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Motivation

Example 6.1: O’Brien et al. (1995)
A survey of nursing home residents in Philadelphia aimed to
determine preferences regarding life-sustaining treatments.

▶ The study involved 294 nursing homes with a total of
37,652 beds (the number of residents was not known at
the planning stage).

▶ Cluster sampling was used. Suppose an SRS of the 294
nursing homes is selected, followed by an SRS of 10
residents from each chosen home.
—– A nursing home with 20 beds has the same probability
of being selected as a nursing home with 1,000 beds.
—– However, 10 residents from a 20-bed home represent
fewer people than 10 residents from a 1,000-bed home.
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The above procedure results in a non-self-weighted sample.
Possible design alternatives:

▶ A one-stage cluster sample.

▶ A two-stage cluster design: an SRS of nursing homes followed
by an equal proportion SRS of residents in each selected home.

▶ If an SRS is used at the first stage, ti is expected to be
proportional to the number of beds in nursing home i , leading
to estimators with large variance.
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The Study
▶ A sample of 57 nursing homes is drawn with probabilities

proportional to the number of beds.
▶ An SRS of 30 beds (and their occupants) is then taken from a

list of all beds within each selected nursing home.
▶ Each bed has an equal probability of being included in the

sample (note the distinction between beds and occupants):

p =
number of beds at the nursing home

total beds in all nursing homes

× 30

number of beds in the nursing home

=
30

total beds in all nursing homes

▶ The same number of interviews is conducted at each nursing
home, ensuring the cost is known before selecting the sample.

▶ This design likely results in estimators with smaller variance.
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Unequal Probabilities

▶ πi represents the probability that unit i is selected as part of
the sample.

▶ Most designs studied so far assume equal probabilities for πi
across all units.

▶ In general, πi can vary with i , allowing for more flexible
sampling designs.

▶ Sampling with unequal probabilities can yield significant
advantages:

Decreases variances without the need for explicit stratification.
Allows deliberate variation in the selection probabilities of
different primary sampling units (psus).
Compensates for unequal probabilities by applying appropriate
weights during estimation.
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Sampling One PSU

▶ As a special case, we consider selecting just one (n = 1) of the
N primary sampling units (psus) to be included in the sample.

▶ Let the total for psu i be denoted by ti .

▶ Our goal is to estimate the population total, t.

▶ ψi = p(select unit i on first draw).

▶ πi = p(unit i in sample).

▶ In the case of sampling one psu (n = 1), πi = ψi .
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Example: A town has four supermarkets, ranging in size from 100
square meters (m2) to 1000 m2. We want to estimate the total
amount of sales in the four stores for last month by sampling just
one of the stores.

▶ This is an illustration. We took a census, the total sales of the
four supermarkets are 300 thousands.

▶ Expect a larger store would have more sales than a smaller
store.

▶ The variability in total sales among several 1000 m2 stores will
be greater than the variability in total sales among several
100m2 stores.

▶ The probability that a store is selected on the first draw (ψi )
is the same as the probability that the store is included in the
sample (πi ).
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Store Size (m2) ψi ti (in Thousands) t̂ψ =
ti
ψi

(t̂ψ − t)2

A 100 1/16 11 176 15,376
B 200 2/16 20 160 19,600
C 300 3/16 24 128 29,584
D 1000 10/16 245 392 8,464

Total 1600 1 300

E [t̂ψ] =
∑

p(S)t̂ψS

=
1

16
(176) +

2

16
(160) +

3

16
(128) +

10

16
(392)

= 300

Instructor: Yan Lu 8/53



Chapter 6

V [t̂ψ] = E [(t̂ψ − t)2]

=
∑

p(S)(t̂ψS − t)2

=
N∑
i=1

ψi

(
ti
ψi

− t

)2

=
1

16
(15, 376) +

2

16
(19, 600) +

3

16
(29, 584)

+
10

16
(8, 464)

= 14, 248
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Consider an SRS of size 1
Store Size (m2) ψi ti (in Thousands) t̂ψ = ti/ψi (t̂ψ − t)2

