
Chapter 9 Variable Selection and Model Building

Topics:

• Understand the bias-variance tradeoff in model selection

• Become familiar with model selection criteria

• Understand when/how to use selection algorithms such as

stepwise and best subsets

• Understand how to validate a model and measure prediction

error
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Problems: have a set of predictor variables, how do you se-

lect a subset of these that is in some way “best” for predicting

the response?

• Subset size, how many explanatory variables should be used

to construct the regression model

• Given the subset size, which variables should we choose?
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Figure 1: Unbiased, precise and accurate archers
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Bias-Variance Tradeoff
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Row  Gun 1 X1  Gun 1 X2  Gun 2 X1  Gun 2 X2

1      1.00       5.5       3.4       3.7

2      1.50       1.8       3.6       4.0

3      3.25       2.9       3.6       3.5

4      4.90       4.6       3.9       3.9

5      5.20       0.9       3.8       3.5

Gun 1 = circles

Gun 2 = 

crosses

Which gun is 

more accurate?

Which is more 

precise?

Target (3, 3)
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Bias-Variance Tradeoff

1. Accuracy corresponds to bias

2. Precision corresponds to variance

On average, Gun 1 hits the target (small or zero bias)

Gun 2 is always close to its average (small variance)

The best gun will have both high accuracy and precision.
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Now back to statistics

Instead of choosing a gun, we’re choosing an 

estimator—a statistic or a regression model for 

prediction

Our targets are the population values:

• E{Y}------------estimator based on what model?

• E{b1}------------ what model, what estimator?

• E{s2}, etc.  ------what model, what estimator?

Let’s agree that we want our estimator of any parameter, 

on average, to be close to the true value.
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Criterion:  Mean Squared Error

Estimator is Yi, target is E{Yi|Xi}—true mean at Xi, mi.

Error is:

Mean (Expected) squared error of Yi ---MSE{Yi} is:

Famous, hot, big-time result:

MSE =  squared bias plus variance

=  “accuracy” plus “precision”

^

^ ^
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Criterion:  Mean Square Error

Justification of result:  just add and subtract E{Yi }:

and then square the term and take expectation:

^
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So what’s this got to do with regression?
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Goal:  Predict response at Xh

(We secretly know E{Y| Xh}= 10)

Gun 1: Y = b0 + b1X1 + b2X2 + b3X3 + b4X4 + b5X5 ---N(10, 25)

Gun 2: Y = b’0 + b’1X1 + b’2X2 -----N(12.5, 3)

^

^
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Which model (gun) is better? 

In terms of squared bias:

In terms of variance:

In terms of MSE:
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Why Eliminate Unimportant 

Predictors? 

Often smaller models will have smaller MSE!

Depends on:

1. Size of true coefficients, bi

2. Degree of multicollinearity

So selecting a best model balances the increase in 

squared bias of smaller models against the increase 

in variance for larger models
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Picture:  Best Model has 4 

Predictors
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Notations:

• P − 1: total possible number of predictor variables

• p− 1: number of predictor variables selected in a regression

model, p is the number of parameters in the model.

• p− 1 ≤ P − 1, n > p

• For any set of p − 1 predictors, 2p−1 alternative models can

be constructed, including the one with no X variables.
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Criteria for Model Selection

1. R2
p or SSEp Criterion

• R2
p is the coefficient of Multiple Determination for model with p− 1 predic-

tors

• R2
p = 1− SSEp/SSTO

• Plot R2
p v.s p− 1, R2

p will increase as p− 1 increases.

• The R2
p plot will tend to level off at some point. Take the model to be the

one where there is no more “meaningful” increase in R2
p.

• A drawback to R2 is that the addition of any variable to the model (signifi-

cant or not) will increase R2.
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2. R2
a,p or MSEp Criterion

R2
a,p = 1− SSEp/(n− p)

SSTO/(n− 1)

= 1− MSEp

SSTO/(n− 1)

• R2
a,p increases if and only if MSEp decreases. This is the

same as using MSE.

• Select the subset with the largest R2
a,p
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3. Mallow’s Cp criterion

• Mallow’s criterion tries to find the model that minimizes

1
σ2

n∑

i=1

E[(ŷi − E(yi))2]

• Mallows found an estimate for this criterion called Cp with

Cp =
SSEp

MSE(Full)
− (n− 2p).

