
Chapter 2: Inference in Regression Analysis

Review: Normal error regression model

yi = β0 + β1xi + εi

• yi: observed response in the ith trial

• xi: a known constant, the level of the predictor variable in the

ith trial

• β0 and β1: parameters

• εi
iid∼ N(0, σ2) for i = 1, 2, · · · , n

1



Inference about β1

• b1 ∼N(β1; var(b1))

where var(b1) =
σ2

∑n
i=1(xi − x̄)2

• ̂var(b1) = s2(b1) =
MSE∑n

i=1(xi − x̄)2

• t =
b1 − β1

s(b1)
∼ t(n− 2)

Note: The degrees of freedom (df) here is n − 2 instead of

n− 1, because besides estimating β1, we are also estimating

β0.
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Confidence Interval for β1

b1 ± t
(
1− α

2
, n− 2

)
s(b1)

• t
(
1− α

2
, n− 2

)
is the upper tail 100(1 − α/2) percentile

of the t-distribution with n− 2 degrees of freedom

• 1− α is the confidence level
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Significance Tests for β1

H0 : β1 = β10

Test statistic: t∗ =
b1 − β10

s(b1)
= # of standard deviation of b1 separating b1

and β10

Reject H0, if

Hα : β1 > β10 t∗ > t(1− α; n− 2)

Hα : β1 < β10 t∗ < −t(1− α; n− 2)

Hα : β1 6= β10 |t∗| > t(1− α/2; n− 2)

or Reject H0 when p value is less than the significance level α.

Recall: p value is the probability of observing a more extreme value of the

test statistics than was actually observed
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Inference about β0

b0 ∼ N(β0; var(b0))

where

var(b0) =
σ2 ∑n

i=1 x2
i

n
∑n

i=1(xi − x̄)2

̂var(b0) = s2(b0) =
MSE

∑n
i=1 x2

i

n
∑n

i=1(xi − x̄)2

t =
b0 − β0

s(b0)
∼ t(n− 2)

Note: The df here is n− 2 instead of n− 1, because besides

estimating β0, we are also estimating β1.
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Confidence Interval for β0

b0 ± t(1− α

2
, n− 2)s(b0)

• t(1− α

2
, n− 2) is the upper tail 100(1− α/2) percentile of

the t-distribution with n− 2 degrees of freedom

• 1− α is the confidence level
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Significance Tests for β0

H0 : β0 = β00

Test statistic: t∗ =
b0 − β00

s(b0)
= # of standard deviation of b0 separating b0

and β00

Reject H0, if

Hα : β0 > β00 t∗ > t(1− α; n− 2)

Hα : β0 < β00 t∗ < −t(1− α; n− 2)

Hα : β0 6= β00 |t∗| > t(1− α/2; n− 2)

or Reject H0 when p value is less than the significance level α.
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Comments:

• The normality of b0 and b1 follows from the fact that each is

a linear combination of the yi’s and yi’s are independent and

normally distributed

• Often the CI and significant test for β0 is not of interest.

• If the ε are not normal but are approximately normal, then the

CI’s and significant tests are generally reasonable approxima-

tions.
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Sec 2.3 Power of Test
The power of a significant test is the probability that the decision rule will

lead to conclusion Hα when Hα in fact holds. This probability depends on

the particular value of the parameter in the alternative space.

• H0 : β1 = β10 v.s Hα : β1 6= β10

• t∗ =
b1 − β10

s(b1)
|t∗| ≤ t(1− α/2; n− 2), concludeH0

|t∗| > t(1− α/2; n− 2), concludeHα

•
Power = P{|t∗| > t(1− α/2; n− 2)|δ}

where δ is the noncentrality measure—a measure of how far the true value

of β1 is from β10, δ =
|β1 − β10|

σ{b1} .
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Example: Test

H0 : β1 = β10 = 0

v.s

Hα : β1 6= β10 = 0

suppose we wish to know the power of the test when β1 = 1.5.

Also assume that σ{b1} = .3553 and degrees of freedom is

23. Then δ = |1.5 − 0|/.3553 = 4.22. Use Table B.5 for

α = .05 and 23 degrees of freedom and interpolate linearly

between δ = 4.00 and δ = 5.00. We obtain:

.97 +
4.22− 4.00

5.00− 4.00
(1.00− .97) = .9766
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Thus, if β1 = 1.5, the probability would be about .98 that we

would be led to conclude Hα(β1 6= 0).

