSE

SSE =
n∑

i=1

y2
i − b0

n∑
i=1

yi − b1

n∑
i=1

xiyi

or

SSE =
n∑

i=1

(yi − ȳ)2 −
[

n∑
i=1

(xi − x̄)(yi − ȳ)]2

∑n
i=1(xi − x̄)2
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•
E(MSE) = σ2
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Normal Error in Simple Linear Regression Model

• To do statistical inference, testing hypothesis and to construct confidence

interval, we need to make an assumption about the distribution of ε in the

regression model

• Common assumption: ε is a normal distribution

• Why assume normal distribution of errors?

—Sometimes the errors have approximately normal distributions

—We get nice methods for statistical inferences

—If the errors are only approximately normal, the methods developed as-

suming normality still perform approximately as we would expect
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Review:

• under normal distributions, independence and uncorrelated are

the same

Uncorrelated⇔ Independence

• This is not true in general, in general

Uncorrelated; independence

Independence⇒ uncorrelated
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Normal error regression model:

yi = β0 + β1xi + εi

• yi: observed response in the ith trial

• xi: a known constant, the level of the predictor variable in the

ith trial

• β0 and β1: parameters

• εi
iid∼ N(0, σ2) for i = 1, 2, · · · , n

• E(yi) = β0 + β1xi, var(yi) = σ2
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Estimation of parameters by method of maximum likelihood
—-The functional form of the probability distribution of the error
terms is specified

• The density of an observation yi for the normal error regression model is

fi =
1√
2πσ

exp[−1

2
(
yi − β0 − β1xi

σ
)2]

• The likelihood function for n observations y1, y2, · · · , yn is the product of

the individual densities

L(β0, β1, σ
2) =

n∏
i=1

1

(2πσ2)1/2
exp[− 1

2σ2
(yi − β0 − β1xi)

2]

=
1

(2πσ2)n/2
exp[− 1

2σ2

n∑
i=1

(yi − β0 − β1xi)
2]
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• The values of β0, β1 and σ2 that maximize this likelihood function are the

maximum likelihood estimators and are denoted by β̂0, β̂1 and σ̂2

Parameter MLE LS Relation

β0 β̂0 b0 β̂0 = b0

β1 β̂1 b1 β̂1 = b1

σ2

∑n
i=1(yi − ŷi)

2

n

∑n
i=1(yi − ŷi)

2

n− 2
MLE: biased

v.s. LS: unbiased
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Example: (page 15) In a small scale study of persistence, an experimenter

gave three subjects a very difficult task. Data on the age of the subject x

and on the number of attempts to accomplish the task before giving up y is

as follows

Subject i 1 2 3

Age xi 20 55 30

# of attempts yi 5 12 10

n = 3

(x1, y1) = (20, 5)

(x2, y2) = (55, 12)

(x3, y3) = (30, 10)
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x̄ = 35

ȳ = 9

b1 =

∑3
i=1(xi − x̄)(yi − ȳ)∑3

i=1(xi − x̄)2
= .177

b0 = ȳ − b1x̄ = 2.81

ŷ = 2.81 + .177x

Predicted value

ŷ1 = 2.81 + .177× 20 = 6.35

ŷ2 = 2.81 + .177× 55 = 12.538462

ŷ3 = 2.81 + .177× 30 = 8.12
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Residual ei = yi − ŷi

e1 = 5− 6.35 = −1.35

e2 = 12− 12.5384 = −.5384

e3 = 10− 8.12 = 1.8846154

Estimate σ2

σ̂2 =

∑3
i=1(yi − ŷi)

2

n− 2
=

3∑
i=1

e2
i = 5.66415
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