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Ratio Estimation

Two quantities yi and xi are measured on each sample unit

▶ yi : response variable, xi : auxiliary variable, or subsidiary
variable

▶ Let ty =
N∑
i=1

yi and tx =
N∑
i=1

xi and their ratio be

B =
ty
tx

=
ȳU
x̄U

Example 4.1: Suppose the population consists of agricultural fields
of different sizes. Let
yi = bushels of grain harvested in field i
xi = acreage of field i
then B = average yield in bushels per acre
ȳU = average yield in bushels per field
ty = total yield in bushels
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If an SRS is taken, natural estimators for B, ty , and ȳU are:

B̂ =
ȳ

x̄
, t̂yr = B̂tx ˆ̄yr = B̂x̄U

▶ Ratio estimation take advantage of the correlation of x and y
in the population; the higher the correlation, the better they
work. Define the population correlation coefficient of x and y
be

R =

N∑
i=1

(xi − x̄U)(yi − ȳU)

(N − 1)SxSy

—- Sx is the population standard deviation of the xi ’s
—- Sy is the population standard deviation of the yi ’s
—- R is simply the pearson correlation coefficient of x and y
for the N units
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Why use ratio estimation?

1. Want to estimate a ratio

Example: interested in the percentage of pages in Good
Housekeeping magazines that contain at least one
advertisement

▶ Take an SRS of 10 issues

▶ let xi be the total number of pages in issue i

▶ let yi be the total number of pages in issue i that contain
at least one advertisement

▶ B̂ =

∑
i∈S

yi∑
i∈S

xi
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2. Want to estimate a population total, but population size N is
unknown

▶ t̂y = Nȳ , but N is unknown

▶ N =
tx
x̄U

▶ t̂y =
tx
x̄U

ȳ

▶ t̂yr =
tx
x̄
ȳ =

ȳ

x̄
tx = B̂tx
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Example: Apple Juice
For a juice company, the price they are paid for apples in large
shipments is based on the amount of apple juice from the load.
▶ Need to determine the amount of apple juice in the whole

load prior to extraction.
▶ We can sample n apples and find y1, · · · yn, the amount of

apple juice in those apples.
▶ Nȳ is hard to get in this case because N is hard to count. But

total weight of apple is easy to get.
—–use the relationship between weight of the load and weight
of the apple juice one obtains
—–let x be the weight of each apple in the sample, x̄ is the
average weight of each apple in the sample.
—–number of apples is estimated by tx/x̄
The total weight tx is easy to get for the entire shipment. We
can thus estimate the total apple juice by:

t̂yr =
ȳ

x̄
tx
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Example: Want to estimate the total # of fish in a haul that are
longer than 12 cm

▶ Take an SRS, estimate the proportion and multiply by the
total # of fish N. But N is unknown

▶ Take an SRS, consider the fact that having a length of more
than 12 cm (y) is related to weight (x), introduce an auxiliary
variable xi : weight of fish

▶ yi : fishes longer than 12cm,
xi : weight of fish,
tx : total weight of haul,
ty =?

▶ t̂yr = B̂tx =
ȳ

x̄
tx
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3. Ratio estimation is often used to increase the precision of
estimated means and totals
Let yi be the # of persons in commune i
and xi be the # of registered births in commune i
want to estimate # of persons in France

▶ Randomly select 30 communes

▶ Estimator 1 = Nȳ =
tx
x̄U

ȳ

# of communes in France ∗ average number of persons in the
30 communes

▶ Estimator 2= B̂tx =
ȳ

x̄
tx =

tx
x̄
ȳ
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▶ When ȳ and x̄ are positively correlated, the sampling

distribution of
ȳ

x̄
exhibits less variability compared to the

sampling distribution of
ȳ

x̄U
.

▶ Consequently, the ratio estimator (Estimator 2) has a smaller
Mean Squared Error (MSE), i.e.,
MSE(Estimator 2) < MSE(Estimator 1).
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4. Adjust estimators from the sample so that they reflect
demographic totals.
Example: An SRS of 400 students is taken at a university
with a total of 4,000 students. The sample contains:

240 women and 160 men
84 women and 40 men in the sample plan to pursue careers in
teaching

We aim to estimate the total number of students who plan to
become teachers.

▶ Estimator 1: Using only the information from the SRS,

Nȳ = 4000× 124

400
= 1240
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▶ Estimator 2: Incorporating demographic information (college
has 2,700 women and 1,300 men), a better estimate is:

84

240
× 2700 +

40

160
× 1300 = 1270

▶ Highlights:

Ratio estimation is applied within each gender.
In the sample, 60% are women, but women comprise 67.5% of
the population. The estimator is adjusted accordingly to better
reflect the demographic proportions.
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5. Adjust for nonresponse
Example: a sample of businesses,
yi : amount spent on health insurance by business i
xi : number of employees in business i , xi known
want to estimate total insurance expenditures

▶ Estimator 1: Nȳ
—companies with few employees are less likely to respond to
the survey
—yi is proportional to xi
—Estimator 1 overestimate the total insurance expenditures ty

▶ Estimate 2: tx
ȳ

x̄

—
tx
x̄

< N, since companies with many employees are more

likely to respond to the survey
—Thus a ratio estimate of total heath care insurance
expenditures may help to compensate for the nonresponse of
companies with few employees
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Example 4.2

▶ Dataset: SRS of n = 300 counties selected from a total of
N = 3078 counties (U.S. Census of Agriculture, file
agsrs.dat).