Hypothesis testing and Confidence Interval in R

R Handout 3 example 1
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Section 2.4 Interval Estimation of E(Yh) (a point on the line
y = β0 + β1x)
The mean value of Y for X = Xh is

E(Yh) = uh = β0 + β1Xh

Ê(Yh) = Ŷh = b0 + b1Xh

Theory for Estimation of E{Yh}
• Ŷh ∼ N(β0 + β1Xh, σ

2{Ŷh}) where

σ2{Ŷh} = σ2

[
1

n
+

(Xh − X̄)2

∑n
i=1(Xi − X̄)2

]
.

—Normality is a consequence of the fact that Ŷh = b0 + b1Xh is a linear

combination of Yi’s.

—The estimation is more accurate when Xh is near X̄ .
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• We estimate σ2{Ŷh} by

s2{Ŷh} = MSE

[
1

n
+

(Xh − X̄)2
∑n

i=1(Xi − X̄)2

]
.

• It follows that the appropriate distribution for inferences about

the point β0 + β1Xh is

(β̂0 + β̂1Xh)− (β0 + β1Xh)

SE(β̂0 + β̂1Xh)
=

Ŷh − E(Yh)

s(Ŷh)
∼ tn−2.

• 95% CI for E(Yh) is

Ŷh ± tn−2(1− α/2)s{Ŷh}
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Sec 2.5 Prediction of New Observation

The new observation on Y to be predicted is viewed as the result of a new

trial, independent of the trials on which the regression analysis is based.

• Xh: the level of X for the new trial

• Yh(new): new observation on Y

• Assume that the underlying regression model applicable for the basic sam-

ple data continues to be appropriate for the new observation

• Want to construct an interval into which we predict the next observation

Yh(new) (for a given Xh) will fall.

14



Prediction limits for a new observation Yh(new) at a given level Xh are

obtained by means of the following theorem:

Yh(new) − Ŷh

s{pred} ∼ t(n− 2)

• Use point estimator Ŷh in the numerator rather than the true mean E(Yh),

since the true mean is unknown and canot be used in making a prediction

• Numerator represents how far the new observation Yh(new) will deviate

from the estimated mean Ŷh based on the original n cases in the study.

This difference may be viewed as the prediction error, with Ŷh serving as

the best point estimate of the value of the new observation Yh(new)

σ2{pred} = σ2{Yh(new) − Ŷh}
= σ2{Yh(new)}+ σ2{Ŷh}
= σ2 + σ2{Ŷh}
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• σ2{pred} has two components

—-(1) The variance of the distribution of Y at X = Xh, namely σ2

—-(2) The variance of the sampling distribution of Ŷh, namely σ2{Ŷh}
s2{pred} = MSE + s2{Ŷh}

= MSE

[
1 +

1

n
+

(Xh − X̄)2

∑
(Xi − X̄)2

]

• The prediction interval for Ŷh(new) is wider than the confidence interval for

Ŷh because it has a larger variance.

• When the variance σ2 is large, it is not always possible to get good predic-

tion intervals.

R Handout 3
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Sec 2.7 Analysis of Variance (ANOVA) Approach to Regression

Analysis

Variance Decomposition

• Total variation in y is measured by

SSTO =
i=n∑

i=1

(yi − ȳ)2,

this is a measure of uncertainty (variability) in predicting y with-

out considering x.
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• If we fit a regression line to the data and obtain ŷi = b0+b1xi,

the evaluation in y’s about regression line is measured by

SSE =
n∑

i=1

(yi − ŷi)
2,

SSE is a measure of uncertainty (variability) in predicting y

when we use information about x (in a linear regression model)

–If there is a linear relationship between y and x, then SSE is

small compared to SSTO.

–If there is no linear relationship between y and x, then ŷi =

b0 = ȳ will be close to ȳ and SSE will be close to SSTO.

(b0 = ȳ − b1x̄)
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• We use SSR = SSTO-SSE to measure the strength of linear

association between y and x or a measure of the effect of x in

reducing variation in predicting y.

