
3 Basic Concepts from Linear algebra)

Linear algebra is an important prerequisite in order to understand the model formulation and
calculations within Mixed Model. The following slides served as a brush-up on the theory, with
presentation of the most important concepts and results.

Link to the full screen presentation1

1http://www.jbs.agrsci.dk/biometri/Courses/HSVmixed2001/LinAlg.f.pdf
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Why Linear Algebra??

• Many statistical models used in practice are assumed to have some

kind of a linear structure. (Linear regression and analysis of variance

are classical examples.)

• Linear algebra is the branch of mathematics that deals with linear

structures.

• Linear algebra is a convenient tool for handling models with linear

structures.

• Moreover, many concepts from linear algebra can be given

geometrical interpretation.
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• Hence geometry can be a way to understand statistical models with

linear structures
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Vectors

Vectors: A column vector is a list of numbers stacked on top of each

other, e.g.

a =







2

1

3







A row vector is a list of numbers written one after the other, e.g.

b = (2, 1, 3)

In both cases, the list is ordered, i.e.

(2, 1, 3) 6= (1, 2, 3).
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• Note In what follows all vectors are column vectors unless

otherwise stated.

In general an n–vector has the form

a =











a1

a2

...

an











where the ais are numbers.

October 17, 2001 Mixed Models Course 4
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Transpose of vectors: This means that a column vector is turned

into a row vector and that a row vector is turned into a column

vector. The transpose is denoted by “>”. For example,

a> = (a1, a2, . . . , an)

Hence transposing twice takes us back to where we started:

a = (a>)>

• Example:







1

3

2







>

= [1, 3, 2] og [1, 3, 2]> =







1

3

2







October 17, 2001 Mixed Models Course 5

Multiplying a vector by a number: If a is a vector and α is a

number then αa is the vector

αa =











αa1

αa2

...

αan











• Example:

7







1

3

2






=







7

21

14






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Sum of vectors: Let a and b be n–vectors. The sum a + b is the

n–vector

a + b =











a1

a2

...

an











+











b1

b2

...

bn











=











a1 + b1

a2 + b2

...

an + bn











= b + a

• Note Only vectors of the same dimension can be added !

• Example:







1

3

2






+







2

8

9






=







1 + 2

3 + 8

2 + 9






=







3

11

11






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Inner product of vectors: Let a and b be n–vectors. The inner

product a · b is the number

a · b = a1b1 + a2b2 + · · ·+ anbn =
n

∑

i=1

aibi

• Note The product is a number – not a vector

• Note Only vectors of the same dimension can be multiplied!

• Example:







1

3

2






·







2

8

9






= 1 · 2 + 3 · 8 + 2 · 9 = 44

October 17, 2001 Mixed Models Course 8
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The length (norm) of a vector: The length (or norm) of a vector

a is

||a|| =
√

a · a =

√

√

√

√

n
∑

i=1

a2

i

The 0–vector and the 1–vector: The 0-vector (1–vector) is a

vector with 0 (1) on all entries. The 0–vector (1–vector) is

frequently written simply as 0 (1) or as 0n (1n) to emphasize that

it is of length n.

Orthogonal (perpendicular) vectors: Two vectors a and b with

a 6= 0 and b 6= 0 are orthogonal if their inner product is zero,

written

a ⊥ b ⇔ a · b = 0

October 17, 2001 Mixed Models Course 9

Matrices

Matrix: A matrix A with r rows og c columns is an r × c table of

the form

A =











a11 a12 . . . a1c

a21 a22 . . . a2c

... ... . . . ...

ar1 ar2 . . . arc











It is said that A has the dimension r × c.

• Note One can regard A as consisting of c columns vectors put

after each other:

A = [a1 : a2 : · · · : ac]

October 17, 2001 Mixed Models Course 10
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Transpose of matrices: A matrix is transposed by interchanging

rows and columns and is denoted by “>”. That is,

A> =











a11 a21 . . . ar1

a12 a22 . . . ar2

... ... . . . ...

a1c a2c . . . arc











Example:






1 2

3 8

2 9







>

=

[

1 3 2

2 8 9

]

October 17, 2001 Mixed Models Course 11

• Note If A is an r × c matrix then A> is a c× r matrix.

