
Chapter 3 Diagnostics and Remedial Measures
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Review:

Normal error regression model:

yi = β0 + β1xi + εi

• yi: observed response in the ith trial

• xi: a known constant, the level of the predictor variable in the

ith trial

• β0 and β1: parameters

• εi
iid∼ N(0, σ2) for i = 1, 2, · · · , n

• E(yi) = β0 + β1xi, Var(yi) = σ2
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Normal Error in Simple Linear Regression Model

• To do statistical inference, testing hypothesis and to construct confidence

interval, we need to make an assumption about the distribution of ε in the

regression model

• Common assumption: ε is a normal distribution

• Why assume normal distribution of errors?

—Sometimes the errors have approximately normal distributions

—We get nice methods for statistical inferences

—If the errors are only approximately normal, the methods developed as-

suming normality still perform approximately as we would expect
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yi = β0 + β1xi + εi, εi
iid∼ N(0, σ2)

Possible problems need to check

• Linearity Assumption: Does the linearity assumption between E(Y ) and

X make sense?

• Error Assumption: Are errors independent, normal random variables with

common variance?

• Outlier Detection: Are there outliers i.e a response that is vastly different

from other responses?

• Predictor Range: Are there one or more important predictor variables that

have been omitted from the model?
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Section 3.2-3.3: Diagnostics for Residuals

Properties of Residuals

• ∑n
i=1 ei = 0, so ē = 0

• ∑n
i=1 e2

i /(n − 2) = MSE, if the model is appropriate, MSE is an unbi-

ased estimator of the variance σ2

•
n∑

i=1

xiei = 0, xis and eis are uncorrelated (independent under normality)

•
n∑

i=1

ŷiei = 0, ŷis and eis are uncorrelated (independent under normality)

• Residuals are not independent

• Generally, the correlation of residuals is small and ignored
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Type of Residuals

• Raw residual: ei = yi − ŷi

• Semi-studentized residual:
ei√

MSE
, (i = 1, · · ·n), MSE is an approximation of the

standard deviation of ei

• Standardized Residual:
ei

s(ei)
, i = 1, 2, · · ·n

where s(ei) =
√

MSE(1− hii), hii is the diagonal element of hat matrix H =
X(X′X)−1X′, and Ŷ = HY

• Studentized residual:
ei

s(i)(ei)
, i = 1, 2, · · ·n

—–If the residual is standardized with an independent estimate of σ2, the result has a

Student’s t distribution if the data satisfy the normality assumption

—–We estimate σ2 by s2
(i), the estimate of σ2 obtained after deleting the ith observation,

the result is a studentized residual
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Graphical Analysis of Residuals

1. Assessing nonlinearity of Regression Functions

Plot Y v.s X

Plot ei v.s xi or ei v.s ŷi
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Figure 1: Plot of y v.s x, data were generated from y = x ∗ x + 10 ∗ x + 30 + N(0, 25)
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Figure 2: Plot of residual v.s x,data were generated from y = x∗x+10∗x+30+N(0, 25)
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• If the linear regression function is not appropriate, then the

residual plots might show a trend

• If the linear regression function is appropriate, there should be

no obvious trend in the residual plots
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Figure 3: Plot of y v.s x, data were generated from y = 10 ∗ x + 30 + N(0, 25)
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Figure 4: Plot of residual v.s x,data were generated from y = 10 ∗ x + 30 + N(0, 25)
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• Comments:

(1) For simple linear regression, plotting ei v.s xi gives essen-

tially the same graph as ei v.s ŷi since ŷi = b0 + b1xi

(2)
n∑

i=1
xiei = 0

(3)
n∑

i=1
ŷiei = 0

(4) Don’t plot ei v.s yi since they are correlated. The plot of ei

v.s yi will show a trend.
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2. Checking for non-constant error variance

Plot ei v.s ŷi or ei v.s xi

• If error variance is constant, the plot should show no trends,

but a random scatter of points around the horizontal e = 0

axis.

