Linear algebra is an important prerequisite in order to understand the model formulation and calculations within Mixed Model. The following slides served as a brush-up on the theory, with presentation of the most important concepts and results.

Link to the full screen presentation¹

¹http://www.jbs.agrsci.dk/biometri/Courses/HSVmixed2001/LinAlg.f.pdf

Vectors

Vectors: A column vector is a list of numbers stacked on top of each other, e.g.

$$a = \left(\begin{array}{c} 2\\1\\3\end{array}\right)$$

A row vector is a list of numbers written one after the other, e.g.

$$b = (2, 1, 3)$$

In both cases, the list is ordered, i.e.

$$(2,1,3) \neq (1,2,3).$$

October 17, 2001 Mixed Models Course

• Note In what follows all vectors are column vectors unless otherwise stated.

In general an $n\operatorname{-vector}$ has the form

$$a = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}$$

where the a_i s are numbers.

October 17, 2001 Mixed Models Course

4

Transpose of vectors: This means that a column vector is turned into a row vector and that a row vector is turned into a column vector. The transpose is denoted by " \top ". For example,

$$a^{\top} = (a_1, a_2, \dots, a_n)$$

Hence transposing twice takes us back to where we started:

$$a = (a^{\top})^{\top}$$

• Example:

$$\begin{bmatrix} 1\\3\\2 \end{bmatrix}^{\top} = [1,3,2] \quad \text{og} \quad [1,3,2]^{\top} = \begin{bmatrix} 1\\3\\2 \end{bmatrix}$$

5

6

October 17, 2001 Mixed Models Course

Multiplying a vector by a number: If a is a vector and α is a number then αa is the vector

$$\alpha a = \begin{bmatrix} \alpha a_1 \\ \alpha a_2 \\ \vdots \\ \alpha a_n \end{bmatrix}$$

• Example:

$$7\begin{bmatrix}1\\3\\2\end{bmatrix} = \begin{bmatrix}7\\21\\14\end{bmatrix}$$

October 17, 2001 Mixed Models Course

Sum of vectors: Let a and b be n-vectors. The sum a + b is the n-vector

$$a+b = \begin{bmatrix} a_1\\a_2\\\vdots\\a_n \end{bmatrix} + \begin{bmatrix} b_1\\b_2\\\vdots\\b_n \end{bmatrix} = \begin{bmatrix} a_1+b_1\\a_2+b_2\\\vdots\\a_n+b_n \end{bmatrix} = b+a$$

• Note Only vectors of the same dimension can be added !

• Example:

$$\begin{bmatrix} 1\\3\\2 \end{bmatrix} + \begin{bmatrix} 2\\8\\9 \end{bmatrix} = \begin{bmatrix} 1+2\\3+8\\2+9 \end{bmatrix} = \begin{bmatrix} 3\\11\\11 \end{bmatrix}$$

October 17, 2001 Mixed Models Course

Inner product of vectors: Let a and b be n-vectors. The inner product $a \cdot b$ is the *number*

$$a \cdot b = a_1b_1 + a_2b_2 + \dots + a_nb_n = \sum_{i=1}^n a_ib_i$$

- Note The product is a number not a vector
- Note Only vectors of the same dimension can be multiplied!
- Example:

$$\begin{bmatrix} 1\\3\\2 \end{bmatrix} \cdot \begin{bmatrix} 2\\8\\9 \end{bmatrix} = 1 \cdot 2 + 3 \cdot 8 + 2 \cdot 9 = 44$$

October 17, 2001 Mixed Models Course

8

The length (norm) of a vector: The length (or norm) of a vector *a* is

$$||a|| = \sqrt{a \cdot a} = \sqrt{\sum_{i=1}^{n} a_i^2}$$

The 0-vector and the 1-vector: The 0-vector (1-vector) is a vector with 0 (1) on all entries. The 0-vector (1-vector) is frequently written simply as 0 (1) or as 0_n (1_n) to emphasize that it is of length n.

Orthogonal (perpendicular) vectors: Two vectors a and b with $a \neq 0$ and $b \neq 0$ are orthogonal if their inner product is zero, written

$$a \perp b \Leftrightarrow a \cdot b = 0$$

9

10

October 17, 2001 Mixed Models Course

Matrices

Matrix: A matrix A with r rows og c columns is an $r \times c$ table of the form

 $A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1c} \\ a_{21} & a_{22} & \dots & a_{2c} \\ \vdots & \vdots & \ddots & \vdots \\ a_{r1} & a_{r2} & \dots & a_{rc} \end{bmatrix}$

It is said that A has the dimension $r \times c$.