• Note One can regard a column vector of length r as an r × 1

matrix and a row vector of length c as a 1× c matrix.

October 17, 2001 Mixed Models Course 12
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Multiplying a matrix with a number: For a number α and a matrix

A, the product αA is the matrix

αA =











αa11 αa12 . . . αa1c

αa21 αa22 . . . αa2c

... ... . . . ...

αar1 αar2 . . . αarc











Example:

7







1 2

3 8

2 9






=







7 14

21 56

14 63






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Sum of matrices: Let A = [a1 : a2 : · · · : ac] and B = [b1 : b2 : · · · :
bc] be r × c matrices.

The sum A + B is the r × c matrix given by

A + B = [a1 + b1 : a2 + b2 : · · · : as + bs]

=











a11 a12 . . . a1c

a21 a22 . . . a2c

... ... . . . ...

ar1 ar2 . . . arc











+











b11 b12 . . . b1c

b21 b22 . . . b2c

... ... . . . ...

br1 br2 . . . brc











=











a11 + b11 a12 + b12 . . . a1c + b1c

a21 + b21 a22 + b22 . . . a2c + b2c

... ... . . . ...

ar1 + br1 ar2 + br2 . . . arc + brc











= B + A

October 17, 2001 Mixed Models Course 14
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• Note Only matrices with the same dimensions can be added.

Example:






1 2

3 8

2 9






+







5 4

8 2

3 7






=







6 6

11 10

5 16






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Multiplication of a matrix and a vector: Let A be an r× c matrix

and let b be a c-dimensional column vector. The product Ab is the

r × 1 matrix

Ab =











a11 a12 . . . a1c

a21 a22 . . . a2c

... ... . . . ...

ar1 ar2 . . . arc





















b1

b2

...

bc











=











a11b1 + a12b2 + · · ·+ a1cbc

a21b1 + a22b2 + · · ·+ a2cbc

...

ar1b1 + ar2b2 + · · ·+ arcbc











• Eksempel:







1 2

3 8

2 9







[

5

8

]

=







1 · 5 + 2 · 8
3 · 5 + 8 · 8
2 · 5 + 9 · 8






=







21

79

82






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Multiplication of matrices: Let A be an r× c matrix and B a c× t

matrix, i.e. B = [b1 : b2 : · · · : bt]. The product AB is the r × t

matrix given by:

AB = A[b1 : b2 : · · · : bt] = [Ab1 : Ab2 : · · · : Abt]

Example:

[

1 2
3 8
2 9

]

[

5 4
8 2

]

=













1 2

3 8

2 9







[

5

8

]

:







1 2

3 8

2 9







[

4

2

]







=







1 · 5 + 2 · 8 1 · 4 + 2 · 2
3 · 5 + 8 · 8 3 · 4 + 8 · 2
2 · 5 + 9 · 8 2 · 4 + 9 · 2






=







21 8

79 28

82 26






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• Note The product AB can only be formed if the number of

rows in B and the number of columns in A are the same. On

that case, A and B are said to be conforme.

• Note In general AB and BA are not identical.

A mnemonic for matrix multiplication is :

[

1 2
3 8
2 9

]

[

5 4
8 2

]

=

5 4

8 2

1 2 1 · 5 + 2 · 8 1 · 4 + 2 · 2
3 8 3 · 5 + 8 · 8 3 · 4 + 8 · 2
2 9 2 · 5 + 9 · 8 2 · 4 + 9 · 2

=







21 8

79 28

82 26







October 17, 2001 Mixed Models Course 18
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Special matrices:

• An n× n matrix is said to be a square matrix

• A matrix with 0 on all entries is the 0–matrix and is often written

simply as 0 (or as 0r×c to emphasize the dimension).

• A matrix consisting of 1s in all entries is of written J (or as Jr×c

to emphasize the dimension).

• A square matrix with 0 on all off–diagonal entries and elements

d1, d2, . . . , dn on the diagonal is said to be a diagonal matrix and

is iften written diag{d1, d2, . . . , dn}
• A diagonal matrix 1s on the diagonal is called the unity matrix

and is denoted I (or In×n to emphasize the dimension).