The full model is good at prediction, but if there is multicollinearity, our interpretations of

the parameter estimates may not makes sense. A subset model is good if there is not

substantial bias in the predicted values (relative to the full model). The Cp criterion looks

at the ratio of error SS for the model with p variables to the MSE of the full model, then

adds a penalty for the number of variables. SSEp is based on a specific choice of p− 1

predictors; while MSE(Full) is based on the full set of variables.
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• Adequately fitted model have Cp ≈ p. Models with lack of fit have Cp > p.

In considering possible models we would generally consider any subset

with Cp ≤ p.

• Select as the “best” subset, the one with the smallest Cp value.
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4. PRESSp Criterion

• PRESSp (Prediction Sums of Squares) criterion is a measure of how well the use of

the fitted values for a subset model can predict the observed responses yi.

• The error sum of squares, SSE =
∑

(yi − ŷi)2 is also such a measure.

• The PRESS measure differs from SSE in that each fitted value ŷi for the PRESS

criterion is obtained by deleting the ith case from the data set, estimating the regres-

sion function for the subset model from the remaining n − 1 cases, and then using the

regression function to obtain the predicted value ŷi(i) for the ithe case.

PRESSp =
n∑

i=1

(yi − ŷi(i))2

• Models with a small PRESS statistic are considered good candidates.
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5. AICp and SBCp

These criteria are motivated from information theory (AIC) and

from Bayesian statistics (SBC). They are Criterions based on

log(likelihood) plus a penalty for more complexity. We want to

choose models that minimize AIC and SBC.

AICp = nlnSSEp − nlnn + 2p

SBCp = nlnSSEp − nlnn + [ln(n)]p
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Comments

• The different criteria will not always give the identical answer.

• The all subsets method is good for identifying a collection of

possible models. One should not necessarily use the model

that is declared “best” by any method.

• There might be several subsets that provide a good fit. The

final selection of a model should involve residual analysis and

knowledge of the subject matter.
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Example:

Coleman report data (Christensen)

• y: the mean verbal test score for sixth graders

• x1: staff salaries per pupil

• x2: percentage of sixth graders whose fathers have white col-

lar job

• x3: a composite measure of socioeconomic status

• x4: the mean of verbal test scores given to the teachers

• x5: the mean educational level of the sixth grader’s mothers

(one unit equals two school years)
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Figure 2: Scatterplot of Coleman report data
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Correlation between y and the predictor variables.

x1 x2 x3 x4 x5

Correlation with y 0.192 0.753 0.927 0.334 0.733

• Of the five variables, x3 has the highest correlation. It explains

more of the y variable than any other single variable.

• x2 and x5 also have reasonably high correlations with y.

• Low correlations exist between y and both x1 and x4
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Table 1: Selection by different criteria

Vars R2 AdjR2 Cp

√
MSE x1 x2 x3 x4 x5

1 86.0 85.2 5.0 2.2392 ×
1 56.8 54.4 48.6 3.9299 ×
1 53.7 51.2 53.1 4.0654 ×
2 88.7 87.4 2.8 2.0641 × ×
2 86.2 84.5 6.7 2.2866 × ×
2 86.0 84.4 6.9 2.2993 × ×
3 90.1 88.2 2.8 1.9974 × × ×
3 88.9 86.8 4.6 2.1137 × × ×
3 88.7 86.6 4.8 2.1272 × × ×
4 90.2 87.6 4.7 2.0514 × × × ×
4 90.1 87.5 4.8 2.0603 × × × ×
4 89.2 86.3 6.1 2.1499 × × × ×
5 90.6 87.3 6.0 2.0743 × × × × ×
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Example: Hospital was interested in understanding factors

that affect survival time following a liver operation. n = 108,

54 were held out for validation studies (to be discussed later).

• Y : log of survival time

• X1: blood clotting score

• X2: prognostic index

• X3: enzyme function test score

• X4: liver function text score
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Surgical Unit Example with 4 Predictors
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Surgical Unit Example with 4 Predictors
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Surgical Unit Example with 4 Predictors



Comments:

• As the number of predictors increases, the number of possible models

blows up! We need clever computer algorithms to find the really good

models.

Two approaches:

• If p − 1 is less than 30, use best subsets procedures: These algorithms

can use clever search paths to find all of the top models without having to

evaluate all 2(p−1) possible models.