▶ Context:

Total acreage for 1987 is known.
1992 acreage data is only available for the sampled 300
counties.
Goal: Estimate the population total t̂y and mean ˆ̄y for 1992.

▶ Estimate 1: Using only the SRS data from 1992,

t̂y ,srs = Nȳ = 3078 · ȳ = 916, 927, 110
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Figure 1: A scatter plot of 1992 acreage (y-axis) against 1987 acreage
(x-axis) for a simple random sample (SRS) of 300 counties.
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As shown in Figure 1, the line of best fit passes through the origin
with a slope of b̂ = 0.9866, demonstrating a strong positive
correlation between 1992 and 1987 acreages. We will now apply
ratio estimation using 1987 acreage as an auxiliary variable.

▶ Estimate 2: ratio estimation
—yi = total acreage of farms in county i in 1992
—xi = total acreage of farms in county i in 1987
—For 1987, tx = 964, 470, 625,
x̄U = 964, 470, 625/3078 = 313343.3
—

B̂ =
ȳ

x̄
=

297897.0467

301953.7233
= .986565

ˆ̄yr = B̂x̄U = 309, 133.6

t̂yr = B̂tx = .986565× 964470625 = 951, 513, 191
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Comments:

▶ When the same quantity is measured at different times, the
response of interest at an earlier time often serves as an
excellent auxiliary variable.

▶ The sample mean x̄ is slightly smaller than the true
population mean x̄U , indicating that the SRS of size 300
slightly underestimates the true population mean of the x ’s.

▶ Since x and y are positively correlated, it is reasonable to
expect that ȳ may also underestimate the true population
mean ȳU .

▶ Ratio estimation improves the precision of ȳU by adjusting ȳ
with the factor x̄U/x̄ .
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Properties of Ratio Estimators

▶ For an SRS, ȳ is unbiased:
— If we calculate ȳS for every possible sample, the average of
all the sample means will equal the population mean ȳU .

▶ For the ratio estimator, ˆ̄yr =
ȳ

x̄
x̄U :

— The bias of the ratio estimator arises because ȳ is adjusted
by the factor x̄U/x̄ .
— If we compute ˆ̄yr for all possible samples, the average of
these estimates will generally be close to ȳU , but not exactly
equal to it.

▶ For large samples, the sampling distributions of both ȳ and ˆ̄yr
are approximately normal.

▶ Ratio estimators are biased but typically have smaller variance
compared to ȳ .
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Bias of B̂

Bias[B̂] = E [B̂]− B = E

[
ȳ

x̄
− ȳU

x̄U

]
= E

[
ȳ

x̄U
× x̄U

x̄
− ȳU

x̄U

]
= E

[
ȳ

x̄U
×
(
1− x̄ − x̄U

x̄

)
− ȳU

x̄U

]
= −E

[
ȳ(x̄ − x̄U)

x̄U x̄

]
...

≈ 1

x̄2U
[BV (x̄)− Cov(x̄ , ȳ)]

=
(
1− n

N

) 1

nx̄2U
(BS2

x − RSxSy )

where R is the correlation between x and y .
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Bias[ˆ̄yr ] = E [ˆ̄yr − ȳU ]

= E [B̂x̄U − Bx̄U ]

= x̄UE [B̂ − B]

≈ 1

x̄U
[BV (x̄)− Cov(x̄ , ȳ)]

=
(
1− n

N

) 1

nx̄U

(
BS2

x − RSxSy
)

Bias of ˆ̄yr is small if:
▶ The sample size n is large.
▶ The sampling fraction n/N is large.
▶ The standard deviation Sx is small.
▶ The correlation R is close to 1.

Note: If all x values are identical (Sx = 0), the ratio
estimator becomes equivalent to the SRS estimator ȳ , and the
bias is zero.
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MSE of B̂

E [(B̂ − B)2] = E

[(
ȳ

x̄
− B

x̄

x̄

)2
]

= E

[(
ȳ − Bx̄

x̄

)2
]

= E

[(
ȳ − Bx̄

x̄U

)(
1−

x̄ − x̄U

x̄

)]2
= E

[(
ȳ − Bx̄

x̄U

)2

+

(
ȳ − Bx̄

x̄U

)2

×
(
−2

x̄ − x̄U

x̄
+

(
x̄ − x̄U

x̄

)2
)]

≈ E

[(
ȳ − Bx̄

x̄U

)2
]

=
1

x̄2U
E [(ȳ − Bx̄)2]

where the approximation is from the fact that the second and third term is negligible

relative to the first term.
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Let

▶ di = yi − Bxi
▶ ei = d̂i = yi − B̂xi
▶ d̄ = ȳ − Bx̄

MSE (B̂) ≈ 1

x̄2U
E [(ȳ − Bx̄)2]

=
1

x̄2U
E

[
1

n

∑
i∈S

(yi − Bxi )

]2
=

1

x̄2U
V (d̄)

=
1

x̄2U

(
1− n

N

) S2
d

n

So

M̂SE (B̂) ≈ 1

x̄2

(
1− n

N

) s2e
n
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Variance of B̂
In large sample, bias of B̂ is typically small relative to V (B̂),
MSE (B̂) ≈ V (B̂)

V (B̂) ≈ 1

x̄2U

(
1− n

N

) S2
d

n

V̂ (B̂) ≈ 1

x̄2

(
1− n

N

) s2e
n
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Variance of ˆ̄yr

V̂ (ˆ̄yr ) = x̄2U V̂ (B̂)

