Chapter 9 Variable Selection and Model Building

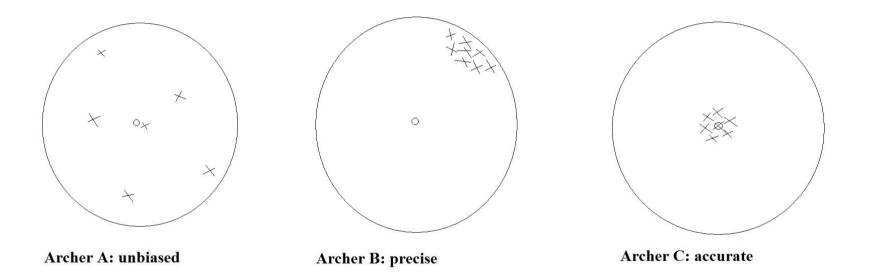
Topics:

- Understand the bias-variance tradeoff in model selection
- Become familiar with model selection criteria
- Understand when/how to use selection algorithms such as stepwise and best subsets
- Understand how to validate a model and measure prediction error

Problems: have a set of predictor variables, how do you select a subset of these that is in some way "best" for predicting the response?

- Subset size, how many explanatory variables should be used to construct the regression model
- Given the subset size, which variables should we choose?

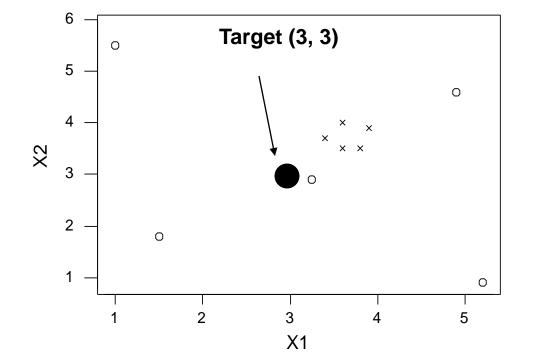
Figure 1: Unbiased, precise and accurate archers



Bias-Variance Tradeoff

Row	Gun	1 2	K1	Gun	1	X2	Gun	2	X1	Gun	2	X2
1		1	.00			5.5			3.4			3.7
2		1	. 50			1.8			3.6			4.0
3		3	.25			2.9			3.6			3.5
4		4	. 90			4.6			3.9			3.9
5		5	. 20			0.9			3.8			3.5

Gun 1 = circles Gun 2 = crosses



Which gun is more accurate?

Which is more precise?

1

Bias-Variance Tradeoff

- 1. Accuracy corresponds to bias
- 2. Precision corresponds to variance

On average, Gun 1 hits the target (small or zero bias) Gun 2 is always close to its average (small variance)

The best gun will have both high accuracy and precision.

Now back to statistics

Instead of choosing a gun, we're choosing an estimator—a statistic or a regression model for prediction

Our targets are the population values:

- E{Y}-----estimator based on what model?
- E{b₁}------ what model, what estimator?
- E{s²}, etc. -----what model, what estimator?

Let's agree that we want our estimator of any parameter, on average, to be close to the true value.

Criterion: Mean Squared Error

Estimator is Y_i , target is E{ $Y_i | X_i$ }—true mean at X_i , μ_i .

Error is:
$$\hat{Y}_i - \mu_i$$

Mean (Expected) squared error of \hat{Y}_i ---MSE $\{\hat{Y}_i\}$ is:

$$E\{\hat{Y}_i-\mu_i\}^2$$

Famous, hot, big-time result:

$$E\{\hat{Y}_i - \mu_i\}^2 = (E\{\hat{Y}_i\} - \mu_i)^2 + \sigma^2\{\hat{Y}_i\}$$

MSE = squared bias plus variance = "accuracy" plus "precision"

Criterion: Mean Square Error

Justification of result: just add and subtract $E{\{\hat{Y}_i\}}$:

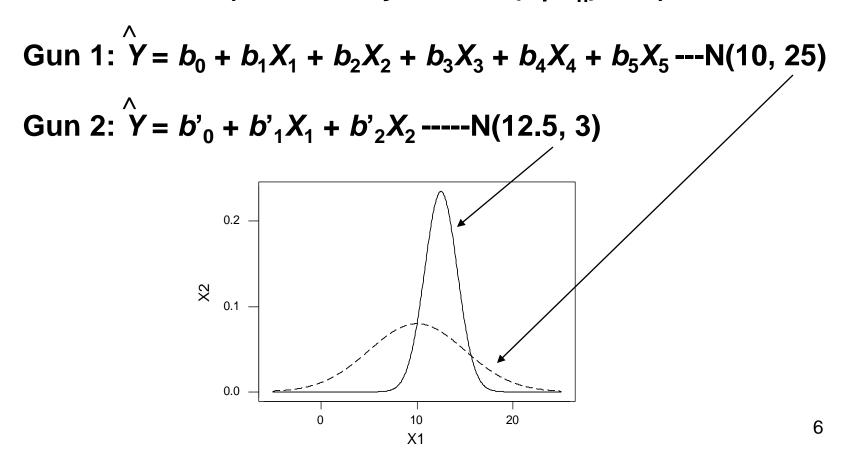
$$(\hat{Y}_i - \mu_i)^2 = [(E\{\hat{Y}_i\} - \mu_i) + (\hat{Y}_i - E\{\hat{Y}_i\})]^2$$

