## 3 Basic Concepts from Linear algebra)

Linear algebra is an important prerequisite in order to understand the model formulation and calculations within Mixed Model. The following slides served as a brush-up on the theory, with presentation of the most important concepts and results.
Link to the full screen presentation ${ }^{11}$

[^0]
## Why Linear Algebra??

- Many statistical models used in practice are assumed to have some kind of a linear structure. (Linear regression and analysis of variance are classical examples.)
- Linear algebra is the branch of mathematics that deals with linear structures.
- Linear algebra is a convenient tool for handling models with linear structures.
- Moreover, many concepts from linear algebra can be given geometrical interpretation.
- Hence geometry can be a way to understand statistical models with linear structures


## Vectors

Vectors: A column vector is a list of numbers stacked on top of each other, e.g.

$$
a=\left(\begin{array}{l}
2 \\
1 \\
3
\end{array}\right)
$$

A row vector is a list of numbers written one after the other, e.g.

$$
b=(2,1,3)
$$

In both cases, the list is ordered, i.e.

$$
(2,1,3) \neq(1,2,3)
$$

- Note In what follows all vectors are column vectors unless otherwise stated.

In general an $n$-vector has the form

$$
a=\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right]
$$

where the $a_{i} \mathrm{~s}$ are numbers.

Transpose of vectors: This means that a column vector is turned into a row vector and that a row vector is turned into a column vector. The transpose is denoted by "T". For example,

$$
a^{\top}=\left(a_{1}, a_{2}, \ldots, a_{n}\right)
$$

Hence transposing twice takes us back to where we started:

$$
a=\left(a^{\top}\right)^{\top}
$$

- Example:

$$
\left[\begin{array}{l}
1 \\
3 \\
2
\end{array}\right]^{\top}=[1,3,2] \quad \text { og } \quad[1,3,2]^{\top}=\left[\begin{array}{l}
1 \\
3 \\
2
\end{array}\right]
$$

Multiplying a vector by a number: If $a$ is a vector and $\alpha$ is a number then $\alpha a$ is the vector

$$
\alpha a=\left[\begin{array}{c}
\alpha a_{1} \\
\alpha a_{2} \\
\vdots \\
\alpha a_{n}
\end{array}\right]
$$

- Example:

$$
7\left[\begin{array}{l}
1 \\
3 \\
2
\end{array}\right]=\left[\begin{array}{c}
7 \\
21 \\
14
\end{array}\right]
$$

Sum of vectors: Let $a$ and $b$ be $n$-vectors. The sum $a+b$ is the $n$-vector

$$
a+b=\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right]+\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right]=\left[\begin{array}{c}
a_{1}+b_{1} \\
a_{2}+b_{2} \\
\vdots \\
a_{n}+b_{n}
\end{array}\right]=b+a
$$

- Note Only vectors of the same dimension can be added !
- Example:

$$
\left[\begin{array}{l}
1 \\
3 \\
2
\end{array}\right]+\left[\begin{array}{l}
2 \\
8 \\
9
\end{array}\right]=\left[\begin{array}{l}
1+2 \\
3+8 \\
2+9
\end{array}\right]=\left[\begin{array}{c}
3 \\
11 \\
11
\end{array}\right]
$$

Inner product of vectors: Let $a$ and $b$ be $n$-vectors. The inner product $a \cdot b$ is the number

$$
a \cdot b=a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{n} b_{n}=\sum_{i=1}^{n} a_{i} b_{i}
$$

- Note The product is a number - not a vector
- Note Only vectors of the same dimension can be multiplied!
- Example:

$$
\left[\begin{array}{l}
1 \\
3 \\
2
\end{array}\right] \cdot\left[\begin{array}{l}
2 \\
8 \\
9
\end{array}\right]=1 \cdot 2+3 \cdot 8+2 \cdot 9=44
$$

The length (norm) of a vector: The length (or norm) of a vector $a$ is

$$
\|a\|=\sqrt{a \cdot a}=\sqrt{\sum_{i=1}^{n} a_{i}^{2}}
$$

The 0 -vector and the 1 -vector: The 0 -vector (1-vector) is a vector with 0 (1) on all entries. The 0 -vector (1-vector) is frequently written simply as $0(1)$ or as $0_{n}\left(1_{n}\right)$ to emphasize that it is of length $n$.