≈
(
1− n

N

) s2e
n

Variance of V̂ (ˆ̄yr ) is small if

▶ the sample size n is large

▶ the sampling fraction n/N is large

▶ the deviations yi − Bxi are small

▶ the correlation R is close to 1
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Compare ratio estimator to SRS estimator

V (ˆ̄yr ) ≈
(
1− n

N

) S2
d

n

V (ȳsrs) =
(
1− n

N

) S2
y

n

If S2
d < S2

y then V (ˆ̄yr ) < V (ȳsrs), ratio estimation is more efficient
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(N − 1)S2
d =

N∑
i=1

(yi − Bxi )
2

=
N∑
i=1

((yi − ȳU) + (ȳU − Bxi ))
2

=
N∑
i=1

(yi − ȳU)
2 +

N∑
i=1

(Bx̄U − Bxi )
2

+2
N∑
i=1

(yi − ȳU)(Bx̄U − Bxi )

= (N − 1)S2
y + (N − 1)B2S2

x

−2(N − 1)BRSxSy

Where R is the population correlation coefficient, defined as:

R =

∑N
i=1(xi − x̄U)(yi − ȳU)

(N − 1)SxSy
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V (ˆ̄yr ) ≈
(
1− n

N

) 1

n

∑N
i=1(yi − Bxi )

2

N − 1

=
(
1− n

N

) 1

n

(
S2
y + B2S2

x − 2BRSxSy
)

The variance for the simple random sample (SRS) estimator is given by:

V (ȳsrs) =
(
1− n

N

) S2
y

n

Ratio estimation is more efficient when:

S2
y + B2S2

x − 2BRSxSy < S2
y

This simplifies to:

B2S2
x < 2BRSxSy , BSx < 2RSy

Or equivalently:
ȳU
x̄U

Sx < 2RSy ,
Sx
x̄U

< 2R
Sy
ȳU
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Thus, for ratio estimation to be more efficient:

R >

Sx
x̄U

2
Sy
ȳU

=
CV(x̄)

2CV(ȳ)

▶ CV(ȳ) = Sd(ȳ)
ȳU

▶ CV(x̄) = Sd(x̄)
x̄U

▶ The absolute values of CV(x̄) and CV(ȳ) often do not make a
significant difference.

As a result, Ratio estimation is more efficient than an SRS
when:

R >
1

2
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Examples 4.2 and 4.3 (using R handout 4)

▶ Ratio estimator
—yi = total acreage of farms in county i in 1992
—xi = total acreage of farms in county i in 1987
—For 1987, tx = 963, 464, 412
—

B̂ =
ȳ

x̄
=

297897.0467

301953.7233
= .986565, and R = 0.995806

t̂yr = B̂tx = .986565× 963, 464, 412 = 950, 520, 496

SE(t̂yr ) = 5, 540, 376

▶ SRS estimator
t̂y = Nȳ = 3078 ∗ 297897.0467 = 916, 927, 110
SE(t̂y ) = 58, 169, 381, this is almost 10 times as large as the
SE from ratio estimation (SE(t̂yr ) = 5, 540, 376)
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▶ Coefficient of Variation (CV) comparison
Recall, Coefficient of Variation (CV)
when ȳU ̸= 0,

CV (ȳ) =

√
V (ȳ)

E (ȳ)
, ĈV (ȳ) =

SE(ȳ)

ȳ

—-Measure of relative variability
—-Does not depend on the unit of measurement
—-CV (t̂) = CV (ȳ)
—-If the CV of ȳ is small, that is, if ȳU is estimated with high
relative precision, the bias is small relative to the square root
of the variance.
—- A small CV (ȳ) also means that ȳ is stable from sample to
sample.

Instructor: Yan Lu 29/83



Chapter 4

Table 1: Comparisons of ratio estimator and SRS estimator

Ratio estimation SRS estimation

SE of t̂ 5,540,376 58,169,381

Estimated CV
5, 540, 376

950, 520, 496
= 0.0058

58, 169, 381

916, 927, 110
= 0.0634

▶ Incorporating the 1987 data through the ratio estimator has
significantly increased precision.

▶ If all quantities to be estimated are highly correlated with the
1987 acreage, using ratio estimators instead of Nȳ could
substantially reduce the sample size while maintaining high
precision.
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Regression Estimation in Simple Random Sampling

Review: Regression Analysis
A nutritionist aims to explore the relationship between age and
muscle mass in women. It is hypothesized that muscle mass
decreases with age. To investigate this, she randomly selects 15
women from each 10-year age group, starting from age 40 and
ending at age 79, for a total of 60 women.
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Figure 2: Age vs. Muscle Mass in Women with fitted regression line
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Normal error regression model:

Yi = β0 + β1Xi + ϵi

▶ Yi : response of the ith trial

▶ Xi : a known constant, the level of the predictor variable in the
ith trial

▶ β0 and β1: parameters

▶ ϵi
iid∼ N(0, σ2) for i = 1, 2, · · · , n

▶ E (Yi ) = β0 + β1Xi
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Least square estimators:
▶ Consider the deviation of Yi from its expected value

[Yi − (β0 + β1Xi )]

▶ Least Square Measures:

Q =
n∑

i=1

(Yi − (β0 + β1Xi ))
2

▶ Objective: to find estimators b0 and b1 for β0 and β1
respectively, for which Q is minimum