and then square the term and take expectation:

$$E\{\hat{Y}_i - \mu_i\}^2 = (E\{\hat{Y}_i\} - \mu_i)^2 + \sigma^2\{\hat{Y}_i\}$$

So what's this got to do with regression?

Goal: Predict response at X_h (We secretly know E{Y| X_h }= 10)



Which model (gun) is better?

In terms of squared bias:

In terms of variance:

In terms of MSE:

Why Eliminate Unimportant Predictors?

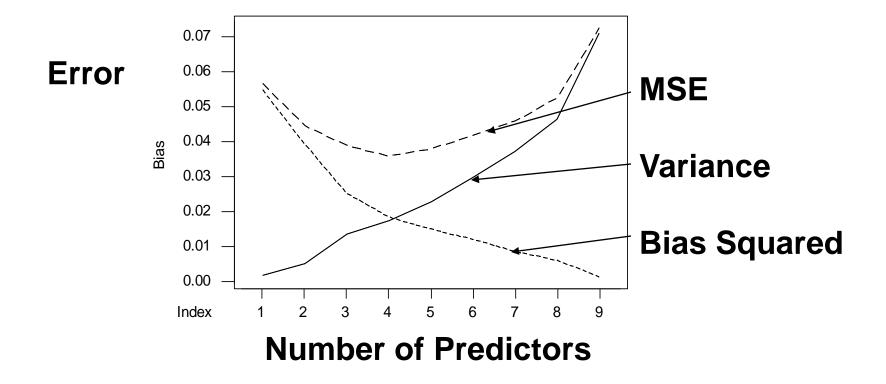
Often smaller models will have smaller MSE!

Depends on:

- 1. Size of true coefficients, b_{i}
- 2. Degree of multicollinearity

So selecting a best model balances the increase in squared bias of smaller models against the increase in variance for larger models

Picture: Best Model has 4 Predictors



Notations:

- P-1: total possible number of predictor variables
- p-1: number of predictor variables selected in a regression model, p is the number of parameters in the model.

•
$$p-1 \leq P-1$$
, $n > p$

• For any set of p-1 predictors, 2^{p-1} alternative models can be constructed, including the one with no X variables.

Criteria for Model Selection

- 1. R_p^2 or SSE_p Criterion
- R_p^2 is the coefficient of Multiple Determination for model with p-1 predictors
- $R_p^2 = 1 SSE_p/SSTO$
- Plot R_p^2 v.s p-1, R_p^2 will increase as p-1 increases.
- The R_p^2 plot will tend to level off at some point. Take the model to be the one where there is no more "meaningful" increase in R_p^2 .
- A drawback to R^2 is that the addition of any variable to the model (significant or not) will increase R^2 .

2.
$$R_{a,p}^2$$
 or MSE_p Criterion

$$R_{a,p}^2 = 1 - \frac{SSE_p/(n-p)}{SSTO/(n-1)}$$

$$= 1 - \frac{MSE_p}{SSTO/(n-1)}$$

- $R^2_{a,p}$ increases if and only if MSE_p decreases. This is the same as using MSE.
- Select the subset with the largest $R^2_{a,p}$

3. Mallow's C_p criterion

Mallow's criterion tries to find the model that minimizes

$$\frac{1}{\sigma^2} \sum_{i=1}^{n} E[(\hat{y}_i - E(y_i))^2]$$

• Mallows found an estimate for this criterion called C_p with

$$C_p = \frac{SSE_p}{MSE_{(Full)}} - (n - 2p).$$

The full model is good at prediction, but if there is multicollinearity, our interpretations of the parameter estimates may not makes sense. A subset model is good if there is not substantial bias in the predicted values (relative to the full model). The C_p criterion looks at the ratio of error SS for the model with p variables to the MSE of the full model, then adds a penalty for the number of variables. SSE_p is based on a specific choice of p-1 predictors; while $MSE_{(Full)}$ is based on the full set of variables.