Orthogonal (perpendicular) vectors: Two vectors $a$ and $b$ with $a \neq 0$ and $b \neq 0$ are orthogonal if their inner product is zero, written

$$
a \perp b \Leftrightarrow a \cdot b=0
$$

## Matrices

Matrix: A matrix $A$ with $r$ rows og $c$ columns is an $r \times c$ table of the form

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 c} \\
a_{21} & a_{22} & \ldots & a_{2 c} \\
\vdots & \vdots & . & \vdots \\
a_{r 1} & a_{r 2} & \ldots & a_{r c}
\end{array}\right]
$$

It is said that $A$ has the dimension $r \times c$.

- Note One can regard $A$ as consisting of $c$ columns vectors put after each other:

$$
A=\left[a_{1}: a_{2}: \cdots: a_{c}\right]
$$

Transpose of matrices: A matrix is transposed by interchanging rows and columns and is denoted by "T". That is,

$$
A^{\top}=\left[\begin{array}{cccc}
a_{11} & a_{21} & \ldots & a_{r 1} \\
a_{12} & a_{22} & \ldots & a_{r 2} \\
\vdots & \vdots & \ddots & \vdots \\
a_{1 c} & a_{2 c} & \ldots & a_{r c}
\end{array}\right]
$$

Example:

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 8 \\
2 & 9
\end{array}\right]^{\top}=\left[\begin{array}{lll}
1 & 3 & 2 \\
2 & 8 & 9
\end{array}\right]
$$

- Note If $A$ is an $r \times c$ matrix then $A^{\top}$ is a $c \times r$ matrix.
- Note One can regard a column vector of length $r$ as an $r \times 1$ matrix and a row vector of length $c$ as a $1 \times c$ matrix.

Multiplying a matrix with a number: For a number $\alpha$ and a matrix $A$, the product $\alpha A$ is the matrix

$$
\alpha A=\left[\begin{array}{cccc}
\alpha a_{11} & \alpha a_{12} & \ldots & \alpha a_{1 c} \\
\alpha a_{21} & \alpha a_{22} & \ldots & \alpha a_{2 c} \\
\vdots & \vdots & \ddots & \vdots \\
\alpha a_{r 1} & \alpha a_{r 2} & \ldots & \alpha a_{r c}
\end{array}\right]
$$

Example:

$$
7\left[\begin{array}{ll}
1 & 2 \\
3 & 8 \\
2 & 9
\end{array}\right]=\left[\begin{array}{rr}
7 & 14 \\
21 & 56 \\
14 & 63
\end{array}\right]
$$

Sum of matrices: Let $A=\left[a_{1}: a_{2}: \cdots: a_{c}\right]$ and $B=\left[b_{1}: b_{2}: \cdots\right.$ : $\left.b_{c}\right]$ be $r \times c$ matrices.

The sum $A+B$ is the $r \times c$ matrix given by

$$
\begin{aligned}
A+B & =\left[a_{1}+b_{1}: a_{2}+b_{2}: \cdots: a_{s}+b_{s}\right] \\
& =\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 c} \\
a_{21} & a_{22} & \ldots & a_{2 c} \\
\vdots & \vdots & \ldots & \vdots \\
a_{r 1} & a_{r 2} & \ldots & a_{r c}
\end{array}\right]+\left[\begin{array}{cccc}
b_{11} & b_{12} & \ldots & b_{1 c} \\
b_{21} & b_{22} & \ldots & b_{2 c} \\
\vdots & \vdots & \ddots & \vdots \\
b_{r 1} & b_{r 2} & \ldots & b_{r c}
\end{array}\right] \\
& =\left[\begin{array}{cccc}
a_{11}+b_{11} & a_{12}+b_{12} & \ldots & a_{1 c}+b_{1 c} \\
a_{21}+b_{21} & a_{22}+b_{22} & \ldots & a_{2 c}+b_{2 c} \\
\vdots & \vdots & \ldots & \vdots \\
a_{r 1}+b_{r 1} & a_{r 2}+b_{r 2} & \ldots & a_{r c}+b_{r c}
\end{array}\right]=B+A
\end{aligned}
$$