= 4ti
A 100 1/4 11 44 65,536
B 200 1/4 20 80 48,400
C 300 1/4 24 96 41,616
D 1000 1/4 245 980 462,400

Total 1600 1 300

▶ Probability of selecting each unit is ψi = 1/4

▶ SRS estimator is unbiased

▶ V (t̂srs) = 154, 488 ≫ V [t̂ψ] = 14, 248
——The variance of SRS is significantly larger compared to
that of unequal probability sampling.
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One-Stage Sampling with Replacement (n > 1)

▶ ψi = p(select unit (psu) i on first draw)
= p(select unit i on any given draw)
—- The probability of selecting unit i on the first draw is the
same as its probability on any subsequent draw.

▶ πi = p(unit i appears in the sample)
—- This implies πi = 1− (1− ψi )

n, where n is the number of
draws.

▶ Qi = number of times unit (psu) i is included in the sample

—- The total number of draws satisfies
N∑
i=1

Qi = n, and the

expected number of times unit i is selected is E (Qi ) = nψi .
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▶ Estimator of the Total:

t̂ψ =
1

n

N∑
i=1

Qi
ti
ψi

In sampling with replacement, we obtain n independent
estimates of the population total, one for each unit included in
the sample.
The final estimate is the average of these n independent
estimates.

▶ Unbiasedness Proof:

E (t̂ψ) =
1

n

N∑
i=1

E (Qi )
ti
ψi

=
1

n

N∑
i=1

nψi
ti
ψi

=
N∑
i=1

ti

= t
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Variance:

V (t̂ψ) =
1

n

N∑
i=1

ψi

(
ti
ψi

− t

)2

V̂ (t̂ψ) =
1

n
· 1

n − 1

∑
i∈ℜ

(
ti
ψi

− t̂ψ

)2

=
1

n

N∑
i=1

Qi

(
ti
ψi

− t̂ψ

)2

n − 1

where ℜ denote the set of n units in the sample, including the
repeats.

E [V̂ (t̂ψ)] = V (t̂ψ)( see proof on page 227)
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Estimator of the mean:

ˆ̄yψ =
t̂ψ

M̂0ψ

,

where M̂0ψ =
1

n

∑
i∈ℜ

Mi

ψi
.

V̂ (ˆ̄yψ) =
1

(M̂0ψ)2
· 1
n
· 1

n − 1

∑
i∈ℜ

(
ti
ψi

−
ˆ̄yψMi

ψi

)2
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Probability proportional to size (pps) sampling

▶ Many totals in a psu are related to the number of elements in
the psu
—let Mi be the size of psu i
—let M0 =

∑N
i=1Mi be the size of the population

▶ Take ψi = Mi/M0

—a large psu has a greater chance of being in the sample
than a small psu.
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One-Stage pps sampling

▶
ti
ψi

= ti
M0

Mi
= M0ȳi

▶ Estimator of the total: t̂ψ =
1

n

∑
i∈ℜ

M0ȳi

▶ Estimator of the population mean: ˆ̄yψ =
1

n

∑
i∈ℜ

ȳi ,

—–this is the average of the sampled psu means

▶ M̂0ψ = M0 for every possible sample

▶ Variance of the estimated mean:

V̂ (ˆ̄yψ) =
1

n
· 1

n − 1

∑
i∈ℜ

(ȳi − ˆ̄yψ)
2

▶ The pps estimators can be computed by treating the sampled
psu means (ȳi ) as individual observations, then calculating
their mean and sample variance directly.
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Example: Estimating the Total Number of Physicians in the
United States
The file statepop.dat contains data from an unequal-probability sample
of 100 counties in the United States. Our goal is to estimate the total
number of physicians in the country.

▶ Counties were selected using the cumulative-size method from the
listings in the City and County Data Book (1994), with probabilities
proportional to their populations:

ψi =
Mi

M0

where Mi is the population size of county i and M0 is the total
population of all counties.

▶ Sampling was conducted with replacement.