- Adequately fitted model have $C_p \approx p$. Models with lack of fit have $C_p > p$. In considering possible models we would generally consider any subset with $C_p \leq p$.
- Select as the "best" subset, the one with the smallest C_p value.

4. $PRESS_p$ Criterion

- $PRESS_p$ (Prediction Sums of Squares) criterion is a measure of how well the use of the fitted values for a subset model can predict the observed responses y_i .
- The error sum of squares, $SSE = \sum (y_i \hat{y}_i)^2$ is also such a measure.
- The *PRESS* measure differs from *SSE* in that each fitted value \hat{y}_i for the *PRESS* criterion is obtained by deleting the *i*th case from the data set, estimating the regression function for the subset model from the remaining n 1 cases, and then using the regression function to obtain the predicted value $\hat{y}_{i(i)}$ for the *i*the case.

$$PRESS_p = \sum_{i=1}^{n} (y_i - \hat{y}_{i(i)})^2$$

Models with a small PRESS statistic are considered good candidates.

5. AIC_p and SBC_p

These criteria are motivated from information theory (AIC) and from Bayesian statistics (SBC). They are Criterions based on log(likelihood) plus a penalty for more complexity. We want to choose models that minimize AIC and SBC.

$$AIC_p = n \ln SSE_p - n \ln n + 2p$$

$$SBC_p = n \ln SSE_p - n \ln n + [\ln(n)]p$$

Comments

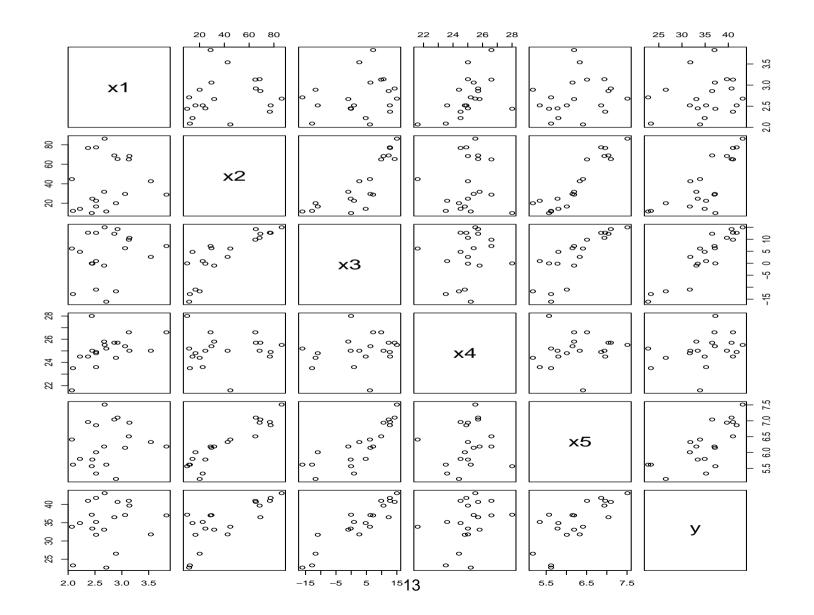
- The different criteria will not always give the identical answer.
- The all subsets method is good for identifying a collection of possible models. One should not necessarily use the model that is declared "best" by any method.
- There might be several subsets that provide a good fit. The final selection of a model should involve residual analysis and knowledge of the subject matter.

Example:

Coleman report data (Christensen)

- y: the mean verbal test score for sixth graders
- x_1 : staff salaries per pupil
- *x*₂: percentage of sixth graders whose fathers have white collar job
- x_3 : a composite measure of socioeconomic status
- x_4 : the mean of verbal test scores given to the teachers
- x_5 : the mean educational level of the sixth grader's mothers (one unit equals two school years)

Figure 2: Scatterplot of Coleman report data



Correlation between y and the predictor variables.

	x_1	x_2	x_3	x_4	x_5
Correlation with y	0.192	0.753	0.927	0.334	0.733

- Of the five variables, x_3 has the highest correlation. It explains more of the y variable than any other single variable.
- x_2 and x_5 also have reasonably high correlations with y.
- Low correlations exist between y and both x_1 and x_4

Vars	R^2	${ m Adj}R^2$	C_p	\sqrt{MSE}	x_1	x_2	x_3	x_4	x_5
1	86.0	85.2	5.0	2.2392			×		
1	56.8	54.4	48.6	3.9299		×			
1	53.7	51.2	53.1	4.0654					×
2	88.7	87.4	2.8	2.0641			×	×	
2	86.2	84.5	6.7	2.2866			×		×
2	86.0	84.4	6.9	2.2993		×	×		
3	90.1	88.2	2.8	1.9974	×		×	×	
3	88.9	86.8	4.6	2.1137			×	×	×
3	88.7	86.6	4.8	2.1272		×	×	×	
4	90.2	87.6	4.7	2.0514	×		×	×	×
4	90.1	87.5	4.8	2.0603	×	×	×	×	
4	89.2	86.3	6.1	2.1499		×	×	×	×
5	90.6	87.3	6.0	2.0743	×	×	×	×	×

Table 1: Selection by different criteria

Example: Hospital was interested in understanding factors that affect survival time following a liver operation. n = 108, 54 were held out for validation studies (to be discussed later).