• If p − 1 is greater than 30, use stepwise procedures: These are “greedy”

algorithms that first find the best single term model. Given that term, add

the next best term, and so on.
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Stepwise Regression analysis

• A computationally available method for subset selection

• Evaluate the variables one at a time and look at a sequence

of models

• Backwards elimination (start with full model)

• Forward elimination (start with intercept model)

• Stepwise methods (variables can be both added and deleted)
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Backwards elimination

• Begins with the full model and sequentially eliminates from the model the least important

variable. Importance of the variable is judged by the size t or F statistic.

•
F ∗i =

MSR(xi|x1, · · · , xp−1 except xi)
MSE(x1, x2, · · · , xp−1)

, for i = 1, 2, · · · , p− 1.

Find the smallest F ∗i , If the smallest F ∗i < F − out (predetermined value), remove xi.

• After the variable with the smallest F statistic is dropped, the model is refitted and the F

statistic is recalculated. Again, the variable with the smallest F statistic is dropped

• Process ends when all of F statistics are greater than some predetermined level (prede-

termined value can change depending on the step).
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Table 2: Backwards elimination of y on 5 predictors with n = 20, coleman data, predeter-

mined value is 2

Step const x1 x2 x3 x4 x5 R2
√

MSE

1 β̂ 19.95 -1.8 0.044 0.556 1.11 -1.8 90.63 2.07

tobs -1.45 0.82 5.98 2.56 -0.89

2 β̂ 15.47 -1.7 0.582 1.03 -0.5 90.18 2.05

tobs -1.41 6.75 2.46 -0.41

3 β̂ 12.12 -1.7 0.553 1.04 90.07 2.00

tobs -1.47 11.27 2.56

4 β̂ 14.58 0.542 0.75 88.73 2.06

tobs 10.82 2.05
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Forward selection

• Begins with an initial model (could be intercept only) and adds variables to the model one

at a time. Importance of the variable is judged by the size t or F statistic.

•
F ∗k =

MSR(xk)
MSE(xk)

enter the variable with the largest F ∗k provided this F ∗k > F−IN (predetermined value)

or the corresponding P -value is less than a predetermined α

• One variable in the regression equation, say xh. Compute all two variable regression

equation between y and xh and xk for k 6= h, calculate

F ∗k =
MSR(xk|xh)
MSE(xk, xh)

,

enter the variable with the largest F ∗k value provided this F ∗k > F − IN

• Procedure ends when none of the F statistic is greater than a predetermined level.
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Table 3: Forward selection of y on 5 predictors with n = 20, coleman data, predetermined

value is 2

Step const x1 x2 x3 x4 x5 R2
√

MSE

1 β̂ 33.32 0.560 85.96 2.24

tobs 10.50

4 β̂ 14.58 0.542 0.75 88.73 2.06

tobs 10.82 2.05
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Stepwise methods

• Alternate between forward selection and backwards elimination

• Arrive at model by dropping a variable, check to see if any variable can be added to the

model

• Arrive at a model by adding a variable, check to see if any variable can be dropped

• The value of the F statistic required for dropping a variable is allowed to be different from

the value required for adding a variable

• Usually start with an initial model that contains only an intercept

• Stepwise methods gives the same result as forward selection if starting from an initial

model; gives the same result as backward elimination if starting from a full model for

coleman data
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Stepwise methods:

• Step 1: No variable in the regression equation, compute all one variable regression equa-

tion between y and p− 1 predictors and calculate

F ∗k =
MSR(xk)
MSE(xk)

enter the variable with the largest F ∗k provided this F ∗k > F−IN (predetermined value)

or the corresponding P -value is less than a predetermined α

• Step 2: 1 variable in the regression equation, say xk1. Compute all two variable regres-

sion equation between y and xk1 and xk for k 6= k1, calculate

F ∗k =
MSR(xk|xk1)
MSE(xk, xk1)

,

enter the variable with the largest F ∗k value provided this F ∗k > F −IN (predetermined

value) or the corresponding P -value is less than a predetermined α
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• Step 3, two variables in regression equation, say xk1 and xk2. Determine if any of the

variables previously entered should be removed from the regression equation due to the

addition of the latest variable.

—Calculate

F ∗k1 =
MSR(xk1|xk2)
MSE(xk1, xk2)

—If the F ∗k1 falls below a predetermined value called F-out or the corresponding P -value

is greater than a predetermined α, then xk1 is removed from the model
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• Suppose there are r − 1 variables in the regression equation, compute

F ∗k =
MSR(xk|xk1, xk2, · · · , xk,r−1)

MSE(xk, xk1, · · · , xk,r−1)

enter the variable with the largest F ∗k value provided F ∗k > F − in

—Suppose xkr is added at the above step, compute

F ∗ki =
MSR(xki|xk1, · · · , xkr except xki)

MSE(xk1, xk2, · · · , xkr)
,

for i = 1, 2, · · · , r − 1,

find the smallest F ∗ki, If the smallest F ∗ki < F−out, then remove xki from the equation.