- Note Only matrices with the same dimensions can be added. Example:

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 8 \\
2 & 9
\end{array}\right]+\left[\begin{array}{ll}
5 & 4 \\
8 & 2 \\
3 & 7
\end{array}\right]=\left[\begin{array}{rr}
6 & 6 \\
11 & 10 \\
5 & 16
\end{array}\right]
$$

Multiplication of a matrix and a vector: Let $A$ be an $r \times c$ matrix and let $b$ be a $c$-dimensional column vector. The product $A b$ is the $r \times 1$ matrix

$$
A b=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 c} \\
a_{21} & a_{22} & \ldots & a_{2 c} \\
\vdots & \vdots & \ddots & \vdots \\
a_{r 1} & a_{r 2} & \ldots & a_{r c}
\end{array}\right]\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{c}
\end{array}\right]=\left[\begin{array}{c}
a_{11} b_{1}+a_{12} b_{2}+\cdots+a_{1 c} b_{c} \\
a_{21} b_{1}+a_{22} b_{2}+\cdots+a_{2 c} b_{c} \\
\vdots \\
a_{r 1} b_{1}+a_{r 2} b_{2}+\cdots+a_{r c} b_{c}
\end{array}\right.
$$

- Eksempel:

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 8 \\
2 & 9
\end{array}\right]\left[\begin{array}{l}
5 \\
8
\end{array}\right]=\left[\begin{array}{l}
1 \cdot 5+2 \cdot 8 \\
3 \cdot 5+8 \cdot 8 \\
2 \cdot 5+9 \cdot 8
\end{array}\right]=\left[\begin{array}{c}
21 \\
79 \\
82
\end{array}\right]
$$

Multiplication of matrices: Let $A$ be an $r \times c$ matrix and $B$ a $c \times t$ matrix, i.e. $B=\left[b_{1}: b_{2}: \cdots: b_{t}\right]$. The product $A B$ is the $r \times t$ matrix given by:

$$
A B=A\left[b_{1}: b_{2}: \cdots: b_{t}\right]=\left[A b_{1}: A b_{2}: \cdots: A b_{t}\right]
$$

Example:

$$
\begin{aligned}
{\left[\begin{array}{ll}
1 & 2 \\
3 & 8 \\
2 & 9
\end{array}\right]\left[\begin{array}{ll}
5 & 4 \\
8 & 2
\end{array}\right] } & =\left[\left[\begin{array}{ll}
1 & 2 \\
3 & 8 \\
2 & 9
\end{array}\right]\left[\begin{array}{l}
5 \\
8
\end{array}\right]:\left[\begin{array}{ll}
1 & 2 \\
3 & 8 \\
2 & 9
\end{array}\right]\left[\begin{array}{l}
4 \\
2
\end{array}\right]\right] \\
& =\left[\begin{array}{ll}
1 \cdot 5+2 \cdot 8 & 1 \cdot 4+2 \cdot 2 \\
3 \cdot 5+8 \cdot 8 & 3 \cdot 4+8 \cdot 2 \\
2 \cdot 5+9 \cdot 8 & 2 \cdot 4+9 \cdot 2
\end{array}\right]=\left[\begin{array}{rr}
21 & 8 \\
79 & 28 \\
82 & 26
\end{array}\right.
\end{aligned}
$$

- Note The product $A B$ can only be formed if the number of rows in $B$ and the number of columns in $A$ are the same. On that case, $A$ and $B$ are said to be conforme.
- Note In general $A B$ and $B A$ are not identical.

