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Nonresponse

▶ Unit nonresponse: the entire observation unit is missing

▶ Item nonresponse: some measurements are present for the
observation unit but at least one item is missing
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Example: select 10,000 households for sample,
1000 ineligible for the survey
700 no contact
200 unresolved
1400 refusals

Nonresponse rate =
nonrespondents + unresolved

N − ineligible

=
1400 + 700 + 200

9000
= .25
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Four approaches to dealing with nonresponse:

1. Prevent it. Design the survey so that nonresponse is low. This
is by far the best method.

2. Take a representative subsample of the nonrespondents; use
that subsample to make inferences about the other
nonrespondents.
—-Call backs and follow ups
Take a subsample of nonrespondents for interviewing
—-American community survey
subsample about 1/3 of households that did not respond to
mail survey
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3. Use a model to predict values for the nonrespondents.
—-Weighting class adjustment methods implicitly use a model
to adjust for unit nonresponse.
—- Imputation often adjusts for item nonresponse,
—-Parametric models may be used for either type of
nonresponse.

4. Ignore the nonresponse (not recommended, but unfortunately
common in practice).
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Main problem caused by nonresponse: potential bias

Stratum Size Total Mean Variance

Respondents NR tR ȳRU S2
R

Nonrespondents NM tM ȳMU S2
M

Entire Popn N t ȳU S2

▶ A probability sample from the population will likely contain
some respondents and some nonrespondents.

▶ If the population mean in the nonrespondent stratum differs
from that in the respondent stratum, estimating the
population mean using only the respondents will produce bias.
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▶ Let ȳR be an approximately unbiased estimator of the mean in
the respondent stratum, using only the respondents.

ȳU =
NR

N
ȳRU +

NM

N
ȳMU

The bias is approximately

E (ȳR)− ȳU ≈ NM

N
(ȳRU − ȳMU)

▶ The bias is small if
—- either (1) the mean for the nonrespondents is close to the
mean for the respondents, or
—- (2) NM/N is small, there is little nonresponse.
— But we can never be assured of (1), as we generally have
no data for the nonrespondents. Minimizing the nonresponse
rate is the only sure way to control nonresponse bias.
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Designing Surveys to Reduce Nonsampling Errors

316 Nonresponse
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FIGURE 8.1
Some factors affecting nonresponse.

numbers for some of the addresses; these, if accurate, could be used for following up
with nonrespondents. A sampling frame for a business survey may contain contact in-
formation for persons within the businesses who typically fill out the surveys. Having
detailed, accurate information about units in the frame may make it easier to contact
and obtain responses from sampled units.

• Sampling design. Surveys of businesses or farms are often stratified by a number of
variables related to responses of interest, including size. Sampling the strata containing
large businesses at a higher rate than strata containing small businesses may reduce
the variance of estimates of quantities such as total payroll (see Example 3.8). If large
businesses are more likely to respond to the initial survey invitation (for example, if
they have designated employees who fill out surveys), the disproportional allocation
may also increase the response rate. The sample has fewer initial nonrespondents than
a proportionally allocated sample would have, and consequently each can be targeted
with more nonresponse follow-up efforts.
For surveys that are repeated annually, choice of a cross-sectional design (in which a new
sample is drawn each year) or a longitudinal or panel design (in which at least some
of the units in the year-1 sample are kept for the year-2 sample) can affect response
rates. Once a household is recruited to be in a panel survey such as the U.S. Current
Population Survey, which measures characteristics related to employment, it stays in

Figure 1: Factors affecting nonresponse
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Two phase sampling (double sampling)

▶ Population divided into two strata, respondents and initial
nonrespondents (persons who did not respond to the first call)

▶ Sample size n

▶ nR respondents

▶ nM nonrespondents (missing)

▶ Subsample 100v% of the nM nonrespondents in the sample
—-the subsampling fraction v does not depend on the data
collected
—-suppose that through some superhuman effort all of the
targeted nonrespondents are reached
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The two phase sampling estimators of the population mean
and total are

