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Chanter &

Motivation: Sampling Students in High School

Motivation:
» Simple Random Sampling (SRS):

m Randomly sample individual students directly from the entire
school or an area.

m This requires a complete list of all students, which can be
difficult and labor-intensive to obtain.

m Additionally, it involves locating and measuring students from
various classes or schools, increasing logistical complexity and
cost.

» Cluster Sampling as an Alternative:

m Take a random sample of n classes (the classes are called the
primary sampling units (psus) or clusters).

m Measure all students in the selected classes (the students
within the classes are called the secondary sampling units
(ssus)).

m Often, the ssus are the elements of the population.

m In the design of experiments, this approach is called a nested
design.
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Cluster Sampling:

Definition:

» Primary Sampling Units (psu) or Cluster: a grouping of the
members of the population, usually naturally occurring units
Example: classes, blocks, nest of bees

» Secondary Sampling Units (ssu): units in the psu. Often the
ssu's are the elements in the population

» One stage cluster sampling:

m Stage 1: Randomly select n clusters
m Stage 2: Survey all units in the selected clusters

> Two stage cluster sampling:

m Stage 1: Randomly select n clusters
m Stage 2: Survey partial of the units in the selected clusters
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5.3 Two-Stage Cluster Sampling 183
FIGURE 5.2
The difference between one-stage and two-stage cluster sampling.
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Comments:

» Students in the selected classes are not as likely to mirror the
diversity of the high school as well as students chosen at
random
—-But it is much cheaper and easier to interview all students
in the same class than students selected at random from the
high school
—- Cluster sampling may result in more information per dollar
spent

» Cluster sampling complicates design and analysis and it
usually decreases precision
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Why use cluster sampling?
» Constructing a sampling frame list of observation units may
be difficult, expensive, or impossible
——can't list all honeybees in a region or customers in a store
——possible to list all individuals in a city, but it is
time-consuming and expensive, since in a general case, we
only have a list of housing units or a list of the phone numbers
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Reasons for Using Cluster Sampling:
» Constructing a sampling frame of individual observation units
can be:

m Difficult, expensive, or even impossible.

m For example:
® |t is impractical to list all honeybees in a region.
® Listing all customers in a store is often unfeasible.

m While it may be technically possible to list all individuals in a

city, doing so is often:

® Time-consuming and expensive.

® Typically, only lists of housing units or phone numbers are
available.
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» The population may be widely distributed geographically or
may occur in natural clusters such as households or schools
Example 1: Want to interview residents of nursing homes in
the United States

It is much cheaper to sample nursing homes and interview
every resident in the selected homes than to interview an SRS
of nursing home residents

With an SRS of residents, you might have to travel to a
nursing home just to interview one resident

Example 2: In an archaeological survey, you would examine
all artifacts found in a region instead of choosing points at
random and examine only artifacts found at those isolated
points
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Comparing Cluster Sampling with Stratification

Stratified Sampling

Cluster Sampling

Each element of the population
is in exactly one stratum

Each element of the population
is in exactly one cluster

Population of H strata

Population of N clusters

Take an SRS from each stratum

Take an SRS of clusters

Variance of the estimator of yy
depends on the variability of
values within strata

Variance of the estimator of yy
depends primarily on the variability
between cluster means

For great precision,want
similar values within each stratum
stratum means differ from each other

For great precision, want
different values within each cluster
cluster means are similar to one another
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Chapter 5: Cluster Sampling with Equal Probabilities 161

FIGURE 5.1
Similarities and differences between stratified sampling and one-stage cluster sampling
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Notation

yjj: measurement for jth element in the ith psu
——psu level

» N: number of psus in the population

> M;: number of ssus in the psu i

N
» My = > M;: total number of ssus in the population
i=1

M;
> t; =) yj: total in psu i.

j:1

N M,

> t= Z ti= Y. > yj: population total.

i=1 i=1j=1

1 < t\2

> S2 = N1 Z (t,- — N) . population variance of the psu

=
totals (between cluster variation).
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—ssu level
N M; Yij
> jyu = Z Z V population mean
i=1j=1
> yiy = Az/,f Yi b population mean in psu i
N M; 711)2
> S2=3 Z M: population variance (per ssu)
i:lj:l Mo -1
= )2
> S? = M: population variance within the psu /.
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—Sample values

>

>

>

n : number of psus in the sample

m; : number of elements in the sample for the ith psu

vi=> Yi . sample mean (per ssu) for psu i
jes; Mi

X;yfj
~ _ j€S;
B=My=M,->

. estimated total for psu i
i

R

tunp = NEt=N- '€ . Unbiased estimator of ¢ (population total)
n

A 2

1 _ 1 t

2 _ 22 2 _ funb ) . :

St = Z(t, t)° = —3 Z <t, N > . estimated
i€S ieS

variance of psu totals

2 = Z (yu_.)_/l)

; :sample variance within psu i

JES; mj — 1
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One-stage cluster sampling with equal sizes:

M,-:m,-:M

N
1 t\?
2 _ L
TN Z (- %)
S?is estlmated by s? with

R DR e ] (A |

i€eS i€S Instructor: Yan Lu
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Table 1: ANOVA Table