• Note One can regard A as consisting of c columns vectors put after each other:

$$A = [a_1 : a_2 : \cdots : a_c]$$

October 17, 2001 Mixed Models Course

$$A^{\top} = \begin{bmatrix} a_{11} & a_{21} & \dots & a_{r1} \\ a_{12} & a_{22} & \dots & a_{r2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1c} & a_{2c} & \dots & a_{rc} \end{bmatrix}$$

Example:

$$\begin{bmatrix} 1 & 2 \\ 3 & 8 \\ 2 & 9 \end{bmatrix}^{\top} = \begin{bmatrix} 1 & 3 & 2 \\ 2 & 8 & 9 \end{bmatrix}$$

October 17, 2001 Mixed Models Course

- Note If A is an $r \times c$ matrix then A^{\top} is a $c \times r$ matrix.
- Note One can regard a column vector of length r as an $r \times 1$ matrix and a row vector of length c as a $1 \times c$ matrix.

October 17, 2001 Mixed Models Course

12

• Note Only matrices with the same dimensions can be added. Example:

1	2^{-}		5	4		6	6
3	8	+	8	2	=	11	10
2	9		3	7		5	16
L	-	1	L	-	1	L	_

October 17, 2001 Mixed Models Course

Multiplication of a matrix and a vector: Let A be an $r \times c$ matrix and let b be a c-dimensional column vector. The product Ab is the $r \times 1$ matrix

$$Ab = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1c} \\ a_{21} & a_{22} & \dots & a_{2c} \\ \vdots & \vdots & \ddots & \vdots \\ a_{r1} & a_{r2} & \dots & a_{rc} \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_c \end{bmatrix} = \begin{bmatrix} a_{11}b_1 + a_{12}b_2 + \dots + a_{1c}b_c \\ a_{21}b_1 + a_{22}b_2 + \dots + a_{2c}b_c \\ \vdots \\ a_{r1}b_1 + a_{r2}b_2 + \dots + a_{rc}b_c \end{bmatrix}$$

• Eksempel:

$$\begin{bmatrix} 1 & 2 \\ 3 & 8 \\ 2 & 9 \end{bmatrix} \begin{bmatrix} 5 \\ 8 \end{bmatrix} = \begin{bmatrix} 1 \cdot 5 + 2 \cdot 8 \\ 3 \cdot 5 + 8 \cdot 8 \\ 2 \cdot 5 + 9 \cdot 8 \end{bmatrix} = \begin{bmatrix} 21 \\ 79 \\ 82 \end{bmatrix}$$

October 17, 2001 Mixed Models Course

21

16

Multiplication of matrices: Let A be an $r \times c$ matrix and B a $c \times t$ matrix, i.e. $B = [b_1 : b_2 : \cdots : b_t]$. The product AB is the $r \times t$ matrix given by:

$$AB = A[b_1:b_2:\cdots:b_t] = [Ab_1:Ab_2:\cdots:Ab_t]$$

Example:

$$\begin{bmatrix} 1 & 2 \\ 3 & 8 \\ 2 & 9 \end{bmatrix} \begin{bmatrix} 5 & 4 \\ 8 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 3 & 8 \\ 2 & 9 \end{bmatrix} \begin{bmatrix} 5 \\ 8 \end{bmatrix} : \begin{bmatrix} 1 & 2 \\ 3 & 8 \\ 2 & 9 \end{bmatrix} \begin{bmatrix} 4 \\ 2 \end{bmatrix} \\ = \begin{bmatrix} 1 \cdot 5 + 2 \cdot 8 & 1 \cdot 4 + 2 \cdot 2 \\ 3 \cdot 5 + 8 \cdot 8 & 3 \cdot 4 + 8 \cdot 2 \\ 2 \cdot 5 + 9 \cdot 8 & 2 \cdot 4 + 9 \cdot 2 \end{bmatrix} = \begin{bmatrix} 21 & 8 \\ 79 & 28 \\ 82 & 26 \end{bmatrix}$$
October 17, 2001 Mixed Models Course

- Note The product *AB* can only be formed if the number of rows in *B* and the number of columns in *A* are the same. On that case, *A* and *B* are said to be conforme.
- Note In general AB and BA are not identical.