ˆ̄y =
nR
n
ȳR +

nM
n

ȳM

and

t̂ = N ˆ̄y =
N

n

∑
i∈SR

yi +
N

n
· 1
v

∑
i∈SM

yi

E (t̂) = t

V̂ (ˆ̄y) =
nR − 1

n − 1
·
s2R
n

+
nM − 1

n − 1
·
s2M
vn

+
1

n − 1

[nR
n
(ȳR − ˆ̄y)2 +

nM
n

(ȳM − ˆ̄y)2
]
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Notes on Nonresponse and Two-Phase Sampling

▶ It is rare to achieve a 100% response rate in the subsample of
nonrespondents.

▶ A common approach is to compare the subsample of
nonrespondents to the original respondents to assess potential
bias.

▶ If everyone in the subsample responds, two-phase sampling
can:

Remove the bias introduced by the original nonresponse.
Properly account for nonresponse in the estimation of variance.
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Mechanisms for Nonresponse

Define:

Zi =

{
1 if unit i is selected in the sample (included in S)
0 otherwise

Ri =

{
1 if unit i responds
0 otherwise

Probabilities:

▶ P(Zi = 1) = πi , the inclusion probability.

▶ P(Ri = 1) = ϕi , the response propensity (propensity score).

Components:

▶ yi : Response of interest.

▶ xi : Vector of auxiliary information known about unit i in the sample.

▶ If Zi (selection) and Ri (response) are independent, then:

P(unit i is selected and responds) = πiϕi .
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▶ Estimate the population total ty =
∑N

i=1 yi using an adjusted
Horvitz–Thompson estimator:

t̂ϕ =
N∑
i=1

ZiRi
yi

πiϕi
.
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Three Types of Missing Data (Little and Rubin,
1987)

1. Missing Completely at Random (MCAR): The probability
of responding, ϕi , does not depend on xi , yi , or the survey
design.

▶ Examples:

Laboratory error: Someone drops a test tube containing a
participant’s blood sample.
Survey example: A survey of student satisfaction at a
university:

• X-variables: Known for all students (e.g., race, gender, age,
courses, GPA, etc.).

• Y-variable: Students’ satisfaction with the university.
• MCAR Condition: Nonresponse is completely unrelated to

any X-variable or the Y-variable.

Key Characteristic: Data are missing for reasons completely
unrelated to the observed or unobserved variables.
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MCAR: Key Implications

▶ Nonresponse is random: Nonrespondents are randomly
distributed across the sampled units.

▶ Respondents are representative: The respondents provide an
unbiased representation of the entire sample.

▶ Nonresponse can be ignored: Standard analyses can be
performed without additional adjustments for nonresponse.

▶ Limitations:
True MCAR is rare in practice.
If MCAR does not hold, analyses assuming MCAR may lead to
bias.

Practical Takeaway: Use MCAR assumptions only when there is
strong evidence that missingness is unrelated to both observed and
unobserved variables.
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2. Missing at Random (MAR): The probability of responding,
ϕi , depends on the observed variables xi , but not on the
unobserved variable yi .

▶ Key Characteristics:
Nonresponse is related to observed data but unrelated to the
missing values themselves, conditional on xi .
Unlike MCAR, adjustments should be made to account for
nonresponse using the observed data xi .

▶ Example:
In the National Crime Victimization Survey (NCVS), suppose:

• The probability of responding to the survey depends on
observed factors such as race, sex, and age (all known
quantities).

• However, within each race/sex/age group, the probability of
response does not depend on whether the individual
experienced victimization (unobserved).
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MCAR and MAR: Ignorable Nonresponse

▶ Ignorable nonresponse means that the nonresponse mechanism
can be explained and accounted for using a suitable model.

▶ Once the model accounts for the nonresponse, its effects can
be “ignored” in the analysis.

