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Chanter A
Motivation

Example 6.1: O'Brien et al. (1995)
A survey of nursing home residents in Philadelphia aimed to
determine preferences regarding life-sustaining treatments.

» The study involved 294 nursing homes with a total of
37,652 beds (the number of residents was not known at
the planning stage).

» Cluster sampling was used. Suppose an SRS of the 294
nursing homes is selected, followed by an SRS of 10
residents from each chosen home.

—— A nursing home with 20 beds has the same probability
of being selected as a nursing home with 1,000 beds.

—— However, 10 residents from a 20-bed home represent
fewer people than 10 residents from a 1,000-bed home.
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The above procedure results in a non-self-weighted sample.
Possible design alternatives:

P A one-stage cluster sample.

> A two-stage cluster design: an SRS of nursing homes followed
by an equal proportion SRS of residents in each selected home.
» If an SRS is used at the first stage, t; is expected to be

proportional to the number of beds in nursing home i/, leading
to estimators with large variance.
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The Study
» A sample of 57 nursing homes is drawn with probabilities
proportional to the number of beds.
» An SRS of 30 beds (and their occupants) is then taken from a
list of all beds within each selected nursing home.

» Each bed has an equal probability of being included in the
sample (note the distinction between beds and occupants):

number of beds at the nursing home

total beds in all nursing homes
30
number of beds in the nursing home
30

total beds in all nursing homes

» The same number of interviews is conducted at each nursing
home, ensuring the cost is known before selecting the sample.
» This design likely results in estimators with smaller variance.
Instructor: Yan Lu  4/53
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Unequal Probabilities

P 7; represents the probability that unit / is selected as part of
the sample.

» Most designs studied so far assume equal probabilities for ;
across all units.

» In general, m; can vary with /, allowing for more flexible
sampling designs.
» Sampling with unequal probabilities can yield significant
advantages:
m Decreases variances without the need for explicit stratification.
m Allows deliberate variation in the selection probabilities of
different primary sampling units (psus).
m Compensates for unequal probabilities by applying appropriate
weights during estimation.
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Sampling One PSU

» As a special case, we consider selecting just one (n = 1) of the
N primary sampling units (psus) to be included in the sample.

Let the total for psu i be denoted by t;.
Our goal is to estimate the population total, t.
1; = p(select unit i on first draw).

i = p(unit i in sample).

vVvYyyvyy

In the case of sampling one psu (n = 1), m; = ;.
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Example: A town has four supermarkets, ranging in size from 100
square meters (m?) to 1000 m?. We want to estimate the total
amount of sales in the four stores for last month by sampling just
one of the stores.

» This is an illustration. We took a census, the total sales of the
four supermarkets are 300 thousands.

P> Expect a larger store would have more sales than a smaller
store.

» The variability in total sales among several 1000 m? stores will
be greater than the variability in total sales among several
100m? stores.

» The probability that a store is selected on the first draw (v;)
is the same as the probability that the store is included in the
sample (7).
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i ~

Store Size (m?)  ¢;  t;(in Thousands) %, = ” (ty — t)?

A 100 1/16 11 176 15,376
B 200 2/16 20 160 19,600
C 300 3/16 24 128 29,584
D 1000 10/16 245 392 8,464
Total 1600 1 300
E[ty)] = Z p(S
3 10
_ 12 2
16(176) 16(160)+ (128) + 1(392)
= 300
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VIt = E[(E —1t)?]
= ZP S)(tys — t)?

- Su(i o)

2 3
= 16(15 376) + 1 £(19,600) + (29,584)
10
464
+ 16(8.464)
= 14,248
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Consider an SRS of size 1 R R
Store Size (m?) t;  ti(in Thousands) &, =t;/1; (&, — t)?