- $\bullet~Y:\log$ of survival time
- X_1 : blood clotting score
- X_2 : prognostic index
- X_3 : enzyme function test score
- X_4 : liver function text score

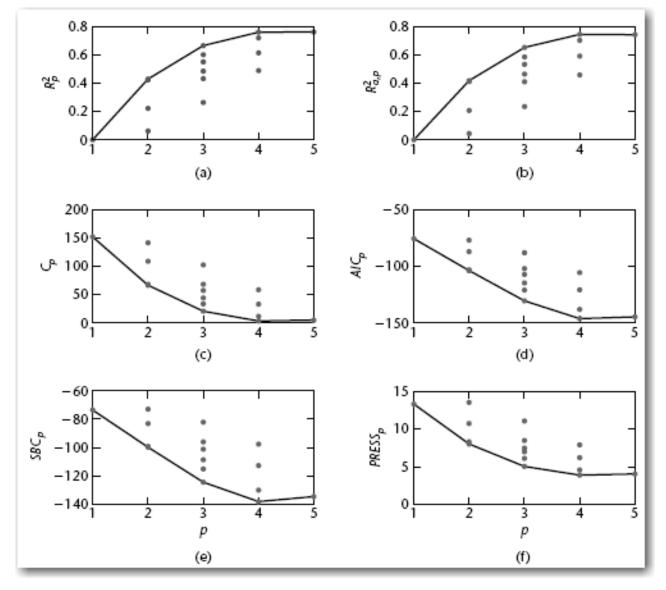
Surgical Unit Example with 4 Predictors

Multivariate					
Correlation	s				
LnSurvival	LnSurvival 1.0000	Bloodclot Prog 0.2462	index Enzyme 0.4699 0.6539	Liver 0.6493	
Bloodclot	0.2462	1.0000	0.0901 -0.1496	0.5024	
Progindex	0.4699		1.0000 -0.0236		
Enzyme	0.6539		0.0236 1.0000		
Liver	0.6493	0.5024	0.3690 0.4164	1.0000	
Scatterplot	Matrix				
8- 7.5- 7- 6.5- 6- 5.5-	LnSurvival	ġ.			
11 9 7 3	14: 	Blooddot			
90 70 50 30 10			Proginde:		1
110 90 70 50 30				Enzyme	
7- 5- 3 1-					Liver
5.5	66.577.58	3456789 11	10 30 50 70 90	30 50 70 90110	1234567

Surgical Unit Example with 4 Predictors

<i>x</i>	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Variables in Model	р	SSEp	R _p ²	$R^2_{a,p}$	C _p	AIC,	SBC p	PRESSp
None	1	12.808	0.000	0.000	151.498	-75.703	-73.714	13.296
X1	2	12.031	0.061	0.043	141.164	-77.079	-73.101	13.512
X ₂	2	9.979	0.221	0.206	108.556	-87.178	-83.200	10.744
X3	2	7.332	0.428	0.417	66.489	-103.827	-99.849	8.327
Χ4	2	7.409	0.422	0.410	67.715	-103.262	-99.284	8.025
X_{1}, X_{2}	3	9.443	0.263	0.234	102.031	-88.162	-82.195	11.062
X_{1}, X_{3}	3	5.781	0.549	0.531	43.852	-114.658	-108.691	6.988
X_{1}, X_{4}	3	7.299	0.430	0.408	67.972	-102.067	-96.100	8.472
X_{2}, X_{3}	3	4.312	0.663	0.650	20.520	-130.483	-124.516	5.065
X2, X4	3	6.622	0.483	0.463	57.215	-107.324	-101.357	7.476
X_{3}, X_{4}	3	5.130	0.599	0.584	33.504	-121.113	-115.146	6.121
X_1, X_2, X_3	4	3.109	0.757	0.743	3.391	-146.161	-138.205	3.914
X_1, X_2, X_4	4	6.570	0.487	0.456	58.392	-105.748	-97.792	7.903
X_1, X_3, X_4	4	4.968	0.612	0.589	32.932	-120.844	-112.888	6.207
X2, X3, X4	4	3.614	0.718	0.701	11.424	-138.023	-130.067	4.597
X_1, X_2, X_3, X_4	5	3.084	0.759	0.740	5.000	-144.590	-134.645	4.069

Surgical Unit Example with 4 Predictors



19

Comments:

 As the number of predictors increases, the number of possible models blows up! We need clever computer algorithms to find the really good models.