▶
b0 = β̂0 = ȳ − b1x̄

b1 = β̂1 =

i=n∑
i=1

(xi − x̄)(yi − ȳ)

i=n∑
i=1

(xi − x̄)2

▶ Regression line: Ê (Y ) = b0 + b1X
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Regression in Simple Random Sampling (SRS)
Want to estimate population mean and population total
Assumptions:

▶ The relationship between E (y) and x is a straight line

E (y) = B0 + B1x

▶ The population mean of x ’s, x̄U is known
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Population quantities Estimators

B1 =

N∑
i=1

(xi − x̄U)(yi − ȳU)

N∑
i=1

(xi − x̄U)2
B̂1 =

∑
i∈S

(xi − x̄)(yi − ȳ)∑
i∈S

(xi − x̄)2

B0 = ȳU − B1x̄U B̂0 = ȳ − B̂1x̄

▶ B1 and B0 are the least squares regression slope and intercept
calculated from all the data in the population respectively

▶ The regression estimator of ȳU is

ˆ̄yreg = B̂0 + B̂1x̄U

= ȳ − B̂1x̄ + B̂1x̄U

= ȳ + B̂1(x̄U − x̄)
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Properties of the Estimators
Notation

▶ di = yi − (B0 + B1xi )

▶ ei = yi − (B̂0 + B̂1xi ) called residuals

▶ R =

N∑
i=1

(xi − x̄U)(yi − ȳU)

(N − 1)SxSy
, population correlation coefficient

of x and y
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Bias of ˆ̄yreg
bias(ˆ̄yreg) = −cov(B̂1, x̄)

Proof:

Bias(ˆ̄yreg) = E [ˆ̄yreg − ȳU ]

= E [B̂0 + B̂1x̄U − ȳU ]

= E [ȳ − B̂1x̄ + B̂1x̄U − ȳU ]

= E [ȳ − ȳU ]− E [B̂1(x̄ − x̄U)]

= −cov(B̂1, x̄)

ˆ̄yreg is biased for ȳU
▶ If the regression line goes through all of the points (xi , yi ) in

the population, then the bias is zero since B̂1 = B1 for every
sample, so cov(B̂1, x̄) = 0
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MSE of ˆ̄yreg: MSE (ˆ̄yreg) =
(
1− n

N

) S2
d

n

di = yi − (B0 + B1xi )

= yi − (B0 + B1xi − B1x̄U + B1x̄U)

= yi − (B0 + B1x̄U + B1(xi − x̄U))

= yi − [ȳU + B1(xi − x̄U)]

MSE (ˆ̄yreg) = E (ˆ̄yreg − ȳU)
2

= E [ȳ + B̂1(x̄U − x̄)− ȳU ]
2

= E{ȳ − [ȳU + B̂1(x̄ − x̄U)]}2

≈ Var(d̄)

=
(
1− n

N

) S2
d

n

Instructor: Yan Lu 39/83



Chapter 4

Another expression of MSE of ˆ̄yreg
Notice

B1 = R · Sy
Sx

and

S2
d =

N∑
i=1

(yi − ȳU − B1[xi − x̄U ])
2

N − 1

= S2
y (1− R2)

MSE (ˆ̄yreg) =
(
1− n

N

) 1

n
S2
y (1− R2)

MSE (ˆ̄yreg) is small if

▶ n is large, n/N is large

▶ The correlation R is close to either -1 or +1
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Variance of ˆ̄yreg
For large SRSs

▶ Bias is often negligible in large samples

▶ The MSE for regression estimation is approximately equal to
the variance
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Estimator for total: t̂yreg

t̂yreg =
∑
i∈S

yi +
∑
i /∈S

yi

=
∑
i∈S

yi +
∑
i /∈S

(B̂0 + B̂1xi )

=
∑
i∈S

yi + (N − n)B̂0 + B̂1

(
tx −

∑
i∈S

xi

)

If n << N

t̂yreg ≈ NB̂0 + B̂1tx

= NB̂0 + B̂1Nx̄U

= N(B̂0 + B̂1x̄U)

= N ˆ̄yreg
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Confidence Intervals:

SE (ˆ̄yreg) =

√(
1− n

N

) s2e
n

SE (t̂yreg) = N

√(
1− n

N

) s2e
n

A 100(1− α)% CI for ȳU is

ˆ̄yreg ± tn−2(α/2)

√(
1− n

N

) s2e
n

A 100(1− α)% approximate CI for t is

t̂yreg ± tn−2,α/2N

√(
1− n

N

) s2e
n
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Example 4.7: Estimating the Number of Dead Trees
To estimate the number of dead trees in a specific area, the
following sampling procedure is implemented:

1. Divide the area into 100 square plots.
2. Conduct photo counts:

Count the number of dead trees in each plot using aerial
photographs.
Photo counts are efficient but may include misclassifications or
missed detections.

3. Select a simple random sample (SRS) of 25 plots for field
verification:

Perform on-the-ground counts of dead trees in these 25 plots
to assess and correct for any inaccuracies in the photo counts.

4. Calculate the population mean:
The mean number of dead trees per plot, based on photo
counts, is 11.3.

This methodology combines aerial photographic analysis with field
verification to enhance the accuracy of the estimated mean
number of dead trees per plot.
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print.data.frame(deadtrees)

photo field

1 10 15

2 12 14

3 7 9

4 13 14

5 13 8

6 6 5

7 17 18

8 16 15

9 15 13

10 10 15

11 14 11

12 12 15

13 10 12

14 5 8

15 12 13

.........