= 4t;
A 100 1/4 11 44 65,536
B 200 1/4 20 80 48,400
C 300 1/4 24 96 41,616
D 1000 1/4 245 980 462,400
Total 1600 1 300

» Probability of selecting each unit is ¢; = 1/4

» SRS estimator is unbiased

> V(tys) = 154,488 > V[t,] = 14,248

The variance of SRS is significantly larger compared to
that of unequal probability sampling.
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One-Stage Sampling with Replacement (n > 1)

» 1); = p(select unit (psu) 7 on first draw)
= p(select unit i on any given draw)
—- The probability of selecting unit i on the first draw is the
same as its probability on any subsequent draw.
» 7; = p(unit i appears in the sample)
—- This implies 1 = 1 — (1 — )", where n is the number of
draws.
» Q; = number of times unit (psu) i is included in the sample
N
—- The total number of draws satisfies Y Q; = n, and the

i=1
expected number of times unit i is selected is E(Q;) = ny;.
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» Estimator of the Total:
N
n 1 t;
ty = — E Qi—
Yoo = i

m In sampling with replacement, we obtain n independent
estimates of the population total, one for each unit included in
the sample.

m The final estimate is the average of these n independent
estimates.

» Unbiasedness Proof:

~ 1 N t;
E(ty) = EZE(Q")J
i=1 !
1 N t;
= E;nwla
N
i=1
= t
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Variance:

<
=
<
N—r
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S
| | =
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N

where R denote the set of n units in the sample, including the
repeats.

E[V(t,)] = V(i,)( see proof on page 227)
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Estimator of the mean:

N t
Yy = A”‘/) 5
Mow

N 1 M;
where Mow = - Z 7’.
ni Vi

) = L1 ff_?w"/’i>2
V(%/J)_(Mow)Z n n_12<¢i Vi

ieRr
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Probability proportional to size (pps) sampling

» Many totals in a psu are related to the number of elements in
the psu
—Ilet M; be the size of psu i
—let My = vazl M; be the size of the population

> Take ’(,D,' = M,'/Mo
—a large psu has a greater chance of being in the sample
than a small psu.
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One-Stage pps sampling

. A 1 _

» Estimator of the total: t;, = - Z Moy;
ieR

. . 2 1 _

» Estimator of the population mean: y,, = — Zy,-,
n
ieR
——this is the average of the sampled psu means

> /\Aﬂw, = M for every possible sample

» Variance olf the 1estimated mean:
V(yg) = PR Z(}_’i — ¥p)?
ieRr
» The pps estimators can be computed by treating the sampled
psu means (¥;) as individual observations, then calculating
their mean and sample variance directly.
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Example: Estimating the Total Number of Physicians in the
United States

The file statepop.dat contains data from an unequal-probability sample
of 100 counties in the United States. Our goal is to estimate the total
number of physicians in the country.

» Counties were selected using the cumulative-size method from the
listings in the City and County Data Book (1994), with probabilities
proportional to their populations:

M;

Y = Vo
where M; is the population size of county i and My is the total
population of all counties.

» Sampling was conducted with replacement.

» Very large counties appear multiple times in the sample. For
instance, Los Angeles County, the most populous in the United
States, appears four times.

» Since larger counties tend to have more physicians,
probability-proportional-to-size (pps) sampling is expected to be
effective for estimating the total number of physicians.
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6.2 One-Stage Sampling with Replacement 133

TABLE 6.3
Sampled Counties in Example 6.5

Population Number of ,

State County Size, M; wi Physicians, #; T/”
AL Wilcox 13,672 | 0.00005360 4 74,627.72
AZ Maricopa 2,209,567 | 0.00866233 4320 | 498,710.81
AZ Maricopa 2,209,567 | 0.00866233 4320 | 498,710.81
AZ Pinal 120,786 | 0.00047353 61 | 128,820.64
AR Garland 76,100 | 0.00029834 131 | 439,095.36
AR ississippi 55,060 | 0.00021586 48 | 222,370.54
CA Contra Costa 840,585 | 0.00329541 1761 | 534,379.68
VA Chesterfield 0.00088297 181 | 204,990.72
WA King 0.00610613 5280 | 864,704.59
WI Lincoln 0.00010907 28 | 256,709.47
WI ‘Waukesha 320,306 | 0.00125572 687 | 547,096.42
average 570,304.30
std. dev. 414,012.30

an idea of the spread involved in the population estimates, and may help you identify
unusual psus (Figure 6.1b).