A mnemonic for matrix multiplication is :

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 8 \\
2 & 9
\end{array}\right]\left[\begin{array}{ll}
5 & 4 \\
8 & 2
\end{array}\right]=\begin{array}{cccc} 
& & 5 & 4 \\
\hline 1 & 2 & 1 \cdot 5+2 \cdot 8 & 1 \cdot 4+2 \cdot 2 \\
3 & 8 & 3 \cdot 5+8 \cdot 8 & 3 \cdot 4+8 \cdot 2 \\
2 & 9 & 2 \cdot 5+9 \cdot 8 & 2 \cdot 4+9 \cdot 2
\end{array}=\left[\begin{array}{cc}
21 & 8 \\
79 & 28 \\
82 & 26
\end{array}\right]
$$

## Special matrices:

- An $n \times n$ matrix is said to be a square matrix
- A matrix with 0 on all entries is the 0 -matrix and is often written simply as 0 (or as $0_{r \times c}$ to emphasize the dimension).
- A matrix consisting of 1 s in all entries is of written $J$ (or as $J_{r \times c}$ to emphasize the dimension).
- A square matrix with 0 on all off-diagonal entries and elements $d_{1}, d_{2}, \ldots, d_{n}$ on the diagonal is said to be a diagonal matrix and is iften written $\operatorname{diag}\left\{d_{1}, d_{2}, \ldots, d_{n}\right\}$
- A diagonal matrix 1 s on the diagonal is called the unity matrix and is denoted $I$ (or $I_{n \times n}$ to emphasize the dimension).
- A matrix $A$ is a symmetric matrix $A=A^{\top}$.

Some rules for matrix operations: For (conformable) matrices $A, B$ and $C$ the following rules apply

$$
\begin{gathered}
(A+B)^{\top}=A^{\top}+B^{\top} \\
(A B)^{\top}=B^{\top} A^{\top} \\
A(B+C)=A B+A C \\
A B=A C \nRightarrow B=C
\end{gathered}
$$

Inverse of a matrix: The inverse of an $n \times n$ matrix $A$ is the matrix $B$ (which is also $n \times n$ ) which multiplied with $A$ gives the identity matrix $I$. That is,

$$
A B=B A=I
$$

One says that $B$ is $A^{\prime}$ 's inverse and writes $B=A^{-1}$.

- Note Only square matrices can have an inverse.
- Note Not all square matrices have an inverse.
- Note When the inverse exists, it is unique.
- Note Finding the inverse of a large matrix $A$ is numerically complicated.

Example 1. It is easy find the inverse for a $2 \times 2$ matrix. When

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

then the inverse is

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right]
$$

under the assumption that $a b-b c \neq 0$. The number $a b-b c$ is called the determinant of $A$, sometimes written $\operatorname{det}(A)$.

If the determinant $\operatorname{det}(A)=0$, then $A$ has no inverse. fin

Example 2. Finding the inverse of a diagonal matrix is easy: Let

$$
A=\left[\begin{array}{cccc}
a_{1} & 0 & \ldots & 0 \\
0 & a_{2} & & 0 \\
\vdots & & \ldots & 0 \\
0 & 0 & \ldots & a_{n}
\end{array}\right]
$$

where all $a_{i} \neq 0$. Then the inverse is

$$
A^{-1}=\left[\begin{array}{cccc}
\frac{1}{a_{1}} & 0 & \ldots & 0 \\
0 & \frac{1}{a_{2}} & & 0 \\
\vdots & & \ldots & 0 \\
0 & 0 & \ldots & \frac{1}{a_{n}}
\end{array}\right]
$$

If one $a_{i}=0$ then $A^{-1}$ does not exist.

Generalized inverse: Not all square matrices have an inverse. However all square matrices have a generalized inverse.

A generalized inverse of a square matrix $A$ is a matrix $A^{-}$satisfying that

$$
A A^{-} A=A
$$

Any square matrix has an infinite number of generalized inverses.