Source df Sum of Squares | Mean Squares
Between N-—-1 SSB= MSB
N M )
psu’s 21 > (i = yu)
i=1j=1
Within | N(M —1) SSW= MSW
N M
psu’s Zl Zl(yu yiv)?
i=1j=
Total NM-1 SSTO= S?
N M
> vy — )
i=1j=1
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Example 5.2: A student wants to estimate the average grade
point average (GPA) in his dormitory. Instead of obtaining a listing
of all students in the dorm and conducting a simple random
sample, he notices

» the dorm consist of 100 suites, each with 4 students;

» he chooses 5 of those suites at random, and asks every person
in the 5 suites what her or his GPA is.
The results are as follows:
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> print.data.frame(gpadata)
suite gpa wt
.08 20
.60 20
.44 20
.04 20
.36 20
.04 20
.28 20
.68 20
.00 20
.56 20
.52 20
.88 20
.00 20
.88 20
.44 20
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Person | suitel suite2 suite3 suite4 suiteb

1 3.08 2.36 2.00 3.00 2.68

2 2.60 3.04 2.56 2.88 1.92

3 3.44 3.28 2.52 3.44 3.28

4 3.04 2.68 1.88 3.64 3.20

Total | 12.16 11.36 896 1296 11.08
The psu's are the suites, N =100, n=05, and M = 4.

t=(12.16 +11.36 4+ 8.96 + 12.96 + 11.08) /5 = 11.304

t = 100t = 1130.4
and

1
s2 = 1 [(12.16 — 11.304) + - - - + (11.08 — 11.304)?]

= 2.256
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2
N n S
Vo = N (1-g)
= 65.4706

y = 1130.4/400 = 2.826

N 5 2.256
se) = (1 1mg) (s = 104

A 95% ClI for the mean is given by

2.826 + 2.776 « (0.164) = [2.37, 3.28]

where 2.776 is the percentile from a t distribution with (n —1) = 4
df. Note: Only the “total” column of the data table is used, the
individual GPAs are only used for their contribution to the suite
total.
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ANOVA Table
Source df SS MS

Between Suites | 4 2.2557 .56392
Within suites | 15 2.7756 .18504
Total 19 5.0313 .2648
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> dgpa<-svydesign(id="suite,weights="wt,fpc="rep(100,20),
data=gpadata)
> dgpa
1 - level Cluster Sampling design
With (5) clusters.
svydesign(id = “suite, weights = “wt, fpc = “rep(100, 20),
data = gpadata)
> gpamean<-svymean(~gpa,dgpa)
> gpamean

mean SE
gpa 2.826 0.1637
> degf (dgpa)
(1] 4
> confint(gpamean,level=.95,df=4)

2.5% 97.57%

gpa 2.371593 3.280407
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> gpatotal<-svytotal(“gpa,dgpa)
> gpatotal
total SE
gpa 1130.4 65.466
> confint(gpatotal,level=.95,df=4)
2.5% 97.5%
gpa 948.6374 1312.163
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> suitesum<-tapply(gpadata$gpa,gpadata$suite,sum)
#sum gpa for each suite
> suitesum
1 2 3 4 5
12.16 11.36 8.96 12.96 11.08
> # variability comes from among the suites
> st2<-var(suitesum)
> st2
[1] 2.25568
> # SE of t-hat, formula (5.3) of SDA
> vthat <-10072%(1-5/100)*st2/5
> sqrt(vthat)
[1] 65.46596
> # SE of ybar, formula (5.6) of SDA
> sqrt(vthat)/(4*100)
[1] 0.1636649
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Weight: One-stage cluster sampling with an SRS of psu’s
produces a self-weighting sample. The weight for each observation
unit is

B 1 N

~ P{ssu j from psu i is in sample}  n

Wij

Eo= D) wyy

i€S jeS;
N
= ;(3.08 +2.60+---+3.28 4+ 3.20)

1
_ %(56.52)

= 1130.4
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Comparing One-stage Cluster Sampling with SRS

with nM elements

Instead of taking a cluster sample of M elements in each of n
clusters, we had taken an SRS with nM observations, the variance
of the estimated total would have been

5N 2, M\ $?
V(tsrs) = (NM) <1 NM) >

UL

s ZN: (t —t)® _ ZN: M?(yiu — yu)* _ M(MSB)

- N-1 , N-1
i=1 i=1
A 5 ny\ M(MSB)
V(tejuster) = N (1 - N) n
If MSB > S?, cluster sampling is less efficient than simple random

sampling
Instructor: Yan Lu  25/94
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Intraclass Correlation Coefficient (ICC)
For clusters of equal sizes

M SSwW

=1 M1 ssT0

» |ICC is defined to be the Pearson correlation coefficient for the
NM(M — 1) pairs (yjj, yik) for i between 1 and N and j # k

1 1 <ICC <1, since 0 <SSW/SSTO <1

» If the clusters are perfectly homogeneous SSW =0, ICC=1

» |CC tells us how similar elements in the same cluster are, or
provides a measure of homogeneity within the clusters