• A matrix A is a symmetric matrix A = A>.

October 17, 2001 Mixed Models Course 19

Some rules for matrix operations: For (conformable) matrices

A,B and C the following rules apply

(A + B)> = A> + B>

(AB)> = B>A>

A(B + C) = AB + AC

AB = AC 6⇒ B = C

October 17, 2001 Mixed Models Course 20
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Inverse of a matrix: The inverse of an n×n matrix A is the matrix

B (which is also n× n) which multiplied with A gives the identity

matrix I. That is,

AB = BA = I.

One says that B is A’s inverse and writes B = A−1.

• Note Only square matrices can have an inverse.

• Note Not all square matrices have an inverse.

• Note When the inverse exists, it is unique.

• Note Finding the inverse of a large matrix A is numerically

complicated.

October 17, 2001 Mixed Models Course 21

Example 1. It is easy find the inverse for a 2× 2 matrix. When

A =

[

a b

c d

]

then the inverse is

A−1 =
1

ad− bc

[

d −b

−c a

]

under the assumption that ab − bc 6= 0. The number ab − bc is
called the determinant of A, sometimes written det(A).

If the determinant det(A) = 0, then A has no inverse. fin

October 17, 2001 Mixed Models Course 22
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Example 2. Finding the inverse of a diagonal matrix is easy: Let

A =











a1 0 . . . 0

0 a2 0
... . . . 0

0 0 . . . an











where all ai 6= 0. Then the inverse is

A−1 =











1

a1
0 . . . 0

0 1

a2
0

... . . . 0

0 0 . . . 1

an











If one ai = 0 then A−1 does not exist. fin
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Generalized inverse: Not all square matrices have an inverse.

However all square matrices have a generalized inverse.

A generalized inverse of a square matrix A is a matrix A− satisfying

that

AA−A = A

Any square matrix has an infinite number of generalized inverses.

October 17, 2001 Mixed Models Course 24
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Linear Combinations

Let a1, a2, . . . , ac be r–vectors and let A = [a1 : a2 : · · · : ac] be the

corresponding r × c matrix.

Let vv = (v1, v2, . . . , vc)
> be a c-vector and let

x = Av = a1v1 + a2v2 + · · ·+ acvc =
∑

j

ajvj

Then the r–vector x is said to be a linear combination of

a1, a2, . . . , ac.

October 17, 2001 Mixed Models Course 25

Let w = (w1, w2, . . . , wc)
> be another c vector and let

correspondingly y = Aw =
∑

j ajwj.

Then the following can be noted:

• For a number α the vector αx = α(Av) = A(αv) is also a linear

combination of a1, a2, . . . , ac.

• The sum x+y = Av+Aw = A(v+w) is also a linear combination

of a1, a2, . . . , ac.

• Hence if x and y are both linear combination a1, a2, . . . , ac then so

is the sum αx + βy where α and β are numbers.

October 17, 2001 Mixed Models Course 26
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n–dimensional Spaces

A 2–vector x = (x1, x2) can be regarded as the point with

coordinates (x1, x2) in a 2–dimensional coordinate system, i.e. in the

plane.

Likewise a 3–vector x = (x1, x2, x3) can be regarded as the point

with coordinates (x1, x2, x3) in a 3–dimensional coordinate system,

i.e. in space.

In general an n–vector x = (x1, x2, . . . , xn) can be regarded as the

point with coordinates (x1, x2, . . . , xn) in an n–dimensional

coordinate system, i.e. in an n–dimensional space. Such as space

shall here be referred to as Rn. Its hard to draw!

October 17, 2001 Mixed Models Course 27

To justify such n–dimensional spaces, suppose x consists of a

location of an object (that takes 3 coordinates), the temperature of

the object (that occupies one coordinate) and the time (that also

occupies one coordinate). Hence the total information about the

object can be regarded as a point in a 5–dimensional space.

Note that If x and y are both vectors in Rn then so is the sum

αx + βy.

October 17, 2001 Mixed Models Course 28
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Linear Subspaces

Consider a set a1, a2, . . . , ac of r–vectors.