Two approaches:

- If p-1 is less than 30, use best subsets procedures: These algorithms can use clever search paths to find all of the top models without having to evaluate all $2^{(p-1)}$ possible models.
- If p-1 is greater than 30, use stepwise procedures: These are "greedy" algorithms that first find the best single term model. Given that term, add the next best term, and so on.

Stepwise Regression analysis

- A computationally available method for subset selection
- Evaluate the variables one at a time and look at a sequence of models
- Backwards elimination (start with full model)
- Forward elimination (start with intercept model)
- Stepwise methods (variables can be both added and deleted)

Backwards elimination

• Begins with the full model and sequentially eliminates from the model the least important variable. Importance of the variable is judged by the size t or F statistic.

$$F_i^* = \frac{MSR(x_i | x_1, \cdots, x_{p-1} \text{ except } x_i)}{MSE(x_1, x_2, \cdots, x_{p-1})}, \quad \text{for } i = 1, 2, \cdots, p-1.$$

Find the smallest F_i^* , if the smallest $F_i^* < F - out$ (predetermined value), remove x_i .

- After the variable with the smallest F statistic is dropped, the model is refitted and the F statistic is recalculated. Again, the variable with the smallest F statistic is dropped
- Process ends when all of F statistics are greater than some predetermined level (predetermined value can change depending on the step).

Table 2: Backwards elimination of y on 5 predictors with n = 20, coleman data, predetermined value is 2

Step		const	x_1	x_2	x_3	x_4	x_5	R^2	\sqrt{MSE}
1	\hat{eta}	19.95	-1.8	0.044	0.556	1.11	-1.8	90.63	2.07
	t_{obs}		-1.45	0.82	5.98	2.56	-0.89		
2	\hat{eta}	15.47	-1.7		0.582	1.03	-0.5	90.18	2.05
	t_{obs}		-1.41		6.75	2.46	-0.41		
3	\hat{eta}	12.12	-1.7		0.553	1.04		90.07	2.00
	t_{obs}		-1.47		11.27	2.56			
4	\hat{eta}	14.58			0.542	0.75		88.73	2.06
	t_{obs}				10.82	2.05			

Forward selection

• Begins with an initial model (could be intercept only) and adds variables to the model one at a time. Importance of the variable is judged by the size *t* or *F* statistic.

$$F_k^* = \frac{MSR(x_k)}{MSE(x_k)}$$

enter the variable with the largest F_k^* provided this $F_k^* > F - IN$ (predetermined value) or the corresponding P-value is less than a predetermined α

• One variable in the regression equation, say x_h . Compute all two variable regression equation between y and x_h and x_k for $k \neq h$, calculate

$$F_k^* = \frac{MSR(x_k|x_h)}{MSE(x_k, x_h)},$$

enter the variable with the largest F_k^\ast value provided this $F_k^\ast > F - IN$

• Procedure ends when none of the F statistic is greater than a predetermined level.

Table 3: Forward selection of y on 5 predictors with n=20, coleman data, predetermined value is 2

Step		const	x_1	x_2	x_3	x_4	x_5	R^2	\sqrt{MSE}
1	\hat{eta}	33.32			0.560			85.96	2.24
	t_{obs}				10.50				
4	\hat{eta}	14.58			0.542	0.75		88.73	2.06
	t_{obs}				10.82	2.05			

Stepwise methods

- Alternate between forward selection and backwards elimination
- Arrive at model by dropping a variable, check to see if any variable can be added to the model
- Arrive at a model by adding a variable, check to see if any variable can be dropped
- The value of the *F* statistic required for dropping a variable is allowed to be different from the value required for adding a variable
- Usually start with an initial model that contains only an intercept
- Stepwise methods gives the same result as forward selection if starting from an initial model; gives the same result as backward elimination if starting from a full model for coleman data

Stepwise methods:

• Step 1: No variable in the regression equation, compute all one variable regression equation between y and p-1 predictors and calculate

$$F_k^* = \frac{MSR(x_k)}{MSE(x_k)}$$

enter the variable with the largest F_k^* provided this $F_k^* > F - IN$ (predetermined value) or the corresponding P-value is less than a predetermined α

• Step 2: 1 variable in the regression equation, say x_{k1} . Compute all two variable regression equation between y and x_{k1} and x_k for $k \neq k_1$, calculate

$$F_k^* = \frac{MSR(x_k|x_{k1})}{MSE(x_k, x_{k1})},$$

enter the variable with the largest F_k^* value provided this $F_k^* > F - IN$ (predetermined value) or the corresponding P-value is less than a predetermined α

• Step 3, two variables in regression equation, say x_{k1} and x_{k2} . Determine if any of the variables previously entered should be removed from the regression equation due to the addition of the latest variable.