▶ Important: “Ignorable” does not mean that the nonresponse
can be completely disregarded; adjustments or modeling are
still necessary to address potential bias.
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3. Nonignorable Nonresponse (Not Missing at Random -
NMAR): nonresponse is considered nonignorable when the
probability of responding (ϕi ) is directly related to the
outcome variable (yi ), even after accounting for known
variables (xi ).

▶ Example: In the NCVS (National Crime Victimization Survey),
it is suspected that individuals who have been victims of crime
are less likely to respond to the survey than nonvictims,
regardless of shared characteristics such as race, age, or sex.

▶ Key Challenge: Nonresponse bias cannot be corrected using
observed data alone; it requires additional assumptions or
external information about the relationship between
nonresponse and yi .
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Methods to Address Nonresponse

In survey sampling methodology, two primary methods are
commonly used to address nonresponse:
▶ Weighting:

Adjusts the weights of responding units to compensate for
nonrespondents.
Example: If younger participants are less likely to respond,
their responses are given higher weights to represent their
population segment adequately.

▶ Imputation:
Fills in missing values using observed data or predictive models.
Example: Estimate missing income values based on variables
like age, education, and occupation.

Goal: Reduce bias introduced by nonresponse and improve the
reliability of survey estimates.
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Weighting class method

▶ Divide sample into classes based on variables known for
everyone

▶ Assume MCAR within those classes i.e. assume that
nonrespondents are similar to respondents within each
weighting class
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Example:

Male Female

R 10,000 12,000
NR 8000 5000

Sample 18,000 17,000

▶ Started one with wi = 100 for everyone

▶ New weight w∗
i for each male respondent

w∗
i = wi ×

18, 000

10, 000
= 180

each male respondent represents 180 men in population
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▶ Females

w∗
i = wi ×

17, 000

12, 000
= 141.7

—- Each female respondent now represents 142 females in the
population.
—- Assumption: The distribution of yi (the variable of
interest) is similar for both responding and nonresponding
women.

▶ General Formula for Adjusted Weights:

w∗
i = wi ×

Sum of weights for the selected sample in class

Sum of weights for respondents in class

—- Adjust weights within each response class (e.g., gender,
age group) to account for nonresponse.
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Weighting-class adjustment

▶ assumption: respondents and nonrespondents in the same
weighting-adjustment class are similar

▶ weights of respondents in the weighting-adjustment class are
increased so that the respondents represent the
nonrespondents share of the population as well as their own
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Estimate response propensity score for class c by

ϕ̂c =
sum of weights for respondents in class c

sum of weights for selected sample in class c

w∗
i =

∑
c

wixci

ϕ̂c

,

where xci = 1 if unit i is in class c

t̂wc =
∑
i∈S

w∗
i yi

ˆ̄ywc =
t̂wc∑

i∈S
w∗
i
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In an SRS,

ϕ̂c =
ncR
nc

t̂wc =
∑
i∈S

∑
c

N

n

nc
ncR

xciyi

= N
∑
c

nc
n
ȳcR

ˆ̄ywc =
∑
c

nc
n
ȳcR
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Poststratification

▶ Similar to weighting class adjustment, except that population
counts are used to adjust the weights

▶ SRS sample is collected

▶ Units are grouped into H different post strata based on
demographic variables such as race and sex

▶ NH units in poststratum, nh units were selected for the sample
and nhR respond

Instructor: Yan Lu 26/56



Chapter 8

Assumptions:

▶ within each stratum each unit selected to be in the sample
has the same probability of being a respondent

▶ the response or nonresponse of a unit is independent of the
responses or nonresponses of all other units

▶ nonrespondents in a poststratum are like the respondents
Data are MCAR within each poststratum
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The poststratified estimator for ȳU is

ȳpost =
H∑

h=1

Nh

N
ȳhR (1)

The weighting-class estimator for ȳU , if the weighting classes are
the poststrata, is

