
Statistics 512: Applied Linear Models

Topic 5a

Topic Overview

This topic will cover

• Ridge Regression

Ridge Regression (Section 11.2)

Some Remedial Measures for Multicollinearity

• Restrict the use of the regression model to infererence on values of predictor variables
that follow the same pattern of multicollinearity.

For example, suppose a model has three predictors: X1, X2, X3. The dis-
tribution of (X1, X2, X3) is N(µ, Σ) for some mean vector µ and covariance
matrix Σ. If future predictor values come from this distribution, even if there
is serious multicollinearity, inferences for the predictions using this model are
still useful.

• If the model is a polynomial regression model, use centered variables.

• Drop one or more predictor variables (i.e., variable selection).

– Standard errors on the parameter estimates decrease.

– However, how can we tell if the dropped variable(s) give us any useful information.

– If the variable is important, the parameter estimates become biased up.

• Sometimes, observations can be designed to break the multicollinearity.

• Get coefficient estimates from additional data from other contexts.

For instance, if the model is

Yi = β0 + β1Xi,1 + β2Xi,2 + εi,

and you have an estimator b1 (for β1 based on another data set, you can estimate β2

by regressing the adjusted variable Y ′
i = Yi−b1Xi,1 on Xi,2. (Common example: in

economics, using cross-sectional data to estimate parameters for a time-dependent
model.)

• Use the first few principal components (or factor loadings) of the predictor variables.
(Limitation: may lose interpretability.)

• Biased Regression or Coefficient Shrinkage (Example: Ridge Regression)
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Two Equivalent Formulations of Ridge Regression

Ridge regression shrinks estimators by “penalyzing” their size. (Penalty: λ
∑

β2
j )

Penalized Residual Sum of Squares:

β̂ridge = arg min
β

{
N∑

i=1

(Yi − β0 −
p∑

j=1

xi,jβj)
2 + λ

p∑
j=1

β2
j

}

• λ controls the amount of shrinkage of the parameter estimates

• Large λ → greater shrinkage (toward zero)

Equivalent Representation:

β̂ridge = arg min
β

(
yi − β0 −

p∑
j=1

xi,jβj

)2

,

subject to

p∑
j=1

β2
j ≤ s.

• There is a direct relationship between λ and s (although we will usually talk about λ).

• The intercept β0 is not subject to the shrinkage penalty.

Matrix Representation of Solution

β̂ridge = (X′X + λI)−1X′y

KNNL Example page 256

• SAS code in ridge.sas

• 20 healthy female subjects ages 25-34

• Y is fraction body fat

• X1 is triceps skin fold thickness

• X2 is thigh circumference

• X3 is midarm circumference

• Conclusion from previous analysis: could have good model with thigh only or midarm
and thickness only.

Input the data
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data bodyfat;
infile ’H:\System\Desktop\CH07TA01.dat’;
input skinfold thigh midarm fat;

proc print data = bodyfat;
proc reg data = bodyfat;

model fat = skinfold thigh midarm;

Analysis of Variance
Sum of Mean

Source DF Squares Square F Value Pr > F
Model 3 396.98461 132.32820 21.52 <.0001
Error 16 98.40489 6.15031
Corrected Total 19 495.38950

Root MSE 2.47998 R-Square 0.8014
Dependent Mean 20.19500 Adj R-Sq 0.7641
Coeff Var 12.28017

Parameter Estimates
Parameter Standard

Variable DF Estimate Error t Value Pr > |t|
Intercept 1 117.08469 99.78240 1.17 0.2578
skinfold 1 4.33409 3.01551 1.44 0.1699
thigh 1 -2.85685 2.58202 -1.11 0.2849
midarm 1 -2.18606 1.59550 -1.37 0.1896

None of the p-values are significant.

Pearson Correlation Coefficients, N = 20
skinfold thigh midarm fat

skinfold 1.00000 0.92384 0.45778 0.84327
thigh 0.92384 1.00000 0.08467 0.87809
midarm 0.45778 0.08467 1.00000 0.14244
fat 0.84327 0.87809 0.14244 1.00000

Try Ridge Regression

proc reg data = bodyfat
outest = bfout ridge = 0 to 0.1 by 0.003;
model fat = skinfold thigh midarm / noprint;
plot / ridgeplot nomodel nostat;
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Ridge Trace

Each value of λ (or Ridge k in SAS) gives different values of the parameter estimates. (Note
the instability of the estimate values for small λ.)