## Linear Combinations

Let $a_{1}, a_{2}, \ldots, a_{c}$ be $r$-vectors and let $A=\left[a_{1}: a_{2}: \cdots: a_{c}\right]$ be the corresponding $r \times c$ matrix.

Let $v v=\left(v_{1}, v_{2}, \ldots, v_{c}\right)^{\top}$ be a $c$-vector and let

$$
x=A v=a_{1} v_{1}+a_{2} v_{2}+\cdots+a_{c} v_{c}=\sum_{j} a_{j} v_{j}
$$

Then the $r$-vector $x$ is said to be a linear combination of $a_{1}, a_{2}, \ldots, a_{c}$.

Let $w=\left(w_{1}, w_{2}, \ldots, w_{c}\right)^{\top}$ be another $c$ vector and let correspondingly $y=A w=\sum_{j} a_{j} w_{j}$.

Then the following can be noted:

- For a number $\alpha$ the vector $\alpha x=\alpha(A v)=A(\alpha v)$ is also a linear combination of $a_{1}, a_{2}, \ldots, a_{c}$.
- The sum $x+y=A v+A w=A(v+w)$ is also a linear combination of $a_{1}, a_{2}, \ldots, a_{c}$.
- Hence if $x$ and $y$ are both linear combination $a_{1}, a_{2}, \ldots, a_{c}$ then so is the sum $\alpha x+\beta y$ where $\alpha$ and $\beta$ are numbers.


## $n$-dimensional Spaces

A 2 -vector $x=\left(x_{1}, x_{2}\right)$ can be regarded as the point with coordinates $\left(x_{1}, x_{2}\right)$ in a 2-dimensional coordinate system, i.e. in the plane.

Likewise a 3 -vector $x=\left(x_{1}, x_{2}, x_{3}\right)$ can be regarded as the point with coordinates $\left(x_{1}, x_{2}, x_{3}\right)$ in a 3-dimensional coordinate system, i.e. in space.

In general an $n$-vector $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ can be regarded as the point with coordinates $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ in an n -dimensional coordinate system, i.e. in an $n$-dimensional space. Such as space shall here be referred to as $R^{n}$. Its hard to draw!

To justify such $n$-dimensional spaces, suppose $x$ consists of a location of an object (that takes 3 coordinates), the temperature of the object (that occupies one coordinate) and the time (that also occupies one coordinate). Hence the total information about the object can be regarded as a point in a 5-dimensional space.

Note that If $x$ and $y$ are both vectors in $R^{n}$ then so is the sum $\alpha x+\beta y$.

## Linear Subspaces

Consider a set $a_{1}, a_{2}, \ldots, a_{c}$ of $r$-vectors.
We can regard these vectors as "building blocks" for creating new vectors as linear combinations of the building blocks. Any such vector is an $r$-vector

The set of vectors which can be created as linear combinations of the "building blocks" is called a linear subspace of $R^{r}$.

Such a space, let us call it $L$, is said to be spanned by $a_{1}, a_{2}, \ldots, a_{c}$ and we write $L=\operatorname{span}\left(a_{1}, a_{2}, \ldots, a_{c}\right)$.

Example 3. Consider the vectors

$$
a_{1}=\left[\begin{array}{l}
2 \\
6 \\
4
\end{array}\right] \quad, \quad a_{2}=\left[\begin{array}{l}
1 \\
5 \\
7
\end{array}\right]
$$

Hence $\operatorname{span}\left(a_{1}, a_{2}\right)$ is the set of vectors which can be written as

$$
y=\left[\begin{array}{l}
2 \\
6 \\
4
\end{array}\right] v_{1}+\left[\begin{array}{l}
1 \\
5 \\
7
\end{array}\right] v_{2}
$$

for alle possible choices of $v=\left(v_{1}, v_{2}\right)$.

