Chapter 6 Multiple Regression



Review simple linear regression:

Normal error regression model:
Y; = 0o+ 61X + €

e (3, and (3;: parameters
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Example: Growth hormone is used as a prescription drug in medicine to
treat children’s growth disorders. In the medical study of short children,
clinicians want to use the statistical relation to predict growth hormone de-
ficiencies in short children by using simple measurements such as gender,
age and various body measurements of the children.

e Gender, age and other body measurements affect the growth hormone in
Important and distinctive ways

e A single predictor variable in the model would have provided an inadequate
description

e |n situation of this type, predictions from a simple linear regression model
are too imprecise to be useful

e Containing additional predictor variables, typically is more helpful in pro-

viding sufficiently precise predictions of the response variable
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Multiple Regression
e Multiple—More than one predictor variable
e Y is the response variable

o X1, X, -+ X;,_1 arethe p — 1 explanatory variables for

cases? = lton

e Potential problem: These predictor variables are likely to be

themselves correlated



General multiple linear regression model

Yi = Bo + 51.Xi1 + o Xiop + -+ Bp1.X, po1 + €,

e Y is the value of the response variable for the 7th case

o X1, X2, -+ ,X;,—1 are known constants, X, is the value

of the kth explanatory variable for the 7th case

e 5o, 31, -+, By—1 are parameters, p — 1 predictors, p para-

meters

o c; N(0,0°)



Geometry of one-predictor model (regression function)
Example: A person’s muscle mass is expected to decrease with age. To explore this
relationship in women, a nutritionist randomly selected 15 women from each 10-year age

group, beginning with age 40 and ending with age 79 with a total number of 60 women.
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Geometry of two-predictor model (regression surface or re-

sponse surface)

Model: E(Y) = By + 51X1 + B2.X5
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Meaning of regression coefficients
Model: E(Y) — 60 -+ ﬁle -+ 62X2

e 3y is the Y intercept of the regression plane. If the scope of
the model includes X; = 0, X9 = 0, then 3, represents the
mean response F(Y) at X1 = 0, Xy = 0. Otherwise, (3

does not have any particular meaning

e (3. represents the change in the mean response E(Y') for a

unit change in X ;. while all other Xj’s are held constant
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Polynomial Regression

Quadratic regression:

Y; = By + 51 Xi + B X? + ¢

Steraid Level

e A special case of multiple linear regression if we let Xy = X12

Yi = By + 51X + 52X + €
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Transform x values

Example: Y; = By + 51 X1 + fae™* +53X¢2+54%+6¢-
Take |
=X
;=
3 = X
1 =1/X5

Then the original data after transformation is a multiple linear

regression model.
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Interaction effects—-cross product

Suppose X7 and X5 interact, we can express a form of inter-

action in the regression model by adding the term X7 X5
Y; = Do+ 01X + PoXio + 03X Xio + €
e Mean of Y at X7 is By + 51 X7 + 32X + 33X71X5
e Meanof Y at X1+ 1is By+ 31 ( X1+ 1)+ B2 X0+ B3( X1+

1)Xo =05y + 51.X1 + 1 -
e Change in mean of Y is 3

e X and X interact since th

- 39 X9 + B3 X1 X9 + 83X
+ 83X

e change in the mean of Y for unit

change in X depends on X5
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Interaction effects: bends the plane
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Interaction plus polynomial terms: full second order model
Yi = Bo+ 61X+ 0o X+ B3 Xin+ B X+ 55 Xn Xio+-€;

Many different shapes are possible, here are two
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Matrix approach of multiple linear regression

Y: = Do

51X

B2 X0

ﬁp—lXi,p—l

€,

Y1 = 0o+ 51X + BoXyo 4 -+ - 4 Bp1 X1 po1 + €1
Yo = Bo + 01 Xo1 + BoXog + -+ - 4 Bp_1Xop—1 + €2

Y, = Bo+ 51X + BoXpo + -+ Bpo1 X p—1 +En
E(Y;) =060+ 51X + BoXio+ -+ Bp_1Xip—1

16



17

Bo
B1

ﬁp—l

€1

€2




Parameter Estimation

Least Squares: Want to minimize the sum of squared residuals:
n
2
Q = Z(Yz — 0o — 51 Xin — -+ — Bp—1Xip-1)
i=1

Denote the vector of the least squares estimated regression coefficients as

b = (b07 bl) o 7bp—1)T
e Normal equation
X'Xb =X'Y
solving this equation for b gives the least squares solution for b
b= (X"X)"'X"Y
Note: The method of maximum likelihood leads to the same estimators for normal error

regression model
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Fitted values and residuals

e Fitted values };; = b() -+ leﬂ -+ bQXrL'Q + T bp—le',p—l

A

e Residualse; = Y, — Y,

Yl €1

A }/2 €9
Y = | e =

Yn e’n

Y = Xb = X(XTX)"'XTY = HY
where H = X (X?X)~1X" is called hat matrix.
e=Y-Y=Y-HY=(I-H)Y
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Estimated covariance matrix
var{e} = cov(e) = o’ (I -H)(I-H)' =¢*(1 - H)
var{e;} = var(e;) = 0°(1 — hy;)
where h;; is the ith diagonal element of H