• Partition SSTO into two parts

Model (explained by regression)

Error (unexplained /residual)
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by normal equations∑n
i=1 ei = 0∑n
i=1 eixi = 0

SSTO =
i=n∑

i=1

(yi − ȳ)2

=
i=n∑

i=1

(yi − ŷi + ŷi − ȳ)2

=
n∑

i=1

(yi − ŷi)2 +
n∑

i=1

(ŷi − ȳ)2 + 2
n∑

i=1

(yi − ŷi)(ŷi − ȳ)

= SSE + SSR + 2
∑

eiŷi − 2
∑

eiȳ

= SSE + SSR + 2
∑

ei(b0 + b1xi)

= SSE + SSR + 2b1

∑
eixi

= SSE + SSR
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SSTO =
i=n∑

i=1

(yi − ȳ)2 = SSE + SSR

—SSR is the sum of squares due to regression model. If ŷi = b0 + b1xi does a good job

predicting yi for given xi, then ŷi ≈ yi and

SSTO =
∑

(yi − ȳ)2 ≈
∑

(ŷi − ȳ)2 = SSR,

so SSE will be small

—on the other hand, if there is no relationship between y and x, b1 ≈ 0, and ŷi = ȳ,

SSTO =
∑

(yi − ȳ)2 ≈
∑

(yi − ŷi)2 = SSE,

and SSR will be small.

—Linear relationship

Yes→ SSTO≈ SSR, therefore SSE small

No→ SSTO≈ SSE, therefore SSR small
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Degrees of Freedom Decomposition

• SSTO, degrees of freedom is n − 1, since we are estimating

ȳ, lose one df

• SSE, df is n− 2, since we are estimating β0 and β1.

• SSR, df is 1, although there are n deviations ŷi − ȳ, all fitted

value ŷi are calculated from the same estimated regression

line. Two degrees of freedom are associated with a regression

line. One of them is lost because
∑n

i=1(ŷi − ȳ) = 0.
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Mean Squares

Mean squares are computed by dividing sum of squares by its

degrees of freedom.

Analysis of Variance (ANOVA) Table (From Page 143)

Source of Variation SS df MS F

Regression SSR=
Pn

i=1(ŷi − ȳ)2 1 MSR =
SSR

1
MSR
MSE

Error SSE=
Pn

i=1(yi − ŷi)
2 n-2 MSE =

SSE

n− 2
σ2

Total SSTO=
Pn

i=1(yi − ȳ)2 n− 1

• Rhandout 3
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Section 2.7

• Review ANOVA Table

• F test of H0 : β1 = 0 v.s Hα : β1 6= 0

• E(MSR) = σ2 + β2
1
∑

(xi − x̄)2 & E(MSE) = σ2

• If β1 = 0, MSR & MSE both estimate σ2 and they should be

approximately equal

• If β1 6= 0, E(MSR) is larger than E(MSE). MSR should

be larger than MSE

• F ∗ =
MSR

MSE
, reject H0 : β1 = 0, if F ∗ is too big
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• If H0 : β1 = 0 is true and we have the normal error model,

F ∗ has an distribution with degrees of freedom 1 and n− 2

• At level of significance α

Reject H0 : β1 = 0 against Hα : β1 6= 0,

if F ∗ =
MSR

MSE
> F (1− α; 1, n− 2)

• The F ∗ Test of H0 : β1 = 0 v.s Hα : β1 6= 0 is equivalent

to the t∗ test of H0 v.s Hα with (t∗)2 = F ∗.
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Recall

Inference about β1

• b1 ∼N(β1; var(b1))

where var(b1) =
σ2

∑
(xi − x̄)2

• ̂var(b1) = s2(b1) =
MSE∑

(xi − x̄)2

• t =
b1 − β1

s(b1)
∼ t(n− 2)

Note: The degrees of freedom (df) here is n − 2 instead of

n− 1, because besides estimating β1, we are also estimating

β0.
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|t∗| = | b1

s(b1)
|

= | b1√
MSE/

∑
(xi − x̄)2

|

= |b1
√∑

(xi − x̄)2
√

MSE
|

=

√
b2
1
∑

(xi − x̄)2

MSE

=

√
MSR

MSE

=
√

F ∗
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Prove MSR = b2
1
∑

(xi − x̄)2

MSR = SSR/1

=
n∑

i=1

(ŷi − ȳ)2

=
n∑

i=1

(b0 + b1xi − ȳ)2

=
n∑

i=1

(ȳ − b1x̄ + b1xi − ȳ)2

=
n∑

i=1

b2
1(xi − x̄)2
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• The t∗ and F ∗ statistics are functionally related

Reject H0 : β1 = 0 v.s Hα : β1 6= 0 when |t∗| >

t(1− α

2
; n− 2)