• If there is a problem with the constancy of variance assumption,

ei’s will show some trend.
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• Example of non-constant variance:

Y = 30 + 10 ∗X + N(0, 10X2), variance changes with X
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Figure 5: Example of nonconstant variance
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Figure 6: A residual plot that displays an increasing variance looks roughly like a horn opening

to the right. A residual plot indicating a decreasing variance is a horn opening to the left.
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3. Checking for independence of Error terms

• This is hard to do. It is common for nonindependence to be

related to the sequence in which the observations are obtained.

• Plot ei v.s time sequence (order in which data is collected)

• Independence would result in a random scatter of points.

• Non independence would result in a trend in the plot
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Figure 7: Plot of residual v.s time
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4. Checking for Outliers

• Outliers are observations whose values are far from “typical”

values in the sample

• Plot Y vs X , plot ei vs xi

• Outliers (y observations) can easily be spotted on a residual

plot, especially if studentized residuals are used. Look for

residuals that are far from the main set of residual values.
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Figure 8: outliers, data were generated from y = 30 + 10 ∗ x + N(0, 10) with the No.20

observation replaced by 5000
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X outliers and Y outliers

• Leverages (hii) are values between 0 and 1, 0 < hii < 1, that measure how bizarre x

value is relative to the other x values in the data
n∑

i=1

hii = number of predictor variables + 1

In a simple linear regression

n∑

i=1

hii = 2,
n∑

i=1

hii/n = 2/n

hii =
1
n

+
(xi − x̄)2∑
j(xj − x̄)2

hii = h2
ii +

∑

j 6=i

h2
ij , by H2 = H

Average of leverages in a simple linear regression is 2/n. The farther xi is from the center

of the data (as measured by the sample mean x̄), the higher the leverage.
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• Points with leverages larger than 2 ∗ 2/n cause concern and

leverage above 3 ∗ 2/n cause considerable concern.

• Y outlier, examine the largest absolute standardized deleted

residual, the appropriate α level test rejects if

max|(th)| ≥ t(1− α

2n
, dfE − 1).
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• Comments:

There are many possible reason for the presence of outliers, A random oc-

currence of an outlier, measurement error, non normal distributions for y’s.

—Outliers may be discarded from an analysis. This is reasonable if the

data point resulted from a recording error, miscalculation, equipment failure

or others

—Otherwise, discarding an outlier, might not be wise, the results of the

analysis might be biased

—Try to determine why a data point is an outlier

—An outlier can greatly affect the results of the method of least squares.

The fitted line is pulled disproportionately toward the outlier. The result can

be a misleading the fit of the data.
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Effects of high leverage

Example. The actual data are given below along with their

leverages.

Case 1 2 3 4 5

x 1 2 3 4 20

y 1 2 3 4 -3

Leverage 0.30 0.26 0.24 0.22 0.98
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Figure 9: Plot of data points along with fitted regression line
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Comments:

• The four points on the left form a perfect line with slope 1 and intercept 0.

There is one high leverage point far away to the right.

• The estimated regression line is forced to go very nearly through this high

leverage point.

• The plot has two clusters of points that are very far apart, so the estimated

line is the line that goes through the mean x and y values for each of the

two clusters. The single point on the right dominates the estimated straight

line. This happens regardless of the fact that the four cases on the left follow

a perfect straight line.
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Effects of Y outliers
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Figure 10: data were generated from y = 30 + 10 ∗ x + N(0, 10) seed=16, with the No.20

observation replaced by 5000
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Figure 11: Boxplot
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• rstudent value for No.20 observation is 1466.30

1466.30 >> qt(1− 0.05/(2 ∗ n), df(E)− 1)

= qt(1− 0.05/(2 ∗ 30), 28− 1)

= 3.49
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Coefficients Estimate SE t-value p-value

Without Outlier

Intercept 30.22682 1.1276 26.81 < 2e− 16

x 10.04131 0.06455 155.56 < 2e− 16

With Outlier

Intercept 50.74 314.40 0.161 0.873

x 19.27 18.00 1.071 0.293

• regression lines are

y = 30.23 + 10.04x without the outlier

y = 50.74 + 19.27x with the outlier

which is pulled up disproportionately toward the outlier.