25 10 8 Instructor: Yan Lu 45/83
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dtree<- svydesign(id = ~1, weight=rep(4,25),

fpc=rep(100,25), data = deadtrees)

> dtree

Independent Sampling design

svydesign(id = ~1, weight = rep(4, 25), fpc = rep(100, 25),

data = deadtrees)

> myfit1 <- svyglm(field~photo, design=dtree)

> summary(myfit1) # displays regression coefficients

Call:

svyglm(formula = field ~ photo, design = dtree)

Survey design:

svydesign(id = ~1, weight = rep(4, 25), fpc = rep(100, 25),

data = deadtrees)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.0593 1.3930 3.632 0.0014 **

photo 0.6133 0.1259 4.870 6.44e-05 ***
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From R output,
B̂0 = 5.0593, B̂1 = 0.6133

Fitted regression line

ŷ = 5.0593 + 0.6133x
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newdata <- data.frame(photo=11.3)

> predict(myfit1, newdata)

link SE

1 11.989 0.418

> confint(predict(myfit1, newdata),df=23)

2.5 % 97.5 %

1 11.12455 12.85404

The regression estimate of the mean is

ŷreg = 5.0593 + 0.6133 ∗ 11.3 = 11.99

For these data, x̄ = 10.6, ȳ = 11.56, s2y = 9.09, and the sample
correlation between x and y is r = 0.62420.

SE (ˆ̄yreg ) =

√(
1− 25

100

)
1

25
∗ 9.09 ∗ (1− 0.624202) = 0.408
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newdata2 <- data.frame(photo=1130)

> predict(myfit1, newdata2, total=100)

link SE

1 1198.9 41.802

> confint(predict(myfit1, newdata2,total=100),df=23)

2.5 % 97.5 %

1 1112.455 1285.404

The estimate of the total number of dead trees

t̂yreg = 100 ∗ 11.99 = 1199

The estimated standard error of t̂yreg is 41.80, with CI of
[1112.455, 1285.404].

▶ Because of the relatively small sample size, we used the t
distribution percentile (with n − 2 = 23 degrees of freedom)
of 2.07 in the CI rather than the normal distribution percentile
of 1.96.
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SRS and Ratio estimation using weights
SRS

▶ wi = N/n

▶ ȳ =

∑
i∈S

wiyi∑
i∈S

wi

▶ t̂y =
∑
i∈S

wiyi = Nȳ

▶ ∑
i∈S

wi =
∑
i∈S

N

n
= n · N

n
= N
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Ratio Estimation

t̂yr =
ȳ

x̄
tx =

t̂y
t̂x
tx

=
∑
i∈S

wiyi
tx
t̂x

=
∑
i∈S

(
wi ·

tx
t̂x

)
yi

gi=tx/t̂x
=

∑
i∈S

wigiyi

w∗
i =wigi
=

∑
i∈S

w∗
i yi

▶ w∗
i depend upon values from the sample

▶ The weight adjustments gi calibrate the estimates on the x
variable. Since

∑
i∈S wigixi = tx , the adjusted weights force

the estimated total for the x variable to equal the known
population total tx . The factors gi are called the calibration
factors.
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Example 4.6: Census of Agriculture Data (Examples 4.2 and
4.3 Continued)

▶ For each observation:

gi =
tx
t̂x

=
964,470,625

929,413,560
≈ 1.0377

▶ Since t̂x < tx , each observation’s sampling weight is increased
by a small amount.

▶ The sampling weight for the Simple Random Sample (SRS)
design is:

wi =
3078

300
≈ 10.26

▶ The ratio-adjusted weight for each observation is:

w∗
i = wi × gi = 10.26× 1.0377 ≈ 10.65
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▶ ∑
i∈S

wigixi =
∑
i∈S

10.64700262xi = 964, 470, 625 = tx

▶ ∑
i∈S

wigiyi =
∑
i∈S

10.64700262yi = 951, 513, 191 = t̂yr

▶ The adjusted weights, however, no longer sum to N = 3078∑
i∈S

wigi = (300)(10.64700262) = 3194

▶ The ratio estimator is calibrated to the population total tx of
the x variable, but is no longer calibrated to the population
size N.
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Regression Estimation

t̂yreg = N[B̂0 + B̂1x̄U ]

= NB̂0 + NB̂1x̄U

= B̂0N + B̂1tx

= (ȳ − B̂1x̄)N + B̂1tx

= t̂y − B̂1t̂x + B̂1tx

= t̂y + B̂1(tx − t̂x)

=
∑
i∈S

wiyi +

∑
i∈S

(xi − x̄)(yi − ȳ)∑
i∈S

(xi − x̄)2
· (tx − t̂x)
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=
∑
i∈S

wiyi +

∑
i∈S

yi(xi − x̄)∑
i

(xi − x̄)2
· (tx − t̂x)

=
∑
i∈S

wiyi +

∑
i∈S

wiyi(xi − x̄)∑
i

wi(xi − x̄)2
· (tx − t̂x)

=
∑
i∈S

wi

1 +
(xi − x̄)(tx − t̂x)∑

i

wi(xi − x̄)2

 yi

=
∑
i∈S

wigiyi

where gi =

1 +
(xi − x̄)(tx − t̂x)∑

i

wi(xi − x̄)2

 called g-weight
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If yi = xi

t̂yreg =
∑
i∈S

wi

1 +
(xi − x̄)(tx − t̂x)∑

i
wi (xi − x̄)2

 xi

=
∑
i∈S

wixi +

∑
i∈S

wi (xi − x̄)2∑
i∈S

wi (xi − x̄)2
· (tx − t̂x)

= t̂x + (tx − t̂x)

= tx
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Comparison of Estimation Methods

▶ Both ratio and regression estimation utilize an auxiliary
variable highly correlated with the variable of interest.