The sample was chosen using the cumulative-size method; Table 6.3 shows the
sampled counties arranged alphabetically by state. The y’s were calculated using
i = M;/Mo. The average of the 1;/4; column is 570,304.3, the estimated total number
of physicians in the United States. The standard error of the estimate is
414,012.3/4/T00 = 41,401. For comparison, the County and City Data Book lists a
total of 532,638 physicians in the United States: a 95% CI using our estimate includes
the true value.

These estimates can be found using the SAS code on the website. Partial output
is given below:

Data Summary

Number of Observations 100
Sum of Weights 2450.71956
Statistics

sta mrror Instructor: Yan Lu  19/53
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» The unusual observation is New York County, New York

Landarea Population Size  Number of Physicians
square miles
New York County 28 1,489,066 14,052
Mean for the 100 1188.04 1,048,753 2,979.87

selected counties
» The estimated total number of physicians in the United States
is 570,304
» The standard error of the estimate is 41401.23
» For comparison, the City and Country Data Book lists a total

of 532,638 physicians in the United States, a value that is less
than 1 SE away from the estimate
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Two-Stage Sampling with Replacement

» The key difference between two-stage sampling with
replacement and one-stage sampling with replacement is that
in two-stage sampling, we must estimate t; (the total for
primary sampling unit, PSU 7).

» If PSU / appears in the sample more than once, there are Q;
estimates of the total for PSU i: %, tj, .. ., f,-Q,..

» The estimator for the total is:

N Ql"

—yy 2

I].J].

» The variance of the estimator is:

sl

/1]1
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Estimator of the Population Mean
» The estimator of the population mean is:

N t
Yy = Aw )
Mow
where ) M
iew !

» Variance of the estimated mean:

. 1 NE& it geM’
YOu) =1 '” ”—1ZZ<UN— Lﬁi)

(MO¢)2 i=1 j=1

pps sampling is a special case when the probability of selecting
each primary sampling unit (psu) is proportional to its size, i.e.,
M;
1/1: - M)
where M; is the size of psu i, and My is the total size of all psus in
the population.
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Example 6.7: Average Number of Legs of Puppies

» Goal: Estimate the average number of legs of healthy puppies
in Sample City's puppy homes.
» Sample City has two puppy homes:
m Puppy Palace: 30 puppies
m Dog's Life: 10 puppies
» Sampling Design: pps sampling
m Puppy homes are selected with probabilities proportional to the
size of each puppy home:

30 3 10 1
P(Puppy Palace) = ==, P(Dog's Life) = =-.
(Puppy Palace) 30+10 4’ (Dog's Life) 30+10 4

—-this ensures larger homes (with more puppies) have a
higher chance of being selected
—-pps sampling is effective because it accounts for the
variation in home sizes, potentially reducing the variance of the
estimator

m After a home is selected, a simple random sample (SRS) of 2
puppies is taken from the chosen home.
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N N /i',' N ty

M i m; tj ty = — =

v YT T M
Puppy Palace | 30 3/4 2 30%4=120 160 4
Dog's Life 10 1/4 2 10*4=40 160 4

» Either possible sample results in an estimated average of
¥y = 160/40 = 4 legs per puppy
» The variance of the estimator is zero

Instructor: Yan Lu  24/53
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Notes: Sampling with Replacement
» Sampling with replacement is advantageous because:

m [t is simple and straightforward to select the sample.

m Estimators for both the population total. mean and their
variance are easy to compute.

