Chapter 6 Multiple Regression

Review simple linear regression:

Normal error regression model:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\epsilon_{i}
$$

- β_{0} and β_{1} : parameters
- $\epsilon_{i} \stackrel{i i d}{\sim} N\left(0, \sigma^{2}\right)$ for $i=1,2, \cdots, n$

Example: Growth hormone is used as a prescription drug in medicine to treat children's growth disorders. In the medical study of short children, clinicians want to use the statistical relation to predict growth hormone deficiencies in short children by using simple measurements such as gender, age and various body measurements of the children.

- Gender, age and other body measurements affect the growth hormone in important and distinctive ways
- A single predictor variable in the model would have provided an inadequate description
- In situation of this type, predictions from a simple linear regression model are too imprecise to be useful
- Containing additional predictor variables, typically is more helpful in providing sufficiently precise predictions of the response variable

Multiple Regression

- Multiple-More than one predictor variable
- Y_{i} is the response variable
- $X_{i 1}, X_{i 2}, \cdots X_{i, p-1}$ are the $p-1$ explanatory variables for cases $i=1$ to n
- Potential problem: These predictor variables are likely to be themselves correlated

General multiple linear regression model

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\cdots+\beta_{p-1} X_{i, p-1}+\epsilon_{i}
$$

- $i=1,2, \cdots, n$
- Y_{i} is the value of the response variable for the i th case
- $X_{i 1}, X_{i 2}, \cdots, X_{i, p-1}$ are known constants, $X_{i k}$ is the value of the k th explanatory variable for the i th case
- $\beta_{0}, \beta_{1}, \cdots, \beta_{p-1}$ are parameters, $p-1$ predictors, p parameters
- $\epsilon_{i} \stackrel{i i d}{\sim} N\left(0, \sigma^{2}\right)$

Geometry of one-predictor model (regression function)

Example: A person's muscle mass is expected to decrease with age. To explore this relationship in women, a nutritionist randomly selected 15 women from each 10-year age group, beginning with age 40 and ending with age 79 with a total number of 60 women.

Geometry of two-predictor model (regression surface or response surface)

Model: $E(Y)=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}$
scatterplot of simulated data from $y=10+2^{*} x _1+5^{*} x _2$

+ error

Meaning of regression coefficients

Model: $E(Y)=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}$

- β_{0} is the Y intercept of the regression plane. If the scope of the model includes $X_{1}=0, X_{2}=0$, then β_{0} represents the mean response $E(Y)$ at $X_{1}=0, X_{2}=0$. Otherwise, β_{0} does not have any particular meaning
- β_{k} represents the change in the mean response $E(Y)$ for a unit change in X_{k} while all other X_{j} 's are held constant

Polynomial Regression

Quadratic regression:

- A special case of multiple linear regression if we let $X_{2}=X_{1}^{2}$

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\epsilon_{i}
$$

Transform x values

Example: $Y_{i}=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} e^{X_{i 1}}+\beta_{3} X_{i 2}+\beta_{4} \frac{1}{X_{i 2}}+\epsilon_{i}$.
Take

$$
\begin{gathered}
X_{1}^{*}=X_{1} \\
X_{2}^{*}=e^{X_{1}} \\
X_{3}^{*}=X_{2} \\
X_{4}^{*}=1 / X_{2}
\end{gathered}
$$

Then the original data after transformation is a multiple linear regression model.

Interaction effects-cross product

Suppose X_{1} and X_{2} interact, we can express a form of interaction in the regression model by adding the term $X_{1} X_{2}$

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\beta_{3} X_{i 1} X_{i 2}+\epsilon_{i}
$$

- Mean of Y at X_{1} is $\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{1} X_{2}$
- Mean of Y at $X_{1}+1$ is $\beta_{0}+\beta_{1}\left(X_{1}+1\right)+\beta_{2} X_{2}+\beta_{3}\left(X_{1}+\right.$ 1) $X_{2}=\beta_{0}+\beta_{1} X_{1}+\beta_{1}+\beta_{2} X_{2}+\beta_{3} X_{1} X_{2}+\beta_{3} X_{2}$
- Change in mean of Y is $\beta_{1}+\beta_{3} X_{2}$
- X_{1} and X_{2} interact since the change in the mean of Y for unit change in X_{1} depends on X_{2}

Interaction effects: bends the plane

Interaction plus polynomial terms: full second order model

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 1}^{2}+\beta_{3} X_{i 2}+\beta_{4} X_{i 2}^{2}+\beta_{5} X_{i 1} X_{i 2}+\epsilon_{i}
$$