A mnemonic for matrix multiplication is :

$$\begin{bmatrix} 1 & 2 \\ 3 & 8 \\ 2 & 9 \end{bmatrix} \begin{bmatrix} 5 & 4 \\ 8 & 2 \end{bmatrix} = \begin{bmatrix} 5 & 4 \\ 1 & 2 \\ 3 & 8 \\ 2 & 9 \end{bmatrix} \begin{bmatrix} 5 & 4 \\ 8 & 2 \end{bmatrix} = \begin{bmatrix} 21 & 8 \\ 79 & 28 \\ 3 & 8 & 3 \cdot 5 + 8 \cdot 8 & 3 \cdot 4 + 8 \cdot 2 \\ 2 & 9 & 2 \cdot 5 + 9 \cdot 8 & 2 \cdot 4 + 9 \cdot 2 \end{bmatrix} = \begin{bmatrix} 21 & 8 \\ 79 & 28 \\ 82 & 26 \end{bmatrix}$$

$$(A+B)^{\top} = A^{\top} + B^{\top}$$
$$(AB)^{\top} = B^{\top}A^{\top}$$
$$A(B+C) = AB + AC$$
$$AB = AC \Rightarrow B = C$$

October 17, 2001 Mixed Models Course

Inverse of a matrix: The inverse of an $n \times n$ matrix A is the matrix B (which is also $n \times n$) which multiplied with A gives the identity matrix I. That is,

$$AB = BA = I.$$

One says that B is A's inverse and writes $B = A^{-1}$.

- Note Only square matrices can have an inverse.
- Note Not all square matrices have an inverse.
- Note When the inverse exists, it is unique.
- Note Finding the inverse of a large matrix A is numerically complicated.

October 17, 2001 Mixed Models Course

Example 1. It is easy find the inverse for a 2×2 matrix. When

$$A = \left[\begin{array}{cc} a & b \\ c & d \end{array} \right]$$

then the inverse is

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

under the assumption that $ab - bc \neq 0$. The number ab - bc is called the <u>determinant</u> of A, sometimes written det(A).

If the determinant det(A) = 0, then A has no inverse. *fin*

October 17, 2001 Mixed Models Course

Example 2. Finding the inverse of a diagonal matrix is easy: Let

	a_1	0		0]
Λ —	0	a_2		0
А —	:		•••	0
	0	0	•••	a_n

where all $a_i \neq 0$. Then the inverse is

$A^{-1} =$	$\begin{bmatrix} \frac{1}{a_1} \\ 0 \end{bmatrix}$	$\frac{1}{a_2}$	•••	0 0
	: 0	0	•••• ••••	$\frac{0}{\frac{1}{a_{n}}}$

If one $a_i = 0$ then A^{-1} does not exist.

October 17, 2001 Mixed Models Course

Generalized inverse: Not all square matrices have an inverse. However all square matrices have a *generalized inverse*.

A generalized inverse of a square matrix A is a matrix A^- satisfying that

$$AA^{-}A = A$$

Any square matrix has an infinite number of generalized inverses.

October 17, 2001 Mixed Models Course

24

fin

Linear Combinations

Let a_1, a_2, \ldots, a_c be *r*-vectors and let $A = [a_1 : a_2 : \cdots : a_c]$ be the corresponding $r \times c$ matrix.

Let $vv = (v_1, v_2, \dots, v_c)^\top$ be a *c*-vector and let

$$x = Av = a_1v_1 + a_2v_2 + \dots + a_cv_c = \sum_j a_jv_j$$

Then the *r*-vector x is said to be a <u>linear combination</u> of a_1, a_2, \ldots, a_c .

October 17, 2001 Mixed Models Course

Let $w = (w_1, w_2, \dots, w_c)^{\top}$ be another c vector and let correspondingly $y = Aw = \sum_j a_j w_j$.

Then the following can be noted:

- For a number α the vector $\alpha x = \alpha(Av) = A(\alpha v)$ is also a linear combination of a_1, a_2, \ldots, a_c .
- The sum x + y = Av + Aw = A(v + w) is also a linear combination of a_1, a_2, \ldots, a_c .
- Hence if x and y are both linear combination a_1, a_2, \ldots, a_c then so is the sum $\alpha x + \beta y$ where α and β are numbers.