» However, if the population size (N) is small:

m Sampling with replacement becomes less efficient compared to
many sampling designs without replacement.

m This is because repeated selections of the same unit reduce the
effective sample size, increasing the variance of the estimators.
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Weights in Unequal probability sampling with

replacement

One stage sampling with replacement with only one psu
> mi=1;
> W’J = W = 1/¢I

M;
>ty =D D Wiy

iew j=1
M;
Do DL Wi
> 5 _ iEWi=1
.y’l/) - Mi
D2 Wi
iew j=1
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One Stage Sampling with replacement: general Case (more
than one psu)
i &= mp;, the larger the population, the closer of 7; to ny;

1
Wi = expected number of hits
B 1
- E[Q]
1
omp;

Instructor: Yan Lu  27/53
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1
> wij=w; = —
Y Loy
>ty = D Wiy
iew j=1
M;
oD Wiy
- iew j=1
D 2. W
iew j=1

P 1);s are unequal, the sample is not self-weighting

P In one-stage pps sampling, elements in large psus have smaller
weights than elements in small psus

Instructor: Yan Lu  28/53
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Two stage cluster sampling with replacement
Sampling weight for element sampled from psu /

1 M;

wp = ——

Lo m;
pps sampling
M;
> o=
V=11

o Mo M My
nM,- mj

nmj
» If m;s are the same within each psu, sample is self-weighting
—-equal interviewer works loads

—-sample size of ssu’s known in advance
—if t; o< ¢j, more efficient
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Review: SRS without replacement

» m; = p(unit i in the sample) = n/N

N
> Z Ti=n
i=1
-1
» 7jj = p(unit i and j in the sample) = /\,;27\/_1))
N
> > Tjj = n(n—1)
i=1,j#i
Proof: Let
2 1 ifunit /€S
710 otherwise
p(zi =1) = m;
) =1eplzi=1)=m
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Instructor: Yan Lu  31/53
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Example 6.8: Supermarket Example
Store Size (m?)  4; ti(in Thousands)

A 100 1/16 11
B 200 2/16 20
C 300 3/16 24
D 1000  10/16 245
Total 1600 1 300

» Want to select two psus without replacement and with

unequal probabilities.
—Recall ¥); = p(select unit i on first draw)
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- Chpeers
p(store A chosen on first draw) = ¢4 = 1/16

p(store B chosen on second draw|A chosen on first draw)
2
16
1
1— —
16
(]

1—a

In general,

p(unit i chosen first, unit k chosen second)
= p(unit i chosen first)p( unit k chosen second| unit i chosen first)
Yk
= Vi
1—19;
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p(unit k chosen first, unit i chosen second)

_ Vi
kg — i
p(units i and k in sample)
R ) Vi
Trlk_,(/J’l_'(/Ji—i_wkl_'(/Jk
(0 Ya
s = +
AB wAl—lﬁA wsl_wB
2 1
_ L % .2 3
16 1-& 16 1-2
= 0.0173

The probability that psu i is in the sample 7; = > ;s P(S).
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supermarket<-data.frame(store=c(’A’,’B’,’C’,’D’),
area=c(100,200,300,1000), ti=c(11,20,24,245))
supermarket$psi<-supermarket$area/sum(supermarket$area)
psii<-supermarket$area/sum(supermarket$area)

piik<- psii %*Y% t(psii/(1-psii)) +

(psii/(1-psii)) %*% t(psii)

diag(piik)<-rep(0,4) # diagonal entries: zero

piik # joint inclusion probabilities
pii<-apply(piik,2,sum)

pii # inclusion probabilities

Instructor: Yan Lu  35/53



Chapter 6

> cbind(piik,pii)
A B c D pii

[1,] A 0.0000000 0.01726190 0.02692308 0.1458333 0.1900183
[2,] B 0.0172619 0.00000000 0.05563187 0.2976190 0.3705128
[3,] C 0.0269230 0.05563187 0.00000000 0.4567308 0.5392857
[4,] D 0.1458333 0.29761905 0.45673077 0.0000000 0.9001832
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W0 Chapter 6: Sampling with Unequal Probabilities

TABLE 6.5

Inclusion probabilities (xr;) and joint inclusion probabilities () for samples of size 2 that
could be selected using the method in Example 6.8. The entries of the table are the ;s for
each pair of stores (rounded to four decimal places); the margins give the 7;’s for the four

stores
Store k
A B C D T
A — 0.0173 0.0269  0.1458 0.1900
Store i B 0.0173 — 0.0556 02976 | 0.3705
C 0.0269  0.0556 — 0.4567 0.5393
D 0.1458 02976 0.4567 — 0.9002
T 0.1900  0.3705 0.5393 0.9002 | 2.0000

size 2 consists of psus i and k:

Vi Vi
l_w,+'fal_m.

