
Chapter 4 Simultaneous Inferences and Other Topics

in Regression Analysis

4.1 Joint Estimation of β0 and β1

• Assume that x = 0 is in the scope of the model, so inferences

of β0 is meaningful

• CI for β0 and β1

b0 ± t(1− α

2
)s(b0)

b1 ± t(1− α

2
)s(b1)

The coefficient for each confidence interval is (1− α)
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• Question: what is the confidence coefficient for the collection

of the above statements?

• Before the sample is taken and the confidence intervals com-

puted, we know that

(1) the statement that β0 is in the interval

b0 ± t(1− α

2
)s(b0)

is correct with probability 1− α.

(2)the statement that β1 is in the interval

b1 ± t(1− α

2
)s(b1)

is correct with probability 1− α.
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• What is the probability that both statements are simultaneously

correct?

(1) If the statements are independent, then the probability that

both are correct is (1− α)(1− α).

(2) But they are not independent. The actual probability is diffi-

cult to compute.

• Want a family confidence coefficient for our family of state-

ments

(1) a joint rectangular region based on adjusted individual con-

fidence interval for β0 and β1 using the Bonferroni method.

(2) a joint elliptically shaped region for β0 and β1
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Rectangular Joint Confidence Region

• Bonferroni Inequality

Let s1, s2 · · · sk be statements with

p(si is true) = 1− αi

then

p(s1 is true, s2 is true · · · and sk is true)

=p(all si’s are simultaneously true)

≥ 1-
∑k

i=1 αi

• Gives a lower bound on the probability that all statements are

simultaneously true.
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Example: Suppose 1− αi = .90, k = 10

p(All 10 s′is true) ≥ 1−∑10
i=1 .10 = 0

The Bonferroni inequality works, but might not work very well.
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Obtain a family confidence coefficient of (1 − α) for con-

fidence intervals for β0 and β1

• Example: If β0 and β1 both have 95% confidence intervals

b0 ± t(.975; n− 2)s(b0)

and

b1 ± t(.975; n− 2)s(b1)

The joint confidence coefficient using the Bonferroni inequality

is greater than or equal to 1− .05− .05 = .90
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• To get a joint confidence coefficient of at least (1 − α) for β0 and β1, we

use the confidence intervals

b0 ±Bs {b0} , b1 ±Bs {b1}
where B = t(1− α/4; n− 2) The confidence coefficient is at least

1− α

2
− α

2
= 1− α.

• To get a joint confidence coefficient of at least (1 − α) for g parameters,

we construct each interval estimate with statement confidence coefficient

1− α/g

The confidence coefficient is at least

1− g ∗ α

g
= 1− α.
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Comments: For a given family confidence coefficient, the large

the number of confidence intervals in the family, the greater

becomes the multiple B, which may make some or all of the

confidence intervals too wide to be helpful.
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Example:

• Y outlier, examine the largest absolute standardized deleted residual, the appropriate α

level test rejects if

max|(th)| ≥ t(1− α

2n
, dfE − 1).

s1: observation 1 is not an outlier

s2: observation 2 is not an outlier
...

sn: observation n is not an outlier

To get a joint confidence coefficient of at least (1 − α) for n parameters, we construct

each interval estimate with statement confidence coefficient 1− α/n

Therefore, simultaneously, reject H0, when

|(th)| ≥ t(1− α

2n
, dfE − 1).

9



Mean response CI’s

For all Xh with a confidence band: use Working-Hotelling

Ŷh ±Ws(Ŷh) where W 2 = 2F2;n−2(1− α)

For simultaneous estimation for a few Xh, say g different val-

ues, we may use Bonferroni approach

Ŷh ±Bs(Ŷh) where B = tn−2(1− α/(2g))

10



Examples (pages 158, 159)

Toluca company example, we require a family of estimates of

the mean number of work hours at the following lot size level:

Xh Ŷh s
{

Ŷh

}

30 169.5 16.97

65 294.4 9.918

100 419.4 14.27
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For a family confidence coefficient of 0.90

• using Working-Hotelling procedure, we require F (0.90; 2, 23) =

2.549. Hence

W 2 = 2 ∗ 2.549 = 5.098 W = 2.258

• Using Bonferroni procedure,

B = t[1− 0.10/2(3); 23] = t(0.9833; 23) = 2.263.
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We can now obtain the confidence intervals for the mean number of work hours at Xh =

30, 65, and100:

131.2 = 169.5−2.258(16.97) ≤ E {Yh} ≤ 169.5+2.258(16.97) = 207.8

272.0 = 294.4−2.258(9.918) ≤ E {Yh} ≤ 294.4+2.258(9.918) = 316.8

387.2 = 419.4−2.258(14.27) ≤ E {Yh} ≤ 419.4+2.258(14.27) = 451.6

With family confidence coefficient 0.90, we conclude that the mean number of work hours

required is

• between 131.2 and 207.8 for lots of 30 parts

• between 272.0 and 316.8 for lots of 65 parts

• between 387.2 and 451.6 for lots of 100 parts.

• The family confidence coefficient 0.90 provides assurance that the procedure leads to all

correct estimates in the family of estimates.
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Using Bonferroni procedure,

B = t[1− 0.10/2(3); 23] = t(0.9833; 23) = 2.263.

With 90 percent family confidence coefficient, we conclude that

the mean number of work hours required is

• between 131.1 and 207.9 for lots of 30 parts

• between 272.0 and 316.8 for lots of 65 parts

• between 387.1 and 451.7 for lots of 100 parts.
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Comments:

• In this instance the Working-Hotelling multiplier W is slightly smaller than

the Bonferroni multiplier B. In other cases where the number of statements

is small, the Bonferroni multiplier is usually smaller, so the confidence limits

are tighter.

• For larger families, the Working-Hotelling confidence limits will always be

the tighter, since W stays the same for any number of statements in the

family whereas B becomes larger as the number of statements increase.

• In practice, once the family confidence coefficient has been decided upon,

one can calculate the W and B to determine which procedure leads to

tighter confidence limits.

• Both the Working-Hotelling and Bonferroni procedures provide lower bounds

to the actual family confidence coefficient.
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Simultaneous PIs

Simultaneous prediction intervals for g different Xh: use Bon-

ferroni

Ŷh ±Bs(pred) where B = tn−2(1− α/(2g))

or Scheffé

Ŷh ± Ss(pred) where S2 = gFg;n−2(1− α)
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Regression through the origin

Yi = β1Xi + εi

where εi’s are independent normal with mean 0 and variance σ2.

The least square estimate of β1 is

b1 =

∑n
i=1 xiyi∑

x2
i

, so that ŷi = b1xi

MSE =
1

n− 1

n∑
i=1

(yi − b1xi)
2
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Comments:

• With regression through the origin,
∑n

i=1 ei 6= 0. From the normal equa-

tion, the only constraints on the residuals is of the form
∑

Xiei = 0. In a

residual plot the residuals will usually not be balanced around the zero line.

• SSE may exceed the SSTO. This can occur when the data form a curvilinear

pattern or a linear pattern with an intercept way from he origin.

• Care must be taken in using regression through the origin. If there is any

doubt about β0 = 0. A safer approach is to use the full model yi =

β0 + β1xi + εi and test H0 : β0 = 0 v.s.Hα : β0 6= 0
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