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Topics

▶ Linearization (Taylor Series) Methods

▶ Random Group Methods

▶ Resampling and Replication Methods

▶ Generalized variance functions (GVF)
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Linearization for estimating variances

Most of the variance formulas in Chapters 2 through 6 were for
estimators of means and totals. Those formulas can be used to find
variances for any linear combination of estimated means and totals.

V

(
k∑

i=1

aj t̂j

)
=

k∑
j=1

a2j V (t̂j) + 2
k−1∑
j=1

k∑
l=j+1

ajalCov(t̂j , t̂l)
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Suppose we are interested in a population quantity θ that is a
function of population means or totals

▶ In general, let θ be a parameter of interest,

θ = h(t1, t2, · · · , tk), θ̂ = h(t̂1, t̂2, · · · , t̂k)

▶ Taylor’s theorem allows us to linearize a smooth nonlinear
function h(t1, t2, · · · , tk) of the population totals
By first-order Taylor expansion

θ̂ − θ ≈
∑k

j=1

∂h

∂tj
(t̂j − tj)
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Example: Ratio estimator θ = B =
ty
tx
, θ̂ = B̂ =

t̂y
t̂x

h(x , y) =
y

x
,

∂h

∂x
=

−y

x2
,

∂h

∂y
=

1

x

h(tx , ty ) =
ty
tx
,

∂h

∂tx
=

−ty
t2x

,
∂h

∂ty
=

1

tx

B̂ − B = h(t̂x , t̂y )− h(tx , ty )

≈ ∂h

∂x
|(tx ,ty ) · (t̂x − tx) +

∂h

∂y
|(tx ,ty ) · (t̂y − ty )

= − ty
t2x
(t̂x − tx) +

1

tx
(t̂y − ty )

= − 1

tx
[B(t̂x − tx)− (t̂y − ty )]
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B̂ − B ≈ − 1

tx
[B(t̂x − tx)− (t̂y − ty )]

=
1

tx
[t̂y − ty − B(t̂x − tx)]

=
1

tx
[t̂y − Bt̂x − (ty − Btx)]

Let zi = yi − Bxi ,

t̂z =
∑
i∈S

wizi =
∑
i∈S

wi (yi − Bxi )

= t̂y − Bt̂x

B̂ − B ≈ 1

tx
[t̂z − tz ]
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VL(B̂) ≈ V

(
t̂z
tx

)
=

1

t2x
V (t̂z)

zi = yi − Bxi , ei = yi − B̂xi
Linearization variance

V̂L(B̂) ≈ V̂ (t̂e)/t̂
2
x

=
N2
(
1− n

N

) s2e
n

N2x̄2

=
(
1− n

N

) s2e
nx̄2

Recall Chapter 4, SRS

B̂ = ȳ/x̄ = t̂y/t̂x

V̂ (B̂) =
(
1− n

N

) s2e
nx̄2
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Advantages:

▶ If the partial derivatives are known, linearization almost always
gives a variance estimate for a statistic and can be applied in
general sampling designs

▶ Theory and softwares are well developed for linearization

Disadvantages:

▶ Calculations can be messy, and the method is difficult to
apply for complex functions involving weights

▶ Not all statistics can be expressed as a smooth function of the
population totals, such as median and other quantiles

▶ Need large sample size for the accuracy of the linearization
approximation
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Random Group Methods

1. Replicating the Survey Design

▶ the basic survey design is replicated independently for R times.
—- Independently means that each of the R sets of random
variables used to select the sample is independent of the other
sets after each sample is drawn, the sampled units are replaced
in the population so they are available for later samples.

▶ the R replicate samples produce R independent estimators of
the quantity of interest; the variability among those estimates
can be used to estimate the variance of θ̂.
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Let θ represent the parameter of interest.
Define:

▶ θ̂r : the estimator of θ from the rth replicate.

▶ θ̃ = 1
R

∑R
r=1 θ̂r : the average of the replicate estimators.