⇔ Reject H0 when (t∗)2 > [t(1− α

2
; n− 2)]2

⇔ Reject H0 when F ∗ > F (1 − α; 1, n − 2) = [t(1 −
α

2
; n− 2)]2
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Section 2.8 General Linear Test

• A different view of testing β1 = 0

• Want to use error sum of squares to compare two models:

Yi = β0 + β1Xi + εi (full model)

Yi = β0 + εi (reduced model)

• Define SSE(F ) be the sum of squares error of the full model

SSE(R) be the sum of squares error of the reduced model
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• Idea: compare SSE(F ) and SSE(R)

If SSE(F ) is a lot smaller than SSE(R), use the full model (thus β1 6= 0)

otherwise, if they are close, use the reduced model (thus, β1 = 0)

• Define

F ∗ =

SSE(R)− SSE(F )

dfE(R)− dfE(F )

SSE(F )

dfE(F )

• Reject H0 : β1 = 0 if F ∗ > F (1− α; dfR − dfF , dfF )

• For simple linear regression, it is the same test as before

R handout 3
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General approach to testing in regression

• Fit the full model and obtain SSE(F )

• Fit the reduced model (the model with conditions placed by

hypotheses) and get SSE(R)

• Find F ∗ and test the hypothesis specified by the reduced model
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Pearson Correlation
ρ is the usual correlation coefficient (estimated by r).

• It is a number between−1 and +1 that measures the strength of the linear

relationship between two variables

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
∑n

i=1(yi − ȳ)2

since

b1 =

∑
(xi − x̄)(yi − ȳ)∑

(xi − x̄)2

we have

r = b1

√∑
(xi − x̄)2

∑
(yi − ȳ)2
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R2 and r2

• R2 =
SSR

SSTO
is the ratio of explained and total variation, or

proportion of variation in Y that is accounted for by the regres-

sion relationship with X

• r2 is the square of the correlation between X and Y

• Note, in simple linear regression, R2 is the same as r2. r =

±
√

R2. But this is not true in Multiple Linear Regression.

There will be a different r for each X variable, but only one

R2.
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Adjusted R2 takes into account the number of predictor variables and the sample size, i.e.,

it is adjusted based on the df . Adjusted R2 becomes more relevant as a diagnostic tool

when used in multiple regression.

Adjusted R2 = 1− (1−R2)
n− 1

n− k − 1

—n: number of observations in the sample

—k: number of predictor variables

From this formula, you can see that when the number of observations is small and the

number of predictors is large, there will be a much greater difference between R-square

and adjusted R-square. By contrast, when the number of observations is very large com-

pared to the number of predictors, the value of R-square and adjusted R-square will be

much closer because the ratio of (n− 1)/(n− k − 1) will approach 1.
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Limitations of R2

• Misunderstanding 1: A high coefficient of determination indi-

cates that useful predictions can be made.
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• Misunderstanding 2: A high coefficient of determination indi-

cates that the estimated regression line is a good fit.
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• Misunderstanding 3: A low coefficient of determination indi-

cates that x and y are not related.

38



Comments:

• Misunderstanding 1 arises because R2 measures only a rel-

ative reduction from SSTO and provides no information about

absolute precision for estimating a mean response or predict-

ing a new observation

• Misunderstanding 2 and 3 arise because R2 measures the de-

gree of linear association between x and y, whereas the actual

regression relation may be curvilinear.
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Inverse Prediction

The inverse prediction problem is also known as a calibration

problem since it is applicable when inexpensive, quick, and ap-

proximate measurements (Y ) are related to precise, often ex-

pensive, and time-consuming measurements (X) based on n

observations. The resulting regression model is then used to

estimate the precise measurement Xh(new) for a new approxi-

mate measurement Yh(new). Given Yh, predict the correspond-

ing value of X , solve the fitted equation for Xh

X̂h =
Yh − b0

b1
, b1 6= 0
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Example: A medical researcher studied a new, quick method

for measuring low concentration of sugar in the blood. Twelve

samples were used in the study containing known concentra-

tions (X), with three samples at each of four different levels.

The measured concentration (Y ) was then observed for each

sample. The researcher now wishes to use the regression re-

lation to ascertain the actual concentration Xh(new) for a new

patient for whom the quick response procedure yielded a mea-

sured concentration of Yh(new) = 6.52.
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