• the outlier inflated the standard errors.
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5. Checking for normality

• Whether the distribution of the errors is far enough away from

normal to invalidate our confidence intervals and significance

tests. Look at the residuals’ distribution. Use a normal quantile

plot (qqplot) and a histogram plot.
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• Normal quantile plot: A graph of the residuals versus the expected order

statistics of the standard normal distribution. It plots quantiles of the data

versus quantiles of a distribution. The Q-Q plot may be constructed using

raw, standardized or jack-knifed residuals

—-If the observations come from a normal distribution we would expect

the observed order statistics to be reasonably close to the expected order

statistics. We should get approximately a straight line

—-In general, Q-Q plots showing curvature indicate skew distributions, with

downward concavity corresponding to negative skewness (long tail to the

left) and upward concavity indicating positive skewness. On the other hand,

S-shaped Q-Q plots indicate heavy tails, or an excess of extreme values,

relative to the normal distribution.
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Skewness: is a measure of the symmetry of the distribution of

data values

—–In a histogram, skew occurs if the values on one side of the

histogram tend to extend further from the ”middle” than the val-

ues on the other side

—–Right-skewed (positive skew): if the right (higher value) tail

is longer or fatter. The mean is to the right, thus bigger than

the median
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—–Left-skewed (negative skew): if the left (lower value) tail is

longer or fatter. The mean is to the left, thus smaller than the

median
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Figure 12: check normality, data were generated from y = 30 + 10 ∗ x + N(0, 10)
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Figure 13: nonnormality, data were generated from y = 30 + 10 ∗ x + χ2(1)
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Figure 14: Normal probability plots when error term distribution is not normal
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6. Predictor Variable

• The purpose is to determine whether there are any other key

variables that could provide important additional descriptive and

predictive power to the model

• Plot residuals vs. any variable omitted from the regression

model. Any trend in this plot would indicate that you should

consider including the variable in the regression model.
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7. Summary

We discussed how to use plots to examine departures from

the important assumptions such as linear relationship, constant

variance, normal errors and independence.

• Plot, plot, plot, always check the plots first. Although graphic

analysis of residuals is only an informal method of analysis,

in many cases it suffices for examining the aptness of a model.

Use the significance tests if you are uncertain what to conclude

after examining the plots. Tests are not a replacement for the

plots, but a supplement to them.

• plot Y vs. X (check for linearity, outliers)
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• plot residuals vs. X or residuals vs. ŷ(check for constant vari-

ance, outliers, linearity, normality)

• qqplot and histogram of residuals (check normality)

• In practice, several types of departures may occur together.

• The basic approach to residual analysis explained here applies

not only to simple linear regression but also to more complex

regression and other types of statistical models
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Some Tests:
Correlation Test for Normality

• Correlation between residuals ei and their expected values under normality.

Reject H0 : Data is normally distributed if corr(obs, exp) is too small.

• See Table B.6 for critical values for this correlation test, for Toluca company

example, the critical value for n = 25, α = .05 is .959. The coefficient of

correlation between the ordered residuals and their expected values under

normality is .991. So we support the conclusion that the distribution of the

error terms does not depart substantially from a normal distribution.
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Two formal test for constance of error variance

(1) Modified Levene test (Brown-Forsythe Test), more appro-

priate for analysis of variance (leave as homework)

(2) Breusch-Pagan test

• Assume that the error terms are independent and normally dis-

tributed and variance of the error term εi, denoted by σ2
i , is

related to the level of X by

lnσ2
i = γ0 + γ1Xi

• σ2
i either increases or decreases with the level of X .
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• constant variance indicates that γ1 = 0, that is

lnσ2
i = γ0 = constant.

• If γ1 6= 0, then the variance is not constant.

• If we could estimate σ2
i at each xi, we could use regression

analysis to fit the model and test for the significance of γ1

• The proposed test estimate the σ2
i by e2

i , the test then obtain

SSR∗ from the regression of e2
i on xi’s. The test statistic is

X2
BP =

SSR∗

2
/

(
SSE

n

)2
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where SSE is the sum of squares error from regressing Y on
X .

• To test H0 : γ1 = 0 vs Hα : γ1 6= 0, we reject H0 if X2
BP >

χ2(1− α; 1) for large n.

• Example: BP test for the Toluca Company example. To discover the rela-

tionship between lot size and labor hours required to produce the lot. Data

on lot size and work hours for 25 recent production runs were utilized.