▶ V̂1(θ̃) =
1
R · 1

R−1

∑R
r=1(θ̂r − θ̃)2: an estimator of the variance

of θ̃.

If θ̂r is an unbiased estimator of θ, then θ̃ is also an unbiased
estimator of θ, and V̂1(θ̃) is an unbiased estimator of V (θ̃).
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Example 9.3.

▶ Objective: Estimate the ratio of out-of-state tuition to in-state
tuition for public colleges and universities in the United States,
using data from college.csv (see Example 3.12 for details).

▶ Method: Implement the random group method by selecting
five simple random samples (SRSs) of size 10 each.
—- The SRSs are drawn without replacement, but the same
college may appear in more than one sample.
—- Data for this example are in collegerg.csv.
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Table 1: Summary Statistics for Five SRSs of Colleges, Used in Example
9.3. θ̂i= average of nonresident tuitions for sample i/average of resident
tuitions for sample i

Replicate Average Average

sample r In-state tuition x̄r Out-of-state tuition ȳr θ̂r
1 8913.3 21614.7 2.4250
2 9542.0 21497.5 2.2529
3 10210.6 21323.4 2.0884
4 9004.7 18469.0 2.0510
5 9467.1 22844.0 2.4130
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▶ The sample average of the five independent estimates is

θ̃ =
5∑

i=1

θ̂r/5 = 2.246.

▶ The variability across the estimates i,e., the sample standard
deviation of the five estimates is 0.175, so the standard error
of θ̃ is √

V̂1(θ̃) = 0.175/
√
5 = 0.0784.

▶ A 95% CI for the ratio is

2.246± 2.78 ∗ (0.0784) = [2.03, 2.46],

where where 2.78 is the t critical value with 4 degrees of
freedom (df).

Instructor: Yan Lu 13/69



Chapter 9

2. Dividing the Sample into Random Groups

▶ In practice, the complete sample is selected according to the survey
design.

▶ The complete sample is then divided into R groups, so that each
group forms a miniature version of the survey, mirroring the sample
design.
—-If the sample is an SRS of size n, the groups are formed by
randomly apportioning the n observations into R groups, each of
size n/R.
—-In a cluster sample, the psus are randomly divided among the R
groups. The psu takes all its observation units with it to the
random group, so each random group is still a cluster sample.
—-In a stratified multistage sample, a random group contains a
sample of psus from each stratum. Note that if k psus are sampled
in the smallest stratum, at most k random groups can be formed.
—-The groups are then treated as though they are independent
replicates of the basic survey design.
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▶ These pseudo-random groups are not quite independent
replicates because an observation unit can only appear in one
of the groups; if the population size is large relative to the
sample size, however, the groups can be treated as though
they are independent replicates.
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Definitions and Variance Estimation

▶ Let θ be the parameter of interest.

▶ θ̂r : Estimator of θ calculated from the rth random group.

▶ θ̃ =
1

R

R∑
r=1

θ̂r : Average estimate across the R random groups.

▶ θ̂: Estimate of θ calculated from the complete sample.
— Typically, θ̂ is a more stable estimator than θ̃.

▶ Variance estimators:

V̂1(θ̃) =
1

R
· 1

R − 1

R∑
r=1

(θ̂r − θ̃)2

V̂2(θ̃) =
1

R
· 1

R − 1

R∑
r=1

(θ̂r − θ̂)2

— V̂2(θ̃) is slightly larger but is often preferred.
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Example 9.4: The 1987 Survey of Youths in Custody was divided
into seven random groups.

▶ The survey design had 16 strata. Strata 6-16 each consisted
of one facility (=psu), and these facilities were sampled with
probability one. In strata 1-5, facilities were selected with
probability proportional to number of residents in the 1985
Children in Custody census.
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Table 2: Survey of Youth in Custody Stratum Information

CIC size Number of Number of Number of eligible
number of psu’s in residents psu’s in

Stratum residents frame in CIC sample

1 1-59 99 2881 11
2 60-119 39 3525 7
3 120-179 30 4355 7
4 180-239 13 2594 7
5 240-359 14 4129 7
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▶ Seven random groups were formed because strata 2 through 5
each have seven psus.

