
Chapter 11 Remedial Measures

• Transformation

• Weighted least squares

• Ridge regression

• Lasso

• Regression Trees (Random Forests)

• Bootstrapping
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Weighted least squares

yi = β0 + β1xi1 + · · ·+ βp−1xi,p−1 + εi

β0, β1, · · · , βp−1 are parameters

xi1, xi2, · · · , xi,p−1 are known constants

εi are independent N(0, σ2
i )

i = 1, · · · , n
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• Unequal Variance



σ2
1 0 · · · 0

0 σ2
2 · · · 0
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n




• Least square doesn’t work, what should we do?
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Use maximum likelihood

L(β) =
n∏

i=1

1

(2πσ2
i )

1/2 exp[− 1

2σ2
i

(Yi − β0 − β1Xi1

− · · · − βp−1Xi,p−1)
2]

Define the ith weight to be

wi =
1

σ2
i

The likelihood is

L(β) =

[
n∏

i=1

(wi

2π

)1/2
]

exp[−1

2

n∑

i=1

wi(Yi − β0 − β1Xi1

− · · · − βp−1Xi,p−1)
2]
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Suppose that σ2
i ’s are known, the log likelihood is a constant

plus

Qw =
n∑

i=1

wi(Yi − β0 − β1Xi1 − · · · − βp−1Xi,p−1)
2

Criterion is same as least squares, except each squared resid-

ual is weighted by wi—hence the weighted least squares cri-

terion.

The coefficient vector bw that minimizes Qw is the vector of

weighted least squares estimates
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Let

W =




w1 0 · · · 0

0 w2 · · · 0
...

...
...

0 0
... wn




• The regression coefficients with weights are

bw = (XTWX)−1(XTWY)

σ2(bw) = (X′WX)−1

• Least squares minimizes the sum of the squared residuals. Weighted least

squares minimizes the sum of the squared residuals each multiplied by an

appropriate weight.
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How about σ2
i ’s are unknown?

• If the error variances σ2
i ’s are known, the weights are wi =

1/σ2
i

• Otherwise, the variances need to be estimated

—σ2
i = E(ε2

i )− (E(εi))
2 = E(ε2

i )

—The squared residual e2
i is an estimator of σ2

i .

—The absolute residual |ei| is an estimator of the standard

deviation σi
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We can therefore

• Estimate the variance function describing the relation of σ2
i to relevant pre-

dictor variables: First fitting the regression model using unweighted least

squares and then regressing the squared residuals e2
i against the appro-

priate predictor variables

• Estimate the standard deviation function describing the relation of σi to

relevant predictor variables: First fitting the regression model using un-

weighted least squares and then regressing the absolute residuals |ei|
against the appropriate predictor variables

• A residual plot against X1 exhibits a megaphone shape. Regress the ab-

solute residuals against X1.

• A residual plot against Ŷ exhibits a megaphone shape. Regress the ab-

solute residuals against Ŷ .
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• A plot of the squared residuals against X3 exhibits an upward tendency.

Regress the squared residuals against X3.

• A plot of the squared residuals against X2 suggests variance increases

rapidly with increase in X2 up to a point and then increases more slowly.

Regress the absolute residuals against X2 and X2
2 .

• After the variance function or the standard deviation function is estimated,

the fitted value from this function are used to obtain the estimated weights:

—wi =
1

v̂i

, where v̂i is fitted value from variance function

—wi =
1

ŝ2
i

, where ŝi is fitted value from standard deviation function
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Summary

• Fit the regression model by unweighted least squares and an-

alyze the residuals

• Estimate the variance function or the standard deviation func-

tion by regressing either the squared residuals or the absolute

residuals on the appropriate predictor(s)

• Use the fitted values from the estimated variance or standard

deviation function to obtain the wights wi

• Estimate the regression coefficients using these weights
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Example: page 427

A health researcher, interested in studying the relationship be-

tween diastolic blood pressure and age among healthy adult

women 20 to 60 years old, collected data on 54 subjects. Por-

tion of the data are as follows

Figure 1: Example
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Figure 2: Scatterplot, residual plot and absolute residual plots, example page 472

• Scatter plot of the data suggests a linear relationship between diastolic

blood pressure and age but also indicates that the error term variance

increases with age.

• Use unweighted regression

Ŷ = 56.157 + 0.58003X
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• Figure (c) suggests that a linear relation between the error standard devi-

ation and X may be reasonable.

ŝi = −1.54946 + 0.198172Xi

• For case 1, X1 = 27, the fitted value is

ŝ1 = −1.54946 + 1.98172 ∗ (27) = 3.801

w1 =
1

ŝ2
1

=
1

3.8012
= 0.0692

• The weighted estimated regression function is

Ŷ = 55.566 + 0.59634X

95% CI for β1 is

0.437 ≤ β1 ≤ 0.755
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Drawbacks and Advantages

• WLS estimates are minimum variance, unbiased.

• If you use Ordinary Least Squares (OLS) when variance is not constant,

estimates are still unbiased, just not minimum variance.

