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Chapter 4: Ratio and Regression Estimation



Ratio Estimation

Two quantities y; and x; are measured on each sample unit

P y;: response variable, x;: auxiliary variable, or subsidiary

variable
N N
> Lett, =) yiand t, = > x; and their ratio be
i=1 i=1
gt _ W
tx XU

Example 4.1: Suppose the population consists of agricultural fields
of different sizes. Let

y; = bushels of grain harvested in field i

x; = acreage of field /

then B = average yield in bushels per acre

yu = average yield in bushels per field

t, = total yield in bushels
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If an SRS is taken, natural estimators for B, t,, and yy are:

B=z=, fy,:BtX yr = Bxy

X<

P> Ratio estimation take advantage of the correlation of x and y
in the population; the higher the correlation, the better they
work. Define the population correlation coefficient of x and y
be

M=

1(Xi —xu)(yi — yu)
(N—1)5,5,

—- S, is the population standard deviation of the x;'s

—- S, is the population standard deviation of the y;'s

—- R is simply the pearson correlation coefficient of x and y
for the N units

R="
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Why use ratio estimation?

1. Want to estimate a ratio
Example: interested in the percentage of pages in Good
Housekeeping magazines that contain at least one
advertisement

» Take an SRS of 10 issues

let x; be the total number of pages in issue i

v

» let y; be the total number of pages in issue i that contain
at least one advertisement
Z Yi
> B €S

DX

ieS
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2. Want to estimate a population total, but population size N is

unknown
| 2 'fy = Ny, but N is unknown
t
> N=_—">
Xy
~ ty _
> i =
Xy
N t 1% A
> tyr - TX)_/ = }T/tx = th
X X
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Example: Apple Juice
For a juice company, the price they are paid for apples in large
shipments is based on the amount of apple juice from the load.
» Need to determine the amount of apple juice in the whole
load prior to extraction.
» We can sample n apples and find y3, - - - y,, the amount of
apple juice in those apples.
» Ny is hard to get in this case because N is hard to count. But
total weight of apple is easy to get.
——use the relationship between weight of the load and weight
of the apple juice one obtains
—Ilet x be the weight of each apple in the sample, X is the
average weight of each apple in the sample.
——number of apples is estimated by t, /X
The total weight t, is easy to get for the entire shipment. We
can thus estimate the total apple juice by:

X<

,fyr = "
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Example: Want to estimate the total # of fish in a haul that are
longer than 12 cm

» Take an SRS, estimate the proportion and multiply by the
total # of fish N. But N is unknown

» Take an SRS, consider the fact that having a length of more
than 12 cm (y) is related to weight (x), introduce an auxiliary
variable x;: weight of fish

» y;: fishes longer than 12cm,
x;: weight of fish,
t.: total weight of haul,
t, =7

> i, =Bt = Zt,

X<
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3. Ratio estimation is often used to increase the precision of
estimated means and totals
Let y; be the # of persons in commune i
and x; be the # of registered births in commune |
want to estimate # of persons in France

» Randomly select 30 communes
: I S
» Estimator 1 = Ny = —~
Xy
# of communes in France * average number of persons in the

30 communes
ty _
ty = TX_)/
X

X<

» Estimator 2= th =
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» When y and X are positively correlated, the sampling

distribution of ¥ exhibits less variability compared to the
X

sampling distribution of _L
Xu
» Consequently, the ratio estimator (Estimator 2) has a smaller
Mean Squared Error (MSE), i.e.,

MSE(Estimator 2) < MSE(Estimator 1).
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4. Adjust estimators from the sample so that they reflect

demographic totals.
Example: An SRS of 400 students is taken at a university
with a total of 4,000 students. The sample contains:

m 240 women and 160 men
m 84 women and 40 men in the sample plan to pursue careers in
teaching

We aim to estimate the total number of students who plan to
become teachers.

» Estimator 1: Using only the information from the SRS,

124
Ny = 4 T 104
y = 4000 x ;o 0
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» Estimator 2: Incorporating demographic information (college
has 2,700 women and 1,300 men), a better estimate is:

84 40
240 x 2700 + 160 x 1300 = 1270

» Highlights:
m Ratio estimation is applied within each gender.
m In the sample, 60% are women, but women comprise 67.5% of
the population. The estimator is adjusted accordingly to better
reflect the demographic proportions.
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5.

Adjust for nonresponse

Example: a sample of businesses,

yi: amount spent on health insurance by business i
x;: number of employees in business i, x; known
want to estimate total insurance expenditures

Estimator 1: Ny

—companies with few employees are less likely to respond to
the survey

—v; is proportional to x;

—Estimator 1 overestimate the total insurance expenditures t,

Y

Estimate 2: t,

t . . .
— = < N, since companies with many employees are more

Iikelgl( to respond to the survey

—Thus a ratio estimate of total heath care insurance
expenditures may help to compensate for the nonresponse of
companies with few employees

Instructor: Yan Lu  12/83
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Example 4.2
» Dataset: SRS of n = 300 counties selected from a total of
N = 3078 counties (U.S. Census of Agriculture, file
agsrs.dat).
» Context:

m Total acreage for 1987 is known.

m 1992 acreage data is only available for the sampled 300
counties.

m Goal: Estimate the population total ?y and mean y for 1992.