Instructor: Yan Lu  26/94



Chapter 5

Recall: If MSB > S?, cluster sampling is less efficient than simple
random sampling
» MSB = M
M(N — 1)
» |CC is positive if elements within a psu tend to be similar. If
the ICC is positive, cluster sampling is less efficient than
simple random sampling
—-If the clusters occur naturally in the population, ICC is
usually positive
—-Elements within the same cluster tend to be more similar
than elements selected at random from the population. This
occurs because the elements in a cluster share a similar

S?[1+ (M —1)ICC]

environment
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» |CC is negative if elements within a cluster are dispersed more
than a randomly chosen group would be. This force the
cluster means to be very nearly equal
—If ICC < 0, cluster sampling is more efficient than simple
random sampling of elements
—— The ICC is rarely negative in naturally occurring clusters;
negative values can occur in some systematic samples or
artificial clusters

Instructor: Yan Lu  28/94
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Design Effect (deff)
deff(plan, statistic)

V/(estimator from a sampling plan)

V/(estimator from an SRS with same number of observation units)

V(%clAuster) _ MSB
V/(Tsrs) 52
NM —1

~ 14 (M—1)ICC

1+ (M —1)ICC ssus, taken in a one-stage cluster sample, gives
approximately the same amount of information as one ssu from an

SRS
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Adjusted R?
Adjusted R? is an alternative measure of homogeneity in general
populations:

MSW
RI=1- 552

P It represents the relative amount of variability in the
population explained by cluster means, adjusted for the
degrees of freedom.

» When clusters are highly homogeneous:

m Cluster means exhibit high variability relative to within-cluster

variation.
m R? will be large, reflecting greater homogeneity.
> Recall: Iy SSw
ICC=1—- ——— + ——
M—-1 SSTO

» Adjusted R? is a numerically adjusted approximation of the
ICC, and their values are typically very close.
Instructor: Yan Lu  30/94
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Example: Comparison of Two Artificial Populations

Each population contains three clusters with three elements per
cluster.

Population A | Population B
Cluster 1 | 10 20 30 | 9 10 11
Cluster2 | 11 20 32 |17 20 20
Cluster 3| 9 17 31 |31 32 30

» Both populations share the same mean, yy = 20, and
variance, S? = 84.5.

» In Population A, most of the variability is **within clusters**.

» In Population B, most of the variability is **between
clusters**.
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Population A | Population B
yiu S? yiu S?
Cluster 1 | 20 100 10 1
Cluster 2 | 21 111 19 3
Cluster 3 | 19 124 31 1
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ANOVA Table for population A:

Source df SS MS F
Between clusters 2 6 3 .03
Within clusters 6 670 111.67

Total 8 676 845

ANOVA Table for population B:
Source df SS MS F

Between clusters 2 666 333 199.8
Within clusters 6 10 1.67

Total 8 676 845

Instructor: Yan Lu  33/94
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Population A:
R2 = —.3215
and 3 670

» Population A has much variation among elements within the
clusters but little variation among the cluster means

» Elements in the same cluster are actually less similar than
randomly selected elements from the whole population

» Cluster sampling is more efficient than simple random
sampling
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Population B:
R2? = .9803
and 3 10
ICC=1-=."—= =
cC 5 G7g = 9778

» Most of the variability occurs between clusters, and the
clusters themselves are relatively homogeneous

» The ICC and R? are very close to 1, indicating that little new
information would be gained by sampling more than one
element in a cluster

» One-stage cluster sampling is much less efficient than simple
random sampling
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Comments:

> Most real life populations fall somewhere between the above
two extremes

» The ICC is usually positive but not overly close to 1

» There is a penalty in efficiency for using cluster sampling, and
that decreased efficiency should be offset by cost savings

» In general, for a given sample size, Cluster sampling will
produce estimates with the largest variance. SRS will be
intermediate. Stratification will give the smallest variance.

Instructor: Yan Lu  36/94



Unequal PSU Size

psu Totals t; b -ty

psu Sizes M; M, --- My

» Take a Simple Random Sample (SRS) of n psus.
» Estimated Population Total:

A . N
b = NE= 23t
i€S

» Standard Error (SE):

SE(funp) = N (1 - %) 5;2

» Note: s? can be large if t; oc M;, i.e., when psu totals are
proportional to psu sizes.

Example: - The number of physicians in different areas is often
proportional to the area’s size or population.