▶ Very large counties appear multiple times in the sample. For
instance, Los Angeles County, the most populous in the United
States, appears four times.

▶ Since larger counties tend to have more physicians,
probability-proportional-to-size (pps) sampling is expected to be
effective for estimating the total number of physicians.
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Figure 1: Example 3.10
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6.2 One-Stage Sampling with Replacement 233

T A B L E 6.3
Sampled Counties in Example 6.5

Population Number of
State County Size, Mi ψi Physicians, ti

ti
ψi

AL Wilcox 13,672 0.00005360 4 74,627.72
AZ Maricopa 2,209,567 0.00866233 4320 498,710.81
AZ Maricopa 2,209,567 0.00866233 4320 498,710.81
AZ Pinal 120,786 0.00047353 61 128,820.64
AR Garland 76,100 0.00029834 131 439,095.36
AR Mississippi 55,060 0.00021586 48 222,370.54
CA Contra Costa 840,585 0.00329541 1761 534,379.68

...
...

...
...

...
...

VA Chesterfield 225,225 0.00088297 181 204,990.72
WA King 1,557,537 0.00610613 5280 864,704.59
WI Lincoln 27,822 0.00010907 28 256,709.47
WI Waukesha 320,306 0.00125572 687 547,096.42

average 570,304.30
std. dev. 414,012.30

an idea of the spread involved in the population estimates, and may help you identify
unusual psus (Figure 6.1b).

The sample was chosen using the cumulative-size method; Table 6.3 shows the
sampled counties arranged alphabetically by state. The ψi’s were calculated using
ψi = Mi/M0. The average of the ti/ψi column is 570,304.3, the estimated total number
of physicians in the United States. The standard error of the estimate is
414,012.3/

√
100 = 41,401. For comparison, the County and City Data Book lists a

total of 532,638 physicians in the United States; a 95% CI using our estimate includes
the true value.

These estimates can be found using the SAS code on the website. Partial output
is given below:

Data Summary

Number of Observations 100
Sum of Weights 2450.71956

Statistics

Std Error
Variable N Mean of Mean 95% CL for Mean
-----------------------------------------------------------------------
physicns 100 232.708918 48.859302 135.761463 329.656372
-----------------------------------------------------------------------

Figure 2: Example 3.10
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▶ The unusual observation is New York County, New York
Landarea Population Size Number of Physicians

square miles

New York County 28 1,489,066 14,052

Mean for the 100 1188.04 1,048,753 2,979.87
selected counties

▶ The estimated total number of physicians in the United States
is 570, 304

▶ The standard error of the estimate is 41401.23

▶ For comparison, the City and Country Data Book lists a total
of 532, 638 physicians in the United States, a value that is less
than 1 SE away from the estimate
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Two-Stage Sampling with Replacement

▶ The key difference between two-stage sampling with
replacement and one-stage sampling with replacement is that
in two-stage sampling, we must estimate ti (the total for
primary sampling unit, PSU i).

▶ If PSU i appears in the sample more than once, there are Qi

estimates of the total for PSU i : t̂i1, t̂i2, . . . , t̂iQi
.

▶ The estimator for the total is:

t̂ψ =
1

n

N∑
i=1

Qi∑
j=1

t̂ij
ψi

▶ The variance of the estimator is:

V̂ (t̂ψ) =
1

n

N∑
i=1

Qi∑
j=1

(
t̂ij
ψi

− t̂ψ

)2

n − 1
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Estimator of the Population Mean
▶ The estimator of the population mean is:

ˆ̄yψ =
t̂ψ

M̂0ψ

,

where

M̂0ψ =
1

n

∑
i∈W

Mi

ψi
.

▶ Variance of the estimated mean:

V̂ (ˆ̄yψ) =
1

(M̂0ψ)2
· 1
n
· 1

n − 1

N∑
i=1

Qi∑
j=1

(
t̂ij
ψi

−
ˆ̄yψMi

ψi

)2

.

pps sampling is a special case when the probability of selecting
each primary sampling unit (psu) is proportional to its size, i.e.,

ψi =
Mi

M0
,

where Mi is the size of psu i , and M0 is the total size of all psus in
the population.
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Example 6.7: Average Number of Legs of Puppies

▶ Goal: Estimate the average number of legs of healthy puppies
in Sample City’s puppy homes.