▶ The ratio and regression estimators discussed are special cases
of a generalized regression estimator.

▶ Ratio estimation is particularly useful in cluster sampling.

▶ For a Simple Random Sample (SRS) of size n, the estimators
are summarized in the following table.
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Estimator for Mean ȳU Estimator for Total ty Residual ei
SRS ȳ Nȳ yi − ȳ

Ratio B̂x̄U B̂tx yi − B̂xi
Regression B̂0 + B̂1x̄U N(B̂0 + B̂1x̄U) yi − B̂0 − B̂1xi

= ȳ + B̂1(x̄U − x̄)

Table 2: Estimators and Residuals for SRS of Size n

Estimated variance for ˆ̄yU :
(
1− n

N

) s2e
n

Estimated variance for t̂: N2
(
1− n

N

) s2e
n
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Estimation in Domains

▶ Domain: A subpopulation of interest.
▶ Objective: Obtain separate estimates for subpopulations.

Example: Estimating the average income for women in a
Simple Random Sample (SRS).

▶ Considerations:

The number of women in the sample is a random variable.
Membership in a domain (e.g., women) is unknown for the
entire population until sampled.
Therefore, the number of individuals in each domain within an
SRS is a random variable, with its value unknown at the survey
design stage.

▶ Estimating domain means is a special case of ratio estimation.
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Estimating Mean for a Specific Domain
Suppose there are D domains in the population:

▶ Ud : Index set of units in the population for domain d , where
d = 1, 2, . . . ,D.

▶ Sd : Index set of units in the sample for domain d , where
d = 1, 2, . . . ,D.

▶ Nd : Number of population units in Ud .
▶ nd : Number of sample units in Sd .

To estimate the mean salary for a specific domain (e.g., women):

ȳUd
=

∑
i∈Ud

yi

Nd
=

Total salary for all women in population

Number of women in population

A natural estimator for ȳUd
is the sample mean:

ȳd =

∑
i∈Sd yi

nd
=

Total salary for women in sample

Number of women in sample

Note: nd is a random variable.
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Let:

yi : Income for person i , xi =

{
1 if women

0 otherwise

ui = xiyi =

{
yi if women

0 otherwise

▶ tx =
N∑
i=1

xi = Nd : Total number of women in the population,

x̄U = Nd/N.

▶ tu =
N∑
i=1

ui : Total income for women in the population.

▶ ȳUd
= tu/tx = B: Average income for women in the

population.
▶ ȳd = ū/x̄ = B̂: Average income for women in the sample d ,

where:

ū =

∑
i∈S

xiyi

n
, x̄ =

∑
i∈S

xi

n
=

nd
n
.
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V̂ (B̂) =
1

x̄2

(
1− n

N

) s2e
n

=
1

x̄2

(
1− n

N

) 1

n
· 1

n − 1

∑
i∈S

(ui − B̂xi )
2

=
1

x̄2

(
1− n

N

) 1

n
· 1

n − 1

∑
i∈S

(yixi − B̂xi )
2

=
1

x̄2

(
1− n

N

) 1

n
· 1

n − 1

∑
i∈Sd

(yi − ȳd)
2

x̄=nd/n
=

(
1− n

N

) n

n2d
· nd − 1

n − 1
s2yd

≈
(
1− n

N

) s2yd
nd

SE (ȳd) ≈

√(
1− n

N

) s2yd
nd
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General Case of Domain Estimation
Estimates for different subpopulations:

▶ The mean for a subpopulation is expressed as a ratio.

▶ The sample size of the domain is a random variable.

▶ The estimate for the mean, B̂, is given by:

B̂ =
Sum of yi ’s in the domain

Total number of observations in the domain
= ȳd
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Estimating Totals in Domains

▶ If Nd (total population size of the domain) is known:

t̂yd = Nd ȳd

▶ If Nd is unknown:

N̂d = N · nd
n

Then, the total estimate is:

t̂yd = N · nd
n

·
∑

i∈S ui

nd
= Nū

▶ The standard error of t̂yd is:

SE (t̂yd) = N

√(
1− n

N

) s2u
n
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Example 4.8: Estimating Acres Devoted to Farming
In an SRS of size 300 from the Census of Agriculture (see
Examples 2.6, 4.2, and 4.3):

▶ 129 counties have at least 600 farms.

▶ 171 counties have fewer than 600 farms.

▶ Objective: Estimate the average and total number of acres
devoted to farming in each domain.