• If you have replicates at each unique X category, you can just use the

sample standard deviation of the responses at each category to determine

the weight for any response in the category.

• R2 has no clear cut meaning here.

• Must use the standard deviation function value (instead of s) for confidence

intervals for prediction
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Ridge regression

• Remedy multicollinearity problems

• Modifying the method of least squares to allow biased estima-

tors of the regression coefficients

• Small bias but more precise than an unbiased estimator

—Shrinkage estimation: Reduce the variance of the parame-

ters by shrinking them (a bit) in absolute magnitude. This will

introduce some bias, but may reduce the MSE overall.

—Recall: MSE = bias squared plus variance:

E{Ŷi − µi}2 = (E{Ŷi} − µi)
2 + V (Ŷi)

15



Ridge Estimators

• Normal equation for ordinary least squares

(X′X)b = X′Y

• Correlation transformation

y∗i =
1√

n− 1

(
yi − ȳ

sy

)

x∗ik =
1√

n− 1

(
xik − x̄k

sk

)
(k = 1, · · · , p− 1)

• The regression model with the transformed variable y∗ and x∗k as defined

by the correlation transformation is called a standardized regression model

y∗i = β∗1x
∗
i1 + · · ·+ β∗p−1x

∗
i,p−1 + ε∗i
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• Least square normal equations are

rXXb = rYX

rXX =




1 r12 · · · r1,p−1

r21 1 · · · r2,p−1

...
...

...

rp−1,1 rp−1,2 · · · 1




rYX =




rY1

rY2

...

rYp−1
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• Ridge normal equation

(rXX + cI)bR = rYX

bR is the vector of the standardized ridge regression coefficients bR
k

•
bR = (rXX + cI)−1rYX

• c reflects the amount of bias in the estimators
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Figure 3: Biased Estimators

E{bR − β}2 = (E{b̂R} − β)2 + V (bR)

19



Ridge trace, determining the constant c

• Simultaneous plot of the values of the p − 1 estimated ridge standardized regression

coefficients for different values of c, usually between 0 and 1.

—The estimated regression coefficients bR
k may fluctuate widely as c is changed slightly

from 0, and some may even change signs. Gradually, these wide fluctuations cease

and the magnitudes of the regression coefficients tend to move slowly toward zero as c

increased further.
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Figure 4: Ridge Trace of estimated standardized regression coefficients–bodyfat example with

three predictor variables
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• (V IF )k tends to fall rapidly as c is changed from 0, and gradually the (V IF )k values

also tend to change only moderately as c increased further.

• Examine the ridge trace and the V IF values and choose the smallest value of c where

it deemed that the regression coefficients first become stable in the ridge trace and the

V IF values have become sufficiently small
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Example: Bodyfat example with three predictor variables: tri-

ceps skinfold thickness, thigh circumference, midarm circum-

ference.

Ŷ = 117.08 + 4.334X1 − 2.857X2 − 2.186X3

b2 = -2.857 is negative, even though it was expected that amount

of body fat is positively related to thigh circumference.

The ridge standardized regression coefficients for selected val-

ues of c and VIF are given in the following table,
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Figure 5: Estimated ridge standardized regression coefficients and VIFs—body fat example
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Figure 6: Ridge Trace of estimated standardized regression coefficients–bodyfat example with

three predictor variables
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• Note the instability of the regression coefficients for very small values of c. The estimated

regression coefficient bR
2 changes signs

• It was decided to employ c = 0.02, because for this value of the biasing constant the

ridge regression coefficients have VIF values near 1 and the estimated regression coeffi-

cients appear to have become reasonably stable.

Choose λ = 0.02, the resulting fitted model for c = 0.02 is

Ŷ ∗ = 0.5463X∗
1 + 0.3774X∗

2 − 0.1369X∗
3

Transforming back to the original variables by (7.53), we obtain

Ŷ = −7.3978 + 0.5553X1 + 0.3681X2 − 0.1917X3

where Ȳ = 20.195, X̄1 = 25.305, X̄2 = 51.170, X̄3 = 27.620, sY = 5.106, s1 =

5.023, s2 = 5.235, and s3 = 3.647.
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Lasso Regression (Tibshirani, 1996)

—an active area of open research

• Lasso: least absolute shrinkage and selection operator

• Automatically performs variable selection while it is estimating

the regression parameters

• “Shrink” the effect of unimportant predictors, can set effects to

zero

• Overall magnitude of the coefficients is constrained, important

predictors are included in the model, and less important pre-

dictors shrink, potentially to zero
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The least square estimates β̂j satisfy
n∑

i=1

(yi − β̂0 − β̂1xi1 − · · · − β̂p−1xi,p−1)2

= minβ0,··· ,βp−1

n∑
i=1

(yi − β0 − β1xi1 − · · · − βp−1xi,p−1)2

Lasso: one of the various ways that one can present the lasso criterion for estimation is

to minimize the least squares criterion

n∑

i=1

(yi − β0 − β1xi1 − · · · − βp−1xi,p−1)2

subject to an upper bound on the sum of the absolute values of the regression coefficients.

p−1∑

j=1

|βj | ≤ λ

p−1∑

j=1

|β̂j | (1)

for some λ with 0 ≤ λ ≤ 1
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• The lasso estimates depend on the choice of λ.