▶ For each self-representing facility in strata 6-16, random group
numbers were assigned as follows: The first resident selected
from the facility was assigned a number between 1 and 7.
Let’s say the first resident was assigned number 6. Then the
second resident in that facility would be assigned number 7,
the third resident 1, the fourth resident 2, and so on.
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▶ In strata 1-5, all residents in a facility (psu) were assigned to
the same random group. Thus for the seven facilities sampled
in stratum 2, all residents in facility 33 were assigned random
group number 1, all residents in facility 9 were assigned
random group number 2, and so on.

▶ After all random group assignments were made, each random
group had the same basic design as the original sample.
—- Random group 1, for example, forms a stratified sample in
which a (roughly) random sample of residents is taken from
the self representing facilities in strata 6-16, and an
unequal-probability sample of facilities is taken from each of
strata 1-5.
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Table 3: Estimates of mean age of residents for each random group,
θ̂r =

∑
wiyi/

∑
wi , where wi is the final weight for resident i , and the

summations are over observations in random group r .

Random group Estimate of mean age θ̂r
1 16.55
2 16.66
3 16.83
4 16.06
5 16.32
6 17.03
7 17.27
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▶ θ̃ =
1

7

7∑
r=1

θ̂r = 16.67, θ̂ = 16.64 (using entire data)

▶ V̂1(θ̃) =
1

7
· 1

7− 1

7∑
r=1

(θ̂r − θ̃)2 =
0.1704

7
= 0.024

▶ V̂2(θ̃) =
1

7
· 1

7− 1

7∑
r=1

(θ̂r − θ̂)2 =
0.1716

7
= 0.025

▶ using θ̂, a 95% CI for mean age is

16.64± 2.45
√
0.025 = [16.3, 17.0],

where 2.45 is the t critical value with 6 df.
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Advantages of random group methods:

▶ Easy to calculate the variance estimate.

▶ The method is well-suited to multiparameter or nonparametric
problems. It can be used to estimate variances for percentiles
and nonsmooth functions as well as variances of smooth
functions of the population totals.

▶ Random group methods are easily used after weighting
adjustments for nonresponse and undercoverage.
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Disadvantages of random group methods:

▶ The number of random groups is often small. This gives
imprecise estimates of the variances.
—-The survey design may limit the number of random groups
that can be constructed. If two psus are selected in each
stratum, then only two random groups can be formed.
—-Generally one would like at least ten random groups to
obtain a more stable estimate of the variance and to avoid
inflating the CI by using a critical value from a t distribution
with few df.

▶ If θ̂ is a nonlinear statistic, θ̃ can have large bias if the number
of observations in each group is small.

▶ Setting up the random groups can be difficult in complicated
designs, as each random group must have the same design
structure as the complete survey.
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Resampling and Replication Methods

▶ Random group methods are easy to compute and explain but
are unstable if a complex sample can only be split into a small
number of groups.

▶ Resampling methods treat the sample as if it were itself a
population; we take different samples from this new
“population” and use the subsamples to estimate the variance.

▶ All of the methods in this section calculate variance estimates
for a sample in which psus are sampled with replacement. If
psus are sampled without replacement, these methods may
still be used, but are expected to overestimate the variance
and result in conservative CIs.
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1. Balanced Repeated Replication (BRR)
Restrict to surveys that are stratified to the point that only
two psus are selected from each stratum. This design gives
the highest degree of stratification possible while still allowing
calculation of variance estimates in each stratum.