- Larger areas or populations tend to have more physicians,

resulting in greater variability in t;. Instructor: Yan Lu  37/94
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Population mean:
N

2= ti _ t

- =
Y1 Mi Mo
where t; and M; are typically positively correlated. Thus, we can
consider yy = B as a ratio estimation by using M; as the auxiliary
variable.

yu =

Instructor: Yan Lu  38/94



» Unbiased estimator of overall mean y:

N

)A/U = /i.unb/MO = %unb/z Mi:
i=1

N
but > M; may not be available
i=1
> Ratio estimator:

N Z ti
)_/; _ tunb _ i€eS
r MO Z M,’
i€S
where the denominator ) ;s M; is a random quantity that
depends on which particular psus are included in the sample.
R 2 2 WiV
A tunb _ieSjeS;

yr= 402 =
Mo I

i€S jES;
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> Let e = t; — My, = M;(yi — yr)
2
. ny s
SE Yr = (1_7) =
(Y) N/ nM?
Z(t: Yr )
_ (1—£> IE i€s
N/ nM? n—1
Z I\/I,'z(}_/i_}ﬁ/r)2
_ (1_£> 1 jes
N/ nM2 n—1

SE(y,) depends on variability between psu means
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Table 2: one stage cluster sampling

equal size unequal size unequal size
unbiased estimator ratio estimator
t NZt,-/n NZt,-/n MO_)_/r
€S i€S
2 Som (NSun) /oM S m
i€S ieS i€es ies

V(yu) (1—-n/N)S?/nM?  N2(1 n/N)52/n/\/l2 (1—n/N)SZ/nM?

Notes: If all M;'s are equal, the unbiased estimator is in fact the
same as the ratio estimator; If the M;'s vary, the unbiased
estimator often performs poorly
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Example 5.6: One-Stage Cluster Sampling

>

One-stage cluster sampling is commonly used in educational
studies because students are naturally grouped into clusters
such as classrooms or schools.

Consider a population of 187 high school algebra classes
(N =187) in a city.
An investigator randomly selects a simple random sample

(SRS) of 12 classes (n = 12) and administers a test on
function knowledge to all students in the selected classes.

The (hypothetical) data for this study are provided in the file
algebra.dat, along with the following summary statistics.
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> nrow(algebra)

[1] 299
> head(algebra)
class Mi score
1 23 20 57
2 23 20 90
3 23 20 56
4 23 20 57
5 23 20 46
6 23 20 55
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Table 3: Example 5.6

Class number M, t; M?(y; — y,)?
23 20 615 1,230 456.7298
37 26 642 1,670 1,867.7428
108 26 67.2 1,746 14212.7867
Total 299

18,708 194,827.0387
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_ Yiesti 18,708

y, = = = 62.57
YT S M 299

> M7 — ¥r)?

N n 1 icS
SE(Jr) = 1_f) S
B 1 1 194,827
- 187 12.24.922° 11
= 49

A 95% Cl is given by
62.57 & 2.20 * (1.49) = [59.29, 65.85],

where 2.20 is the percentile from a t distribution with
n—1=12-1=11df.
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> algebra$sampwt<-rep(187/12,299)

> dalg<-svydesign(id="class,weights="sampwt,
fpc="rep(187,299), data=algebra)

> dalg

1 - level Cluster Sampling design

With (12) clusters.

> svymean(~score,dalg)
mean SE
score 62.569 1.4916
> degf(dalg)
[1] 11
> confint(svymean(~score,dalg),level=.95,df=11)
2.5% 97.5 %
score 59.28562 65.8515
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Two-Stage Cluster Sampling

If items within a cluster are highly similar, measuring all of them
may be unnecessary. Instead, a more efficient approach is to take a
simple random sample (SRS) of units within each selected primary
sampling unit (psu).
» Stage 1: Select an SRS of n psus from the population of N
psus.
» Stage 2: From each selected psu, draw an SRS of m; units.
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Unbiased Estimator
To estimate t;, we use:

ti = M;y;, where j; = Zyu
JES
The estimated total is:
N I\/l
Fynb = NT = — Zt, = Z/\/l,y, ZZ
ieS IES i€S jeS;
The probability of selecting the jth ssu within the ith psu is:
p(jth ssu in ith psu is selected)
= p(ith psu selected) x p(jth ssu selected|ith psu selected)

N n m;j
N M
Thus, the unbiased estimator can also be written as:
R NM;
tunb = ZZ wjjyij, Where wj = g

i€S jeS;
Instructor: Yan Lu  48/94
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Variance for Two-Stage Cluster Sampling
The variance of f,,p consists of two components:

» The variance from one-stage cluster sampling (S?).

> An additional term to account for the extra variance (S?) due
to estimating the ;'s rather than measuring them directly.

The variance is expressed as:

2 ' 2
V) = 02 (1= ) 4 25 (17

i€eS
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Estimated Variance for Two-Stage Cluster Sampling
Between-Cluster Variance:

» Viewing the #; as an SRS:

~ 2
52 o 1 <% tunb)
t — 1 I
n 1 i€S N

Within-Cluster Variance:
» Viewing the y;; as an SRS.

1
2 =\2
= 1 2 i =)

JES;

» For cluster i/,

The estimated variance of t,,p, is given by:
. s
V(3 :N2(1 7)7 R N SR YL
(Funt) Z < ) mj
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Chapter 5

Summary of unbiased estimators for Two-Stage Cluster

Sampling:
> %unb =Nt = I,\:Z%i = I:ZMiYi :ZZII\?IA,:’IYU
= i€s i€S jes;
> V) = (1) 5 - 53 (1 )
ieS
> Yunb = %x/r;ob
> SE(pp) = o ont)
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Recall:
A 2
1 Lt
2 L unb
St = n—1z<t’ N >
ieS
A 5 ny sz N m; 5 57
V(Em) = W2 (1= ) 5+ 2o (1) M2
ics ! !
Comments:

» The term s2 can be very large, as it is influenced both by
variations in the unit sizes (M;) and by variations in the
cluster means (¥;).