ȳwc =
H∑

h=1

nh
n
ȳhR (2)

▶ Estimate (1) and estimate (2) are similar in form

▶ Difference is that in poststratification the Nh are known,
whereas in weighting-class adjustments the Nh are unknown
and estimated by N ∗ nh/n
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For the poststratified estimator, often the conditional variance
given nhR is used. For an SRS,

V (ȳpost |nhR , h = 1, · · · ,H) =
H∑

h=1

(
Nh

N

)2(
1− nhR

Nh

)(
S2
h

nhR

)
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Poststratification Using Weights
Let

xhi =

{
1 if unit i is a respondent in poststratum h
0 otherwise

▶ The weight for each respondent adjusts for unequal selection
probabilities and nonresponse within the poststratum.

▶ The sum
∑

i∈Sh wi · xhi =
∑
i∈Sh

wi estimates the population

count Nh for that subgroup of respondents.
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Poststratification uses a ratio estimator within each subgroup
to adjust the sample estimates according to the known true
population count for each subgroup.

w∗
i =

H∑
h=1

wixhi
Nh∑

j∈R
wjxhj

= wi
Nh

H∑
h=1

∑
j∈R

wjxhj

H∑
h=1

∑
i∈S

w∗
i xhi =

H∑
h=1

∑
i∈S

wi
Nh

H∑
h=1

∑
j∈R

wjxhj

xhi

=
H∑

h=1

∑
i∈S

wixhi
Nh

H∑
h=1

∑
j∈R

wjxhj

= Nh
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t̂post =
H∑

h=1

∑
i∈S

w∗
i xhiyi

ˆ̄ypost =
H∑

h=1

∑
i∈S

w∗
i yi/N =

H∑
h=1

Nh

N
ȳhR
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Raking adjustment

A poststratification method that can be used when poststrata are
formed using more than one variable, but only the marginal
population totals are known
Assumption

▶ within each poststratum, each unit selected to be in the
sample has the same probability of being a respondent

▶ the response or nonresponse of a unit is independent of the
behavior of all other units

▶ nonrespondents in a poststratum are like the respondents

▶ response probabilities depend only on the row and column and
not on the particular cell
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Example: have population information on two variables, but don’t
have cell counts information

M F

Assistant professor 80
Associate professor 180

Full professor 540

600 200 800
Sum of weights from survey

M F

Assistant professor 40 60 100
Associate professor 80 60 140

Full professor 320 40 360

440 160 600
Iteration 1 (adjust columns)
Multiply weight of males by 600/440, females by 200/160
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M F

Assistant professor 54.5 75 129.5
Associate professor 109.1 75 184.1

Full professor 436.4 50 486.4

600 200 800
Iteration 2 (adjust rows)
multiply weight of assistant professor by 80/129.5
multiply weight of associate professor by 180/184.1
multiply weight of full professor by 540/486.4
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M F

Assistant professor 33.7 46.3 80
Associate professor 106.7 73.3 180

Full professor 484.5 55.5 540

624.9 175.1 800
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Iterate until the marginal counts are equal to the marginal counts
of the population (the first table)

M F

Assistant professor 29.6 50.4 80
Associate professor 97.3 82.7 180

Full professor 473 67 540

600 200 800
Note:

▶ if some of the cell estimates are zero, may not converge

▶ overadjustment: if there is little relation between the extra
dimension in raking and the cell means, raking may increase
the variance
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Some Comments on Weighting Adjustments

▶ Weighting class adjustments and poststratification can help
reduce nonresponse bias.

▶ In each weighting cell or poststratum, respondents and
nonrespondents are assumed to be similar.
—- Specifically, each individual in a weighting class is
assumed to have an equal likelihood of responding to the
survey or a response propensity uncorrelated with y .

▶ Some practitioners treat the weighting adjustment as a
complete remedy for nonresponse and proceed as though
nonresponse no longer exists.
—- This approach should be avoided, as it overlooks potential
biases.
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▶ Weighting can improve many estimates but rarely eliminates
all nonresponse bias.