» Estimate 1: Using only the SRS data from 1992,

%, os = Ny = 3078 - 7 = 916,927,110
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The plot of acreage, 1992 vs. 1987, for an SRS of 300 counties

1000000 1500000 2000000
| |

Millons of Acres Devoted to Farms (1992)

500000
|

T T T T T
o 500000 1000000 1500000 2000000

Millions of Acres Devoted to Farms (1987)

Figure 1: A scatter plot of 1992 acreage (y-axis) against 1987 acreage
(x-axis) for a simple random sample (SRS) of 300 counties.
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As shown in Figure 1, the line of best fit passes through the origin
with a slope of b = 0.9866, demonstrating a strong positive
correlation between 1992 and 1987 acreages. We will now apply
ratio estimation using 1987 acreage as an auxiliary variable.

> Estimate 2: ratio estimation
—y; = total acreage of farms in county i in 1992
—Xx; = total acreage of farms in county / in 1987
—For 1987, t, = 964,470, 625,
Xy = 964,470,625/3078 = 313343.3
297897.0467

oy _ 297897.0467
5= % = 301053.7233 ~ 900°%

¥, = Bxy = 309, 133.6
t, = Bt, = .986565 x 964470625 = 951,513,191
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Comments:

» When the same quantity is measured at different times, the
response of interest at an earlier time often serves as an
excellent auxiliary variable.

» The sample mean X is slightly smaller than the true
population mean Xy, indicating that the SRS of size 300
slightly underestimates the true population mean of the x's.

» Since x and y are positively correlated, it is reasonable to
expect that ¥ may also underestimate the true population
mean yy.

P> Ratio estimation improves the precision of yy by adjusting y
with the factor Xy /x.
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Properties of Ratio Estimators
» For an SRS, ¥ is unbiased:
— If we calculate ys for every possible sample, the average of
all the sample means will equal the population mean y.

» For the ratio estimator, f/r = ¥>'<U:
— The bias of the ratio estim);tor arises because y is adjusted
by the factor xy/x.
— If we compute y, for all possible samples, the average of
these estimates will generally be close to yy, but not exactly
equal to it.

» For large samples, the sampling distributions of both y and y,
are approximately normal.

P> Ratio estimators are biased but typically have smaller variance
compared to .
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Bias of B
Bias[B] = E[B]-B= E[—y“]

_ E[_yxxu_yu]

x
<
I
I
<

B y(x — xu)
= -k [y XyX : }
1 _
~ %[BV(X) — Cov(x,¥)]
) )

where R is the correlation between x and y.

Instructor: Yan Lu
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Bias[y,] = E[y, — yu]
= E[Bxy — Bxy]
= xyE[B — B]

~ 1 [BV(X) — Cov(%,7)]
Xu

= (1- 1) = (BS? - RS.S,)

nxy

Bias of y, is small if:

>

>
>
>

The sample size n is large.

The sampling fraction n/N is large.

The standard deviation Sy is small.

The correlation R is close to 1.

Note: If all x values are identical (S5« = 0), the ratio
estimator becomes equivalent to the SRS estimator y, and the

bias is zero.
Instructor: Yan Lu  19/83
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MSE of B

E[(B - B)]

Q

(-
(=
(=
(=
(

(7 — Bx)?]

where the approximation is from the fact that the second and third term is negligible

relative to the first term.
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Let
>d/—yi_BX/
>el:g/i:yi_éxl
> d=y— Bx
. 1
MSE(B) ~ 2E[(y Bx)?]
U
1|1 ?
= E|- i — Bx
H D
1 _
= =V
2 (d)
1 n\ S2
= —(1-=)=
>'<121< N) n
” MRE(B) ~ = (1- 1) %
By~ (1 -y) s
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Variance of B

In large sample, bias of Bis typically small relative to V(B)

MSE(B) ~ V(B)

1(1_")53
>'<121 N/ n

Instructor: Yan Lu
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Variance of y,

V) = x5V(B)

Q
VS

—

|
=3
N—
s |

Variance of V/(,) is small if
» the sample size n is large
» the sampling fraction n/N is large
» the deviations y; — Bx; are small

» the correlation R is close to 1

Instructor: Yan Lu  23/83



Chapter 4

Compare ratio estimator to SRS estimator

60~ 1- )5

Vi) = (1= 1) ¥

If 53 < 5y2 then V(¥,) < V(Jss), ratio estimation is more efficient

Instructor: Yan Lu  24/83
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(vi — Bx)?