Many different shapes are possible, here are two

Matrix approach of multiple linear regression

$$
\begin{gathered}
Y_{i}=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\cdots+\beta_{p-1} X_{i, p-1}+\epsilon_{i} \\
Y_{1}=\beta_{0}+\beta_{1} X_{11}+\beta_{2} X_{12}+\cdots+\beta_{p-1} X_{1, p-1}+\varepsilon_{1} \\
Y_{2}=\beta_{0}+\beta_{1} X_{21}+\beta_{2} X_{22}+\cdots+\beta_{p-1} X_{2, p-1}+\varepsilon_{2} \\
::: \\
Y_{n}=\beta_{0}+\beta_{1} X_{n 1}+\beta_{2} X_{n 2}+\cdots+\beta_{p-1} X_{n, p-1}+\varepsilon_{n} \\
E\left(Y_{i}\right)=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\cdots+\beta_{p-1} X_{i, p-1}
\end{gathered}
$$

$$
\begin{gathered}
\mathbf{Y}_{n \times 1}=\mathbf{X}_{n \times p} \boldsymbol{\beta}_{p \times 1}+\boldsymbol{\epsilon}_{n \times 1} \\
\boldsymbol{\epsilon} \sim N\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right), \\
\mathbf{Y} \sim N\left(\mathbf{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}\right) \\
\mathbf{Y}=\left[\begin{array}{c}
Y_{1} \\
Y_{2} \\
\vdots \\
Y_{n}
\end{array}\right] \mathbf{X}=\left[\begin{array}{ccccc}
1 & X_{11} & X_{12} & \cdots & X_{1, p-1} \\
1 & X_{21} & X_{22} & \cdots & X_{2, p-1} \\
\vdots & \vdots & & & \\
1 & X_{n 1} & X_{n 2} & \cdots & X_{n, p-1}
\end{array}\right] \boldsymbol{\beta}=\left[\begin{array}{c}
\beta_{0} \\
\beta_{1} \\
\vdots \\
\beta_{p-1}
\end{array}\right] \boldsymbol{\epsilon}=\left[\begin{array}{c}
\epsilon_{1} \\
\epsilon_{2} \\
\vdots \\
\epsilon_{n}
\end{array}\right]
\end{gathered}
$$

Parameter Estimation

Least Squares: Want to minimize the sum of squared residuals:

$$
Q=\sum_{i=1}^{n}\left(Y_{i}-\beta_{0}-\beta_{1} X_{i 1}-\cdots-\beta_{p-1} X_{i, p-1}\right)^{2}
$$

Denote the vector of the least squares estimated regression coefficients as
$\mathbf{b}=\left(b_{0}, b_{1}, \cdots, b_{p-1}\right)^{T}$

- Normal equation

$$
\mathbf{X}^{T} \mathbf{X} \mathbf{b}=\mathbf{X}^{T} \mathbf{Y}
$$

solving this equation for \mathbf{b} gives the least squares solution for \mathbf{b}

$$
\mathbf{b}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{Y}
$$

Note: The method of maximum likelihood leads to the same estimators for normal error regression model

Fitted values and residuals

- Fitted values $\hat{Y}_{i}=b_{0}+b_{1} X_{i 1}+b_{2} X_{i 2}+\cdots+b_{p-1} X_{i, p-1}$
- Residuals $e_{i}=Y_{i}-\hat{Y}_{i}$

$$
\begin{gathered}
\hat{\mathbf{Y}}=\left[\begin{array}{c}
\hat{Y}_{1} \\
\hat{Y}_{2} \\
\vdots \\
\hat{Y}_{n}
\end{array}\right] \mathbf{e}=\left[\begin{array}{c}
e_{1} \\
e_{2} \\
\vdots \\
e_{n}
\end{array}\right] \\
\hat{\mathbf{Y}}=\mathbf{X} \mathbf{b}=\mathbf{X}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{Y}=\mathbf{H Y}
\end{gathered}
$$

where $\mathbf{H}=\mathbf{X}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T}$ is called hat matrix.

$$
\mathbf{e}=\mathbf{Y}-\hat{\mathbf{Y}}=\mathbf{Y}-\mathbf{H Y}=(\mathbf{I}-\mathbf{H}) \mathbf{Y}
$$

Estimated covariance matrix

$$
\begin{gathered}
\operatorname{var}\{\mathbf{e}\}=\operatorname{cov}(\mathbf{e})=\sigma^{2}(\mathbf{I}-\mathbf{H})(\mathbf{I}-\mathbf{H})^{T}=\sigma^{2}(\mathbf{I}-\mathbf{H}) \\
\operatorname{var}\left\{\mathbf{e}_{i}\right\}=\operatorname{var}\left(\mathbf{e}_{i}\right)=\sigma^{2}\left(1-h_{i i}\right)
\end{gathered}
$$

where $h_{i i}$ is the i th diagonal element of \mathbf{H}

- $\operatorname{cov}\left(\mathbf{e}_{i}, \mathbf{e}_{j}\right)=-\sigma h_{i j}$