▶ When weighting adjustments are applied, practitioners should
explicitly state the assumed response model and provide
evidence to support it.

▶ Weighting adjustments are typically used for unit nonresponse
and not for item nonresponse, which requires different weights
for each item.

▶ Poststratification is a special case of calibration methods used
in survey sampling.
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Item Missing

Missing survey items can occur for various reasons:

▶ The interviewer may forget to ask a question.

▶ The respondent may refuse to answer or may not know the
information.

▶ A data entry clerk might inadvertently skip the value.
▶ Sometimes, responses are marked as missing during data

editing or cleaning:

For example, if discrepancies arise—such as a 3-year-old
reported to have voted in the last election—both values (age
and voting status) may be set to missing.
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Imputation: Filling in Missing Items

Imputation is a common technique to address missing survey data:

▶ A replacement value is assigned to the missing item, often
based on data from another respondent who is similar to the
nonrespondent on other variables.

▶ To maintain transparency, an additional variable should be
created in the data set to indicate whether a response was
measured or imputed.

▶ Imputation helps:

Reduce nonresponse bias.
Create a “clean,” rectangular data set without gaps for missing
values.
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Example

#data impute

person age gender education crime violcrime

1 1 47 M 16 0 0

2 2 45 F NA 1 1

3 3 19 M 11 0 0

4 4 21 F NA 1 1

5 5 24 M 12 1 1

6 6 41 F NA 0 0

7 7 36 M 20 1 NA

8 8 50 M 12 0 0

9 9 53 F 13 0 NA

10 10 17 M 10 NA NA
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person age gender education crime violcrime

11 11 53 F 12 0 0

12 12 21 F 12 0 0

13 13 18 F 11 1 NA

14 14 34 M 16 1 0

15 15 44 M 14 0 0

16 16 45 M 11 0 0

17 17 54 F 14 0 0

18 18 55 F 10 0 0

19 19 29 F 12 NA 0

20 20 32 F 10 0 0
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Deductive Imputation

Deductive imputation uses logical relationships between variables
to fill in missing values:

▶ Values are imputed during data editing based on known
information.

▶ Example 1: A respondent person 9 in the “impute” data is
missing the response for being a victim of violent crime, but
she reported not being a victim of any crime. The logical
imputed value for violent crime would be 0.

▶ Example 2: In a longitudinal survey, a woman reports having
two children in year 1 and year 3, but the value is missing for
year 2. The logical imputed value for year 2 would be two.

▶ Deductive imputation is particularly useful in scenarios where
strong logical or temporal relationships exist among variables.
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Cell Mean Imputation

▶ Respondents are grouped into classes (cells) based on known
variables.

▶ The mean value of the responding units in each cell, ȳcR , is
used to replace missing values within that cell.

▶ Assumes missing items are missing completely at random
(MCAR) within each cell.
Example:
- The mean annual income (y) for black males aged 19–24 is
$19,242.
- Impute $19,242 for every black male aged 19–24 who has a
missing income value.

▶ Limitations: - Can create artificial spikes in the data (e.g., in
histograms). - Distorts multivariate relationships by ignoring
individual variability within cells.
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Example 8.9, page 336

Table 1: The four cells are constructed using variables age and sex.

≤ 34 ≥ 35

M Persons Persons
3,5,10,14 1,7,8,15,16

F Persons Persons
4,12,13,19,20 2,6,9,11,17,18

▶ Persons 2 and 6, who have missing values for years of
education, would be assigned the average value of 12.25,
calculated from the four women aged 35 or older who
responded to this question.
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Hot deck imputation : impute value from record in
the data set

▶ Sequential Hot-Deck Imputation: impute the value in the
same subgroup that was last read by the computer.

Table 2: The four cells for our example are constructed using the
variables age and sex.