> When cluster sizes vary significantly, this component becomes
dominant, even if the cluster means remain relatively stable.
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Ratio Estimation

Let:
» y: Cluster totals t;
» x: Cluster sizes M;

The ratio estimator of the mean:

S Y My
}A/ _ i€S _ i€S
XM Y M,
i€s i€s
Recall: wj;j = ',\7’—"":’;
. Do D WiYi
}A/ . tunb o i€eSjes;
' /\Aﬂo IR
fESjES,'
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The variance of the ratio estimator:

2

0= o 605 s ()

> (Miyi — Miy,)?
2 ieS

where: s7 = and M = MO/N is the average

size of the psus in tge salmple.
Note: For V() and V/(7,), the second term is typically
negligible compared to the first term. Most survey software
packages calculate the variance using only the first term.
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Example 5.9: The Case of the Six-Legged Puppy

» Goal: Estimate the average number of legs on the healthy
puppies in the sampled city's puppy homes.
» The sampled city has two puppy homes:
m Puppy Palace (PP) with 30 puppies.
m Dog's Life (DL) with 10 puppies.
» Sampling procedure:
m Select one puppy home with probability 1/2.
m After a home is selected, randomly select 2 puppies from that
home.
» Estimation methods:

m Use y,nb to estimate the average number of legs per puppy.
m Use ratio estimation to estimate the average number of legs

per puppy.
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» Population: N = 2 puppy homes.
» Sampling procedure:

m Select n =1 home with probability 1/2.
m Randomly select 2 puppies from the selected home.

Case 1: Puppy Palace (PP) is selected

» Each of the two sampled puppies has 4 legs.
Estimated total number of legs in PP:

,t\Pp:30><4:120

» Unbiased estimate of the total number of puppy legs across
both homes:
,funb =2X ,t\pp =240

» Mean number of legs per puppy:

. fnb 240

Yunb = 740 = g = ©
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Case 2: Dog's Life (DL) is selected

» Each of the two sampled puppies has 4 legs.
Estimated total number of legs in DL:

tpr = 10 x 4 = 40

» Unbiased estimate of the total number of puppy legs across
both homes:
It\'unb =2x It\'D/_ =80

» Mean number of legs per puppy:

,t\'unb 80

)_/unb =
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Comments:

» The estimator is mathematically unbiased: (6 +2)/2 = 4,
ensuring that the average over all possible samples yields the
correct value

> f’unb is unbiased, but exhibits significant variability due to the
considerable variation in M; values (e.g., 30 vs. 10)

5 S?
V(Enp) = ( ) 2°S? + 22 (1 — ) MZ—E
= 6400

» when M;'s unequal, the unbiased estimators f’unb are often
inefficient
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Ratio estimators:

» Suppose we select Puppy Palace (PP):

- 4
S e M; 30

» Suppose we select Dog's Life (DL):

a 10 x 4
vV, = :4
=10

» The ratio estimates are the same for the two possible samples,
implying that
V(y,) =0.
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Example 5.8:

» The data coots.dat come from Arnold’s (1991) work on egg
size and volume of American coot eggs in Minnedosa,
Manitoba

» In this data set, we look at volumes of a subsample of eggs in
clutches (nests of eggs) with at least two eggs available for
measurement

P> Randomly select 2 eggs in each clutch and measure their
volume

> Want to estimate the mean egg volume
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nrow(coots) #368
[1] 368
> head(coots)
clutch csize length breadth volume  tmt

1 1 13 44.3 31.1 3.80 1
2 1 13 45.9 32.7 3.93 1
3 2 13 49.2 34.4 4.22 1
4 2 13 48.7 32.7 4.17 1
5 3 6 51.0 34.2 0.932 0
6 3 6 49.4 34.4 0.901 0

> coots$ssu<-rep(1:2,184)

> coots$relwt<-coots$csize/2

> dcoots<-svydesign(id="clutch+ssu,weights="relut,
data=coots)

> dcoots

2 - level Cluster Sampling design (with replacement)
With (184, 368) clusters.

svydesign(id = “clutch + ssu, weights = “relwt,

data = coots) Instructor: Yan Lu  61/94
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svymean (“volume,dcoots) #ratio estimator
mean SE
volume 2.4908 0.061
> confint(svymean(~“volume,dcoots),level=.95,df=183)
2.5 % 97.5 %
volume 2.370423 2.611134
> dcoots2<-svydesign(id="clutch,weights="relwt,data=coots)
> dcoots2
1 - level Cluster Sampling design (with replacement)
With (184) clusters.
> svymean(~“volume,dcoots2)
mean SE
volume 2.4908 0.061

SE is the with replacement variance for the first stage sampling.
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Suppose there are N clutches, weight for egg j in clutch i is

_NM _ N M
i T 184 2

s Yo Wiy 4375.947
ZIESZJES, iy  4375.9 — 949

" Yies Yjes Wi 1757
1 . 11438.99
2 2= A2
=Y M}y —)? = = 6251
14 P =) 183

M =3Y";cs M;/n=1758/184 = 9.554

1 184 62.51 n 146.31
N 184 N 184

A~

V(¥ = g 552
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Now N, the total number of clutches in the population, is unknown
but presumed to be large (and known to be larger than 184).

