
Chapter 10 Diagnostics

• Added variable (or partial regression) plots

• Testing for Y-outliers (Studentized deleted residuals)

• Identifying X-outliers (Hat matrix diagonals)

• Influential observations (Dffits, Cook’s D, DFBETAS)

• Multicollinearity (VIF: Variance inflation factor)

• True residuals iid N(0, σ2)
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Figure 1: Example of outliers
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Partial regression plots (Added variable plots)

• Evaluate the effect of xi on y, given that other variables are in

the model

• One plot for each xi. To get the plot, run two regressions.

— In the first, use the other x’s to predict y .

— In the second use the other x’s to predict xi.

— Then plot the residuals from the first regression say e(y|x2, x3)

against the residuals from the second regression say e(x1|x2, x3).

(Note: The correlation of these residuals was called the partial

correlation coefficient.)
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• e(y|x2, x3) is the part of y that is orthogonal to (not explained by) x2 and x3.

e(x1|x2, x3) is the part of x1 that is orthogonal to (not explained by) x2 and x3.

• A linear pattern in this type of plot indicates that the variable would be useful in the model,

and the slope is its regression coefficient.

—The plots show the strength of a marginal relationship between y and xi in the full

model.

— If the partial residual plot for xi appears “flat”, xi may not need to be included in the

model.

— If it appears like a straight line (with non-zero slope), it suggests xi should be included

as a linear term.

• Nonlinear relationships, heterogeneous variances, and outliers may also be detected in

these plots.
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Example: Body fat data

• The data is a portion of data for a study of the relation of

amount of body fat (y) to several possible predictor variables,

based on a sample of 20 healthy females 25− 34 years old.

• Predictor variables are triceps skinfold thickness (x1), thigh

circumference (x2), and midarm circumference (x3).

• Response variable is y. The amount of body fat for each of

the 20 persons was obtained by a cumbersome and expensive

procedure requiring the immersion of the person in water.
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Figure 2: scatterplot of three predictor variables—body fat example
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• Correlation matrix of X variables

rXX =




1.0 .924 .458

.924 1.0 .085

.458 .085 1.0



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Estimator se t-value p-value

(Intercept) 117.085 99.782 1.173 0.258

x1 4.334 3.016 1.437 0.170

x2 -2.857 2.582 -1.106 0.285

x3 -2.186 1.595 -1.370 0.190

Notice that the overall F statistic is 21.52 on 3 and 16 DF, p-

value: 7.343e-06. But none of the individual t’s are significant.

This indicates multicollinearity problem.
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Example 2 (page 388)

Consider the regression of body fat (Y ) only on triceps skinfold

thickness (X1) and thigh circumference (X2).

• X1 and X2 are highly correlated (r12 = 0.92)

• Fitted regression function is

ŷ = −19.174 + 0.224x1 + 0.6594x2
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Figure 3: Residual plots and added variable plots —body fat example with two predictor vari-

ables
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Comments:

• Plots a and c do not indicate any lack of fit for the linear terms in the regression model or

the existence of unequal variances of the error terms.

• Figures b and d contain the added-variable plots for x1 and x2 respectively. When the

other predictor variable is already in the regression model.

—Both plots also show the line through the origin with slope equal to the regression

coefficient for the predictor variable if it were added to the fitted model.

—Figure b suggests that x1 is of little additional help in the model when x2 is already

there. R2
Y 1|2 = 0.031

—Figure d suggests that x2 is of little additional help in the model when x2 is already

there.
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Now consider adding x1 to the model that already contains x2

and x3
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Figure 4: Added variable plot for x1 —body fat example with three predictor variables
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Comments:

• Figure 3 suggests that x1 is of little additional help in the model

when x2 and x3 are already in the model.

• For Bodyfat example

Body fat = 117 + 4.33x1 − 2.86x2 − 2.19x3 (1)

The regression equation for the residuals is

e(y|x2, x3) = −0.000 + 4.33e(x1|x2, x3) (2)

• Notice that b1 in (2) is the same as b1 in the multiple regression

(1). The t and p-values are essentially the same.
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• The i-th slope bi is the slope of the simple linear regression of

the part of y that is orthogonal to all other predictors against

the part of xi that is orthogonal to all of the other predictors.

• If you are unsure about whether or not to include a particu-

lar variable, examine the added variable plot. It will tell you

visually how strong the marginal relation between xi and the

response is.
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Testing for outliers

• To do so we will need to figure out the sampling distribution of

the estimated residuals.

• We know the distribution of the true residuals, if the assump-

tions are met. But what about the estimated residuals? Mean

zero? Constant variance? Independent? Normal?