▶ Sample City has two puppy homes:
Puppy Palace: 30 puppies
Dog’s Life: 10 puppies

▶ Sampling Design: pps sampling
Puppy homes are selected with probabilities proportional to the
size of each puppy home:

P(Puppy Palace) =
30

30 + 10
=

3

4
, P(Dog’s Life) =

10

30 + 10
=

1

4
.

—-this ensures larger homes (with more puppies) have a
higher chance of being selected
—-pps sampling is effective because it accounts for the
variation in home sizes, potentially reducing the variance of the
estimator
After a home is selected, a simple random sample (SRS) of 2
puppies is taken from the chosen home.
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Mi ψi mi t̂i t̂ψ =
t̂i
ψi

ˆ̄yψ =
t̂ψ
M0

Puppy Palace 30 3/4 2 30*4=120 160 4
Dog’s Life 10 1/4 2 10*4=40 160 4

▶ Either possible sample results in an estimated average of
ˆ̄yψ = 160/40 = 4 legs per puppy

▶ The variance of the estimator is zero
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Notes: Sampling with Replacement
▶ Sampling with replacement is advantageous because:

It is simple and straightforward to select the sample.
Estimators for both the population total. mean and their
variance are easy to compute.

▶ However, if the population size (N) is small:

Sampling with replacement becomes less efficient compared to
many sampling designs without replacement.
This is because repeated selections of the same unit reduce the
effective sample size, increasing the variance of the estimators.
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Weights in Unequal probability sampling with
replacement

One stage sampling with replacement with only one psu

▶ πi = ψi

▶ wij = wi = 1/ψi

▶ t̂ψ =
∑
i∈W

Mi∑
j=1

wijyij

▶ ˆ̄yψ =

∑
i∈W

Mi∑
j=1

wijyij

∑
i∈W

Mi∑
j=1

wij
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One Stage Sampling with replacement: general Case (more
than one psu)
πi ≈ nψi , the larger the population, the closer of πi to nψi

wi =
1

expected number of hits

=
1

E [Qi ]

=
1

nψi
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▶ wij = wi =
1

nψi

▶ t̂ψ =
∑
i∈W

Mi∑
j=1

wijyij

▶ ˆ̄yψ =

∑
i∈W

Mi∑
j=1

wijyij

∑
i∈W

Mi∑
j=1

wij

▶ ψi s are unequal, the sample is not self-weighting

▶ In one-stage pps sampling, elements in large psus have smaller
weights than elements in small psus
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Two stage cluster sampling with replacement
Sampling weight for element sampled from psu i

wi =
1

nψi

Mi

mi

pps sampling

▶ ψi =
Mi

M0

▶ wi =
M0

nMi

Mi

mi
=

M0

nmi

▶ If mi s are the same within each psu, sample is self-weighting
—-equal interviewer works loads
—-sample size of ssu’s known in advance
—-if ti ∝ ψi , more efficient
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Review: SRS without replacement

▶ πi = p(unit i in the sample) = n/N

▶
N∑
i=1

πi = n

▶ πij = p(unit i and j in the sample) =
n(n − 1)

N(N − 1)

▶
N∑

i=1,j ̸=i

πij = n(n − 1)

Proof: Let

Zi =

{
1 if unit i ∈ S
0 otherwise

p(zi = 1) = πi
E (zi ) = 1 ∗ p(zi = 1) = πi
N∑
i=1

πi =
N∑
i=1

E (zi ) = E

(
N∑
i=1

zi

)
= n
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N∑
i=1,j ̸=i

πij =
N∑

i=1,j ̸=i

p(Zi = 1,Zj = 1)

=
N∑

i=1,j ̸=i

E (ZiZj)

=
N∑
i=1

E [Zi (n − Zi )]

=
N∑
i=1

(E (nZi )− E (Z 2
i ))