> take the psu-level fpc to be 1

» second term in the estimated variance is small relative to the
first term, and goes to 0 when N — oo

O a ]. 6251
VWR(}/r) = Wﬁ = 0.0037,

which is the first-stage with replacement variance.
SEwr(7,) = v/0.0037 = 0.06082763

This is the SE reported from R without the fpc statement.
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Now suppose N = 10000,

VG - 1 | le4) 6251 14631
Yr) = 95542 N ) 184 ' N 184

= 0.003653388 + 2.757316e — 07
= 0.003653663

§I\EWOR()A/,) = v/0.003653663 = 0.06044554
Slightly different from:

SEwr(¥,) = v/0.0037 = 0.06082763
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Note on Example 5.8:

» We could not use the unbiased estimator for the mean or
population totals because the values of N (the total number
of clusters) and My = S IV, M; (the total size of all clusters)
are unknown.

» However, since the M;'s did not vary widely, the unbiased
estimator would likely have had a similar coefficient of
variation to the ratio estimator.

» If all the M;'s are equal, the unbiased estimator coincides with
the ratio estimator.

> If the M;’s vary significantly, the unbiased estimator often
performs poorly.
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In svydesign,

>

>

the two stages of the cluster sampling are given as
id= clutch+ssu .
when the with-replacement variance is calculated, however, as
is done here, you need only specify the psus
the point and variance estimates are the same whether you
specify just the psus or you specify all stages of sampling.
the weight argument must be included for this design because
the weights are unequal.
confidence interval uses a t critical value with 183 df (number
of psus minus 1).
svydesign does not contain the fpc argument. This is because
the total number of clutches in the population, N, is unknown.
—— as a result, the svymean does not use an fpc when
calculating estimates.
In general, we recommend omitting the fpc argument for
multi-stage cluster sampling even when N is known.
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» without fpc, it produces a variance estimate whose
expectation is slightly larger than the true variance, but if n/N
is small, the difference is negligible.

» if forced to choose between a standard error that is slightly
too large and one that is too small, we usually prefer the
former because a too-small standard error leads to claiming
that estimates are more precise than they really are.

P ssus in the same psu are usually more homogeneous than
randomly selected ssus from the population. Thus, the
essential feature for calculating standard errors is to capture
that homogeneity by including the id= psuid argument in
svydesign. The issue of “to fpc or not to fpc” is minor
compared with the effect of clustering.

Instructor: Yan Lu  68/94



Chapter 5

Two-Stage Cluster Sampling: Calculate Variance with and
without Replacement
Example 5.7.
The file schools contains data from a two-stage sample of
students.
» In the first stage of sampling, an SRS of n = 10 schools is
selected from a population of N = 75 schools.

» In the second stage, an SRS of m; = 20 students is selected
from each sampled school, and assessments for reading and
math are administered.

» These data are fictional, but the summary statistics are
consistent with those typically seen in educational studies.
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> data(schools)
> print.data.frame(head(schools))
schoolid gender math reading mathlevel readlevel Mi finalwt

1 9 F 42 42 2 2 163 61.125
2 9 F 29 30 1 1 163 61.125
3 9 M 31 25 1 1 163 61.125
4 9 F 22 33 1 2 163 61.125
5 9 M 35 36 1 2 163 61.125
6 9 F 30 17 1 1 163 61.125
> unique(schools$schoolid)

[1] 9 17 18 22 35 43 46 55 62 75
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TABLE 5.7
Caleulations using formulas for math scores in Example 5.7.
School M; Wi sf t; Mf (1 — 1,_[;) m_; Mﬁy,- —ir)?
9 163 34.75 74.51 5664.25 86841 70336
17 180 40.80 11101 7344.00 130855 1609563
18 114 37.85  124.87 4314.90 66906 200396
22 367 2795 10931 10257.65 696046 3604196
35 100 46.10 50.31 5024.90 24401 2000806
43 219 3220 162.80 T051.80 354749 40855
46 318 30.60 86.57 9730.80 410178 643681
55 250 3635 14161 9414.65 438284 608572
62 311 3540 07.83  11000.40 442603 501495
75 263 24.60 69.52 6460.80 222134 5024481
Sum 2303 76282.15 2002087 14784382

Figure 3: Example 5.7, direct calculation for mean math scores

Source: Table 5.7 of Sampling: Design and Analysis, 3rd edition, by Sharon L. Lohr
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We use the ratio estimator to estimate the mean math score. From
equation (5.30),

£
5 ,-EZS ' 76282.15

TS M T 2303
i€eS

= 33.12.