• Regress Y on X and obtain SSE = 54825.

Regress the squared residuals e2
i against X and obtain SSR∗ = 7896128.

X2
BP =

7896128

2
/

(
54825

25

)2

= .821.

• χ2(.95; 1) = 3.84, X2
BP = .821 ≤ 3.84, we conclude H0, that the error

variance is constant.
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Testing Lack of Fit

• Lack of fit involves an initial model that does not fit the data

adequately

• Look for models that fit significantly better than the initial model
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Fisher’s test for lack of fit

Example: (page 120) 12 suburban branch offices of a commercial bank.

Holders of checking accounts were offered gifts for setting up money market

accounts. Minimum deposits were required and the value of the gift was

directly proportional to the minimum deposit. 6 levels were used. One bank

dropped out. Linear fit is bad. How can we test it?

Figure 15: Scatter plot and fitted regression line-Bank example
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The lack of fit test requires that the observations Y for given

X are

• Independent

• Normally distributed

• The distributions of Y have the same variance σ2

• You have replicate (repeat) values (two or more observations

with exactly the same X value(s) at one or more X levels
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Notation

• X1, X2, · · · , Xc are c unique Xvalues

• The number of replicates for the jth level of X is nj

• n1 + n2 + · · ·nc = n

• At Xj we have nj ≥ 1 observations denoted, say Y1j , Y2j .

• At Xj , the average response is Ȳj = (Y1j+Y2j+· · ·Ynjj)/nj
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General linear test approach
Full model(“pure” model):

yij = µj + εij

• µj are parameters j = 1, · · · , c

• εij are independent N(0, σ2)

Estimated full model:

ŷij = µ̂j = ȳj

SSE(Full) = SS for “pure” error

SSE(F ) =
∑

j

∑
i

(yij − ȳj)
2 = SSPE

DF(Full):

dfF =
∑

j

(nj − 1) =
∑

j

nj − c = n− c
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Reduced model = regression model:

yij = β0 + β1xj + εij

Estimated reduced model:

ŷij = b0 + b1xj

SSE(Reduced) =SSE for regression model:

SSE(R) =
∑∑

[yij − (b0 + b1xj)]
2

=
∑∑

(yij − ŷij)
2

= SSE

df(R) = n− 2
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General linear test

(1) Hypotheses:

H0 : E(y) = β0 + β1x

Hα : E(y) 6= β0 + β1x

(2) Test statistic:

F ∗ =
SSE − SSPE

(n− 2)− (n− c)
÷ SSPE

n− c

=
SSLF

c− 2
÷ SSPE

n− c
=

MSLF

MSPE
(3) Decision Rule:

F ∗ ≤ F (1− α; c− 2, n− c), concludeH0

F ∗ ≥ F (1− α; c− 2, n− c), concludeHα
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Bank Example: ANOVA table

Source of Variation SS df MS

Regression 5141.3 1 5141.3

Error 14741.6 9 1638.0

Lack of fit 13593.6 4 3398.4

Pure error 1148.0 5 229.6

Total 19882.9 10

F ∗ = MSLF/MSPE = 3398.4/229.6 = 14.80, let α = .01, then

F (.99; 4, 5) = 11.4, F ∗ = 14.8 > 11.4, P value for the test is 0.006.

we conclude Hα, that the regression function is not linear.
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Comments on general linear approach for lack of fit test

• Not all x’s need to be replicated

• Test can be applied with more than one predictor; if there are p parameters

the numerator degrees of freedom will be c − p, denominator degrees of

freedom will be n− p

• Doesn’t tell you what the right model is if it rejects; but you can believe your

model if it accepts.
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Remedial Measures for Inappropriate Regression Models:

• suppose one or more model assumptions appear to be vio-

lated, what to do?

(1) Abandon the model and search for a more appropriate one

(2) Use transformations on the data (y and/or x), so that the

transformed data is fit well by your simple model.
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Assumption Violation:
1. Nonlinearity of regression function

• Modify the regression function

Example:

y = β0 + β1x
2 + ε

y = β0 + β1logx + ε,

consider x2 and logx as individual quantities. Consider model

y = β0 + β1x
′ + ε,

where x′ = x2 or x′ = logx.