Summary Statistics for the Two Domains:

Domain, d nd ȳd sd
(Average Acres) (SE)

1. At least 600 farms 129 316,565.65 258,249.74
2. Fewer than 600 farms 171 283,813.71 397,643.92
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> # direct calculation

> agsrsnew1<-agsrsnew[which(agsrsnew$farmcat==’large’),]

> nrow(agsrsnew1)

[1] 129

> mean(agsrsnew1$acres92) #\bar y_1

[1] 316565.7

> sqrt(var(agsrsnew1$acres92)) #s_{1}

[1] 258249.7

> sum(agsrsnew1$acres92)/300 # u_1

[1] 136123.2

> 3078*sum(agsrsnew1$acres92)/300 # \hat t_u

[1] 418987302

> agsrsnew$is_large = ifelse(agsrsnew$farmcat == "large",

agsrsnew$acres92,0)

> sqrt(var(agsrsnew$is_large)) #s_u=230641.2 page 141

[1] 230641.2
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> n<-300

> agsrsnew$farmcat<-rep("large",n)

> agsrsnew$farmcat[agsrsnew$farms92 < 600] <- "small"

> head(agsrsnew)

> print.data.frame(head(agsrsnew[,c(1,2,6,16)]))

county state farms92 farmcat

1 COFFEE COUNTY AL 760 large

2 COLBERT COUNTY AL 488 small

3 LAMAR COUNTY AL 299 small

4 MARENGO COUNTY AL 434 small

5 MARION COUNTY AL 566 small

6 TUSCALOOSA COUNTY AL 436 small
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> sampwt <- rep(3078/n,n)

> dsrsnew <- svydesign(id = ~1, weights=~sampwt,

fpc=rep(3078,300), data=agsrsnew)

> dsrsnew

Independent Sampling design

svydesign(id = ~1, weights = ~sampwt,

fpc = rep(3078, 300), data = agsrsnew)

> dsub1<-subset(dsrsnew,farmcat==’large’)

> smean1<-svymean(~acres92,design=dsub1)

> smean1

mean SE

acres92 316566 21553

> df1<-sum(agsrsnew$farmcat==’large’)-1 #domain df

> df1

[1] 128

> confint(smean1, level=.95,df=df1)

2.5 % 97.5 %

acres92 273918.9 359212.4
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Suppose we don’t know Nd : how many counties in the population
are in each domain

> stotal1<-svytotal(~acres92,design=dsub1)

> stotal1

total SE

acres92 418987302 38938277

> confint(stotal1, level=.95,df=df1)

2.5 % 97.5 %

acres92 341941269 496033335

Please refer to detailed calculation on page 141
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Figure 3: Example 4.8, more calculations

Source: page 141 of Sampling: Design and Analysis, 3rd edition, by Sharon L. Lohr
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Poststratification

Poststratification: Stratification performed after the selection of
the sample.

▶ Stratification is an element of survey design that divides the
population into distinct subgroups before sampling.

▶ Poststratification, on the other hand, is an analytical
technique applied after data collection to adjust for differences
between the sample and the population structure.
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Example of Poststratification Consider a public opinion survey
aiming to stratify respondents by gender:

▶ If the survey is conducted via random digit dialing of
telephone numbers, it’s not possible to assign potential
respondents to male or female strata until they have been
contacted and identified.

▶ Poststratification can then be used to weight the responses
according to known population demographics once the data
has been collected.
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Example: Estimating Monthly Food Expenditure
To estimate the average amount spent on food in a month, one
desirable stratification variable might be household size, since
larger households are likely to have higher food expenditures than
smaller ones. Given this, we can use the distribution of household
sizes from U.S. Census data for the region as follows:

# of persons in household percentage of household
1 25.75
2 31.17
3 17.50
4 15.58
5 10.00

Table 3: Distribution of Household Sizes in the Region
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Poststratification:
▶ Collect a Simple Random Sample (SRS) and record both the

amount spent on food and the household size for each
household in your sample.

▶ When the sample size n is sufficiently large, it is likely to
resemble a stratified sample with proportional allocation.
That is:

Approximately 26% of the sample would be one-person
households,
Around 31% would be two-person households,
And so on, following the known distribution of household sizes
in the population.

▶ Treat different household-size groups as distinct domains.
Using this approach, ratio estimation can be applied to
estimate the average amount spent on groceries within each
domain.

By employing poststratification, we can improve the precision of
our estimates by accounting for the structure of the population
after data collection.
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Poststratified estimator Let n1, n2, · · · , nH be the numbers of
units sampled in the various household-size groups (domains), nh is
random
and ȳ1, · · · , ȳH be the sample means for the groups
Let xih = 1 if observation i is in poststratum h and 0 otherwise
Let uih = yixih

txh =
N∑
i=1

xih = Nh

tuh =
N∑
i=1

uih = population total of variable y in poststratum h

For each poststratum h, estimate the total in the poststratum by

t̂uh =
∑
i∈S

N

n
· uih and N̂h =

∑
i∈S

N

n
· xih

t̂uhr =
txh
t̂xh

· t̂uh =
Nh

N̂h

· t̂uh = Nh · ȳh
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Poststratified estimator of the population total is

t̂ypost =
H∑

h=1

t̂uhr =
H∑

h=1

Nh

N̂h

· t̂uh =
H∑

h=1

Nhȳh

ratio estimation is used within each poststratum to estimate the
population total in that poststratum.
The poststratified estimator of ȳU

ȳpost =
H∑

h=1

Nh

N
· ȳh

where Nh/N known, nh ≥ 30 and n large
Approximately proportional allocation

V̂ (ȳpost) ≈
(
1− n

N

) H∑
h=1

Nh

N
·
s2h
n
,

when the expected sample sizes in each poststratum are large.
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Poststratification using weights
Poststratification modifies the weights so that they sum to Nh in
poststratum h. Let wi represent the sampling weight for unit i . For an
SRS, for example, wi = N/n for each unit in the sample. Recall that

t̂ypost =
H∑

h=1

t̂uhr =
H∑

h=1

Nh

N̂h

· t̂uh =
H∑

h=1

Nh

N̂h

wixihyih

Define
w∗
i = (Nh/N̂h)wi

when unit i is in poststratum h. Then estimate the population total ty by

t̂ypost =
∑
i∈S

w∗
i yi

and the population mean by

ȳpost =

∑
i∈S w

∗
i yi∑

i∈S w
∗
i

.