Forn =2, P(units i and k in sample) =y = ¥;

The probability that psu i is in the sample is then
7= Z P(S).
S:ieS

Table 6.5 gives the 7;’s and ;s for the supermarkets. =

641 The Horvitz-Thompson Estimator for One-Stage
Sampling

Assume we have a without-replacement sample of n psus, and we know the inclusion
probability

7; = P(unit { in sample) Instructor: Yan Lu 37/53
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Unequal probability sampling without replacement

(one-stage)

» 7 = p(unit i in sample)

» 7;/n is the average probability that a unit will be selected on
one of the draws: the probability we would assign to the ith
unit's being selected on draw k(k = 1,--- , n) if we did not
know the true probabilities

» the estimator t;/1); is then estimated by t;/(m;/n)

Instructor: Yan Lu  38/53
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Horvitz-Thompson (HT) Estimator for One-Stage

Sampling

Horvitz and Thompson 1952

3 1 t;
HT —
n mi/n
165
N

tj
- Zz,;

i=1
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Nt
Unbiased: E[tyT] = > 7r,-£ =t
i=1 i

Variance:
N 1—m NN T T
~ — T > ik — TiTk
Viint) = > ——t+) > ———titx
. 7r1 N . 7T,7Tk
i=1 i=1 k#i
N N
1 Z ( ) t,' tk 2
= = T — T —_ - —
2 : . ik ik T T
i=1 k=1,k#i

Instructor: Yan Lu  40/53



Chapter 6

Horvitz-Thompson (HT) Estimator

\A/1[%HT] = Z( —I—Z Z ik — TiTk :;’::(

ics 7 i€S keS k#i

Sen-Yates-Grundy Estimator

2
A TiTk — Tik ti ti
sl =33 3 = (En)

165 keS, k#i
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Example 6.9, The HT estimator for a sample of 2 supermarkets in
Example 6.8 with joint inclusion probabilities given in Table 6.7.

» To select the first psu, we generate a random integer from
1,--- 16, the random integer we generate is 12, which tells
us that store D is selected on the first draw.

» \We then remove the values 7,--- ;16 corresponding to store
D, and generate a second random integer from 1,--- .6, we
generate 6, which tells us to select store C on the second
draw.
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supermarket2<-supermarket [3:4,]
these are the unit inclusion probs when n=2
supermarket2$pii <- pii[3:4]
joint probability matrix for stores C and D
jointprob<-piik[3:4,3:4]
set diagonal entries equal to pii
diag(jointprob)<-supermarket2$pii
jointprob
[,1] [,2]
[1,] 0.5392857 0.4567308
[2,] 0.4567308 0.9001832

V V % V % V # V
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> dht<- svydesign(id="1, fpc="pii, data=supermarket2,
+ pps=ppsmat (jointprob) ,variance="HT")
> dht
Sparse-matrix design object:
svydesign(id = "1, fpc = “pii, data = supermarket?2,
pps = ppsmat(jointprob),

variance = "HT")
> svytotal(“ti,dht)
total SE

ti 316.67 82.358

Instructor: Yan Lu  44/53
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> dsyg<- svydesign(id="1, fpc="pii, data=supermarket2,
+ pps=ppsmat (jointprob) ,variance="YG")
> dsyg
Sparse-matrix design object:
svydesign(id = "1, fpc = “pii, data = supermarket?2,
pps = ppsmat(jointprob),

variance = "YG")
> svytotal(“ti,dsyg)
total SE

ti 316.67 57.094

Instructor: Yan Lu  45/53
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» Given the sample {C, D}, the HT estimate of the total sales

IS:
. t; 24 245
2N H — 316.6639
HT ; & 05393 | 0.0002

» Variance and standard error of the HT estimate:
V(tyr) = 6782.8, SE(iyT) = 82.358

» SYG (Sen-Yates-Grundy) approximation for variance and
standard error:

Vsye (1) = 3259.8, SEsyc(tyT) = 57.094
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Example: Basu’s Elephant

Debabrata Basu (1971) famously critiqued the Horvitz-Thompson
(HT) estimator in his essay *“An Essay on the Logical Foundations
of Survey Sampling, Part I"*. He illustrated his point with the
following story:

P A circus owner plans to ship 50 elephants and needs an
estimate of their total weight.