M-

Il
—

(N-1)57 =

((vi — u) + (Fu — Bx)))?

I
™=

1

N

(y,- - }_/U)2 + Z (B)_<U — BX,')2

1 i=1

I
NE

—|—2Z — yu)(Bxy — Bx;)
= (N- 1)5y2 (N —1)B?S?
—2(N —1)BRS,S,
Where R is the population correlation coefficient, defined as:

R— 2?1:1()0 — Xu)(yi — yu)
(N -1)5,S,
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Vi) ~ (1) 10— Bx)?

Q

N/ n N—-1
ny 1
= (1-7) ;- (S2+B2S2—2BRS,S,)

The variance for the simple random sample (SRS) estimator is given by:

V(ws) = (1- 1) 5—

Ratio estimation is more efficient when:
S; + B*S? —2BRS,S, < S;
This simplifies to:
B?S2 < 2BRS,S,, BS. < 2RS,

Or equivalently:

Y <oRs, > <R
XU Xu yu

Instructor: Yan Lu  26/83
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Thus, for ratio estimation to be more efficient:

S -
R > Xu_ CV(X_)
22 2CV(y)

yu

-\ _ Sd(y)
> QV(y) = =5,
> CV(x) = S‘;ff)

» The absolute values of CV(x) and CV(y) often do not make a
significant difference.

As a result, Ratio estimation is more efficient than an SRS

when: 1
R> —
> 2

Instructor: Yan Lu  27/83
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Examples 4.2 and 4.3 (using R handout 4)

> Ratio estimator
—y; = total acreage of farms in county i in 1992
—Xx; = total acreage of farms in county / in 1987
—For 1987, t, = 963,464,412

y  297897.0467

s X _
x  301953.7233

= .986565, and R = 0.995806

%, = Bt, = .986565 x 963,464,412 = 950, 520, 496
SE(%,,) = 5,540,376

» SRS estimator
t, = Ny = 3078 x 297897.0467 = 916,927,110
SE(%,) = 58,169, 381, this is almost 10 times as large as the
SE from ratio estimation (SE(%,,) = 5,540, 376)

Instructor: Yan Lu  28/83
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» Coefficient of Variation (CV) comparison
Recall, Coefficient of Variation (CV)
when yy # 0,

V) e SED)
ey V"

—-Measure of relative variability

—-Does not depend on the unit of measurement

—CV(E) = CV(7)

—-If the CV of y is small, that is, if yy is estimated with high
relative precision, the bias is small relative to the square root
of the variance.

—- A small CV(y) also means that j is stable from sample to
sample.

CV(y) =

Instructor: Yan Lu  29/83
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Table 1: Comparisons of ratio estimator and SRS estimator

Ratio estimation SRS estimation
SE of t 5,540,376 58,169,381

» Incorporating the 1987 data through the ratio estimator has
significantly increased precision.

» If all quantities to be estimated are highly correlated with the
1987 acreage, using ratio estimators instead of Ny could
substantially reduce the sample size while maintaining high
precision.

Instructor: Yan Lu  30/83
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Regression Estimation in Simple Random Sampling

Review: Regression Analysis

A nutritionist aims to explore the relationship between age and
muscle mass in women. It is hypothesized that muscle mass
decreases with age. To investigate this, she randomly selects 15
women from each 10-year age group, starting from age 40 and
ending at age 79, for a total of 60 women.

Instructor: Yan Lu  31/83
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Line of Relationship

120
|

ex.dataSmass

70

40 50 60

ex.datagage

Figure 2: Age vs. Muscle Mass in Women with fitted regression line
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Normal error regression model:

Yi = Bo + 51.Xi + €

P> Y;: response of the ith trial

> X;: a known constant, the level of the predictor variable in the
ith trial

> (o and (31: parameters

> ¢ X N(0,02) fori=1,2,-- ,n

> E(Yi) = Bo+ B1Xi

Instructor: Yan Lu  33/83



Least square estimators:
» Consider the deviation of Y; from its expected value

[Yi — (Bo + B1Xi)]

» Least Square Measures:

Q= Z — (Bo + BLXi))?

» Objective: to find estimators by and by for By and (31
respectively, for which @ is minimum
>
bo = 0o =y — bix

i=n

> (6~ R)i ~ )

> Regression line: E(-?) = by + b1 X
Instructor: Yan Lu  34/83
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Regression in Simple Random Sampling (SRS)
Want to estimate population mean and population total
Assumptions:

» The relationship between E(y) and x is a straight line
E(y) = By + Bix

» The population mean of x's, Xy is known

Instructor: Yan Lu  35/83
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Population quantities Estimators
%(Xi = xu)(yi — yu) > (i =X)(yi —¥)
B, = i=1 N Bl _ i€eS Z(Xi — )_()2
,;(Xi — Xu)? ies
Bo = yy — Bixy Bo =y — Bix