=
N∑
i=1

(
n · n

N
− n

N

)
= n(n − 1)
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Example 6.8: Supermarket Example
Store Size (m2) ψi ti (in Thousands)

A 100 1/16 11
B 200 2/16 20
C 300 3/16 24
D 1000 10/16 245

Total 1600 1 300

▶ Want to select two psus without replacement and with
unequal probabilities.
—Recall ψi = p(select unit i on first draw)
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p(store A chosen on first draw) = ψA = 1/16

p(store B chosen on second draw|A chosen on first draw)

=

2

16

1− 1

16

=
ψB

1− ψA

In general,

p(unit i chosen first, unit k chosen second)

= p(unit i chosen first)p( unit k chosen second| unit i chosen first)

= ψi
ψk

1− ψi
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p(unit k chosen first, unit i chosen second)

= ψk
ψi

1− ψk

p(units i and k in sample)

= πik = ψi
ψk

1− ψi
+ ψk

ψi

1− ψk

πAB = ψA
ψB

1− ψA
+ ψB

ψA

1− ψB

=
1

16
·

2
16

1− 1
16

+
2

16
·

1
16

1− 2
16

= 0.0173

The probability that psu i is in the sample πi =
∑

S:i∈S P(S).
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supermarket<-data.frame(store=c(’A’,’B’,’C’,’D’),

area=c(100,200,300,1000), ti=c(11,20,24,245))

supermarket$psi<-supermarket$area/sum(supermarket$area)

psii<-supermarket$area/sum(supermarket$area)

piik<- psii %*% t(psii/(1-psii)) +

(psii/(1-psii)) %*% t(psii)

diag(piik)<-rep(0,4) # diagonal entries: zero

piik # joint inclusion probabilities

pii<-apply(piik,2,sum)

pii # inclusion probabilities
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> cbind(piik,pii)

A B C D pii

[1,] A 0.0000000 0.01726190 0.02692308 0.1458333 0.1900183

[2,] B 0.0172619 0.00000000 0.05563187 0.2976190 0.3705128

[3,] C 0.0269230 0.05563187 0.00000000 0.4567308 0.5392857

[4,] D 0.1458333 0.29761905 0.45673077 0.0000000 0.9001832
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240 Chapter 6: Sampling with Unequal Probabilities

T A B L E 6.5
Inclusion probabilities (πi) and joint inclusion probabilities (πik) for samples of size 2 that
could be selected using the method in Example 6.8. The entries of the table are the πik’s for
each pair of stores (rounded to four decimal places); the margins give the πi’s for the four
stores

Store i

Store k

A B C D πi

A — 0.0173 0.0269 0.1458 0.1900
B 0.0173 — 0.0556 0.2976 0.3705
C 0.0269 0.0556 — 0.4567 0.5393
D 0.1458 0.2976 0.4567 — 0.9002

πk 0.1900 0.3705 0.5393 0.9002 2.0000

size 2 consists of psus i and k:

For n = 2, P(units i and k in sample) = πik = ψi
ψk

1 − ψi
+ ψk

ψi

1 − ψk
.

The probability that psu i is in the sample is then

πi =
∑

S: i∈S
P(S).

Table 6.5 gives the πi’s and πik’s for the supermarkets. !

6.4.1 The Horvitz–Thompson Estimator for One-Stage
Sampling

Assume we have a without-replacement sample of n psus, and we know the inclusion
probability

πi = P(unit i in sample)

and the joint inclusion probability

πik = P(units i and k are both in the sample).