16



Recall

• Ŷ = HY

• e = Y − Ŷ = (I−H)Y

Variance and Covariance

Var(ei) = σ2(1− hii)

Cov(ei, ej) = −hijσ
2, i 6= j

Estimated variance and covariances

s2{ei} = MSE(1− hii)

s{ei, ej} = −hij(MSE), i 6= j
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In general:

• Residuals have non-constant variance

• Residuals have mean zero

• Residuals are not independent

• Residuals are normally distributed

18



Types of Residuals
Raw residuals: ei = yi − ŷi

Semistudentized residuals: e∗i =
ei√

MSE
Studentized residuals:

ri =
ei

s{ei} =
ei√

MSE × (1− hii)

• the residuals ei will have substantially different sampling variations if their

standard deviations differ markedly

• the studentized residuals ri have constant variance (when the model is

appropriate)

• studentized residuals often are called internally studentized residuals
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Deleted residuals: di = yi − ŷi(i)

• If the point is an outlier, you don’t want it messing up the fitted regression

line, which will in turn mess up the calculation of the residual

• Better approach-use deleted residuals:

• Delete case i and refit the model using the remaining n− 1 cases. Com-

pute the predicted value ŷi(i) and residual di for case i using this model.

• An algebraically equivalent expression for di that does not require a re-

computation of the fitted regression function omitting the ith case is

di =
ei

1− hii

where ei is the ordinary residual for the ith case and hii is the ith diagonal

element in the hat matrix H = X(XTX)−1XT .
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Identifying Outlying y observations: Studentized deleted
residual

ti =
di

s{di}
or equivalently,

ti =
ei√

MSE(i)(1− hii)

• Studentized deleted residual ti is also called an externally studentized

residual

•
(n− p)MSE = (n− p− 1)MSE(i) +

e2
i

1− hii

•
ti = ei

[
n− p− 1

SSE(1− hii)− e2
i

]1/2
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Bonferroni Outlier Test

ti = ei

[
n− p− 1

SSE(1− hii)− e2
i

]1/2

α∗ = α/n, because you are testing all residuals for outliers,

not testing a specific case!

• Bonferroni critical value is t(1− α/2n; n− p− 1)

• If ti = ei

[
n− p− 1

SSE(1− hii)− e2
i

]1/2

> t(1 − α/2n; n −
p−1), we identify the case as a possible outlier based on this

test.
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Identifying Outlying x observations: Hat Matrix Leverage Values

Hat matrix Fun-Facts

• hii is sometimes called the leverage of the i-th observation

• 0 ≤ hii ≤ 1 and
∑n

i=1 hii = p

• hii is a measure of the distance between the x values for the ith case and the means of

the x values for all n cases

• −1 ≤ hij ≤ 1, i 6= j

• Ŷi =
n∑

j=1

hijYj

—- Ŷi is a weighted sum of the Y observations, where the weights are between -1 and 1

and they sum to one.

—-hii is the specific weight assigned to Yi in determining Ŷi

—- hii is called the leverage of Yi.
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• A large value of hii suggests that the i-th case is distant from the center of all x’s. The

farther xi is from x, the greater the leverage! X-outliers have the biggest effect!

The average value is

h̄ =
∑n

i=1 hii

n
=

p

n

• Leverage values that are greater than 2p/n cause concern

• Leverage values that are greater than 3p/n cause (at least mild) consternation

• Cases with leverages near 1 dominate any fitted regression

• Those outlying x values indicated by leverage should be examined carefully because they

may have a substantial influence on the regression parameters.

Note : n is the number of observations in the data and p is the number of regression

parameters, including the intercept.
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Example

Xi1 Xi2 Yi Ŷi

14 25 301 282.2

19 32 327 332.3

12 22 246 260

11 15 187 186.5

Table 1: Hat Matrix

.3877 .1727 .4553 -.0157

.1727 .9513 -.1284 .0044

.4553 -.1284 .6614 .0117

-.0157 .0044 .0117 .9996

Ŷ1 = h11Y1 + h12Y2 + h13Y3 + h14Y4

= .3877 ∗ 301 + .1727 ∗ 327 + .4553 ∗ 246− .0157 ∗ 187

= 282.2
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Figure 5: Leverages for Figure 1: example of outliers
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Hidden Extrapolations

Suppose you want to predict at a point Xnew, and you wonder

if you are extrapolating. With more than three predictors you

can’t tell from a graph:
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Compute

hnew,new = X′
new(X′X)−1Xnew

If this new leverage value is bigger than all of the leverages in

the data, this is an extrapolation, because this point is farther

from the center than any point in the data set.
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Identifying Influential Cases: DFFITS, Cook’s D, and DF-

BETAS Measures

• How can you really tell of a point is influential—that is if it is

having an unduly large effect on the results?

