
Chapter 6 Multiple Regression
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Review simple linear regression:

Normal error regression model:

Yi = β0 + β1Xi + εi

• β0 and β1: parameters

• εi
iid∼ N(0, σ2) for i = 1, 2, · · · , n
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Example: Growth hormone is used as a prescription drug in medicine to

treat children’s growth disorders. In the medical study of short children,

clinicians want to use the statistical relation to predict growth hormone de-

ficiencies in short children by using simple measurements such as gender,

age and various body measurements of the children.

• Gender, age and other body measurements affect the growth hormone in

important and distinctive ways

• A single predictor variable in the model would have provided an inadequate

description

• In situation of this type, predictions from a simple linear regression model

are too imprecise to be useful

• Containing additional predictor variables, typically is more helpful in pro-

viding sufficiently precise predictions of the response variable
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Multiple Regression

• Multiple–More than one predictor variable

• Yi is the response variable

• Xi1, Xi2, · · ·Xi,p−1 are the p − 1 explanatory variables for

cases i = 1 to n

• Potential problem: These predictor variables are likely to be

themselves correlated
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General multiple linear regression model

Yi = β0 + β1Xi1 + β2Xi2 + · · ·+ βp−1Xi,p−1 + εi,

• i = 1, 2, · · · , n

• Yi is the value of the response variable for the ith case

• Xi1, Xi2, · · · , Xi,p−1 are known constants, Xik is the value

of the kth explanatory variable for the ith case

• β0, β1, · · · , βp−1 are parameters, p − 1 predictors, p para-

meters

• εi
iid∼ N(0, σ2)
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Geometry of one-predictor model (regression function)

Example: A person’s muscle mass is expected to decrease with age. To explore this

relationship in women, a nutritionist randomly selected 15 women from each 10-year age

group, beginning with age 40 and ending with age 79 with a total number of 60 women.
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Geometry of two-predictor model (regression surface or re-

sponse surface)

Model: E(Y ) = β0 + β1X1 + β2X2
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Meaning of regression coefficients

Model: E(Y ) = β0 + β1X1 + β2X2

• β0 is the Y intercept of the regression plane. If the scope of

the model includes X1 = 0, X2 = 0, then β0 represents the

mean response E(Y ) at X1 = 0, X2 = 0. Otherwise, β0

does not have any particular meaning

• βk represents the change in the mean response E(Y ) for a

unit change in Xk while all other Xj ’s are held constant
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Polynomial Regression

Quadratic regression:

Yi = β0 + β1Xi + β2X
2
i + εi

• A special case of multiple linear regression if we let X2 = X2
1

Yi = β0 + β1Xi1 + β2Xi2 + εi
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Transform x values

Example: Yi = β0+β1Xi1+β2e
Xi1 +β3Xi2+β4

1

Xi2
+εi.

Take

X∗
1 = X1

X∗
2 = eX1

X∗
3 = X2

X∗
4 = 1/X2

Then the original data after transformation is a multiple linear

regression model.
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Interaction effects—-cross product

Suppose X1 and X2 interact, we can express a form of inter-

action in the regression model by adding the term X1X2

Yi = β0 + β1Xi1 + β2Xi2 + β3Xi1Xi2 + εi

• Mean of Y at X1 is β0 + β1X1 + β2X2 + β3X1X2

• Mean of Y at X1+1 is β0+β1(X1+1)+β2X2+β3(X1+

1)X2 = β0 + β1X1 + β1 + β2X2 + β3X1X2 + β3X2

• Change in mean of Y is β1 + β3X2

• X1 and X2 interact since the change in the mean of Y for unit

change in X1 depends on X2
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Interaction effects: bends the plane
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Interaction plus polynomial terms: full second order model

Yi = β0+β1Xi1+β2X
2
i1+β3Xi2+β4X

2
i2+β5Xi1Xi2+εi

Many different shapes are possible, here are two
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Matrix approach of multiple linear regression

Yi = β0 + β1Xi1 + β2Xi2 + · · ·+ βp−1Xi,p−1 + εi,

Y1 = β0 + β1X11 + β2X12 + · · ·+ βp−1X1,p−1 + ε1

Y2 = β0 + β1X21 + β2X22 + · · ·+ βp−1X2,p−1 + ε2

...
...
...