The inclusion probability πi can be calculated as the sum of the probabilities of all
samples containing the ith unit and has the property that

N∑

i=1

πi = n. (6.17)

For the πik’s, as shown in Theorem 6.1 of Section 6.6,
N∑

k=1
k $=i

πik = (n − 1)πi. (6.18)

Figure 3: Example 3.10
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Unequal probability sampling without replacement
(one-stage)

▶ πi = p(unit i in sample)

▶ πi/n is the average probability that a unit will be selected on
one of the draws: the probability we would assign to the ith
unit’s being selected on draw k(k = 1, · · · , n) if we did not
know the true probabilities

▶ the estimator ti/ψi is then estimated by ti/(πi/n)
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Horvitz-Thompson (HT) Estimator for One-Stage
Sampling

Horvitz and Thompson 1952

t̂HT =
1

n

∑
i∈S

ti
πi/n

=
∑
i∈S

ti
πi

=
N∑
i=1

Zi
ti
πi
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Unbiased: E [t̂HT] =
N∑
i=1

πi
ti
πi

= t

Variance:

V [t̂HT] =
N∑
i=1

1− πi
πi

t2i +
N∑
i=1

N∑
k ̸=i

πik − πiπk
πiπk

ti tk

=
1

2

N∑
i=1

N∑
k=1,k ̸=i

(πiπk − πik)

(
ti
πi

− tk
πk

)2
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Horvitz-Thompson (HT) Estimator

V̂1[t̂HT] =
∑
i∈S

(1− πi )
t2i
π2i

+
∑
i∈S

∑
k∈S ,k ̸=i

πik − πiπk
πik

· ti
πi

· tk
πk

Sen-Yates-Grundy Estimator

V̂2[t̂HT] =
1

2

∑
i∈S

∑
k∈S,k ̸=i

πiπk − πik
πik

(
ti
πi

− tk
πk

)2

Instructor: Yan Lu 41/53



Chapter 6

Example 6.9, The HT estimator for a sample of 2 supermarkets in
Example 6.8 with joint inclusion probabilities given in Table 6.7.

▶ To select the first psu, we generate a random integer from
1, · · · , 16, the random integer we generate is 12, which tells
us that store D is selected on the first draw.

▶ We then remove the values 7, · · · , 16 corresponding to store
D, and generate a second random integer from 1, · · · , 6, we
generate 6, which tells us to select store C on the second
draw.
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> supermarket2<-supermarket[3:4,]

# these are the unit inclusion probs when n=2

> supermarket2$pii <- pii[3:4]

# joint probability matrix for stores C and D

> jointprob<-piik[3:4,3:4]

# set diagonal entries equal to pii

> diag(jointprob)<-supermarket2$pii

> jointprob

[,1] [,2]

[1,] 0.5392857 0.4567308

[2,] 0.4567308 0.9001832

Instructor: Yan Lu 43/53



Chapter 6

> dht<- svydesign(id=~1, fpc=~pii, data=supermarket2,

+ pps=ppsmat(jointprob),variance="HT")

> dht

Sparse-matrix design object:

svydesign(id = ~1, fpc = ~pii, data = supermarket2,

pps = ppsmat(jointprob),

variance = "HT")

> svytotal(~ti,dht)

total SE

ti 316.67 82.358
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> dsyg<- svydesign(id=~1, fpc=~pii, data=supermarket2,

+ pps=ppsmat(jointprob),variance="YG")

> dsyg

Sparse-matrix design object:

svydesign(id = ~1, fpc = ~pii, data = supermarket2,

pps = ppsmat(jointprob),

variance = "YG")

> svytotal(~ti,dsyg)

total SE

ti 316.67 57.094
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▶ Given the sample {C ,D}, the HT estimate of the total sales
is:

t̂HT =
∑
i∈S

ti
πi

=
24

0.5393
+

245

0.9002
= 316.6639

▶ Variance and standard error of the HT estimate:

V̂ (t̂HT ) = 6782.8, SE (t̂HT ) = 82.358

▶ SYG (Sen-Yates-Grundy) approximation for variance and
standard error:

V̂SYG (t̂HT ) = 3259.8, SESYG (t̂HT ) = 57.094
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Example: Basu’s Elephant
Debabrata Basu (1971) famously critiqued the Horvitz-Thompson
(HT) estimator in his essay *“An Essay on the Logical Foundations
of Survey Sampling, Part I”*. He illustrated his point with the
following story:

▶ A circus owner plans to ship 50 elephants and needs an
estimate of their total weight.