• Transform the data, so that the transformed data follows a linear relation-

ship. Power transformation, Box-Cox transformation
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2. Nonconstancy of Error Variance

• Modify the model so that nonconstant variances are allowed.

Use the method of weighted least squares (we need to know

how the variances are changing with x to use this method)

• Sometimes a simple transformation of the response will make

the variances constant
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3. Nonindependence of Error terms

• If the error terms are correlated and we know the structure of

the correlation, then a model with correlated errors can be used

and analyzed with generalized least squares.

• Sometimes a simple transformation of the response, such as

differences between successive observations will eliminate the

correlation between observations.
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4. outliers

• A more appropriate regression function might remedy prob-

lems with outliers

• Transformations at times will tend to “pull in” the outliers
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5. Non normality of error terms

• Could consider a model with nonnormal error terms. But it is

difficult to do so.

• Transform the response, so that the distribution of the error

terms is normal. Sometimes transformations of the response

can get rid of problems with nonconstant variance and nonnor-

mality.

• Nonnormality (at least not severe) is not as serious as noncon-

stant variance or the wrong regression function.
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Intrinsically Linear Model:

There are nonlinear model that is intrinsically linear.
Nonlinear Transformation Linear

y = γ0xγ1 y′ = lny, x′ = lnx y′ = lnγ0 + γ1x′

y = γ0eγ1x y′ = lny y′ = lnγ0 + γ1x

y =
1

γ0 + γ1x
y′ =

1

y
y′ = γ0 + γ1x

y =
x

γ0x− γ1
y′ =

1

y
, x′ =

1

x
y′ = γ0 − γ1x′

y =
1

1 + exp(γ0 + γ1x)
y′ = ln(

1

y
− 1) y′ = γ0 + γ1x
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Transformations:
If the residuals show a problem with

• lack of fit (having the wrong model for the mean)

• heteroscedasticity

• nonnormality

Try y transformation or x transformation or both

• y transformation is more common

• only works when ymax/ymin is reasonably large

• choose a transformation to stabilize variance

• log or square transformations can solve many problems
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Table 1: Variance stabilizing transformations

Data Distribution Mean, Variance Relationship Transformation

Count Poisson µh ∝ σ2
h

√
yh

Amount Gamma µh ∝ σh log(yh)

Proportion Binomial/N µh(1− µh)/N ∝ σ2
h sin−1(

√
yh)
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Figure 16: Circle of Transformations
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Figure 17: Curved x, y plot (y = cosx in the first quadrant. According to figure 16, need to

increase power of both x and y
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Figure 18: Plot of x1.5, y1.5. y = cosx in the first quadrant. After transformation x∗ = x1.5

and y∗ = y1.5, the curve is much straighter than the one in Figure 17
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Power Transformation:

• If the residuals appear to be normal with constant variance,

and the relationship is linear, then go ahead with the regression

model. No transformation is needed.
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• Transformation is used to deal with model violations. Com-

monly used transformation is the power transformation (Box-

Cox transformation)

y∗ =





yλ λ 6= 0

lny if λ = 0.

x∗ =





xλ λ 6= 0

lnx if λ = 0.
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• If the residuals appear to be normal with constant variance,

but the relationship is non-linear, try transforming the X ’s to

make it a straight line. The transformation on Y may materially

change the shape of the distribution of the error terms from the

normal distribution and may also lead to substantially differing

error term variances.

• If the residuals are not randomly scattered around zero, but

have trends. Try transforming Y .

• If you choose a transformation, you need to go back and do all

the diagnostics all over again.
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• Box and Cox (1964) developed a method to suggest an ap-

propriate transformation of the response variable y, so that,

the transformed y is appropriate for the simple linear regres-

sion model. The transformation are power transformation. The

method selects the λ power to minimize the SSE of the re-

gression

yλ = β0 + β1x + ε

and use maximum likelihood to estimate λ. The method runs

the regression for a range of transformations between -2 and

+2, pick the one that minimizes SSE(λ). Eventually you would

probably suggest the same transformation by eye.