How to Choose λ

Things to look for

• Get the variance inflation factors (VIF) close to 1

• Estimated coefficients should be “stable”

• look for only “modest” change in R2 or σ̂.

title2 ’Variance Inflation Factors’;
proc gplot data = bfout;

plot (skinfold thigh midarm)* _RIDGE_ / overlay;
where _TYPE_ = ’RIDGEVIF’;

run;
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Graph the VIF’s

Chart the Estimates and Errors for different λ values

proc print data = bfout;
var _RIDGE_ skinfold thigh midarm;
where _TYPE_ = ’RIDGEVIF’;

proc print data = bfout;
var _RIDGE_ _RMSE_ Intercept skinfold thigh midarm;
where _TYPE_ = ’RIDGE’;

Variance Inflation Factors
Obs _RIDGE_ skinfold thigh midarm
2 0.000 708.843 564.343 104.606
4 0.002 50.559 40.448 8.280
6 0.004 16.982 13.725 3.363
8 0.006 8.503 6.976 2.119
10 0.008 5.147 4.305 1.624
12 0.010 3.486 2.981 1.377
14 0.012 2.543 2.231 1.236
16 0.014 1.958 1.764 1.146
18 0.016 1.570 1.454 1.086
20 0.018 1.299 1.238 1.043
22 0.020 1.103 1.081 1.011
24 0.022 0.956 0.963 0.986
26 0.024 0.843 0.872 0.966
28 0.026 0.754 0.801 0.949
30 0.028 0.683 0.744 0.935
32 0.030 0.626 0.697 0.923

Note that at RIDGE = 0.020, the VIF’s are close to 1.

Parameter Estimates
Obs _RIDGE_ _RMSE_ Intercept skinfold thigh midarm
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3 0.000 2.47998 117.085 4.33409 -2.85685 -2.18606
5 0.002 2.54921 22.277 1.46445 -0.40119 -0.67381
7 0.004 2.57173 7.725 1.02294 -0.02423 -0.44083
9 0.006 2.58174 1.842 0.84372 0.12820 -0.34604
11 0.008 2.58739 -1.331 0.74645 0.21047 -0.29443
13 0.010 2.59104 -3.312 0.68530 0.26183 -0.26185
15 0.012 2.59360 -4.661 0.64324 0.29685 -0.23934
17 0.014 2.59551 -5.637 0.61249 0.32218 -0.22278
19 0.016 2.59701 -6.373 0.58899 0.34131 -0.21004
21 0.018 2.59822 -6.946 0.57042 0.35623 -0.19991
23 0.020 2.59924 -7.403 0.55535 0.36814 -0.19163
25 0.022 2.60011 -7.776 0.54287 0.37786 -0.18470
27 0.024 2.60087 -8.083 0.53233 0.38590 -0.17881
29 0.026 2.60156 -8.341 0.52331 0.39265 -0.17372
31 0.028 2.60218 -8.559 0.51549 0.39837 -0.16926
33 0.030 2.60276 -8.746 0.50864 0.40327 -0.16531

Note that at RIDGE = 0.020, the RMSE is only increased by 5% (so SSE increase by about
10%), and the parameter estimates are closer to making sense.

Conclusion

So the solution at λ = 0.02 with parameter estimates (-7.4, 0.56, 0.37, -0.19) seems to make
the most sense.

Notes

• The book makes a big deal about standardizing the variables... SAS does this for you
in the ridge option.

• Why ridge regression? Estimates tend to be more stable, particularly outside the region
of the predictor variables: less affected by small changes in the data. (Ordinary LS
estimates can be highly unstable when there is lots of multicollinearity.)

• Major drawback: ordinary inference procedures d’t work so well.

• Other procedures use different penalties, e.g. “Lasso” penalty:
∑ |βj|.
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