▶ She decides to weigh only one elephant, Sambo (a
middle-sized elephant), and uses 50 · ySambo (where ySambo is
Sambo’s weight) as the total weight estimate.

▶ The circus statistician is horrified because this method gives
zero probability of sampling the other elephants.

▶ To address this, the statistician proposes a different plan:

Assign a 99% probability of selecting Sambo.
Assign the remaining 1% probability equally among the other
49 elephants.
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The Sampling Results
As expected, Sambo is selected.

▶ The circus owner asks, ”Since Sambo was selected, isn’t the
total weight estimate just 50 · ySambo?”

▶ The statistician replies, No, the HT estimate is:

t̂HT =
ySambo

0.99
= 1.01 · ySambo

▶ The owner then asks, ”What if the largest elephant, Jumbo,
had been selected instead?”

▶ The statistician explains, The HT estimate would then be:

t̂HT =
yJumbo
0.01
49

= 4900 · yJumbo

▶ Upon hearing this, the circus owner immediately fires the
statistician!
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What’s Wrong with Basu’s Elephant Example?
The example highlights several critical issues with this approach:

▶ **Sample size is too small**: Only one elephant is selected,
making the estimate unreliable.

▶ **Selection probabilities are too extreme**: The probabilities
heavily favor Sambo, making the design inherently biased and
prone to large variability.

▶ **Huge standard error**: Extreme selection probabilities lead
to large variability in the HT estimator.

▶ **Unstable estimates**: While the HT estimator is unbiased
in theory (over repeated samples, the average estimate is close
to the truth), individual estimates can deviate drastically,
especially with such extreme designs.
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The Horvitz-Thompson (HT) Estimator for
Two-stage Sampling

t̂HT =
∑
i∈S

t̂i
πi

=
N∑
i=1

Zi
t̂i
πi

If E (t̂i ) = ti , E [t̂HT] = t
Variance Estimator (HT form)

V̂1[t̂HT] =
∑
i∈S

(1−πi )
t̂2i
π2i

+
∑
i∈S

∑
k∈S ,k ̸=i

πik − πiπk
πik

t̂i
πi

t̂k
πk

+
∑
i∈S

V̂ (t̂i )

πi

Variance Estimator (SYG form)

V̂2[t̂HT] =
1

2

∑
i∈S

∑
k∈S,k ̸=i

πiπk − πik
πik

(
t̂i
πi

− t̂k
πk

)2

+
∑
i∈S

V̂ (t̂i )

πi
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Recommendation: Variance Estimation Using
With-Replacement Sampling

For most situations, we recommend using the with-replacement sampling
variance estimator to avoid potential instability and computational
complexity.

V̂WR(t̂HT) =
1

n
· 1

n − 1

∑
i∈S

(
nt̂i
πi

− t̂HT

)2

=
n

n − 1

∑
i∈S

(
t̂i
πi

− t̂HT
n

)2

Notes:

▶ In practice, samples are often drawn without replacement, but the
variance is calculated assuming with-replacement sampling.

▶ Using the with-replacement estimator generally results in a larger
variance than the true variance (overestimation), which is
conservative and ensures robustness.
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Unequal Probability Sampling in Practice

▶ Many government surveys rely on unequal probability
sampling techniques.

▶ Stratification is often used first to reduce the variation in
probabilities (πi ).

Example: Random Digit Dialing (RDD)

▶ Construct a frame using area codes and prefixes (e.g.,
505-243-).

▶ Draw a random sample of suffixes (0000-9999), dial numbers,
and check if they are residential. If not, discard.

For psu i , let Mi be the number of residential numbers:

p(dial number) = p(psu i selected)× p(number selected in psu i)

=
Mi∑N
j=1Mj

· mi

Mi

If all mi ’s are equal, the sampling becomes self-weighting.
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Disclaimer

Slides are intended for a course based on the book: Sampling:
Design and Analysis, Third Edition by Sharon L. Lohr
All examples, datasets, and pages directly scanned and included in
this chapter are from the textbook.
References to papers or books cited in these slides can be found in
the Bibliography section of the textbook.
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