October 17, 2001 Mixed Models Course

n-dimensional Spaces

A 2-vector $x = (x_1, x_2)$ can be regarded as the point with coordinates (x_1, x_2) in a 2-dimensional coordinate system, i.e. in the plane.

Likewise a 3-vector $x = (x_1, x_2, x_3)$ can be regarded as the point with coordinates (x_1, x_2, x_3) in a 3-dimensional coordinate system, i.e. in space.

In general an *n*-vector $x = (x_1, x_2, ..., x_n)$ can be regarded as the point with coordinates $(x_1, x_2, ..., x_n)$ in an *n*-dimensional coordinate system, i.e. in an *n*-dimensional space. Such as space shall here be referred to as R^n . Its hard to draw!

October 17, 2001 Mixed Models Course

To justify such n-dimensional spaces, suppose x consists of a location of an object (that takes 3 coordinates), the temperature of the object (that occupies one coordinate) and the time (that also occupies one coordinate). Hence the total information about the object can be regarded as a point in a 5-dimensional space.

Note that If x and y are both vectors in \mathbb{R}^n then so is the sum $\alpha x + \beta y$.

October 17, 2001 Mixed Models Course

Example 3. Consider the vectors

$$a_1 = \begin{bmatrix} 2\\6\\4 \end{bmatrix} \quad , \quad a_2 = \begin{bmatrix} 1\\5\\7 \end{bmatrix}$$

Hence $span(a_1, a_2)$ is the set of vectors which can be written as

$$y = \begin{bmatrix} 2\\6\\4 \end{bmatrix} v_1 + \begin{bmatrix} 1\\5\\7 \end{bmatrix} v_2$$

for alle possible choices of $v = (v_1, v_2)$.

fin

30

October 17, 2001 Mixed Models Course

More precisely, L consists of all vectors of the form

$$a_1v_1 + a_2v_2 + \dots + a_cv_c$$

for all possible choices of *c*-vectors $v = (v_2, \ldots, v_c)$.

It is common to organize the building blocks as a matrix $A = [a_1 : \cdots : a_c]$. Then another way of describing L is as the set of vectors that can be written as Av, or more precisely

 $L = \{y | y = Av \text{ for all possible vectors } v\}$

Frequenly one uses the name span(A) for L.

October 17, 2001 Mixed Models Course

There are some additional aspects of subspaces of which a few will be illustrated:

Example 4. Consider again the subspace $L = \text{span}(a_1, a_2)$ where

 $a_1 = (2, 6, 4)^\top \quad a_2 = (1, 5, 7)^\top$

• A question is whether all vectors $y = (y_1, y_2, y_3)^{\top}$ can be written as $y = a_1v_1 + a_2v_2$?

The answer is "no", for example y = (1, 5, 3) can not be written in that form.

• Another question is whether there are other ways of representing *L*?

The answer is "yes" – there are infinitely many. To pick one, let $b_1 = a_1 + a_2$ and $b_2 = a_1 - a_2$. Then $L = \text{span}(b_1, b_2)$.

October 17, 2001 Mixed Models Course

29

32

be written as a linear combination of the others, the set is said to be *linearly independent*.

October 17, 2001 Mixed Models Course

Throw–out–technique: If one vector, say a_c , can be written as a linear combination of the other vectors, then it can be thrown away with changing the structure of the space, i.e.

$$\operatorname{span}(a_1,\ldots,a_c) = \operatorname{span}(a_1,\ldots,a_{c-1})$$

This process can go on until one ends up with a set of linearly independent vectors.

This allow us to find a representation of the which is as simple (economical) as possible.

October 17, 2001 Mixed Models Course

Example 5. Consider the vectors

$a_1 =$	$\begin{bmatrix} 2\\6\\4 \end{bmatrix}$,	$a_2 =$	$\begin{bmatrix} 1\\5\\7\end{bmatrix}$,	$a_3 =$	$\left[\begin{array}{c}0\\2\\5\end{array}\right]$	og $x =$	$\begin{bmatrix} 3\\13\\16\end{bmatrix}$	
---------	---	---	---------	--	---	---------	---	----------	--	--

- 1. The vector x is a linear combination of a_1, a_2 and a_3 , since $x = a_1 + a_2 + a_3$.
- 2. Since $a_3 = a_2 \frac{1}{2}a_1$, the a_i -vectors are linearly dependent. Consequently x can be written as a linear combination of only a_1 og a_2 , because $x = \frac{1}{2}a_1 + 2a_2$.
- 3. The vectors a_1, a_2 are linearly independent and so are the sets a_1, a_3 and a_2, a_3 .