We can regard these vectors as “building blocks” for creating new

vectors as linear combinations of the building blocks. Any such

vector is an r–vector

The set of vectors which can be created as linear combinations of

the “building blocks” is called a linear subspace of Rr.

Such a space, let us call it L, is said to be spanned by a1, a2, . . . , ac

and we write L = span(a1, a2, . . . , ac).

October 17, 2001 Mixed Models Course 29

Example 3. Consider the vectors

a1 =







2

6

4






, a2 =







1

5

7







Hence span(a1, a2) is the set of vectors which can be written as

y =







2

6

4






v1 +







1

5

7






v2

for alle possible choices of v = (v1, v2). fin

October 17, 2001 Mixed Models Course 30
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More precisely, L consists of all vectors of the form

a1v1 + a2v2 + · · ·+ acvc

for all possible choices of c–vectors v = (v2, . . . , vc).

It is common to organize the building blocks as a matrix

A = [a1 : · · · : ac]. Then another way of describing L is as the set of

vectors that can be written as Av, or more precisely

L = {y|y = Av for all possible vectors v}

Frequenly one uses the name span(A) for L.

October 17, 2001 Mixed Models Course 31

There are some additional aspects of subspaces of which a few will

be illustrated:

Example 4. Consider again the subspace L = span(a1, a2) where

a1 = (2, 6, 4)> a2 = (1, 5, 7)>

• A question is whether all vectors y = (y1, y2, y3)
> can be written

as y = a1v1 + a2v2?

The answer is “no”, for example y = (1, 5, 3) can not be written
in that form.

• Another question is whether there are other ways of representing
L?

The answer is “yes” – there are infinitely many. To pick one, let
b1 = a1 + a2 and b2 = a1 − a2. Then L = span(b1, b2).

October 17, 2001 Mixed Models Course 32
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fin

• Note The 0-vector belongs to all linear subspaces. In the previous

example one gets y = 0 when choosing α = (0, 0, 0).)
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Linear dependence and independence

Linearly dependent vectors: A set of vectors a1, ..., ac are
linearly dependent if one of them can be written as a linear
combination of the others, for example if

ac =
c−1
∑

j=1

ajqj

where the vjs are numbers.

Linearly independent vectors: If none of the vectors a1, ..., ac can
be written as a linear combination of the others, the set is said to
be linearly independent.

October 17, 2001 Mixed Models Course 34
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Throw–out–technique: If one vector, say ac, can be written as a
linear combination of the other vectors, then it can be thrown away
with changing the structure of the space, i.e.

span(a1, . . . , ac) = span(a1, . . . , ac−1)

This process can go on until one ends up with a set of linearly
independent vectors.

This allow us to find a representation of the which is as simple
(economical) as possible.
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Example 5. Consider the vectors

a1 =







2

6

4






, a2 =







1

5

7






, a3 =







0

2

5






og x =







3

13

16







1. The vector x is a linear combination of a1, a2 and a3, since
x = a1 + a2 + a3.

2. Since a3 = a2 − 1

2
a1, the ai–vectors are linearly dependent.

Consequently x can be written as a linear combination of only
a1 og a2, because x = 1

2
a1 + 2a2.

3. The vectors a1, a2 are linearly independent and so are the sets
a1, a3 and a2, a3.

October 17, 2001 Mixed Models Course 36
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fin

Basis of a subspace: If the vectors a1, ..., ac span a given subspace

L and are linearly independent, the are said to be a basis for L.

Any linear subspace has infinitely many different bases.

Dimension of a linear subspace: Yet all bases of a linear subspace

shares have a common feature: They have the same number of

elements. The number of elements of a basis is the dimension of

the subspace.

Throw–away: Having a linearly dependent set of vectors a1, ..., ac

on can always apply the throw–away–technique to obtain a

linearly independent set of vectors. This set is then a basis
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for span(a1, . . . , ac).

Example 6. Consider the vectors

a1 =







2

6

4






, a2 =







1

5

7






, a3 =







0

2

5







b1 =







1

3

2






and b2 =







2

8

9







and the corresponding matrices A = [a1 : a2 : a3], Ã = [a1 : a2] og
B = [b1 : b2].

1. Since a3 = a2 − 1

2
a1, the ai vectors are linearly dependent.