> Bj and By are the least squares regression slope and intercept
calculated from all the data in the population respectively

» The regression estimator of yy is

yreg = Bo+ Bixy
= y— Bl)_( + BlXU
= y+Bi(xv—X)

Instructor: Yan Lu  36/83
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Properties of the Estimators
Notation

> di =y — (Bo + Bix;)
> e =y — (IASO + élx;) called residuals

N
> (xi = Xu)(yi — yu)
» R= =L (N=1)5.5, , population correlation coefficient
of x and y

Instructor: Yan Lu  37/83
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Bias of )A/reg
bias(f/reg) = —cov(él,)'()

Proof:

Bias(f/reg) = E[)_A/reg — yul

= E[By+ Bixy — yu]
Ely — Bix + Bixy — yu]
Ely - yu] - E[Bi(% = %v)]
= —cov(B1,X)

}a/reg is biased for yy
> If the regression line goes through all of the points (x;, y;) in

the population, then the bias is zero since B; = B; for every
sample, so cov(B1,x) =0

Instructor: Yan Lu  38/83
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) . s?
MSE of jreg: MSE(Vreg) = (1 - N) =

di = yi—(Bo+ Bix;)
= yi — (Bo + Bix; — Bixy + Bixy)
= yi— (Bo+ Bixy + Bi(x; — Xu))
= ¥ —[yu + Bi(xi — Xv)]

MSE()A/reg) = E()é/reg —yu)?
= E[y+ Bi(xu — %) — yul?
= E{y—[w+bBi(x— ?U)]}z
~ Var(d)

- ()

Instructor: Yan Lu  39/83
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Another expression of MSE of f/reg
Notice

and

i=1
= S(1- R2)
MSE (jreg) = (1 ) - 52(1~ R?)
N/ n™Y
MSE (yreg) is small if
» nis large, n/N is large
P> The correlation R is close to either -1 or +1

Instructor: Yan Lu  40/83
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Variance of yreg
For large SRSs

> Bias is often negligible in large samples

» The MSE for regression estimation is approximately equal to
the variance

Instructor: Yan Lu  41/83
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Estimator for total: tyreg

tyreg = Z,Vi'i‘Z}’i

ics i¢s

= ZYI + Z(Bo + élx,-)
ics i¢s

= Zy,- + (/V — n)éo + Bl <tx — ZX,‘)
i€eS i€eS

If n<< N

%yreg ~ Néo—i—l_%ltx

= NBy+ BiNxy
N(By + Bixy)
= N)_A’reg

Instructor: Yan Lu  42/83
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Confidence Intervals:

sete) /(1 ) %
SE(tyreg) = N (1_,’\’,)5”2

A 100(1 — «)% Cl for yy is

2
N n\ s
Sreg & to_a(a/2)y/ (1 _ N) >

A 100(1 — )% approximate Cl for t is

2
~ n S
tyreg + th—2.a/2NY/ (1 - N) f

Instructor: Yan Lu
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Example 4.7: Estimating the Number of Dead Trees
To estimate the number of dead trees in a specific area, the
following sampling procedure is implemented:

1. Divide the area into 100 square plots.
2. Conduct photo counts:
m Count the number of dead trees in each plot using aerial
photographs.
m Photo counts are efficient but may include misclassifications or
missed detections.
3. Select a simple random sample (SRS) of 25 plots for field
verification:
m Perform on-the-ground counts of dead trees in these 25 plots
to assess and correct for any inaccuracies in the photo counts.
4. Calculate the population mean:
m The mean number of dead trees per plot, based on photo
counts, is 11.3.
This methodology combines aerial photographic analysis with field
verification to enhance the accuracy of the estimated mean
number of dead trees per plot.
Instructor: Yan Lu  44/83
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print.data.frame(deadtrees)
photo field

1 10 15
2 12 14
3 7 9
4 13 14
5 13 8
6 6 5
7 17 18
8 16 15
9 15 13
10 10 15
11 14 11
12 12 15
13 10 12
14 5 8

15 12 13

25 10 8 Instructor: Yan Lu  45/83
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dtree<- svydesign(id = "1, weight=rep(4,25),
fpc=rep(100,25), data = deadtrees)

> dtree

Independent Sampling design

svydesign(id = "1, weight = rep(4, 25), fpc = rep(100, 25)
data = deadtrees)

> myfitl <- svyglm(field“photo, design=dtree)

> summary(myfitl) # displays regression coefficients

Call:

svyglm(formula = field ~ photo, design = dtree)

Survey design:

svydesign(id = 1, weight = rep(4, 25), fpc = rep(100, 25)
data = deadtrees)

Coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) 5.0593 1.3930 3.632 0.0014 =x
photo 0.6133 0.1259 4.870 6.44e-05 **x*

Instructor: Yan Lu  46/83
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From R output,
By =5.0593, B; = 0.6133

Fitted regression line

¥y = 5.0593 + 0.6133x

Instructor: Yan Lu  47/83
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newdata <- data.frame(photo=11.3)

> predict(myfitl, newdata)
link SE

1 11.989 0.418

> confint(predict(myfitl, newdata),df=23)
2.5 % 97.5 %

1 11.12455 12.85404

The regression estimate of the mean is
Jreg = 5.0593 + 0.6133 x 11.3 = 11.99

For these data, X = 10.6,y = 11.56, s}% = 0.09, and the sample
correlation between x and y is r = 0.62420.