More precisely, $L$ consists of all vectors of the form

$$
a_{1} v_{1}+a_{2} v_{2}+\cdots+a_{c} v_{c}
$$

for all possible choices of $c$-vectors $v=\left(v_{2}, \ldots, v_{c}\right)$.
It is common to organize the building blocks as a matrix
$A=\left[a_{1}: \cdots: a_{c}\right]$. Then another way of describing $L$ is as the set of vectors that can be written as $A v$, or more precisely

$$
L=\{y \mid y=A v \text { for all possible vectors } v\}
$$

Frequenly one uses the name $\operatorname{span}(A)$ for $L$.

There are some additional aspects of subspaces of which a few will be illustrated:

Example 4. Consider again the subspace $L=\operatorname{span}\left(a_{1}, a_{2}\right)$ where

$$
a_{1}=(2,6,4)^{\top} \quad a_{2}=(1,5,7)^{\top}
$$

- A question is whether all vectors $y=\left(y_{1}, y_{2}, y_{3}\right)^{\top}$ can be written as $y=a_{1} v_{1}+a_{2} v_{2}$ ?
The answer is "no", for example $y=(1,5,3)$ can not be written in that form.
- Another question is whether there are other ways of representing $L$ ?

The answer is "yes" - there are infinitely many. To pick one, let $b_{1}=a_{1}+a_{2}$ and $b_{2}=a_{1}-a_{2}$. Then $L=\operatorname{span}\left(b_{1}, b_{2}\right)$.

- Note The 0 -vector belongs to all linear subspaces. In the previous example one gets $y=0$ when choosing $\alpha=(0,0,0)$.)


## Linear dependence and independence

Linearly dependent vectors: A set of vectors $a_{1}, \ldots, a_{c}$ are linearly dependent if one of them can be written as a linear combination of the others, for example if

$$
a_{c}=\sum_{j=1}^{c-1} a_{j} q_{j}
$$

where the $v_{j} \mathrm{~s}$ are numbers.
Linearly independent vectors: If none of the vectors $a_{1}, \ldots, a_{c}$ can be written as a linear combination of the others, the set is said to be linearly independent.

Throw-out-technique: If one vector, say $a_{c}$, can be written as a linear combination of the other vectors, then it can be thrown away with changing the structure of the space, i.e.

$$
\operatorname{span}\left(a_{1}, \ldots, a_{c}\right)=\operatorname{span}\left(a_{1}, \ldots, a_{c-1}\right)
$$

This process can go on until one ends up with a set of linearly independent vectors.

This allow us to find a representation of the which is as simple (economical) as possible.

Example 5. Consider the vectors

$$
a_{1}=\left[\begin{array}{l}
2 \\
6 \\
4
\end{array}\right] \quad, \quad a_{2}=\left[\begin{array}{l}
1 \\
5 \\
7
\end{array}\right] \quad, \quad a_{3}=\left[\begin{array}{l}
0 \\
2 \\
5
\end{array}\right] \quad \text { og } x=\left[\begin{array}{c}
3 \\
13 \\
16
\end{array}\right]
$$

1. The vector $x$ is a linear combination of $a_{1}, a_{2}$ and $a_{3}$, since $x=a_{1}+a_{2}+a_{3}$.
2. Since $a_{3}=a_{2}-\frac{1}{2} a_{1}$, the $a_{i}$-vectors are linearly dependent. Consequently $x$ can be written as a linear combination of only $a_{1}$ og $a_{2}$, because $x=\frac{1}{2} a_{1}+2 a_{2}$.
3. The vectors $a_{1}, a_{2}$ are linearly independent and so are the sets $a_{1}, a_{3}$ and $a_{2}, a_{3}$.

Basis of a subspace: If the vectors $a_{1}, \ldots, a_{c}$ span a given subspace $L$ and are linearly independent, the are said to be a basis for $L$.

Any linear subspace has infinitely many different bases.

Dimension of a linear subspace: Yet all bases of a linear subspace shares have a common feature: They have the same number of elements. The number of elements of a basis is the dimension of the subspace.