Yn = β0 + β1Xn1 + β2Xn2 + · · ·+ βp−1Xn,p−1 + εn

E(Yi) = β0 + β1Xi1 + β2Xi2 + · · ·+ βp−1Xi,p−1
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Yn×1 = Xn×pβp×1 + εn×1.

ε ∼ N(0, σ2I),

Y ∼ N(Xβ, σ2I)

Y =

26666664
Y1

Y2

.

.

.

Yn

37777775X =

26666664
1 X11 X12 · · · X1,p−1

1 X21 X22 · · · X2,p−1

.

.

.
.
.
.

1 Xn1 Xn2 · · · Xn,p−1

37777775β =

26666664
β0

β1

.

.

.

βp−1

37777775 ε =

26666664
ε1

ε2
.
.
.

εn

37777775
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Parameter Estimation

Least Squares: Want to minimize the sum of squared residuals:

Q =
n∑

i=1

(Yi − β0 − β1Xi1 − · · · − βp−1Xi,p−1)2

Denote the vector of the least squares estimated regression coefficients as

b = (b0, b1, · · · , bp−1)T

• Normal equation

XT Xb = XT Y

solving this equation for b gives the least squares solution for b

•
b = (XT X)−1XT Y

Note: The method of maximum likelihood leads to the same estimators for normal error

regression model

18



Fitted values and residuals

• Fitted values Ŷi = b0 + b1Xi1 + b2Xi2 + · · ·+ bp−1Xi,p−1

• Residuals ei = Yi − Ŷi

Ŷ =




Ŷ1

Ŷ2

...

Ŷn




e =




e1

e2

...

en




Ŷ = Xb = X(XTX)−1XTY = HY

where H = X(XTX)−1XT is called hat matrix.

e = Y − Ŷ = Y −HY = (I−H)Y

19



Estimated covariance matrix

var{e} = cov(e) = σ2(I−H)(I−H)T = σ2(I−H)

var{ei} = var(ei) = σ2(1− hii)

where hii is the ith diagonal element of H

• cov(ei, ej) = −σhij

Estimation of σ2

SSE = (Y −Xb)T (Y −Xb), dfE = n− p

σ̂2 = SSE/dfE = MSE
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Variance and estimated variance matrices of b:

var(b) =




var(b0) cov(b0, b1) · · · cov(b0, bp−1)

cov(b1, b0) var(b1) · · · cov(b1, bp−1)
...

...
...

cov(bp−1, b0) cov(bp−1, b1) · · · var(bp−1)




= σ2(X′X)−1

Estimated variance covariance:

s2(b) = MSE(X′X)−1
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ANOVA Table

• Decomposition of SSTO: SSTO=SSR + SSE

SSTO =
∑n

i=1(yi − ȳ)2

SSE =
∑n

i=1(yi − ŷi)
2

SSR =
∑n

i=1(ŷi − ȳ)2

ŷi = b0 + b1xi1 + · · ·+ bp−1xi,p−1

Source SS df MS F-test

Regression SSR p-1 MSR = SSR/(p-1) F =MSR/MSE

Error SSE n-p MSE = SSE/(n-p)

Total SSTO n-1
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F-test for significance of regression:

H0 : β1 = β2 = · · · βp−1 = 0

Hα : not all βk(k = 1, 2, · · · p− 1) equal zero

Test statistic and decision rule:

F ∗ = MSR/MSE

• If H0 is true, F = MSR/MSE has an F distribution with

(p− 1, n− p) degrees of freedom.

• Reject H0, if F ∗ > F (1− α, p− 1, n− p)
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Coefficient of Multiple Determination R2

R2 = proportion of variation in y accounted for by the multiple linear re-

gression model in x1, x2, · · · , xp−1

= SSR/SSTO

• 0 ≤ R2 ≤ 1

• R2 is the square of correlation between yi and ŷi

• R2 = 1 if yi = ŷi for all i

• R2 = 0 if b1 = b2 = · · · = bp−1 = 0

• A large R2 value does not necessarily imply that the fitted model is a useful

one or that the fit is “good”.