October 17, 2001 Mixed Models Course

36

fin

40

• Note Since L = span(A) = span(B) one can think of the matrices A and B as two *different* ways of representing the *same* linear subspace.

October 17, 2001 Mixed Models Course

Projections onto Linear Subspaces

Example 7. Consider the vector a = (2, 2) and y = (1, 2).

Clear y is not in span(a). In statistics the following question is extremely important: Can we find a vector \hat{y} in span(a) which is as "close to" y as possible?

The answer is "yes": Find the <u>(orthogonal) projection</u> of the point y onto the line going through a. There is a simple mathematical expression for obtaining \hat{y} , namely

$$\hat{y} = a(a^{\top}a)^{-1}a^{\top}y = \begin{bmatrix} 2\\2 \end{bmatrix} \frac{1}{8} \begin{bmatrix} 2,2 \end{bmatrix} \begin{bmatrix} 1\\2 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1&1\\1&1 \end{bmatrix} \begin{bmatrix} 1\\2 \end{bmatrix} = \begin{bmatrix} \frac{3}{2}\\\frac{3}{2} \end{bmatrix}$$
October 17, 2001 Mixed Models Course
$$41$$

Example 8. Consider the 3×2 matrix $A = [a_1 : a_2]$, where

$$a_1 = \begin{bmatrix} 1\\3\\2 \end{bmatrix} \quad \text{og} \quad a_2 = \begin{bmatrix} 2\\8\\9 \end{bmatrix}$$

Then the projection matrix onto span(A) is $P = A(A^{\top}A)^{-1}A^{\top}$. To find P we first calculate

$$A^{\top}A = \begin{bmatrix} 1 & 3 & 2 \\ 2 & 8 & 9 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 8 \\ 2 & 9 \end{bmatrix} = \begin{bmatrix} 14 & 44 \\ 44 & 149 \end{bmatrix}$$

October 17, 2001 Mixed Models Course

Hence

$$(X^{\top}X)^{-1} = \frac{1}{150} \begin{bmatrix} 149 & -44 \\ -44 & 14 \end{bmatrix}$$

From this we find

$$(X^{\top}X)^{-1}X^{\top} = \frac{1}{150} \begin{bmatrix} 149 & -44 \\ -44 & 14 \end{bmatrix} \begin{bmatrix} 1 & 3 & 2 \\ 2 & 8 & 9 \end{bmatrix}$$
$$= \frac{1}{150} \begin{bmatrix} 61 & 95 & 98 \\ -16 & -20 & 38 \end{bmatrix}$$

October 17, 2001 Mixed Models Course

45

- 1. Is A symmetrical?
- 2. Is $A^{\top}A$ symmetrical?
- 3. Is AA^{\top} symmetrical?
- 4. What is the result from adding A and A^{\top} ?

Exercise 3. Let

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \text{ and } B = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}.$$

Calculate AB and BA. What can be concluded from this?

Exercise 4. Let $a = (1, 1, 1, 0, 0, 0)^{\top}$ be a 6×1 matrix. Find aa^{\top} and $a^{\top}a$.

October 17, 2001 Mixed Models Course

Exercise 5. Let

$$A = \left[\begin{array}{cc} a & b \\ c & d \end{array} \right]$$

and

$$B = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Calculate AB. What can be concluded from this?

Exercise 6. What is the inverse to the 3×3 matrix diag(1,4,9)?

Exercise 7. Two equations with two unknowns. COnvince yourself
October 17, 2001 Mixed Models Course 49

that the system of equations

 $x_1 + 2x_2 = 3$ $2x1 + 3x_2 = 4$

can be written as

$$\begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 4 \end{bmatrix},$$

i.e. as Ax = b. Find A^{-1} and use this for solving the system of equations as follows:

$$x = Ix = A^{-1}Ax = A^{-1}b.$$

October 17, 2001 Mixed Models Course

Exercise 8. Let

$$A = \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{bmatrix}$$

٦

1. How do vectors of the form Av look when $v = (v_1, v_2)^\top$?

- 2. Find the projection matrix $P = A(A^{\top}A)^{-1}A^{\top}$.
- 3. Let $y = (1, 3, 5, 7)^{\top}$. Find Py.

October 17, 2001 Mixed Models Course