Throw-away: Having a linearly dependent set of vectors $a_{1}, \ldots, a_{c}$ on can always apply the throw-away-technique to obtain a linearly independent set of vectors. This set is then a basis
for $\operatorname{span}\left(a_{1}, \ldots, a_{c}\right)$.
Example 6. Consider the vectors

$$
\begin{gathered}
a_{1}=\left[\begin{array}{l}
2 \\
6 \\
4
\end{array}\right], a_{2}=\left[\begin{array}{l}
1 \\
5 \\
7
\end{array}\right] \quad, \quad a_{3}=\left[\begin{array}{l}
0 \\
2 \\
5
\end{array}\right] \\
b_{1}=\left[\begin{array}{l}
1 \\
3 \\
2
\end{array}\right] \quad \text { and } b_{2}=\left[\begin{array}{l}
2 \\
8 \\
9
\end{array}\right]
\end{gathered}
$$

and the corresponding matrices $A=\left[a_{1}: a_{2}: a_{3}\right], \tilde{A}=\left[a_{1}: a_{2}\right]$ og $B=\left[b_{1}: b_{2}\right]$.

1. Since $a_{3}=a_{2}-\frac{1}{2} a_{1}$, the $a_{i}$ vectors are linearly dependent.

- Note Since $L=\operatorname{span}(A)=\operatorname{span}(B)$ one can think of the matrices $A$ and $B$ as two different ways of representing the same linear subspace.


## Projections onto Linear Subspaces

Example 7. Consider the vector $a=(2,2)$ and $y=(1,2)$.
Clear $y$ is not in $\operatorname{span}(a)$. In statistics the following question is extremely important: Can we find a vector $\hat{y}$ in $\operatorname{span}(a)$ which is as "close to" $y$ as possible?

The answer is "yes": Find the (orthogonal) projection of the point $y$ onto the line going through $\bar{a}$. There is a simple mathematical expression for obtaining $\hat{y}$, namely
$\hat{y}=a\left(a^{\top} a\right)^{-1} a^{\top} y=\left[\begin{array}{l}2 \\ 2\end{array}\right] \frac{1}{8}[2,2]\left[\begin{array}{l}1 \\ 2\end{array}\right]=\frac{1}{2}\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]\left[\begin{array}{l}1 \\ 2\end{array}\right]=\left[\begin{array}{c}\frac{3}{2} \\ \frac{3}{2}\end{array}\right]$

The property of $\hat{y}$ is that the length of $y-\hat{y}$ is as small as possible. Moreover, $y-\hat{y}$ and $\hat{y}$ are orthogonal.

In general let $y$ be an $r$-vector and let $A=\left[a_{1}: \cdots: a_{c}\right]$ be an $r \times c$ matrix.

Then there always exist a vector $\hat{y}$ in $\operatorname{span}(A)$ which is as close to $y$ as possible.

If $y$ is in $\operatorname{span}(A)$, then $\hat{y}=y$ because in this case the lenght of $y-\hat{y}$ is zero.

If $y$ is not in $\operatorname{span}(A)$ then the expression is as follows: Assume that all columns of $A$ are linearly independent. (Recall that if that is not
the case we can throw away redundant columns without changing the space spanned by those remaining.)

Then $\hat{y}=P y$ where

$$
P=A\left(A^{\top} A\right)^{-1} A^{\top}
$$

is the projection matrix onto $\operatorname{span}(A)$.
It then holds that

1. $P y$ is in $\operatorname{span}()$.
2. $P y$ is the vector in $\operatorname{span}(A)$ which is closest to $y$ (in the sense that the lenght of $y-\hat{y}$ is minmized.
3. $P y=y$ if and only if $y$ is already in $\operatorname{span}(A)$.