▶ Half-samples:
randomly select one of the observations in each stratum for
group 1 and assign the other to group 2. The groups in this
situation are half-samples.
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Altogether 2H (H stratum) possible half-samples could be formed.
McCarthy (1966, 1969) suggest using a balanced sample of the 2H

possible half-samples to estimate the variance.
—- Balanced repeated replication uses the variability among R
replicate half-samples that are selected in a balanced way to
estimate the variance of θ̂.

▶ Defining balance,
Half-sample r can be defined by a vector
αr = (αr1, · · · , αrH), let
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yh(αr ) =

{
yh1 if αrh = 1
yh2 if αrh = −1

The set of R replicate half-samples is balanced if

R∑
r=1

αrhαrl = 0, for all l ̸= h.

V̂BRR(θ̂) =
1

R

R∑
r=1

[θ̂(αr )− θ̂]2
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Table 4: Illustration of balanced repeated replication

Stratum(h)
1 2 3 4 5 6 7

α1 -1 -1 -1 1 1 1 -1
α2 1 -1 -1 -1 -1 1 1
α3 -1 1 -1 -1 1 -1 1
α4 1 1 -1 1 -1 -1 -1
α5 -1 -1 1 1 -1 -1 1
α6 1 -1 1 -1 1 -1 -1
α7 -1 1 1 -1 -1 1 -1
α8 1 1 1 1 1 1 1
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2. The Jackknife (delete-1 jackknife)
θ̂(j): the estimator without observation j

θ̂: estimator with full data set

SRS : V̂JK (θ̂) =
n − 1

n

n∑
j=1

(θ̂(j) − θ̂)2
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Example: θ̂ = ȳ

θ̂(j) = ȳ(j) =
1

n − 1

∑
i ̸=j

yi =
1

n − 1

(
n∑

i=1

yi − yj

)

= ȳ · n

n − 1
−

yj
n − 1

= ȳ − 1

n − 1
(yj − ȳ)

where ȳ(j) =
sum of everyone except yj

n − 1
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n∑
j=1

(ȳ(j) − ȳ)2 =
n∑

j=1

(
ȳ − 1

n − 1
(yj − ȳ)− ȳ

)2

=
1

(n − 1)2

n∑
j=1

(yj − ȳ)2

=
1

n − 1
s2y

thus

V̂JK (ȳ) =
n − 1

n

n∑
j=1

(ȳ(j) − ȳ)2 =
s2y
n
,

which is equal to the with-replacement estimator of the variance of
ȳ .
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Example 9.7. Let’s use the jackknife method to estimate the ratio
of out-of-state tuition (y) to in-state tuition (x) described in
Example 9.3.

θ̂ =
ȳ

x̄
, θ̂(j) = B̂(j) =

ȳ(j)
x̄(j)

The jackknife variance estimator is given by:

V̂B̂(θ̂) =
n − 1

n

∑
j∈S

(
B̂(j) − B̂

)2
For each jackknife group (Table 9.6 page 374), omit one
observation.

Instructor: Yan Lu 33/69



Chapter 9

For instance, for the first replicate group, x̄(1) is the average of all
x values in the sample except x1:

x̄(1) =
1

9

10∑
i=2

xi

=
1

9
(7140 + 9808 + · · ·+ 11976 + 8935 + 8316)

= 8802

Please refer to Table 9.6 on page 374 for Jackknife calculation.
We can calculate,

B̂ = 2.425,
∑

(B̂(j) − B̂)2 = 0.0595,

and
V̂JK (B̂) = (0.9)(0.0595) = 0.05358
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Example 9.7 using R

data(collegerg)

# replicate group 1

collegerg1<-collegerg[collegerg$repgroup==1,]

collegerg1[,23:24]

> collegerg1[,24:25]

tuitionfee_in tuitionfee_out

1 9912 23640

2 7140 14810

3 9808 26648

4 8987 35170

5 7930 8674

6 7200 17550

7 8929 21692

8 11976 22488

9 8935 27199

10 8316 18276
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Linearization estimates (default)

collegerg1$sampwt<-rep(500/10,10)

dcollegerg1<-svydesign(id=~1, weights=~sampwt,

data=collegerg1)