October 17, 2001 Mixed Models Course 38
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• Note Since L = span(A) = span(B) one can think of the

matrices A and B as two different ways of representing the same

linear subspace.
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Projections onto Linear Subspaces

Example 7. Consider the vector a = (2, 2) and y = (1, 2).

Clear y is not in span(a). In statistics the following question is
extremely important: Can we find a vector ŷ in span(a) which is as
“close to” y as possible?

The answer is “yes”: Find the (orthogonal) projection of the point
y onto the line going through a. There is a simple mathematical
expression for obtaining ŷ, namely

ŷ = a(a>a)−1a>y =

[

2

2

]

1

8
[2, 2]

[

1

2

]

=
1

2

[

1 1

1 1

] [

1

2

]

=

[

3

2
3

2

]
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The property of ŷ is that the length of y − ŷ is as small as possible.

Moreover, y − ŷ and ŷ are orthogonal. fin

In general let y be an r–vector and let A = [a1 : · · · : ac] be an r × c

matrix.

Then there always exist a vector ŷ in span(A) which is as close to y

as possible.

If y is in span(A), then ŷ = y because in this case the lenght of

y − ŷ is zero.

If y is not in span(A) then the expression is as follows: Assume that

all columns of A are linearly independent. (Recall that if that is not
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the case we can throw away redundant columns without changing

the space spanned by those remaining.)

Then ŷ = Py where

P = A(A>A)−1A>

is the projection matrix onto span(A).

It then holds that

1. Py is in span().

2. Py is the vector in span(A) which is closest to y (in the sense that
the lenght of y − ŷ is minmized.

3. Py = y if and only if y is already in span(A).
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Example 8. Consider the 3× 2 matrix A = [a1 : a2], where

a1 =







1

3

2






og a2 =







2

8

9







Then the projection matrix onto span(A) is P = A(A>A)−1A>. To
find P we first calculate

A>A =

[

1 3 2

2 8 9

]







1 2

3 8

2 9






=

[

14 44

44 149

]
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Hence

(X>X)−1 =
1

150

[

149 −44

−44 14

]

From this we find

(X>X)−1X> =
1

150

[

149 −44

−44 14

] [

1 3 2

2 8 9

]

=
1

150

[

61 95 98

−16 −20 38

]
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Finally we find

P = A(A>A)−1A> =
1

150







1 2

3 8

2 9







[

61 95 98

−16 −20 38

]

=
1

150







29 55 −22

55 125 10

−22 10 146







fin
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Exercises in linear algebra

Exercise 1. 1. Are the vectors (1, 1) and (1, 2) orthogonal?

2. Are (1, 1) and (2,−2) ?

3. Are (1, 1) and (−1,−1) ?

4. Make a drawing which illustrates these vectors

Exercise 2. Let

A =







1 2

3 4

5 6






.
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1. Is A symmetrical?

2. Is A>A symmetrical?

3. Is AA> symmetrical?

4. What is the result from adding A and A>?

Exercise 3. Let

A =

[

1 2

3 4

]

, and B =

[

1 0

1 1

]

.

Calculate AB and BA. What can be concluded from this?

Exercise 4. Let a = (1, 1, 1, 0, 0, 0)> be a 6 × 1 matrix. Find aa>

and a>a.
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Exercise 5. Let

A =

[

a b

c d

]

and

B =
1

ad− bc

[

d −b

−c a

]

Calculate AB. What can be concluded from this?

Exercise 6. What is the inverse to the 3× 3 matrix diag(1, 4, 9)?

Exercise 7. Two equations with two unknowns. COnvince yourself
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that the system of equations

x1 + 2x2 = 3

2x1 + 3x2 = 4

can be written as

[

1 2

2 3

] [

x1

x2

]

=

[

3

4

]

,

i.e. as Ax = b. Find A−1 and use this for solving the system of

equations as follows:

x = Ix = A−1Ax = A−1b.
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Exercise 8. Let

A =











1 0

1 0

0 1

0 1











.

1. How do vectors of the form Av look when v = (v1, v2)
>?

2. Find the projection matrix P = A(A>A)−1A>.

3. Let y = (1, 3, 5, 7)>. Find Py.
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