• λ = 1 gives least squares estimates.

• λ = 0 gives the least squares estimates for the intercept only

model

—-i.e., it zeros out all the regression coefficients except the

intercept which it estimates with ȳ

—-all the regression coefficients in the inequality must be zero,

but the intercept is not subject to the upper bound in equation

1
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Cross validation:

• hold out a portion of the data (called validation set)

• fit model to the rest of the data (training set)

• determine if model based on training set performs well in vali-

dation set

• metric to assess prediction error: Mean Square Error

MSE =
1

n

n∑
i=1

(yi − ŷi)
2,

ŷi is predicted value of yi based on model.
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Cross validation is used to both choose λ and assess predic-

tive accuracy of model

• Initial training and validation sets established. Tuning parame-

ter λ is chosen based on training set, model is fit based on

training set

• Performance of the model chosen above is then assessed on

the basis of the validation set

• Training model used to predict outcomes in validation set. MSE

is computed. If training model produces reasonable MSE based

on validation set, model is adopted.
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K-fold cross validation (used to determine value of shrinkage

factor λ)

• Divide data into two parts, training set and testing set

• Splits training data into K = 10 separate sets of equal size

—-label it as T = (T1, T2, · · · , T10), training set then broke

into 10 pieces

—-commonly choose K = 5 or K = 10

• For each k = 1, 2, · · · , 10, fit the model to the training set

excluding the kth-fold Tk

• Compute the fitted values ŷ
(λ)
i(−k) for the observations in Tk ,
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based on the training data that excluded this fold

• Compute the cross-validation (CV) error for the k-th fold:

(CV Error)
(λ)
k = T−1

k

∑

i∈Tk

(yi − ŷ
(λ)
i(−k))

2

• The model then has overall cross-validation error:

(CV Error)λ = K−1
K∑

k=1

(CV Error)
(λ)
k

• Select λ∗ as the one with minimum (CV Error)λ
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Example: examine the effect of lasso regression on the Cole-

man Report data.

• y: the mean verbal test score for sixth graders

• x1: staff salaries per pupil

• x2: percentage of sixth graders whose fathers have white col-

lar job

• x3: a composite measure of socioeconomic status

• x4: the mean of verbal test scores given to the teachers

• x5: the mean educational level of the sixth grader’s mothers

(one unit equals two school years)
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Correlation between y and the predictor variables.

x1 x2 x3 x4 x5

Correlation with y 0.192 0.753 0.927 0.334 0.733

• Of the five variables, x3 has the highest correlation. It explains

more of the y variable than any other single variable.

• x2 and x5 also have reasonably high correlations with y.

• Low correlations exist between y and both x1 and x4
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Figure 7: CV MSE as a function of λ for coleman data, dotted line is 1 SE of lowest MSE

value
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Lasso λ Reduced Model

Predictor 1 0.6 0.55 0.5 0.47 0 Least Squares

Constant 19.95 18.79 21.69 26.51 23.98 35.08 12.12 14.58

x1 -1.79 -0.34 0.00 0.00 0.00 0.00 -1.74 0.00

x2 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00

x3 0.56 0.52 0.50 0.48 0.49 0.00 0.55 0.54

x4 1.11 0.62 0.47 0.28 0.38 0.00 1.04 0.75

x5 -1.81 0.00 0.00 0.00 0.00 0.00 0.00 0.00

This Table contains results for five values of λ and least squares

estimates for two reduced models
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• For λ = 1, the estimates are identical to the least squares estimates for

the full model

• λ = 0.5 zeros out the coefficients for x1, x2, and x5.

—-The reduced model that only includes x3 and x4 is the model that we

liked in Chapter 9

—-The lasso estimates of β3 and β4 are noticeably smaller than the least

squares estimates from the reduced model given in the last column

• The largest value of λ that zeros out the coefficients x1, x2, and x5 is

λ = 0.56348.

—-the lasso estimates are closer to the reduced model least squares esti-

mates but still noticeably different
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• For λ ≥ 0.56349, lasso produces a nonzero coefficient for

x1. From Section 9.3, if we were going to add another variable

to the model containing only x3 and x4, the best choice is to

add x1

• λ = 0.6 still has the coefficients for x2 and x5 zeroed out.

The nonzero lasso estimates for β1, β3, and β4 are all closer

to zero than the least squares estimates from the model with

just x1, x3, and x4.

• Lasso seems to do a good job of identifying the important vari-

ables and it does it pretty automatically
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Ridge regression and LASSO

• Ridge regression is an earlier and similar method to the lasso,

and is also a shrinkage or penalization method

• Ridge regression will not set any specified predictor coeffi-

cients to exactly zero

• Lasso is preferable when predictors may be highly correlated

• For both ridge regression and lasso, λ cannot be estimated di-

rectly from the data using maximum likelihood due to an iden-

tifiability issue. This is why cross validation is chosen to fix λ

at a constant
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