> svymean(~tuitionfee_in+tuitionfee_out, dcollegerg1)

mean SE

tuitionfee_in 8913.3 454.46

tuitionfee_out 21614.7 2325.15
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Calculte estimate and SEs of ratio using linearization

> ratio.lin<-svyratio(~tuitionfee_out,~tuitionfee_in,

dcollegerg1)

> ratio.lin

Ratio estimator: svyratio.survey.design2(~tuitionfee_out,

~tuitionfee_in, dcollegerg1)

Ratios=

tuitionfee_in

tuitionfee_out 2.424994

SEs=

tuitionfee_in

tuitionfee_out 0.2311776

> confint(ratio.lin,df=degf(dcollegerg1))

2.5 % 97.5 %

tuitionfee_out/tuitionfee_in 1.902034 2.947954
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Jackknife estimates

> ## define jackknife replicate weights design object

> dcollegerg1jk <- as.svrepdesign(dcollegerg1, type="JK1")

> dcollegerg1jk

Call: as.svrepdesign(dcollegerg1, type = "JK1")

Unstratified cluster jacknife (JK1) with 10 replicates.

# JK estimates are same as linearization estimates

# since we are estimating mean from an SRS and

# we didn’t include fpc in design object

> svymean(~tuitionfee_in + tuitionfee_out, dcollegerg1jk)

mean SE

tuitionfee_in 8913.3 454.46

tuitionfee_out 21614.7 2325.15
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# jackknife SE for ratio

svyratio(~tuitionfee_out, ~tuitionfee_in,

design = dcollegerg1jk)

> svyratio(~tuitionfee_out, ~tuitionfee_in,

design = dcollegerg1jk)

Ratio estimator: svyratio.svyrep.design(~tuitionfee_out,

~tuitionfee_in, design = dcollegerg1jk)

Ratios=

tuitionfee_in

tuitionfee_out 2.424994

SEs=

[,1]

[1,] 0.2314828

B̂ = 2.425,SE = 0.2314828 and V̂JK (B̂) = .05358.
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Using weights for Jackknife

ȳ =

∑
i∈S wiyi∑
i∈S wi

, ȳ(i) =

∑
k∈S wk(i)yk∑
k∈S wk(i)

SRS: wi = N/n.

wk(i) =

{ n

n − 1
wk k ̸= i

0 k = i
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Extension to a complex survey data:

▶ Cluster samples: delete one psu instead of deleting one unit

▶ Stratified multistage cluster sample: the jackknife is applied
separately in each stratum at the first stage of sampling, with
one psu deleted at a time

a. H strata, nh psus are chosen for the sample from stratum h.
Assume these psus are chosen with replacement

b. n: number of psus
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c. θ̂(j): estimate of θ that would be obtained by deleting psu j

wi(hj) =


wi if observation unit i is not in stratum h
0 if observation unit i is in psu j of stratum h

nh
nh − 1

wi if observation unit i is in stratum h

but not in psu j

V̂JK (θ̂) =
H∑

h=1

nh − 1

nh

nh∑
j=1

(θ̂(hj) − θ̂)2
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Example 9.8 coots data using R
Delete one psu at a time

> data(coots)

> coots$relwt<-coots$csize/2

> dcoots<-svydesign(id=~clutch,weights=~relwt,data=coots)

> dcootsjk <- as.svrepdesign(dcoots, type="JK1")

> dcootsjk

Call: as.svrepdesign(dcoots, type = "JK1")

Unstratified cluster jacknife (JK1) with 184 replicates.

> svymean(~volume,dcootsjk)

mean SE

volume 2.4908 0.061

> confint(svymean(~volume,dcootsjk),df=degf(dcootsjk))

2.5 % 97.5 %

volume 2.370354 2.611203
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Advantages:

▶ The jackknife is an all-purpose method. The same procedure
is used to estimate the variance for every statistic for which
jackknife can be used.