25

. 1
SE(Yreg) = \/<1 - 100) 25 *9:09 (1 - 0.62420%) = 0.408
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newdata2 <- data.frame(photo=1130)

> predict(myfitl, newdata2, total=100)
link SE

1 1198.9 41.802

> confint(predict(myfitl, newdata2,total=100),df=23)
2.5 % 97.5%

1 1112.455 1285.404

The estimate of the total number of dead trees
%y,eg =100 %11.99 = 1199

The estimated standard error of tyes is 41.80, with Cl of
[1112.455,1285.404].
» Because of the relatively small sample size, we used the t
distribution percentile (with n — 2 = 23 degrees of freedom)
of 2.07 in the Cl rather than the normal distribution percentile
of 1.96.
Instructor: Yan Lu  49/83
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SRS and Ratio estimation using weights

SRS
> w,-:N/n
st,-yf
o=
y S w;
ieS
> &, =3 wy =Ny
ieS
N N
icS ies N n

Instructor: Yan Lu  50/83
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Ratio Estimation

tyr

» w; depend upon values from the sample

> The weight adjustments g; calibrate the estimates on the x
variable. Since Zies w;gix; = ty, the adjusted weights force
the estimated total for the x variable to equal the known
population total t,. The factors g; are called the calibration

factors.
Instructor: Yan Lu  51/83
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Example 4.6: Census of Agriculture Data (Examples 4.2 and
4.3 Continued)

» For each observation:

t. 964,470,625

=~ =—""~1.0377
t, 929,413,560 03

&i
» Since %, < t,, each observation's sampling weight is increased
by a small amount.
» The sampling weight for the Simple Random Sample (SRS)
design is:
3078
= —— ~10.26
"= 7300

» The ratio-adjusted weight for each observation is:

w = w; x g = 10.26 x 1.0377 ~ 10.65

Instructor: Yan Lu  52/83
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D wigixi = 10.64700262x; = 964,470,625 = t,
i€S i€eS

> wigiyi =Y 10.64700262y; = 951,513,191 =
i€S icS

» The adjusted weights, however, no longer sum to N = 3078

> wigi = (300)(10.64700262) = 3194
ieS

» The ratio estimator is calibrated to the population total t, of
the x variable, but is no longer calibrated to the population
size V.
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Regression Estimation

tyreg = N[Bo + Bixy]
= NBy+ NBixy
= ByN + Byt
= (y — Bix)N + Bit,
= 1, — Bt + Bit,
= 1, + Bi(tc — L)

S
= iEZSWi}’i+ ,EZ:S(X"_)?V -t — )

Instructor: Yan Lu  54/83
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,e%y'( i _) A
Z w;y;i(xi — X)
= Z w;yi + < — - (t — &)

2w = R

— Z 4 1 + — Yi
X _ 2
2 )
= Z W;giYi
€S

called g-weight

Instructor: Yan Lu  55/83
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If vi = x;

. (x; — %) (£ — )
3 - 1 ,
yreg Z wi |1+ Swili —x)2 |

i€S
3 wi(x — X)?

i€S ~
— St — 1,
> wixi + S w5 ( )

ies ics
= e+ (tx — tx)
= t
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Comparison of Estimation Methods

>

| 2

Both ratio and regression estimation utilize an auxiliary
variable highly correlated with the variable of interest.

The ratio and regression estimators discussed are special cases
of a generalized regression estimator.

Ratio estimation is particularly useful in cluster sampling.

For a Simple Random Sample (SRS) of size n, the estimators
are summarized in the following table.
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Estimator for Mean yy  Estimator for Total t, Residual e;
SRS y Ny Yi—y
Ratio Bxu Bt, vi — Bx;
Regression By + Bixy N(Bo + Bl)_<U) Vi — By — Bix;
=7+ Bi(xu—x)

Table 2: Estimators and Residuals for SRS of Size n

. . N n 562,
Estimated variance for yy: (1 — —) e
N/ n
) . . ny s2
Estimated variance for t: N2 (1 — N) €
n
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Estimation in Domains

» Domain: A subpopulation of interest.
» Objective: Obtain separate estimates for subpopulations.
m Example: Estimating the average income for women in a
Simple Random Sample (SRS).
> Considerations:

m The number of women in the sample is a random variable.

m Membership in a domain (e.g., women) is unknown for the
entire population until sampled.

m Therefore, the number of individuals in each domain within an
SRS is a random variable, with its value unknown at the survey
design stage.