Alternatively, we can use equation (5.31) to calculate y, using the
sampling weights (as is done by most software packages). The
weight for student j in school i is

N M, 75 M;
W; = — +» — —= — - ——,
J n m; 10 20

The estimated mean math score is

~  Dlies 2jes WiYij _ 572116.1

N = = 33.12.
' >ies jes: Wij 17272.5
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With-replacement variance
The weights do not allow us to calculate the standard error directly.
We need the clustering information for that. From Table 5.7,

1 _ . 14784382
s2 = — Z M2 (7 — 7,)% = ————= = 1642709.
ieS
Also, the average size of the sampled clusters is
_ e M; 2303
i — 2iesMi 2303 _ 505
n 10
The with-replacement variance is given by:
PR 2 1642709
VG = = = — 3.007.

nM?2 10 x 230.32
Finally, the standard error is:

SEwr(y,) = V/3.097 = 1.76.

This result matches the R output provided below.
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# calculate with-replacement variance; no fpc argument
> # include psu variable in id; include weights

> dschools<-svydesign(id="schoolid,weights="finalwt,
data=schools)

> dschools

1 - level Cluster Sampling design (with replacement)
With (10) clusters.

svydesign(id = “schoolid, weights = “finalwt,

data = schools)
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mathmean<-svymean(“math,dschools)

> mathmean
mean SE

math 33.123 1.7599

> degf (dschools)

(11 9

> # use t distribution for confidence intervals because

there are only 10 psus

> confint(mathmean,df=degf (dschools))
2.5 % 97.5%

math 29.14179 37.1041
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Without-replacement variance
Recall that

2
P

o605 [0 s (- 2) 2

S (Miyi — Miy,)?

where s? = i€s p— and M is the average psu size
\A/(A ) = 1 10\ 1642709 n ‘1 2902087
Y= (23032 |\" 7)) 10 75 10
= 2.684 +0.073
= 2757

SE(y,) = V2.757 = 1.66
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Without-replacement variance

create a variable giving each student an id number
schools$studentid<-1: (nrow(schools))

# calculate without-replacement variance

# specify both stages of the sample in the id argument
# give both sets of population sizes in the fpc argument
# do not include the weight argument
dschoolwor<-svydesign(id="schoolid+studentid,
fpc="rep(75,nrow(schools))+Mi, data=schools)

> dschoolwor

2 - level Cluster Sampling design with (10, 200) clusters.
svydesign(id = “schoolid + studentid,

fpc = “rep(75, nrow(schools)) + Mi, data = schools)

V V V V V V #
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mathmeanwor<-svymean(“math,dschoolwor)

> mathmeanwor
mean SE

math 33.123 1.6605

> confint (mathmeanwor,df=degf (dschoolwor))
2.6 % 97.5 %

math 29.36667 36.87923
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Comparison of with and without replacement variance
Variable DF Mean SE 95% Cl
WR 9 33123 1.76 [29.14, 37.10]
WOR 9 33123 1.66 [29.37, 36.88]

» The second term, 0.073, in the without-replacement variance
is smaller than the first term, 2.684.

» The standard error with replacement, 1.76, is close to the
standard error without replacement, 1.66.

» The confidence interval from the without-replacement method
is narrower than the confidence interval from the
with-replacement method.

» In general, we recommend omitting the finite population
correction (fpc) argument for multi-stage cluster sampling.
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Design issues:

» what precision?
» what are the size of psus?
» how many ssus per psu?
» how many psus?

Goal of designing a survey:

P> to get the most information possible for the least cost and
inconvenience.
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psu size

| 2

>

The psu size is often a natural unit.
Example: clutches, farms, classes, schools.

In some surveys, the investigator may have a wide choice for
psu size.

Example: Estimating the sex and age ratios of mule deer in a
region of Colorado.

psu: Designed areas
ssu: Might be individual deer or groups of deer in those areas
Size of psus might be 1 km?, 2 km?, or 100 km?

Usually, the larger the psu size, the more variability you expect
to see within a psu. Hence, you expect R? and ICC to be
smaller with a large psu than with a small psu. However, if
the psu size is too large, you may lose the cost savings of
cluster sampling.
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Comments:
» Bellhouse, D. R. (1984). A review of optimal designs in survey
sampling. The Canadian Journal of Statistics, 12, 53-65.
reviews optimal designs for sampling
provides useful guidance for designing a survey
» There are many ways to “try out” different psu sizes before
taking a survey
use different combinations of R2 and M, and compare
the costs.
pilot study, perform an experiment and collect data on
relative costs and variances with different psu sizes.
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Designing a two-stage cluster survey
Minimize the variance for a fixed cost

= (- 3503 (1 e
=1

If M; = M, m; = m for all psus

)= (- ) 50 (1) M5
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Choosing Subsampling Sizes
) MSW
R:=1-

52

> a measure of homogeneity in general population

» MSW =0 — R2 =1, all elements within a cluster have the
value of the cluster mean, need only subsample one element

» for other values of R2, optimal allocation depends on the
relative cost of sampling psus and ssus
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Minimum Cost
» One approach to determining sample sizes is to consider costs.

» Let c; be the cost of measuring each psu, and ¢, be the cost
of measuring each ssu.