® cov(ei, ej) = —O'hz'j

Estimation of o2

SSE = (Y — Xb)' (Y — Xb),dfs =n —p

52 = SSE/dfy = MSE
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Variance and estimated variance matrices of b:

var(bg) cov(bg,b1) --- cov(bo,by_1)
cov(by, by) var(by) .-+ cov(by, by_1)
ar(b) = | | |
| cov(bp-1,b0) cov(bp_1,01) -+  var(by_1)

o (X'X)™

Estimated variance covariance;:

s*’(b) = MSE(X'X)™!
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ANOVA Table

e Decomposition of SSTO: SSTO=SSR + SSE
SSTO =3 i1 (yi — 9)°
SSE =3 (i — )
OSSR = Z?:l@z - g)Q
Ui = bo+b1xin + -+ -+ by 1T p1

Source SS df MS F-test
Regression SSR p-1 MSR =SSR/(p-1) F=MSR/MSE
Error SSE n-p MSE =SSE/(n-p)
Total SSTO n-1
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F-test for significance of regression:
Hy:p1=02="--0p-1=0
H, :notall Gip(k=1,2,---p—1) equal zero
Test statistic and decision rule:

F* = MSR/MSE

o If Hyistrue, F = MSR/MSE has an F distribution with
(p — 1,n — p) degrees of freedom.

e Reject Hy, if F* > F(1 —a,p—1,n—p)
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Coefficient of Multiple Determination ~ R?

R? = proportion of variation in y accounted for by the multiple linear re-
gression model in x1, T2, -+ , Tp_q

= SSR/SSTO

e 0 < R’ 1

e % is the square of correlation between y; and y;
o R?=1ify;, = 9, forall ¢

e R*=0ifby=by=---=b, 1=0

e Alarge R? value does not necessarily imply that the fitted model is a useful
one or that the fit is “good”.

e The addition of more predictors to the regression model will result in an
increase in the value of R?.
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e Adjusted R?
SSE/(n —p)

SSTO/(n — 1)

R:=1-

The adjusted R? can decrease as more predictors are added to the model.
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Inference for individual regression coefficient
b~ N8, (X' X))
s°(b) = MSE(X'X)™!

s°(b) = [5°(b) ]k

the k-th diagonal element.

br.

— Ok

e Distribution of by
S

(Ox)

e a (1 — «)100% confidence interval for 3y,

by, -

(1 — a/2)s{by)
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e Significant test for 3.

Hy:0.=0 vs By #0

.
s{bx }
If H is true, t* has a t-distribution with n — p degrees of
freedom.
Alternative Reject H if

Hy,:06.>0 t*>t(1—a;n—p)
H,: 0. <0 t'<—t(l—a;n—p)
Hy,: 0 #0 [t*]| >t(1 —a/2;n —p)
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Simultaneous Confidence Intervals for (1, , Bp—1

Qv
2(p — 1)
where ) =1,2,--- ,p— 1.

b, £ t(l

;n —p)s(br),

28



Estimation of F/(Y},)

We want a point estimate and a confidence interval for the mean corre-
sponding to the set of explanatory variables X,.

Yi= 0o+ 51X + PaXio + -+ Bp1.Xi po1 + €,
X =1, Xn1, X2, s Xnp-1)"

Yi = B0+ 51 Xn1 + BoXpo 4+ -+ Bpo1 Xnp—1 + €
E(Yh) = 8o+ 51 Xn1 + BoXpno + - + Bpo1 Xnp1
or B(Yy) = up = X1

in = XTb

s*{ay} = X! s*{b}X;, = MSEX! (XTX)"1X,,
95% Cl Uy, £ s{Up }t—p(1 — a/2)
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Prediction of Y}, (new)

Predict a new observation Y}, at X;,. We want a prediction of Y}, based on
a set of predictor values with an interval that expresses the uncertainty in
our prediction. As in SLR this interval is centered at Y}, and is wider than

the interval for the mean.
Vi =X} B8+ e
Y, =, =XIb

82{pred} = var(Yymew) — }A/h)
— var(Yh(neW)) + var(f/h)
= MSE(1+ X, (X'X)"'X})

Cl for Yimew): Yi, + s{pred}t, ,(1 — a/2)
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Diagnostics

e Appropriate Regression Model
—Pairwise Plots Y; v.s X;;forj =1,2,--- ;p—1,ie,p—1
plots of Y v.s X for each predictor
—3D plot, plot Y v.s X; and X, and look for trends
—Residual plots, €; v.s YL eivs X5, =1,---,p—1,¢

v.s pair of X's

e Constancy of Error Variance
—Checke;vs Y, e;vs X5, 7 =1,2,--- ,p—1
—Use Brusch-Pagan test, one variable at a time or all variables

together
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e Normality
—Histogram Plot
—Normal probability plot of residuals

—Tests, Lilliefors’ test, correlation test

e Oultliers
—Plot e; v.s }A/; eiv.s X;i's, 7 =1,2,--- ,p—1
—Normal probability Plot
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e Independence

— Check plot of e; v.s time if possible

e Remedies:
— Try transformations of Y and/or X's, polynomials in X'’s are
often used to deal with curvature
— May eliminate some of the X's (this is called variable selec-

tion

Discuss example
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