» She decides to weigh only one elephant, Sambo (a
middle-sized elephant), and uses 50 - ysambo (Where ysambo is
Sambo’s weight) as the total weight estimate.

» The circus statistician is horrified because this method gives
zero probability of sampling the other elephants.

» To address this, the statistician proposes a different plan:

m Assign a 99% probability of selecting Sambo.
m Assign the remaining 1% probability equally among the other
49 elephants.
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The Sampling Results
As expected, Sambo is selected.

» The circus owner asks, " Since Sambo was selected, isn't the
total weight estimate just 50 - ysambo?

P> The statistician replies, No, the HT estimate is:

~ YSamb
tHT = Oa_'ggo = 1.01 - ysambo

» The owner then asks, "What if the largest elephant, Jumbo,
had been selected instead?”

P The statistician explains, The HT estimate would then be:

~ YJumb
thT = 6{73110 = 4900 - yjumbo

49

» Upon hearing this, the circus owner immediately fires the
statistician!
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What'’s Wrong with Basu’s Elephant Example?
The example highlights several critical issues with this approach:
> **Sample size is too small**: Only one elephant is selected,
making the estimate unreliable.
> **Selection probabilities are too extreme**: The probabilities
heavily favor Sambo, making the design inherently biased and
prone to large variability.
> **Huge standard error**: Extreme selection probabilities lead
to large variability in the HT estimator.
> **Unstable estimates**: While the HT estimator is unbiased
in theory (over repeated samples, the average estimate is close
to the truth), individual estimates can deviate drastically,
especially with such extreme designs.
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The Horvitz-Thompson (HT) Estimator for

Two-stage Sampling

If E(/f,') = t;, E[%HT] =t
Variance Estimator (HT form)

\A/l[’fHT] = Z 1-— 7r,) i —|-Z Z .Wlﬂk; :;"‘Z V(?i)
ieS

‘ : e
ics Ti s kes ki

Variance Estimator (SYG form)

~ 2 e
wyrl =3 ¥ T (L k) T

Y
,es keS ki Tik ies !
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Recommendation: Variance Estimation Using

With-Replacement Sampling

For most situations, we recommend using the with-replacement sampling
variance estimator to avoid potential instability and computational

complexity.
2
N n 1 1 nt; N
YWR(OHT) = 7 <7r, - fHT>
ic€s !
N n /f,' tHT
n—1 Z <7r,- n >
i€S

Notes:

» |In practice, samples are often drawn without replacement, but the
variance is calculated assuming with-replacement sampling.

» Using the with-replacement estimator generally results in a larger
variance than the true variance (overestimation), which is

conservative and ensures robustness.
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Unequal Probability Sampling in Practice
> Many government surveys rely on unequal probability
sampling techniques.
> Stratification is often used first to reduce the variation in
probabilities (7).
Example: Random Digit Dialing (RDD)
» Construct a frame using area codes and prefixes (e.g.,
505-243-).
» Draw a random sample of suffixes (0000-9999), dial numbers,
and check if they are residential. If not, discard.

For psu i, let M; be the number of residential numbers:

p(dial number) = p(psu i selected) x p(number selected in psu i)
_ M mi
Zszl M; M

If all m;'s are equal, the sampling becomes self-weighting.
Instructor: Yan Lu  52/53
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Disclaimer

Slides are intended for a course based on the book: Sampling:
Design and Analysis, Third Edition by Sharon L. Lohr

All examples, datasets, and pages directly scanned and included in
this chapter are from the textbook.

References to papers or books cited in these slides can be found in
the Bibliography section of the textbook.
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