• R. Dennis Cook, 1977: Delete the point, refit the regression,

and see how much the predicted values change!
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DFFITS

• A useful measure of the influence that case i has on the fitted value ŷi is given by

(DFFITS)i =
ŷi − ŷi(i)√
MSE(i)hii

= ei

[
n− p− 1

SSE(1− hii)− e2
i

]1/2 (
hii

1− hii

)1/2

• The letters DF stands for the difference between the fitted value ŷi for the ith case when

all n cases are used in fitting the regression function and the predicted value ŷi(i) for the

ith case obtained when the ith case is omitted in fitting the regression function

• denominator is the estimated standard deviation of ŷi, but it uses the error mean square

when the ith case is omitted in fitting the regression function for estimating the error

variance σ2

• Values larger than 1 (for small to medium size datasets) or 2
√

p/n (for large datasets)

are considered influential.
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Cook’s distance

Di =

∑n
j=1(ŷj − ŷj(i))

2

pMSE

• This measures the influence of case i on all of the fitted ŷi’s

• It is a standardized version of the sum of squares of the differ-

ences between the predicted values computed with and with-

out case i.

• Large values (larger than the 50-th percentile of the Fp;n−p

distribution) suggest an observation has a lot of influence.

• Use index plot to find big numbers.
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Figure 6: Index plot: cook’s distance
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DFBETAS

(DFBETAS)k(i) =
bk − bk(i)√
MSE(i)ckk

, k = 0, 1, · · · , p−1

where ckk is the kth diagonal element of (X′X)−1.

• A measure of the influence of case i on each of the regression

coefficients bk(k = 0, 1, · · · , p− 1).

• It is a standardized version of the difference between the re-

gression coefficient computed with and without case i.

• Values larger than 1 (for small-to-medium datasets) or 2/
√

n

(for large datasets) are considered influential.
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Measures of Multicollinearity

Informal Diagnostics

• large changes in the estimated regression coefficients when a

predictor variable is added or deleted, or when an observation

is altered or deleted

• regression coefficients change greatly when predictors are in-

cluded/excluded from the model

• significant F-test but no significant t-tests for β ’s (ignoring β0)

• type I and II SS are very different

• predictors have pairwise correlations
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Formal Diagnostics

• Variance Inflation Factor (VIF)

V IFk = 1/(1−R2
k)

where R2
k is the coefficient of multiple determination when xk

is regressed on the p− 2 other x variables in the model. We

calculate it for each explanatory variable.

• If R2
k = 0, (V IF )k = 1, i.e., when xk is not linearly related

to the other x variables. When R2
k 6= 0, (V IF )k is greater

than 1, indicating an inflated variance for b′k as a result of the

intercorrelations among the x variables. When xk has a per-
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fect linear association with the other x variables in the model,

R2
k = 1, (V IF )k →∞

• If this R2
k is large, that means xk is well predicted by the other

x’s. One suggested rule is that a value of 10 or more for VIF

indicates excessive multicollinearity.
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Regression Diagnostics Summary

• The ideas (especially with regard to the residuals) of Chapter 3 still apply,

but we will also concern ourselves with the detection of outliers, influential

data points and multicollinearity problem.

• Check normality of the residuals with a normal quantile plot. Plot the resid-

uals versus predicted values, versus each of the X ’s and (when appropri-

ate) versus time. Examine the partial regression plots for each X variable.

• Examine the studentized deleted residuals, The hat matrix diagonals, Df-

fits, Cook’s D, and the DFBETAS. Check observations that are extreme on

these measures relative to the other observations. Examine the VIF for

each X
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Life Insurance Example

• y: amount of insurance (in $1000)

• x1: Average Annual Income (in $1000)

• x2: Risk Aversion Score (0− 10)

• n = 18 managers were surveyed.

Results

• rstudent: compare to t14(1 − .05/36) = t14(.9986) =

3.621442, none of them is y-outlier

• Leverage: comparing to 2 ∗ 3/18 = .333 or 4/18 = .22,

No.6 = .35, No.7 = .62 and No.12 = .299 are x outliers
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• Cook’s D: Compare to F(3,15)(.5) = .8256, observation 7

with cook’s d 2.889 has a lot of influence.

• Dffits: No.7 = 3.5292. Comparing to 1, it is an influential

data point

• Dbeta’s: No.7 with x1 2.6598 and x2 −2.8751, comparing

to 1, it is an influential point

According to all these measures, observation #7 appears to be

influential. It has the smallest risk (1) and the highest income

(79.380) among all the observations.
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