▶ The jackknife provides a consistent estimator of the variance
when θ is a smooth function of population totals (Krewski
and Rao, 1981).

▶ Replication methods such as the jackknife can be used to
account for some of the effects of imputation on the variance
estimates (Rao and Shao, 1992).
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Disadvantages:

▶ For some sampling designs, the jackknife may require a large
amount of computation.

▶ The jackknife performs poorly for estimating the variances of
some statistics that are not smooth functions of population
totals. For example, the jackknife does not give a consistent
estimator of the variance of quantiles and median.
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3. Bootstrap
Treat sample as population, then draw “resamples” with
replacement from the original sample
Take R bootstrap resamples, obtaining θ̂∗1, · · · , θ̂∗R .

Example 9.9, estimate the variance of the median height θ in the
population, using data from htsrs (refer to example 7.4).

▶ The median height in population htpop is θ = 168

▶ Sample median from htsrs, θ̂ = 169

▶ Resample 2000 times, R = 2000.
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Median of resample 165 166 166.5 167 167.5 · · · 172

frequency 1 5 2 40 15 · · · 4

Sample mean:
θ̂∗1 + · · ·+ θ̂∗2000

2000
= 169.3

Sample variance:

V̂B(θ̂) =
1

R − 1

R∑
r=1

[
θ̂∗r −

1

R

R∑
r=1

θ̂∗r

]2
= 0.9148

An approximate 95% CI may be constructed using the bootstrap
variance as

169± 1.96 ∗
√
0.9148 = [167.4, 171.2]

or using 2.5% and 97.5% quantiles as

[q2.5%, q97.5%] = [167.5, 171]
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Direct code to find bootstap variance and CI for median of
height

# bootstrap by direct coding

# number of iteration

R <- 10000

# init location for bootstrap theta

thetahat <- rep(NA, R)

# draw R bootstrap resamples

for (i in 1:R) {

#

resam <- sample(htsrs$height, 199, replace = TRUE)

thetahat[i] <- median(resam)

}
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Variance and CI estimate by normal approximation using
bootstrap variance

> # variance and CI estimate by normal approximation

> sebs<-sqrt(var(thetahat))

> sebs

[1] 0.9685265

> m<-median(htsrs$height)

> m

[1] 169

> CI.bs1 <- c(m-1.96*sebs,m+1.96*sebs)

> CI.bs1

[1] 167.1017 170.8983

An approximate 95% CI of height median may be constructed
using the bootstrap variance as

169± 1.96 ∗ 0.9685 = [167.1017, 170.8983]
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Sort the bootstrap estimates to obtain bootstrap CI

> # 0.025th and 0.975th quantile gives equal-tail

> # bootstrap CI

> thetahat.sorted <- sort(thetahat)

> CI.bs2 <- c(thetahat.sorted[round(0.025*R)],

thetahat.sorted[round(0.975*R+1)])

> CI.bs2

[1] 167 171

The 0.025th and 0.975th quantile of the R sorted bootstrap
estimates gives equal-tail bootstrap CI for median as [167, 171].
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The following is bootstrapping mean of height

> data(htsrs)

> nrow(htsrs)

[1] 200

> head(htsrs)

rn height gender

1 257 159 F

2 1016 174 M

3 1264 186 M

4 817 158 F

5 374 178 F

6 1063 177 M

> wt<-rep(10,nrow(htsrs))

> dhtsrs<-svydesign(id=~1, weights=~wt,data=htsrs)

> dhtsrs

Independent Sampling design (with replacement)

svydesign(id = ~1, weights = ~wt, data = htsrs)
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> set.seed(9231)

> dhtsrsboot <- as.svrepdesign(dhtsrs, type="subbootstrap",

replicates=1000)

# linearization

> svymean(~height,dhtsrs)

mean SE

height 168.94 0.7831

> svymean(~height,dhtsrsboot)

mean SE

height 168.94 0.7978

> degf(dhtsrsboot) # 199 = n - 1

[1] 199

> confint(svymean(~height,dhtsrsboot),df=degf(dhtsrsboot))

2.5 % 97.5 %

height 167.3667 170.5133

An approximate 95% CI may be constructed using the bootstrap
variance as 168.94± 1.971957 ∗ 0.7978 = [167.4, 171.5]
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Distribution of the θ̂∗r s should be like distribution of θ̂ from the
original sample.