≤ 34 ≥ 35

M Persons Persons
3,5,10,14 1,7,8,15,16

F Persons Persons
4,12,13,19,20 2,6,9,11,17,18

In this example, person 19 is missing the response for crime
victimization. Person 13 had the last response recorded in her
subclass, so value 1 is imputed.
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▶ Random Hot-Deck Imputation: A donor is randomly
chosen from the persons in the subgroup with information on
all the missing items. To preserve multivariate relationships,
usually values from the same donor are used for all missing
items of a person.
Example: In “impute” data set, person 10 is missing both
variables for victimization. Persons 3, 5, and 14 in his cell
have responses for both crime questions, so one of the three is
chosen randomly as the donor. In this case, person 14 is
chosen, and his values are imputed for both missing variables.
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▶ Nearest neighborhood Hot-Deck Imputation: Define a
distance measure between observations, and impute the value
of a respondent who is closest to the person with the missing
item, where closeness is defined using the distance function.

Example: If age and sex are used for the distance function, so that
the person of closest age with the same sex is selected to be the
donor, the victimization responses of person 3 will be imputed for
person 10.
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Regression Imputation

▶ Build a regression model to predict missing values, e.g.,
victimization responses, using other variables.

▶ Impute the predicted values from the regression model.

▶ Cell mean imputation is a special case of regression
imputation.

▶ May result in spikes in the data distribution.
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Example: Logistic Regression Imputation

▶ We have only 18 complete observations for the response
variable crime victimization (not sufficient to fit a robust
model), but a logistic regression with age as the explanatory
variable provides the following model for predicted probability
of victimization:

log
p̂

1− p̂
= 2.5643− 0.0896× age

▶ For a 17-year-old, the predicted probability of being a crime
victim is 0.74.

▶ Since 0.74 exceeds the predetermined cutoff of 0.5, the value
1 is imputed for Person 10.
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Multiple imputation

In multiple imputation, each missing value is imputed m (≥ 2)
different times.
—-Typically, the same stochastic model is used for each
imputation.
—-This create m different “data” sets with no missing values.
—-Each of the m data sets is analyzed as if no imputation had
been done;
—-The different results give the analyst a measure of the
additional variance due to the imputation.
—- Multiple imputation with different models for nonresponse can
give an idea of the sensitivity of the results to particular
nonresponse models. (Rubin (1987, 1996, 2004))
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Multiple Imputation

Multiple imputation is a statistical technique used to handle
missing data by imputing each missing value m (m ≥ 2) different
times, generating multiple complete datasets.

▶ Typically, the same stochastic model is used for each
imputation.

▶ This process creates m complete datasets with no missing
values.

▶ Each of the m datasets is analyzed independently as if no
imputation had been done.

▶ The variation across the m results provides a measure of the
additional uncertainty (variance) introduced by the imputation
process.

▶ Using multiple imputation with different nonresponse models
allows researchers to assess the sensitivity of results to specific
assumptions about the nonresponse mechanism.
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▶ Multiple imputation is widely regarded as a robust approach
for handling missing data, especially when data are missing at
random (MAR).

(See Rubin, 1987, 1996, 2004 for foundational work on multiple imputation.)
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Problems with All Imputation Methods

▶ Imputation creates synthetic (or ”fake”) data, which may not
fully represent the true missing values.

▶ It is essential to flag which values are imputed to distinguish
them from observed data.

▶ Variance estimates tend to be underestimated:

The effective sample size is artificially increased due to the
inclusion of imputed values.
Imputed data are often treated as though they were collected
during the actual data collection process, ignoring the
uncertainty associated with the imputation process.
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Disclaimer

Slides are intended for a course based on the book: Sampling:
Design and Analysis, Third Edition by Sharon L. Lohr
All examples, datasets, and pages directly scanned and included in
this chapter are from the textbook.
References to papers or books cited in these slides can be found in
the Bibliography section of the textbook.
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