» Estimating domain means is a special case of ratio estimation.

Instructor: Yan Lu  59/83
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Estimating Mean for a Specific Domain
Suppose there are D domains in the population:
» Uy: Index set of units in the population for domain d, where

d=1,2,...,D.
» Sg4: Index set of units in the sample for domain d, where
d=12,...,D.

> Ng: Number of population units in Uy.
» ng: Number of sample units in S.
To estimate the mean salary for a specific domain (e.g., women):

_ ZieUd Yi  Total salary for all women in population
}/Ud = Nd =

Number of women in population

A natural estimator for yy, is the sample mean:

_ Ziesd Yi  Total salary for women in sample
Vo = _

ny Number of women in sample

Note: ng is a random variable.
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Let:

. 1 if women
yi . Income for person i, x; = )
0 otherwise

y;i if women
up = Xiyi = )
0 otherwise

> t, = Z x; = Ng: Total number of women in the population,
XU = Nd//V

> t, = Z u;: Total income for women in the population.
i=1
» yu, = tu/t« = B: Average income for women in the
population.

> Yy =1u/x= B: Average income for women in the sample d,

where:
> XiYi > Xi
_ = - ieS nyg
u = —— X = = —.
n n n

Instructor: Yan Lu  61/83



Chapter 4

A 1 ny s2
Ve = S0-g)s
1 ny 1 1 Ao
= =09, 712 (B
1
1 1l o1 )
= =) p o1 2 i B
1 ny 1 1
= _— 1_i>f [ -\ 2
;<2< N n 7 2 i —Ya)
i€Sy
Xx=ng/n

- R
_ n Sfd
SE(yq) = (1 - N) Td
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General Case of Domain Estimation
Estimates for different subpopulations:

» The mean for a subpopulation is expressed as a ratio.
» The sample size of the domain is a random variable.

> The estimate for the mean, B, is given by:

Sum of y;'s in the domain

B = — — =7
Total number of observations in the domain yd
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Estimating Totals in Domains
» If Ny (total population size of the domain) is known:

tyg = Ngyq
» If Ny is unknown:
A nd
Ny=N.-—
n
Then, the total estimate is:
~ n o Uj
tyd:N.id.@:Na
n nyg

> The standard error of 1,4 is:

SE(tq) = N (1 - %) 5‘;
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Example 4.8: Estimating Acres Devoted to Farming
In an SRS of size 300 from the Census of Agriculture (see
Examples 2.6, 4.2, and 4.3):

> 129 counties have at least 600 farms.
» 171 counties have fewer than 600 farms.

» Objective: Estimate the average and total number of acres
devoted to farming in each domain.

Summary Statistics for the Two Domains:

Domain, d ny Vd Sd
(Average Acres) (SE)

1. At least 600 farms 129 316,565.65 258,249.74
2. Fewer than 600 farms | 171 283,813.71 397,643.92
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> # direct calculation

> agsrsnewl<-agsrsnew[which(agsrsnew$farmcat==’1large’),]
> nrow(agsrsnewl)

(1] 129

> mean(agsrsnewl$acres92) #\bar y_1

[1] 316565.7

> sqrt(var(agsrsnewl$acres92)) #s_{1}

[1] 258249.7

> sum(agsrsnewl$acres92)/300 # u_1

[1] 136123.2

> 3078*sum(agsrsnewl$acres92) /300 # \hat t_u

[1] 418987302

> agsrsnew$is_large = ifelse(agsrsnew$farmcat == "large",
agsrsnew$acres92,0)

> sqrt(var(agsrsnew$is_large)) #s_u=230641.2 page 141
[1] 230641.2
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n<-300

agsrsnew$farmcat<-rep("large",n)

agsrsnew$farmcat [agsrsnew$farms92 < 600] <- "small"

head (agsrsnew)

print.data.frame(head(agsrsnew[,c(1,2,6,16)]1))
county state farms92 farmcat

V V V V V

1 COFFEE COUNTY AL 760 large
2 COLBERT COUNTY AL 488 small
3 LAMAR COUNTY AL 299 small
4 MARENGO COUNTY AL 434  small
5 MARION COUNTY AL 566 small
6 TUSCALOOSA COUNTY AL 436 small
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> sampwt <- rep(3078/n,n)

> dsrsnew <- svydesign(id = ~1, weights="sampwt,
fpc=rep(3078,300), data=agsrsnew)

> dsrsnew

Independent Sampling design

svydesign(id = "1, weights “sampwt,

fpc = rep(3078, 300), data = agsrsnew)

> dsubl<-subset(dsrsnew,farmcat==’large’)

> smeanl<-svymean(~acres92,design=dsubl)

> smeanl

mean SE
acres92 316566 21553
> dfi1<-sum(agsrsnew$farmcat==’large’)-1 #domain df
> df1l
[1] 128
> confint(smeanl, level=.95,df=df1)