F̂ ∗(x)− F̂ (x) → 0

Estimate quantiles of distribution of θ̂ − θ using histrogram of
bootstrap values.

V̂B(θ̂) =
1

R − 1

R∑
r=1

[
θ̂∗r −

1

R

R∑
r=1

θ̂∗r

]2
or

V̂B(θ̂) =
1

R − 1

R∑
r=1

(θ̂∗r − θ̂)2
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The rescaling bootstrap of Rao and Wu (1988) for a stratified
multistage sample
— nh: number of psus sampled from stratum h
— R: number of bootstrap replicates to be created. Typically,
R = 500 or 1, 000
— bootstrapping is applied within each stratum
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a. For bootstrap replicate r(r = 1, · · · ,R), select an SRS of size
nh − 1 psus with replacement from the nh psus in stratum h.
Do this independently for each stratum.
Let mhj(r) be the number of times psu j of stratum h is
selected in replicate r .

b. Create the replicate weight vector for replicate r as

wi (r) = wi ×
nh

nh − 1
mhj(r)

for observation i in psu j of stratum h.
The result is R vectors of replicate weights.
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c. Use the vectors of replicate weights to estimate V (θ̂). Let θ̂∗r
be the estimator of θ, calculated the same way as θ̂ but using
weights wi (r) instead of the original weights wi . Then,

V̂B(θ̂) =
1

R − 1

R∑
r=1

(θ̂∗r − θ̂)2
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Example 9.10. We use the bootstrap to estimate variances from
the data in file htstrat.csv, discussed in Example 7.6. The
bootstrap weights are constructed by taking 1000 stratified random
samples with replacement from the data set;

▶ select 159 women (nwomen = 160)

▶ select 39 men (nmen = 40)

with replacement for each resample.
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> data(htstrat)

> nrow(htstrat)

[1] 200

> head(htstrat)

rn height gender

1 201 166 F

2 965 163 F

3 490 166 F

4 249 155 F

5 260 154 F

6 324 160 F

> dhtstrat <- svydesign(id = ~1, strata = ~gender,

fpc = c(rep(1000,160),rep(1000,40)), data = htstrat)

> dhtstrat

Stratified Independent Sampling design

svydesign(id = ~1, strata = ~gender,

fpc = c(rep(1000, 160), rep(1000, 40)), data = htstrat)
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> set.seed(982537455)

> dhtstratboot <- as.svrepdesign(dhtstrat,

type="subbootstrap",replicates=1000)

> svymean(~height,dhtstratboot)

mean SE

height 169.02 0.7296

> degf(dhtstratboot)

[1] 198

> confint(svymean(~height,dhtstratboot),

df=degf(dhtstratboot))

2.5 % 97.5 %

height 167.5769 170.4543

The average height is estimated as ȳstr = 169.02 with bootstrap
standard error of 0.7296; the standard error calculated using the
stratified sampling formula (equation (3.6), page 85), ignoring the
fpc, is 0.739.

Instructor: Yan Lu 59/69



Chapter 9

Advantage:

▶ The bootstrap works for smooth functions of population
means and for some nonsmooth functions such as quantiles in
general sampling designs.

▶ The bootstrap is well suited for finding CIs directly.

Disadvantages:

▶ In some settings, the bootstrap may require more
computations than BRR or jackknife, since R is typically a
very large number.