-Calculate

$$F_{k1}^* = \frac{MSR(x_{k1}|x_{k2})}{MSE(x_{k1}, x_{k2})}$$

—If the F_{k1}^* falls below a predetermined value called F-out or the corresponding P-value is greater than a predetermined α , then x_{k1} is removed from the model

• Suppose there are r-1 variables in the regression equation, compute

$$F_k^* = \frac{MSR(x_k | x_{k1}, x_{k2}, \cdots, x_{k,r-1})}{MSE(x_k, x_{k1}, \cdots, x_{k,r-1})}$$

enter the variable with the largest F_k^* value provided $F_k^* > F - in$ —Suppose x_{kr} is added at the above step, compute

$$F_{ki}^* = \frac{MSR(x_{ki}|x_{k1},\cdots,x_{kr} \text{ except } x_{ki})}{MSE(x_{k1},x_{k2},\cdots,x_{kr})},$$

for $i = 1, 2, \cdots, r - 1,$

find the smallest F_{ki}^* , if the smallest $F_{ki}^* < F - out$, then remove x_{ki} from the equation.

 Go to next step to try to enter another variable, keep gong until no new variable can be entered.

Model selection and case deletion

• Outliers tend to be cases with large residuals

—-eliminating the largest residuals obviously makes the SSE and MSE smaller

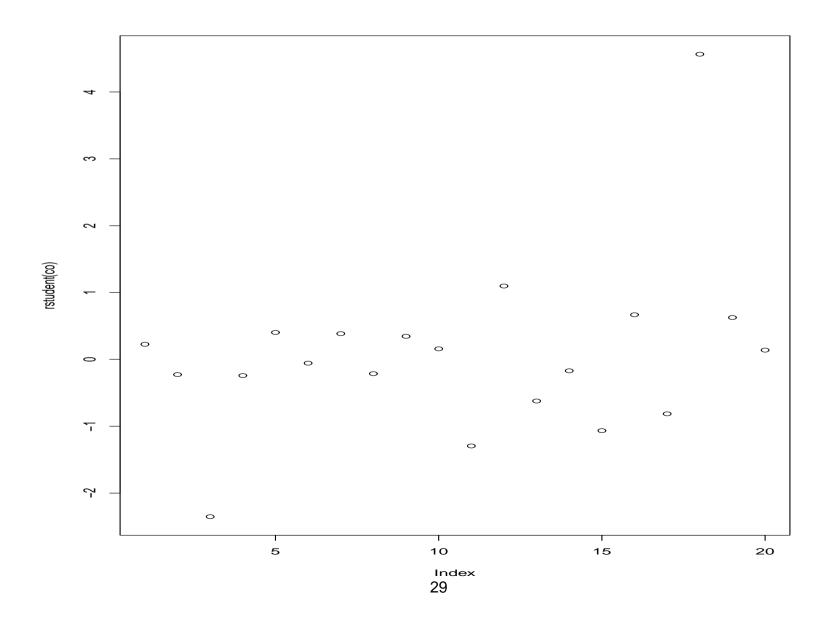
 Variable selection methods tend to identify as good reduced models those with small MSEs

—-Delete outliers if they are from recording errors (such as obvious typos), experimental accident (drop the tube) etc,.
—-Usually after deleting outliers, new data will produce new outliers

Example: Coleman data.

> outlierTest(co)
 rstudent unadjusted p-value Bonferonni p
18 4.564631 0.00053079 0.010616

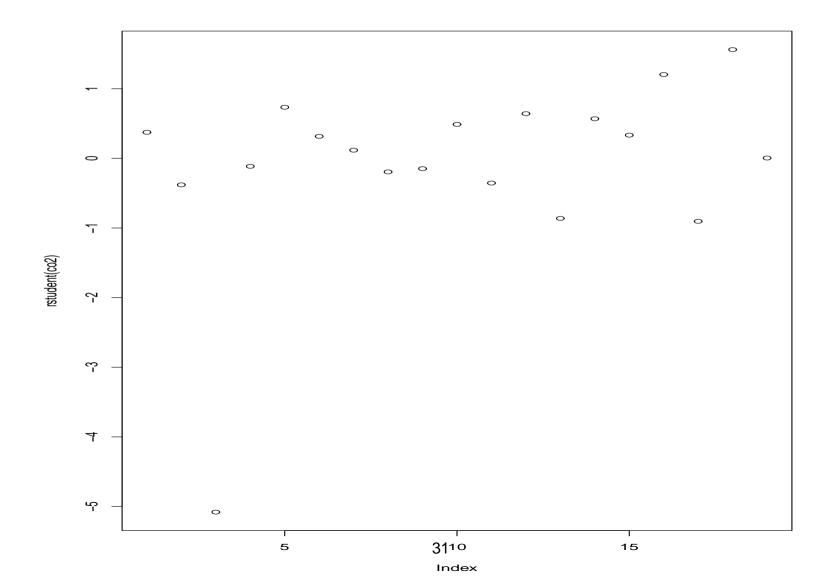
Figure 3: rstudent of Coleman report data, case #18 was identified as an outlier