2.5 % 97.5 %
acres92 273918.9 359212.4
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Suppose we don't know Ny: how many counties in the population
are in each domain

> stotall<-svytotal(“acres92,design=dsubl)
> stotall
total SE
acres92 418987302 38938277
> confint(stotall, level=.95,df=d4df1)
2.5 % 97.5 %
acres92 341941269 496033335

Please refer to detailed calculation on page 141
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Estimation in Domains 141

Thus the standard error for the estimated mean in domain 1 is:

0\ /300 /128 25824074
) (= ) 2= = 01,583
o073 ) \200 ) \128) ~ /iz8

An approximate 95% CI for the mean farm acreage for counties in domain 1, using the
t critical value with 128 df, is 316,565.65 & 1.979 (21,553), or [273,919, 350,212]. A similar
calculation for domain 2 yields SE () = 28,852.24 and an approximate 95% CI of [226,859,
340,769].

Suppose that we do not know how many counties in the population are in each domain.
To estimate the total in domain 1, define

5E () =/ (1

1, if county i is in domain 1
T =
i 0, otherwise

and u; = y;x;. Then 078
fp=fu=3 o s = 418,087,302, (4.25)
€S

The standard error is

SE(fy) =N

300 Y\ 230,641.22 )
(1 - M)W = 38,038,277

and a 95% CI for the population total in domain 1, using a £ critical value with 128 df, is
418,087,302 = 1.070(38,038 277) = (341,041,260, 496,033,335] . Similarly, a 05% CI for the

population total in domain 2 is

3078

.
407,039,808 = 1.974(3078) (1 _ )w =

T = 8T.688.731, 608,326,584 W

Figure 3: Example 4.8, more calculations

Source: page 141 of Sampling: Design and Analysis, 3rd edition,sby Sharon L. Lohr
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Poststratification

Poststratification: Stratification performed after the selection of
the sample.

» Stratification is an element of survey design that divides the
population into distinct subgroups before sampling.
» Poststratification, on the other hand, is an analytical

technique applied after data collection to adjust for differences
between the sample and the population structure.
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Example of Poststratification Consider a public opinion survey
aiming to stratify respondents by gender:

» If the survey is conducted via random digit dialing of
telephone numbers, it's not possible to assign potential
respondents to male or female strata until they have been
contacted and identified.

» Poststratification can then be used to weight the responses
according to known population demographics once the data
has been collected.
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Example: Estimating Monthly Food Expenditure

To estimate the average amount spent on food in a month, one
desirable stratification variable might be household size, since
larger households are likely to have higher food expenditures than
smaller ones. Given this, we can use the distribution of household
sizes from U.S. Census data for the region as follows:

# of persons in household percentage of household

1 25.75
2 31.17
3 17.50
4 15.58
5 10.00

Table 3: Distribution of Household Sizes in the Region
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Poststratification:

» Collect a Simple Random Sample (SRS) and record both the
amount spent on food and the household size for each
household in your sample.

» When the sample size n is sufficiently large, it is likely to

resemble a stratified sample with proportional allocation.
That is:

m Approximately 26% of the sample would be one-person
households,

m Around 31% would be two-person households,

m And so on, following the known distribution of household sizes
in the population.

» Treat different household-size groups as distinct domains.
Using this approach, ratio estimation can be applied to
estimate the average amount spent on groceries within each
domain.

By employing poststratification, we can improve the precision of
our estimates by accounting for the structure of the population

after data collection.
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Poststratified estimator Let nq, np, -+, ny be the numbers of
units sampled in the various household-size groups (domains), nj is
random
and y1,--- , ¥y be the sample means for the groups
Let x;, = 1 if observation i is in poststratum h and 0 otherwise
Let uin = yixin

N
txh = Y Xin = Np

i=1

N

tun = > uj = population total of variable y in poststratum h
i=1
For each poststratum h, estimate the total in the poststratum by

A N A N
tun = > — uip and Np = > — - Xip

ies N ies N
A txh o Ny . _
tuhr = 5— " tun = =~ tun = Np - yp
tyh Nh
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Poststratified estimator of the population total is

H H N H
A ~ h ~ -
typost = E tunr = g = tun = § Nh)/h
h=1 1 N h=1

ratio estimation is used within each poststratum to estimate the
population total in that poststratum.