• Go to next step to try to enter another variable, keep gong until no new variable can be

entered.
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Model selection and case deletion

• Outliers tend to be cases with large residuals

—-eliminating the largest residuals obviously makes the SSE

and MSE smaller

• Variable selection methods tend to identify as good reduced

models those with small MSEs

—-Delete outliers if they are from recording errors (such as

obvious typos), experimental accident (drop the tube) etc,.

—-Usually after deleting outliers, new data will produce new

outliers
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Example: Coleman data.

> outlierTest(co)

rstudent unadjusted p-value Bonferonni p

18 4.564631 0.00053079 0.010616
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Figure 3: rstudent of Coleman report data, case #18 was identified as an outlier
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After case #18 been deleted, case #3 becomes a new outlier

> outlierTest(co2)

rstudent unadjusted p-value Bonferonni p

3 -5.08053 0.00027041 0.0051379
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Figure 4: Plot of rstudent of Coleman report data after case #18 been deleted, case # 3 was

identified as an outlier
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Both variable selection and case deletion

• Cause the resulting model to appear better than it probably

should

• Tend to give MSEs that are unrealistically small

• Prediction intervals are unrealistically narrow and test statis-

tics are unrealistically large

• Test performed after variable selection or outlier deletion should

be viewed as the greatest reasonable evidence against the

null hypothesis, with the understanding that more appropriate

tests would probably display a lower level of significance.
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Example: Coleman data, case 18 deleted

• Case 18 was identified as an influential point

• After case 18 deleted, the full model is the best model as mea-

sured by either the Cp statistic or the adjusted R2 value.

• This is a far cry from the full data analysis in which the models
with x3, x4 and with x1, x3, x4 had the smallest Cp statistics.
After deleting case 18, models x3, x4 and x1, x3, x4 are only
the seventh and fifth best models.
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Table 4: Best subset regression

Vars R2 AdjR2 Cp

√
MSE x1 x2 x3 x4 x5

1 86.0 85.2 5.0 2.2392 ×
1 56.8 54.4 48.6 3.9299 ×
1 53.7 51.2 53.1 4.0654 ×
2 88.7 87.4 2.8 2.0641 × ×
2 86.2 84.5 6.7 2.2866 × ×
2 86.0 84.4 6.9 2.2993 × ×
3 90.1 88.2 2.8 1.9974 × × ×
3 88.9 86.8 4.6 2.1137 × × ×
3 88.7 86.6 4.8 2.1272 × × ×
4 90.2 87.6 4.7 2.0514 × × × ×
4 90.1 87.5 4.8 2.0603 × × × ×
4 89.2 86.3 6.1 2.1499 × × × ×
5 90.6 87.3 6.0 2.0743 × × × × ×
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Table 5: Best subset regression: Case 18 deleted

Vars R2 AdjustedR2 Cp

√
MSE x1 x2 x3 x4 x5

1 89.6 89.0 21.9 1.9653 ×
1 56 53.4 140.8 4.0397 ×
1 53.4 50.6 150.2 4.1596 ×
2 92.3 91.3 14.3 1.7414 × ×
2 91.2 90.1 18.2 1.8635 × ×
2 89.8 88.6 23.0 2.0020 × ×
3 93.7 92.4 11.4 1.6293 × × ×
3 93.5 92.2 12.1 1.6573 × × ×
3 92.3 90.8 16.1 1.7942 × × ×
4 95.2 93.8 8.1 1.4766 × × × ×
4 94.7 93.2 9.8 1.5464 × × × ×
4 93.5 91.6 14.1 1.7143 × × × ×
5 96.3 94.9 6.0 1.3343 × × × × ×
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Model Selection Techniques Only Narrow the Field

Final choice of a model based on:

• p-values, residual plots, other diagnostics

• Parsimony (Occam’s Razor): Simple models work best

• The sniff (giggle) test: does the model agree with expectations

or theory? Do the signs make sense? Can you explain the

results?

• Model validation studies
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Model Validation

• The real test of a model or theory: How well does the model predict future

observations?

• Problem with your model: the residuals are closer to the observations than

they should be! So MSE is too small!!!!

—-Why? Because picked the model that best predicts your data set. Your

measure of predictive ability is biased.