After case #18 been deleted, case #3 becomes a new outlier

> outlierTest(co2)
 rstudent unadjusted p-value Bonferonni p
3 -5.08053 0.00027041 0.0051379

Figure 4: Plot of rstudent of Coleman report data after case #18 been deleted, case # 3 was identified as an outlier



Both variable selection and case deletion

- Cause the resulting model to appear better than it probably should
- Tend to give MSEs that are unrealistically small
- Prediction intervals are unrealistically narrow and test statistics are unrealistically large
- Test performed after variable selection or outlier deletion should be viewed as the greatest reasonable evidence against the null hypothesis, with the understanding that more appropriate tests would probably display a lower level of significance.

Example: Coleman data, case 18 deleted

- Case 18 was identified as an influential point
- After case 18 deleted, the full model is the best model as measured by either the C_p statistic or the adjusted R^2 value.
- This is a far cry from the full data analysis in which the models with x_3, x_4 and with x_1, x_3, x_4 had the smallest C_p statistics. After deleting case 18, models x_3, x_4 and x_1, x_3, x_4 are only the seventh and fifth best models.

Vars	R^2	Adj R^2	C_p	\sqrt{MSE}	x_1	x_2	x_3	x_4	x_5
1	86.0	85.2	5.0	2.2392			×		
1	56.8	54.4	48.6	3.9299		×			
1	53.7	51.2	53.1	4.0654					×
2	88.7	87.4	2.8	2.0641			×	×	
2	86.2	84.5	6.7	2.2866			×		×
2	86.0	84.4	6.9	2.2993		×	×		
3	90.1	88.2	2.8	1.9974	×		×	×	
3	88.9	86.8	4.6	2.1137			×	×	×
3	88.7	86.6	4.8	2.1272		×	×	×	
4	90.2	87.6	4.7	2.0514	×		×	×	×
4	90.1	87.5	4.8	2.0603	×	×	×	×	
4	89.2	86.3	6.1	2.1499		×	×	×	×
5	90.6	87.3	6.0	2.0743	×	×	×	×	×

Table 4: Best subset regression

Vars	R^2	Adjusted R^2	C_p	\sqrt{MSE}	x_1	x_2	x_3	x_4	x_5
1	89.6	89.0	21.9	1.9653			×		
1	56	53.4	140.8	4.0397		×			
1	53.4	50.6	150.2	4.1596					×
2	92.3	91.3	14.3	1.7414			×	×	
2	91.2	90.1	18.2	1.8635			×		×
2	89.8	88.6	23.0	2.0020		×	×		
3	93.7	92.4	11.4	1.6293			×	×	×
3	93.5	92.2	12.1	1.6573	×		×	×	
3	92.3	90.8	16.1	1.7942		×	×	×	
4	95.2	93.8	8.1	1.4766		×	×	×	×
4	94.7	93.2	9.8	1.5464	×		×	×	×
4	93.5	91.6	14.1	1.7143	×	×	×	×	
5	96.3	94.9	6.0	1.3343	×	×	×	×	×

Table 5: Best subset regression: Case 18 deleted

Model Selection Techniques Only Narrow the Field

Final choice of a model based on:

- p-values, residual plots, other diagnostics
- Parsimony (Occam's Razor): Simple models work best
- The sniff (giggle) test: does the model agree with expectations or theory? Do the signs make sense? Can you explain the results?
- Model validation studies

Model Validation

- The real test of a model or theory: How well does the model predict future observations?
- Problem with your model: the residuals are closer to the observations than they should be! So MSE is too small!!!!

—-Why? Because picked the model that best predicts your data set. Your measure of predictive ability is biased.

• Optimism Principle: A model chosen by some selection process provides a more optimistic explanation of data used in its derivation than it does of other data that will arise in a similar fashion.