Estimation of σ^{2}

$$
\begin{gathered}
S S E=(\mathbf{Y}-\mathbf{X b})^{T}(\mathbf{Y}-\mathbf{X} \mathbf{b}), d f_{E}=n-p \\
\hat{\sigma}^{2}=S S E / d f_{E}=M S E
\end{gathered}
$$

Variance and estimated variance matrices of b :

$$
\begin{aligned}
\operatorname{var}(\mathbf{b}) & =\left[\begin{array}{cccc}
\operatorname{var}\left(b_{0}\right) & \operatorname{cov}\left(b_{0}, b_{1}\right) & \cdots & \operatorname{cov}\left(b_{0}, b_{p-1}\right) \\
\operatorname{cov}\left(b_{1}, b_{0}\right) & \operatorname{var}\left(b_{1}\right) & \cdots & \operatorname{cov}\left(b_{1}, b_{p-1}\right) \\
\vdots & \vdots & & \vdots \\
\operatorname{cov}\left(b_{p-1}, b_{0}\right) & \operatorname{cov}\left(b_{p-1}, b_{1}\right) & \cdots & \operatorname{var}\left(b_{p-1}\right)
\end{array}\right] \\
& =\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}
\end{aligned}
$$

Estimated variance covariance:

$$
s^{2}(\mathbf{b})=M S E\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}
$$

ANOVA Table

- Decomposition of SSTO: SSTO=SSR + SSE

$S S T O=\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}$				
$S S E=\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}$				
$S S R=\sum_{i=1}^{n}\left(\hat{y}_{i}-\bar{y}\right)^{2}$				
$\underline{\hat{y}_{i}=b_{0}+b_{1} x_{i 1}+\cdots+b_{p-1} x_{i, p-1}}$				
Source	SS	df	MS	F-test
Regression	SSR	p-1	MSR $=$ SSR/(p-1)	$F=M S R / M S E$
Error	SSE	n-p	MSE $=$ SSE/(n-p)	
Total	SSTO	$\mathrm{n}-1$		

F-test for significance of regression:

$$
\begin{gathered}
H_{0}: \beta_{1}=\beta_{2}=\cdots \beta_{p-1}=0 \\
H_{\alpha}: \text { not all } \quad \beta_{k}(k=1,2, \cdots p-1) \quad \text { equal zero }
\end{gathered}
$$

Test statistic and decision rule:

$$
F^{*}=M S R / M S E
$$

- If H_{0} is true, $F=M S R / M S E$ has an F distribution with $(p-1, n-p)$ degrees of freedom.
- Reject H_{0}, if $F^{*}>F(1-\alpha, p-1, n-p)$

Coefficient of Multiple Determination R^{2}

$R^{2}=$ proportion of variation in y accounted for by the multiple linear regression model in $x_{1}, x_{2}, \cdots, x_{p-1}$
= SSR/SSTO

- $0 \leq R^{2} \leq 1$
- R^{2} is the square of correlation between y_{i} and \hat{y}_{i}
- $R^{2}=1$ if $y_{i}=\hat{y}_{i}$ for all i
- $R^{2}=0$ if $b_{1}=b_{2}=\cdots=b_{p-1}=0$
- A large R^{2} value does not necessarily imply that the fitted model is a useful one or that the fit is "good".
- The addition of more predictors to the regression model will result in an increase in the value of R^{2}.
- Adjusted R^{2}

$$
R_{a}^{2}=1-\frac{S S E /(n-p)}{S S T O /(n-1)}
$$

The adjusted R^{2} can decrease as more predictors are added to the model.

Inference for individual regression coefficient

$$
\begin{gathered}
\mathbf{b} \sim N\left(\boldsymbol{\beta}, \sigma^{2}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}\right) \\
s^{2}(\mathbf{b})=M S E\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \\
s^{2}\left(b_{k}\right)=\left[s^{2}(\mathbf{b})\right]_{k, k}
\end{gathered}
$$

the k-th diagonal element.

- Distribution of $b_{k}: \frac{b_{k}-\beta_{k}}{s\left(b_{k}\right)} \sim t(n-p) \quad k=0,1, \cdots, p-1$
- a $(1-\alpha) 100 \%$ confidence interval for β_{k}

$$
b_{k} \pm t_{n-p}(1-\alpha / 2) s\left\{b_{k}\right\}
$$

- Significant test for β_{k}

$$
\begin{gathered}
H_{0}: \beta_{k}=0 \quad \text { v.s } \quad \beta_{k} \neq 0 \\
t^{*}=\frac{b_{k}}{s\left\{b_{k}\right\}}
\end{gathered}
$$

If H_{0} is true, t^{*} has a t-distribution with $n-p$ degrees of freedom.