73



• What transformation to use? Pictures of various prototype situations are

given in section 3.9. Fig. 3.13, p. 130: transformations on X for non-linear

relationships. Fig. 3.15, p. 132: transformations on Y for non-constant

variance (and possibly non-linear relationships)

• Not all scatter plots can be straighten by a power transformation

• Box-Cox suggests a transformation but there is no guarantee it will solve all

our problems. We still have to check residuals, assumptions, etc.

• There may be a number of transformations that adequately “straighten” a

scatterplot. Pick the transformation that is most interpretable (or the sim-

plest).

• If variable ranges over several orders of magnitude, natural logs transfor-

mation usually work; often needed for economic data
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• 1/Y often makes intuitive sense: If Y is customers per hour, 1/Y is hours

per customer.

• Square root may make sense if you are measuring areas (square-feet, etc).

• If Y = 0 for some observations, cannot do 1/Y or logY ; just add a

constant k to all of the Y s first
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Example: Data on age and plasma level of a polyamine for a

portion of 25 healthy children in a study is used for this exam-

ple.
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Figure 19: plot and fitted line
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Notice the curvilinear regression relationship, as well as the

greater variability for younger children than for old ones

78



Figure 20: residual vs x, check nonconstant variance, outliers
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Residuals are not randomly scattered around y = 0. BP test

gives a value of 11.1063 with p-value = 0.0008604. Reject the

constant variance assumption
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Figure 21: boxplot to check outliers
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Figure 22: histrogram and qqplot to check nonnormality
Histogram of resid

resid

Fr
eq

ue
nc

y

−4 −2 0 2 4 6 8

0
2

4
6

8
10

12

−2 −1 0 1 2

−2
0

2
4

6

Normal Q−Q Plot

Theoretical Quantiles

Sa
mp

le 
Qu

an
tile

s

82



Histogram plot is skewed to right, qq plot is not satisfied. Shapiro-

Wilk normality test gives a p-value of 0.001098, reject the nor-

mality assumption
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Based on the prototype regression pattern, we shall try the log-

arithmic transformation y′ = log10(y)

Child Age Plasma Level yi Transformed Data log10(y)

1 0 13.44 1.1284

2 0 12.84 1.1086

3 0 11.91 1.0759

4 0 20.09 1.3030

...
...

...
...

25 4 6.23 0.7945
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Figure 23: Analysis of data after transformation Y ′ = log10(Y )
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• Transformation led to a reasonably linear regression relation

• Variability at the different levels of x also has become reasonably constant

• Residual plots look reasonably well

• Breusch-Pagan test gives a value of 2.0352 with a p-value .1537, support-

ing the constant variance assumption. Shapiro-Wilk normality test gives a

p-value of 0.6784, supporting the normality assumption.

• All of this evidence supports the appropriateness of regression model for

the transformed y data

• Regression line for the transformed data ŷ′ = 1.135− .1023x

• Convert back to the original unit ŷ = 101.135−.1023x
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Example 7.3.1. Hooker data (Christensen)

Forbes (1857) reported data on the relationship between at-

mospheric pressure and the boiling point of water that were

collected in the Himalaya mountains by Joseph Hooker. Weis-

berg (1985, p. 28) presented a subset of 31 observations that

are used as our example.

87



Figure 24: Hooker data with fitted regression line
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Figure 25: Hooker data: residual vs fitted values
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Figure 26: Box-Cox Transformation
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• Loglikelihood reaches maximum when λ between (−0.01) to 0.25

• Prefer a log transformation of λ = 0 (easier for interpretation)
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Figure 27: Hooked data with log transformation on Pres: Scatterplot of LPres vs Temp with

fitted regression line
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Table 2: Table of coefficient: log Hooker data

Predictor β̂k SE(β̂k) t P

Constant −1.0221374 0.0336450 -30.38 < 2e− 16

Temp 0.0208698 0.0001753 119.08 < 2e− 16
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Figure 28: Standardized residuals versus predicted values, logs of Hooker data
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Figure 29: Normal plot for logs of Hooker data
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Note:

• It may be desirable to introduce a constant into a transforma-

tion of Y , such as when Y may be negative.

• When unequal error variances are present but the regression

relation is linear, a transformation on Y may not be sufficient.

While such a transformation may stabilize the error variance, it

will also change the linear relationship to a curvilinear one. A

transformation on X may also be required.
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