▶ Less theoretical work has been done on properties of the
bootstrap in complex sampling designs.
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Generalized variance functions (GVF)

▶ In many large government surveys such as the U.S. Current
Population Survey (CPS) or the Canadian Labour Force
Survey, hundreds or thousands of estimates are calculated and
published.

▶ The agencies could calculate standard errors for each
published estimators, but that would add greatly to the labor
involved in publishing timely estimates from the surveys.
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▶ In addition, other analysts of the public-use data files may
wish to calculate additional estimates, and the public-use files
may not provide enough information to allow calculation of
standard errors.
—– Want a flexible formula to allow calculating standard
errors for most estimators wanted

▶ Generalized variance functions (GVFs) are provided in a
number of surveys to calculate standard errors. They have
been used for the CPS since 1947. Villiant (1987), Wolter
(2007, Chapter 7) describes the theory underlying GVFs.
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Given a survey statistics t̂i , such as the estimated number of
persons employed.

▶ Let p̂i be an estimated proportion, p̂i = t̂i/N, where N is a
control total (i.e. constant), provided by the Census Bureau,

▶ Let di be the design effect related to variable i . We have

V (p̂i ) = di ×
pi (1− pi )

n
.

V (t̂i ) = N2di ×
pi (1− pi )

n
= ai t

2
i + bi ti

where ai = −di
n
, bi = di

N

n
. If the deffs are similar for different

estimates, we have ai ≈ a and bi ≈ b.
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The general procedure for constructing a generalized variance
function is as follows:

a. Using replication or some other method, estimate variances
for k population totals of special interest, t1, t2, · · · , tk . Let
vi be the relative variance for ti , for i = 1, 2, · · · , k .

vi = V (t̂i )/t̂
2
i

=
ai t̂

2
i + bi t̂i
t̂2i

= ai +
bi
t̂i
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b. Postulate a regression model relating a set of vi to t̂i by

vi = α+ β/t̂i

to find the parameter estimates a and b for α and β.
This is a linear regression model with response variable vi and
explanatory variable 1/t̂i . Valliant (1987) found that this
model produces consistent estimators of the variances for the
class of superpopulation models he studied.
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c. Use regression techniques to estimate α and β by a and b.
Valliant (1987) suggests using weighted least squares to
estimate the parameters, giving higher weight to items with
small vi .

d. The GVF estimate of relative variance is predicted from the
regression function a+ b/t̂i or

V̂ (t̂new) = at̂2new + bt̂new
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Advantages of Generalized Variance Functions (GVFs):

▶ The GVF may be used when insufficient information is
provided in the public-use data files to allow direct calculation
of standard errors. The data collector can calculate the GVF,
and often has more information for estimating variances than
is released to the public.

▶ Valliant (1987) found that if design effects for the k estimated
totals are similar, the GVF variances are often more stable
than the direct estimates of variance, as they smooth out
some of the fluctuations from item to item.

▶ A GVF saves a great deal of time and speeds production of
annual reports. It is also useful for designing similar surveys in
the future.
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Disadvantages of Generalized Variance Functions (GVFs)

▶ If the design effects (deffs) vary significantly across different
responses, the simple GVF model may produce inaccurate
variance estimates for some responses.

▶ Caution is needed when applying GVFs to subpopulations,
especially if the subpopulation exhibits an unusually high level
of clustering (and thus a high design effect). In such cases, the
GVF estimate of variance may be substantially underestimated
because it does not account for the higher clustering.

▶ GVFs may not perform well for variables not included in the
original calculation of regression parameters. Such estimates
may not align with the assumptions of the GVF model,
leading to unreliable results.
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Disclaimer

Slides are intended for a course based on the book: Sampling:
Design and Analysis, Third Edition by Sharon L. Lohr
All examples, datasets, and pages directly scanned and included in
this chapter are from the textbook.
References to papers or books cited in these slides can be found in
the Bibliography section of the textbook.
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