Example 8. Consider the $3 \times 2$ matrix $A=\left[a_{1}: a_{2}\right]$, where

$$
a_{1}=\left[\begin{array}{l}
1 \\
3 \\
2
\end{array}\right] \quad \text { og } \quad a_{2}=\left[\begin{array}{l}
2 \\
8 \\
9
\end{array}\right]
$$

Then the projection matrix onto $\operatorname{span}(A)$ is $P=A\left(A^{\top} A\right)^{-1} A^{\top}$. To find $P$ we first calculate

$$
A^{\top} A=\left[\begin{array}{lll}
1 & 3 & 2 \\
2 & 8 & 9
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
3 & 8 \\
2 & 9
\end{array}\right]=\left[\begin{array}{rr}
14 & 44 \\
44 & 149
\end{array}\right]
$$

Hence

$$
\left(X^{\top} X\right)^{-1}=\frac{1}{150}\left[\begin{array}{rr}
149 & -44 \\
-44 & 14
\end{array}\right]
$$

From this we find

$$
\begin{aligned}
\left(X^{\top} X\right)^{-1} X^{\top} & =\frac{1}{150}\left[\begin{array}{rr}
149 & -44 \\
-44 & 14
\end{array}\right]\left[\begin{array}{lll}
1 & 3 & 2 \\
2 & 8 & 9
\end{array}\right] \\
& =\frac{1}{150}\left[\begin{array}{rrr}
61 & 95 & 98 \\
-16 & -20 & 38
\end{array}\right]
\end{aligned}
$$

Finally we find

$$
\begin{aligned}
P=A\left(A^{\top} A\right)^{-1} A^{\top} & =\frac{1}{150}\left[\begin{array}{ll}
1 & 2 \\
3 & 8 \\
2 & 9
\end{array}\right]\left[\begin{array}{rrr}
61 & 95 & 98 \\
-16 & -20 & 38
\end{array}\right] \\
& =\frac{1}{150}\left[\begin{array}{rrr}
29 & 55 & -22 \\
55 & 125 & 10 \\
-22 & 10 & 146
\end{array}\right]
\end{aligned}
$$

## Exercises in linear algebra

Exercise 1. 1. Are the vectors $(1,1)$ and $(1,2)$ orthogonal?
2. Are $(1,1)$ and $(2,-2)$ ?
3. Are $(1,1)$ and $(-1,-1)$ ?
4. Make a drawing which illustrates these vectors

Exercise 2. Let

$$
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right]
$$

1. Is A symmetrical?
2. Is $A^{\top} A$ symmetrical?
3. Is $A A^{\top}$ symmetrical?
4. What is the result from adding $A$ and $A^{\top}$ ?

Exercise 3. Let

$$
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right], \text { and } B=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]
$$

Calculate $A B$ and $B A$. What can be concluded from this?
Exercise 4. Let $a=(1,1,1,0,0,0)^{\top}$ be a $6 \times 1$ matrix. Find $a a^{\top}$ and $a^{\top} a$.

Exercise 5. Let

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

and

$$
B=\frac{1}{a d-b c}\left[\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right]
$$

Calculate $A B$. What can be concluded from this?

Exercise 6. What is the inverse to the $3 \times 3$ matrix $\operatorname{diag}(1,4,9)$ ?

Exercise 7. Two equations with two unknowns. COnvince yourself
that the system of equations

$$
\begin{array}{r}
x_{1}+2 x_{2}=3 \\
2 x 1+3 x_{2}=4
\end{array}
$$

can be written as

$$
\left[\begin{array}{ll}
1 & 2 \\
2 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
3 \\
4
\end{array}\right],
$$

i.e. as $A x=b$. Find $A^{-1}$ and use this for solving the system of equations as follows:

$$
x=I x=A^{-1} A x=A^{-1} b .
$$

Exercise 8. Let

$$
A=\left[\begin{array}{ll}
1 & 0 \\
1 & 0 \\
0 & 1 \\
0 & 1
\end{array}\right]
$$

1. How do vectors of the form $A v$ look when $v=\left(v_{1}, v_{2}\right)^{\top}$ ?
2. Find the projection matrix $P=A\left(A^{\top} A\right)^{-1} A^{\top}$.
3. Let $y=(1,3,5,7)^{\top}$. Find $P y$.

[^0]:    ${ }^{1}$ http://www.jbs.agrsci.dk/biometri/Courses/HSVmixed2001/LinAlg.f.pdf