Getting an unbiased view

 Way 1: Collect n^{*} new observations and compute the mean squared prediction error:

$$\mathsf{MSPR} = \frac{\sum_{i=1}^{n^*} (y_i - \hat{y}_i)^2}{n^*}$$

 $-y_i$ is the response variable in the *i*th validation case

 $-\hat{y}_i$ is the predicted value for the *i*th validation case based on the model building data set

 $-n^*$ is the number of cases in the validation data set.

• Way 2: Cross-validation

—Keep n^* cases out of the data set (at random!).

—Base regression on the $n - n^*$ cases in the training set.

—Computer the MSPR for the n^* cases in the validation set (or test set).

—Usually $n^* \approx n/2$.

• Way 3: K-fold cross-validation (sample size n is small)

— Break data into K roughly equal parts.

—Of the K subsamples, a single subsample is retained as the validation data for testing the model, and the remaining K-1 subsamples are used as training data.

—The cross-validation process is then repeated K times (the folds), with each of the K subsamples used exactly once as the validation data. —The K results from the folds can then be averaged to produce a single estimation.

—When K = n, the K-fold cross-validation estimate is identical to leave one out cross-validation.

Example: pages 373, 374

In the surgical unit example (utilize all 8 predictors), three models were favored by the various model-selection criteria. Model 1: favored by SBC_p and $PRESS_p$ criteria: $y'_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i3} + \beta_8 x_{i8} + \epsilon_i$

Model 2: favored by C_p criterion:

$$y'_{i} = \beta_{0} + \beta_{1}x_{i1} + \beta_{2}x_{i2} + \beta_{3}x_{i3} + \beta_{5}x_{i5} + \beta_{8}x_{i8} + \epsilon_{i}$$

Model 3: favored by $R^2_{a,p}$ and AIC_p criteria.

 $y'_{i} = \beta_{0} + \beta_{1}x_{i1} + \beta_{2}x_{i2} + \beta_{3}x_{i3} + \beta_{5}x_{i5} + \beta_{6}x_{i6} + \beta_{8}x_{i8} + \epsilon_{i}$

Table 6: Some results for Models 1-3 based on model-building and validation data set– Surgical Unit Example

	Model 1	Model 1	Model 2	Model 2	Model 3	Model 3
Statistic	(training)	(validation)	(training)	(validation)	(training)	(validation)
SSE_p	2.1788	3.7951	2.0820	3.7288	2.0052	3.6822
$PRESS_p$	2.7378	4.5219	2.7827	4.6536	2.7723	4.8981
MSE_p	0.0445	0.0775	0.0434	0.0777	0.0427	0.0783
MSPR	0.0773		0.0764		0.0794	

- $PRESS_p$ value is always larger than SSE_p because the regression fit for the *i*th case when this case is deleted in fitting can never be as good as that when the *i*th case is included.
- A $PRESS_p$ value reasonably close to SSE_p supports the validity of the fitted regression model and of MSE_p as an indicator of the predictive capability of this model.
- All three of the candidate models have $PRESS_p$ values that are reasonably close to SSE_p .

Table 7: Some results for Models 1-3 based on model-building and validation data set-Surgical Unit Example

	Model 1	Model 1	Model 2	Model 2	Model 3	Model 3
Statistic	(training)	(validation)	(training)	(validation)	(training)	(validation)
SSE_p	2.1788	3.7951	2.0820	3.7288	2.0052	3.6822
$PRESS_p$	2.7378	4.5219	2.7827	4.6536	2.7723	4.8981
MSE_p	0.0445	0.0775	0.0434	0.0777	0.0427	0.0783
MSPR	0.0773		0.0764		0.0794	

• MSPR for the 54 cases in the validation data set for each of the three models are 0.0773, 0.0764, and 0.0794.

- The mean squared prediction error generally will be larger than MSE_p based on the training data set because entirely new data are involved in the validation data set.
- The fact that MSPR does not differ too greatly from MSE_p implies that the error mean square MSE_p based on the training data set is a reasonably valid indicator of the predictive ability of the fitted regression model.
- The closeness of the three MSPR values suggest that the three candidate models perform comparably in terms

of predictive accuracy.

Select a Model

- A review of Table 9.4 in the textbook shows that most of the estimated coefficients agree quite closely, however, for Model 3 $-b_5 = -0.0035$ (the coefficient of age) for the training data $-b_5 = 0.0025$ for the validation data.
- This is certainly a cause for concern, and it raises doubts about the validity of Model 3. Model 3 was eliminated from further consideration.
- The final selection was based on the principle of parsimony. While Model

 and 2 performed comparably in the validation study. Model 1 achieves
 this level of performance with one fewer parameter. For this reason, Model

1 was ultimately chosen by the investigator as the final model.