The poststratified estimator of yy

_ H Ny

Ypost hgl N Yh
where Ny /N known, np > 30 and n large
Approximately proportional allocation

N n H Nh 52
W) = (1- 1) 32 Mo 5
(ypost) N ] N n

when the expected sample sizes in each poststratum are large.
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Poststratification using weights

Poststratification modifies the weights so that they sum to N, in
poststratum h. Let w; represent the sampling weight for unit /. For an
SRS, for example, w; = N/n for each unit in the sample. Recall that

N N
h o~ h
ypost = Z tunr = Z = tun = Z = WiXinYin
1 N Pl
Define
w;" = (Na/Np)w;
when unit / is in poststratum h. Then estimate the population total t, by
’fypost = Z Wi*y i
i€S
and the population mean by
Foost = Zies w;'yi
post — ~—~ % *
Dies W}

For an SRS, the above reduces to

Ypost—ZN “Yhs ZW/'*:N

i€S Instructor: Yan Lu  77/83



Chapter 4

144 Ratio and Regression Estimation

Example 4.9. Example 3.2 displayed estimates for a stratified random sample from the
Census of Agriculture population. The stratified sample, taken with proportional allocation,
produced estimates with smaller variances than the SRS in Example 2.6.

But what if you took an SRS and only later realized that you should have taken a
stratified sample? Or if you did not have region membership available for the counties
in the sampling frame? Let’s poststratify the SRS from Example 2.6 and find out. The
quantities needed for the caleulation are given in Table 4.4

TABLE 4.4
Weight adjustments for poststratification in Example 4.9. The last two columns, 7, and
s, give the poststratum mean and standard deviation, respectively.

Region N nn Ni w; w] Ui Sn
Northeast 220 24 24624 1026 9.1667  71970.83  65000.06
North Central 1054 107  1097.82  10.26  9.8505 35020 20471513
South 1382 130 3.80 10.26 10.6308 206246.35 277433.61
West 422 39 40014 1026 108205 598680.59 516157.67
Total 3078 300 3078.00

The poststratification-adjusted weights w; differ from the original sampling weights
w; = 3078/300 = 10.26. The poststratified weight for every county in the Northeast, where
the SRS contained more units than would have been drawn in a stratified sample with
proportional allocation, is

+ _ NNortheast 220

" Fnortneme | 20621

(10.26) 1667.
The poststratified weight for Northeast counties is smaller than 10.26 to account for the fact
that the randomly selected sample contained, by chance, more counties in the poststratum
than its share of the population. The poststratified weights in the West poststratum are
larger than 10.26 to correct for the sample having more Western counties than it would
under proportional allocation.

The weight adjustments force the estimated ¢

unts from each poststratum to equal the

true poststratum count, Nj,. Thus, 32, g wizi = (24)(9.1667) = 220, 3, s wiz 1054,
res WiT = 1382, and 3, g wiwy — 422,
tratified estimate of the population mean is
- 0T i 15833583 + 369207778.5 + 285032455.7 + 252643209
Fow = eIV _ ro0 ! . = 200,778
> es 0 3078
From (4.27), the standard error of Jpou is
T v
00 ~ N sp
SE (fpost 1-— i S 17443
(Fpost) ( 3(175) %1 3078 300

By contrast, the standard error of the sample mean, 7, from Example 2.7, is 18,898. The
poststratification reduces the standard error because the weighted average of the within-
poststratum va SO (Nu/N)s?., is smaller than 2. B

and poststratification. In both stratificatior] ISEFWCtOr: Yan Lu 78/83
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Ratio Estimation with Stratified Samples

Combined ratio estimator
» First, estimate t, and t, using all the data

> Next ratio estimation is applied

I\

st
tyrc = th, where B = ty str
X,str
ty str — Z Nhyh — Z Z Whj Y hj
h=1jeS,

and

tx str — Z NhXh = Z Z WhjXhj

h=1jeS,

with Whj = Nh/nh
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2 H
. t .
V(twe) = <t> V(D2 D when

t
X, Str h=1jeS,
2
Ly st o on
- (AX: =) V(iestr)
X,Str

— 2BCov(ty str testr)]

<
—
k<"i~
)
1)
N
+
[wy}]
<
~—~
<
)
5]
N—r

2
_ (tx,str) [
tx,str
where ep; = ypj — Bxy;.
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Separate ratio estimator
P Ratio estimation is applied separately in each stratum

> Next the strata estimators are combined to estimate the
population total

H
tyrs = Z tyhr = Z txh - Z ten - Bn
h=1
with

H
tyrs Z tyhr

h=1
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Comments on Estimators
> A separate ratio estimator can improve efficiency if the ratio
By, = %—: varies significantly between strata.
P A separate ratio estimator should not be used when strata

sample sizes are small, as each ratio is biased, and the bias
may propagate across strata.

» Poststratification is a special case of the separate ratio
estimator.

» The combined estimator has less bias when sample sizes in
some strata are small.

> However, when ratios vary greatly between strata, the
combined estimator does not leverage the efficiency gain from
stratification that the separate ratio estimator does.
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Disclaimer

Slides are intended for a course based on the book: Sampling:
Design and Analysis, Third Edition by Sharon L. Lohr

All examples, datasets, and pages directly scanned and included in
this chapter are from the textbook.

References to papers or books cited in these slides can be found in
the Bibliography section of the textbook.
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