• Optimism Principle: A model chosen by some selection process provides

a more optimistic explanation of data used in its derivation than it does of

other data that will arise in a similar fashion.
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Getting an unbiased view

• Way 1: Collect n∗ new observations and compute the mean

squared prediction error:

MSPR =

∑n∗
i=1(yi − ŷi)

2

n∗

—yi is the response variable in the ith validation case

—ŷi is the predicted value for the ith validation case based on

the model building data set

—n∗ is the number of cases in the validation data set.
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• Way 2: Cross-validation

—Keep n∗ cases out of the data set (at random!).

—Base regression on the n− n∗ cases in the training set.

—Computer the MSPR for the n∗ cases in the validation set

(or test set).

—Usually n∗ ≈ n/2.
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• Way 3: K-fold cross-validation (sample size n is small)

— Break data into K roughly equal parts.

—Of the K subsamples, a single subsample is retained as the validation

data for testing the model, and the remaining K− 1 subsamples are used

as training data.

—The cross-validation process is then repeated K times (the folds), with

each of the K subsamples used exactly once as the validation data.

—The K results from the folds can then be averaged to produce a single

estimation.

—When K = n, the K-fold cross-validation estimate is identical to leave

one out cross-validation.
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Example: pages 373, 374

In the surgical unit example (utilize all 8 predictors), three mod-

els were favored by the various model-selection criteria.

Model 1: favored by SBCp and PRESSp criteria:

y′i = β0 + β1xi1 + β2xi2 + β3xi3 + β8xi8 + εi

Model 2: favored by Cp criterion:

y′i = β0 + β1xi1 + β2xi2 + β3xi3 + β5xi5 + β8xi8 + εi

Model 3: favored by R2
a,p and AICp criteria.

y′i = β0+β1xi1+β2xi2+β3xi3+β5xi5+β6xi6+β8xi8+εi
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Table 6: Some results for Models 1-3 based on model-building and validation data set–

Surgical Unit Example

Model 1 Model 1 Model 2 Model 2 Model 3 Model 3

Statistic (training) (validation) (training) (validation) (training) (validation)

SSEp 2.1788 3.7951 2.0820 3.7288 2.0052 3.6822

PRESSp 2.7378 4.5219 2.7827 4.6536 2.7723 4.8981

MSEp 0.0445 0.0775 0.0434 0.0777 0.0427 0.0783

MSPR 0.0773 0.0764 0.0794

• PRESSp value is always larger than SSEp because the regression fit for the ith case when this case is

deleted in fitting can never be as good as that when the ith case is included.

• A PRESSp value reasonably close to SSEp supports the validity of the fitted regression model and of

MSEp as an indicator of the predictive capability of this model.

• All three of the candidate models have PRESSp values that are reasonably close to SSEp.

42



Table 7: Some results for Models 1-3 based on model-building and validation data set–

Surgical Unit Example

Model 1 Model 1 Model 2 Model 2 Model 3 Model 3

Statistic (training) (validation) (training) (validation) (training) (validation)

SSEp 2.1788 3.7951 2.0820 3.7288 2.0052 3.6822

PRESSp 2.7378 4.5219 2.7827 4.6536 2.7723 4.8981

MSEp 0.0445 0.0775 0.0434 0.0777 0.0427 0.0783

MSPR 0.0773 0.0764 0.0794

• MSPR for the 54 cases in the validation data set for each of the three models are 0.0773, 0.0764, and 0.0794.

• The mean squared prediction error generally will be larger than MSEp based on the training data set because

entirely new data are involved in the validation data set.

• The fact that MSPR does not differ too greatly from MSEp implies that the error mean square MSEp

based on the training data set is a reasonably valid indicator of the predictive ability of the fitted regression

model.

• The closeness of the three MSPR values suggest that the three candidate models perform comparably in terms

of predictive accuracy.
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Select a Model

• A review of Table 9.4 in the textbook shows that most of the estimated

coefficients agree quite closely, however, for Model 3

—b5 = −0.0035 (the coefficient of age) for the training data

—b5 = 0.0025 for the validation data.

• This is certainly a cause for concern, and it raises doubts about the validity

of Model 3. Model 3 was eliminated from further consideration.

• The final selection was based on the principle of parsimony. While Model

1 and 2 performed comparably in the validation study. Model 1 achieves

this level of performance with one fewer parameter. For this reason, Model

1 was ultimately chosen by the investigator as the final model.
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