Total cost = C = ¢cyn+ conm
» Minimize equation (1) to get:

C

Nopt =
C1 + CoMgpt

o JaM(N-1)(1-R?)
opt c(NM — 1)R2
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Example 5.10:
Recall Example 5.2, where a student wants to estimate the average
grade point average (GPA) in his dormitory. He adopted a
one-stage cluster sampling plan.
» Chooses 5 suites (n = 5) from the 100 suites (N = 100) at
random.
» Asks every person (4 students per suite, M; = m; = 4) in the
5 suites what their GPA is.
Question: Would subsampling have been more efficient for this
case than the one-stage cluster sample used in Example 5.27
» Set total cost C = 300.
» Set different sets of (c1, 2) by (40,5), (10,20), and (20, 10).
» Consider subsample sizes m = (1.0, 1.5,2.0,2.5,3.0,3.5,4.0).
m Calculate the corresponding number of psus by ngp: =

ca+om’

m Calculate V(Junb).
> Plot \A/(f/unb) Vs m.

Instructor: Yan Lu  86/94



Chapter 5

18 Chapter 5: Cluster Sampling with Equal Probabilities

FIGURE 5.5

Estimated variance that would be obtained for the GPA example, for different values of ¢, and
¢, and different values of m. The sample estimate of 0.337 was used for R2. The total cost used
for this graph was C = 300. If it takes 40 minutes per suite and 5 minutes per person, then
one-stage cluster sampling should be used; if it takes 10 minutes per suite and 20 minutes per
person, then only one person should be sampled per suite; if it takes 20 minutes per suite and
10 minutes per person, the minimum is reached at m ~ 2, although the flatness of the curve
indicates that any subsampling size would be acceptable.

0.05
0.04
0.03

0.02

Projected Variance

0.01
1.0 L5 20 25 30 35 40

Subsample Size

FIGURE 5.6

Estimated variance that would be obtained for the GPA example, for different values of R? and
different values of . The cos
¢, = 10. The higher the value of R2, the smaller the subsample size m should be.

sed in constructing this graph were C = 300, ¢; = 20, and

0.05
0.04
0.03

0.02

Projected Variance
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Unequal psu Size (Unequal M;s)
> Substitute M for M in the above work, and decide the
average subsample size m.

m Either take m observations in every cluster.

m Or allocate observations so that % = constant.

i

» As long as the M;s do not vary too much, this should produce
a reasonable design.

» If the M;s are widely variable, and the t;s are correlated with
the M;s, a cluster sample with equal probabilities is not
necessarily very efficient; an alternative design should be
considered.
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Choosing number of psus
Assume: clusters are of equal size

o) = (7)1 )
< [MSB (1_m)MSW]
- M M m

1
n
v
n

~ 1
An approximate 100(1 — )% Cl is y,,, £ Zoj2\| TV
n

. L /1
If desired precision is e, then e = z, 54/ —Vv
n

n= zi/Zv/ez, v could be from a prior survey in literature
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Systematic sampling:

» A special case of cluster sampling

> Have a list of m units, take every kth one randomly
Example: Want to take a systematic sample of size 3 from a
population that has 12 elements:
1,2,3,4,5,6,7,8,9,10,11,12

» Choose a number randomly between 1 and 4

v

Draw that element and every fourth element thereafter

» The population contains N = 4 psus
S1=41,5,9}, S>={2,6,10}
S3={3,7,11}, S, ={4,8,12}

» Take an SRS of one psu
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Consider a population with NM elements.

» There are N possible choices for the systematic sample, each
of size M.

» We observe the mean of the one cluster that comprises our
systematic sample:
Vi = Yiu = Ysys-
Properties of )A/sys

> Elysys] = yu.
» For a simple systematic sample, select n = 1 of the N clusters.
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A 1\ $?
V(Ysys) = (1_N)/\/It2

1\ MSB
= <1_N>M
52
B L+ (M —1)-1cq]

M SSW
M —1SSTO

%

ICC=1-

» [CC is a measure of homogeneity within clusters

> [CC > 0 or large, there is little variation within the systematic
samples relative to that in the population, then the elements
in the sample all give similar information, systematic sampling
would be expected to have higher variance than an SRS

» ICC < 0, if elements within the systematic sample (psu) are
more diverse than SRS would be, systematic sampling would

be more efficient than an SRS
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Notes:

» Since n =1 in systematic sampling, we cannot obtain an
unbiased estimate of V(¥).

» If the sampling frame is in random order, systematic sampling
is a good choice.

> A potential danger of systematic sampling occurs when the
sampling frame follows a regular pattern, such as Male,
Female, Male, Female, Male, Female, etc.

» Systematic sampling is often used when a researcher wants a
representative sample of the population but does not have the
resources to construct a complete sampling frame in advance.
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Disclaimer

Slides are intended for a course based on the book: Sampling:
Design and Analysis, Third Edition by Sharon L. Lohr

All examples, datasets, and pages directly scanned and included in
this chapter are from the textbook.

References to papers or books cited in these slides can be found in
the Bibliography section of the textbook.
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