Alternative \quad Reject H_{0} if

$$
\begin{array}{lc}
H_{\alpha}: \beta_{k}>0 & t^{*}>t(1-\alpha ; n-p) \\
H_{\alpha}: \beta_{k}<0 & t^{*}<-t(1-\alpha ; n-p) \\
H_{\alpha}: \beta_{k} \neq 0 & \left|t^{*}\right|>t(1-\alpha / 2 ; n-p)
\end{array}
$$

Simultaneous Confidence Intervals for $\beta_{1}, \cdots, \beta_{p-1}$

$$
b_{k} \pm t\left(1-\frac{\alpha}{2(p-1)} ; n-p\right) s\left(b_{k}\right)
$$

where $j=1,2, \cdots, p-1$.

Estimation of $E\left(Y_{h}\right)$

We want a point estimate and a confidence interval for the mean corresponding to the set of explanatory variables \mathbf{X}_{h}.

$$
\begin{aligned}
& Y_{i}=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\cdots+\beta_{p-1} X_{i, p-1}+\epsilon_{i}, \\
& \mathbf{X}_{h}=\left(1, X_{h, 1}, X_{h, 2}, \cdots, X_{h, p-1}\right)^{T} \\
& Y_{h}=\beta_{0}+\beta_{1} X_{h 1}+\beta_{2} X_{h 2}+\cdots+\beta_{p-1} X_{h, p-1}+\epsilon_{h} \\
& E\left(Y_{h}\right)=\beta_{0}+\beta_{1} X_{h 1}+\beta_{2} X_{h 2}+\cdots+\beta_{p-1} X_{h, p-1} \\
& \text { or } E\left(Y_{h}\right)=u_{h}=\mathbf{X}_{h}^{T} \boldsymbol{\beta} \\
& \hat{u}_{h}=\mathbf{X}_{h}^{T} \mathbf{b} \\
& s^{2}\left\{\hat{u}_{h}\right\}=\mathbf{X}_{h}^{T} s^{2}\{\mathbf{b}\} \mathbf{X}_{h}=\operatorname{MSE}_{h}^{T}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}_{h} \\
& 95 \% \text { Cl } \hat{u}_{h} \pm s\left\{\hat{u}_{h}\right\} t_{n-p}(1-\alpha / 2)
\end{aligned}
$$

Prediction of $Y_{h(\text { new })}$

Predict a new observation Y_{h} at \mathbf{X}_{h}. We want a prediction of Y_{h} based on a set of predictor values with an interval that expresses the uncertainty in our prediction. As in SLR this interval is centered at Y_{h} and is wider than the interval for the mean.

$$
\begin{aligned}
& Y_{h}=\mathbf{X}_{h}^{T} \boldsymbol{\beta}+\epsilon_{h} \\
& \hat{Y}_{h}=\hat{u}_{h}=\mathbf{X}_{h}^{T} \mathbf{b}
\end{aligned}
$$

$$
\begin{aligned}
s^{2}\{\text { pred }\} & =\operatorname{var}\left(Y_{h(\text { new })}-\hat{Y}_{h}\right) \\
& =\operatorname{var}\left(Y_{h(\text { new })}\right)+\operatorname{var}\left(\hat{Y}_{h}\right) \\
& =\operatorname{MSE}\left(1+\mathbf{X}_{h}^{T}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}_{h}\right)
\end{aligned}
$$

Cl for $Y_{h(\text { new })}: \hat{Y}_{h} \pm s\{$ pred $\} t_{n-p}(1-\alpha / 2)$

Diagnostics

- Appropriate Regression Model
-Pairwise Plots Y_{i} v.s $X_{i j}$ for $j=1,2, \cdots, p-1$, i.e, $p-1$ plots of Y v.s \mathbf{X} for each predictor
-3D plot, plot Y v.s X_{j} and X_{k} and look for trends
-Residual plots, e_{i} v.s \hat{Y}_{i}, e_{i} v.s $X_{i j}, j=1, \cdots, p-1, e_{i}$ v.s pair of X's
- Constancy of Error Variance
-Check e_{i} v.s \hat{Y}_{i}, e_{i} v.s $X_{i j}, j=1,2, \cdots, p-1$
-Use Brusch-Pagan test, one variable at a time or all variables together
- Normality
-Histogram Plot
-Normal probability plot of residuals
-Tests, Lilliefors' test, correlation test
- Outliers
-Plot e_{i} v.s \hat{Y}_{i}, e_{i} v.s $X_{i j}$'s, $j=1,2, \cdots, p-1$
-Normal probability Plot
- Independence
- Check plot of e_{i} v.s time if possible
- Remedies:
- Try transformations of Y and/or X's, polynomials in X's are often used to deal with curvature
- May eliminate some of the X's (this is called variable selection

Discuss example