• The addition of more predictors to the regression model will result in an

increase in the value of R2.
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• Adjusted R2

R2
a = 1− SSE/(n− p)

SSTO/(n− 1)

The adjusted R2 can decrease as more predictors are added to the model.
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Inference for individual regression coefficient

b ∼ N(β, σ2(XTX)−1)

s2(b) = MSE(XTX)−1

s2(bk) = [s2(b)]k,k

the k-th diagonal element.

• Distribution of bk:
bk − βk

s(bk)
∼ t(n−p) k = 0, 1, · · · , p−1

• a (1− α)100% confidence interval for βk

bk ± tn−p(1− α/2)s{bk}
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• Significant test for βk

H0 : βk = 0 v.s βk 6= 0

t∗ =
bk

s{bk}
If H0 is true, t∗ has a t-distribution with n − p degrees of

freedom.

Alternative Reject H0 if

Hα : βk > 0 t∗ > t(1− α; n− p)

Hα : βk < 0 t∗ < −t(1− α; n− p)

Hα : βk 6= 0 |t∗| > t(1− α/2; n− p)
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Simultaneous Confidence Intervals for β1, · · · , βp−1

bk ± t(1− α

2(p− 1)
; n− p)s(bk),

where j = 1, 2, · · · , p− 1.
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Estimation of E(Yh)

We want a point estimate and a confidence interval for the mean corre-

sponding to the set of explanatory variables Xh.

Yi = β0 + β1Xi1 + β2Xi2 + · · ·+ βp−1Xi,p−1 + εi,

Xh = (1, Xh,1, Xh,2, · · · , Xh,p−1)
T

Yh = β0 + β1Xh1 + β2Xh2 + · · ·+ βp−1Xh,p−1 + εh

E(Yh) = β0 + β1Xh1 + β2Xh2 + · · ·+ βp−1Xh,p−1

or E(Yh) = uh = XT
h β

ûh = XT
hb

s2{ûh} = XT
h s2{b}Xh = MSEXT

h (XTX)−1Xh

95% CI ûh ± s{ûh}tn−p(1− α/2)
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Prediction of Yh(new )

Predict a new observation Yh at Xh. We want a prediction of Yh based on

a set of predictor values with an interval that expresses the uncertainty in

our prediction. As in SLR this interval is centered at Yh and is wider than

the interval for the mean.

Yh = XT
h β + εh

Ŷh = ûh = XT
hb

s2{pred} = var(Yh(new) − Ŷh)

= var(Yh(new)) + var(Ŷh)

= MSE(1 + XT
h (XTX)−1Xh)

CI for Yh(new): Ŷh ± s{pred}tn−p(1− α/2)
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Diagnostics

• Appropriate Regression Model

–Pairwise Plots Yi v.s Xij for j = 1, 2, · · · , p− 1, i.e, p− 1

plots of Y v.s X for each predictor

–3D plot, plot Y v.s Xj and Xk and look for trends

–Residual plots, ei v.s Ŷi, ei v.s Xij , j = 1, · · · , p − 1, ei

v.s pair of X’s

• Constancy of Error Variance

–Check ei v.s Ŷi, ei v.s Xij , j = 1, 2, · · · , p− 1

–Use Brusch-Pagan test, one variable at a time or all variables

together
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• Normality

–Histogram Plot

–Normal probability plot of residuals

–Tests, Lilliefors’ test, correlation test

• Outliers

–Plot ei v.s Ŷi, ei v.s Xij ’s, j = 1, 2, · · · , p− 1

–Normal probability Plot
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• Independence

– Check plot of ei v.s time if possible

• Remedies:

– Try transformations of Y and/or X’s, polynomials in X’s are

often used to deal with curvature

– May eliminate some of the X’s (this is called variable selec-

tion

Discuss example
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