For an SRS, the above reduces to

ȳpost =
H∑

h=1

Nh

N
· ȳh,

∑
i∈S

w∗
i = N
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144 Ratio and Regression Estimation

Example 4.9. Example 3.2 displayed estimates for a stratified random sample from the
Census of Agriculture population. The stratified sample, taken with proportional allocation,
produced estimates with smaller variances than the SRS in Example 2.6.

But what if you took an SRS and only later realized that you should have taken a
stratified sample? Or if you did not have region membership available for the counties
in the sampling frame? Let’s poststratify the SRS from Example 2.6 and find out. The
quantities needed for the calculation are given in Table 4.4.

TABLE 4.4
Weight adjustments for poststratification in Example 4.9. The last two columns, ȳh and
sh, give the poststratum mean and standard deviation, respectively.
Region Nh nh N̂h wi w∗i ȳh sh

Northeast 220 24 246.24 10.26 9.1667 71970.83 65000.06
North Central 1054 107 1097.82 10.26 9.8505 350292.01 294715.13
South 1382 130 1333.80 10.26 10.6308 206246.35 277433.61
West 422 39 400.14 10.26 10.8205 598680.59 516157.67
Total 3078 300 3078.00

The poststratification-adjusted weights w∗i differ from the original sampling weights
wi = 3078/300 = 10.26. The poststratified weight for every county in the Northeast, where
the SRS contained more units than would have been drawn in a stratified sample with
proportional allocation, is

w∗i = NNortheast

N̂Northeast
wi = 220

246.24(10.26) = 9.1667.

The poststratified weight for Northeast counties is smaller than 10.26 to account for the fact
that the randomly selected sample contained, by chance, more counties in the poststratum
than its share of the population. The poststratified weights in the West poststratum are
larger than 10.26 to correct for the sample having more Western counties than it would
under proportional allocation.

The weight adjustments force the estimated counts from each poststratum to equal the
true poststratum count, Nh. Thus,

∑
i∈S w

∗
i xi1 = (24)(9.1667) = 220,

∑
i∈S w

∗
i xi2 = 1054,∑

i∈S w
∗
i xi3 = 1382, and

∑
i∈S w

∗
i xi4 = 422.

The poststratified estimate of the population mean is

ȳpost =
∑
i∈S w

∗
i yi∑

i∈S w
∗
i

= 15833583 + 369207778.5 + 285032455.7 + 252643209
3078 = 299,778.

From (4.27), the standard error of ȳpost is

SE (ȳpost) =

√√√√
(

1− 300
3078

) H∑

h=1

Nh
3078

s2
h

300 = 17,443.

By contrast, the standard error of the sample mean, ȳ, from Example 2.7, is 18,898. The
poststratification reduces the standard error because the weighted average of the within-
poststratum variances,

∑H
h=1(Nh/N)s2

h, is smaller than s2. �

Difference between stratification and poststratification. In both stratification and post-
stratification, each population member belongs to exactly one of H possible groups. In
stratified random sampling, independent SRSs are selected from each of the H groups

Figure 4: Example 4.9(1)
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Ratio Estimation with Stratified Samples

Combined ratio estimator

▶ First, estimate tx and ty using all the data

▶ Next ratio estimation is applied

t̂yrc = B̂tx , where B̂ =
t̂y ,str
t̂x ,str

t̂y ,str =
H∑

h=1

Nhȳh =
H∑

h=1

∑
j∈Sh

whjyhj

and

t̂x ,str =
H∑

h=1

Nhx̄h =
H∑

h=1

∑
j∈Sh

whjxhj

with whj = Nh/nh
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MSE (t̂yrc) ≈ V (t̂y ,str − Bt̂x ,str ) = V

 H∑
h=1

∑
j∈Sh

whj(yhj − Bxhj)



V̂ (t̂yrc) =

(
tx ,str
t̂x ,str

)2

V̂

 H∑
h=1

∑
j∈Sh

whjehj


=

(
tx ,str
t̂x ,str

)2

V̂ (t̂e,str )

=

(
tx ,str
t̂x ,str

)2

[V̂ (t̂y ,str ) + B̂2V̂ (t̂x ,str )− 2B̂Ĉov(t̂y ,str , t̂x ,str )]

where ehj = yhj − B̂xhj .
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Separate ratio estimator

▶ Ratio estimation is applied separately in each stratum

▶ Next the strata estimators are combined to estimate the
population total

t̂yrs =
H∑

h=1

t̂yhr =
H∑

h=1

txh ·
t̂yh
t̂xh

=
H∑

h=1

txh · B̂h

with

V̂ (t̂yrs) =
H∑

h=1

V̂ (t̂yhr )

Instructor: Yan Lu 81/83



Chapter 4

Comments on Estimators

▶ A separate ratio estimator can improve efficiency if the ratio

B̂h =
t̂yh
t̂xh

varies significantly between strata.

▶ A separate ratio estimator should not be used when strata
sample sizes are small, as each ratio is biased, and the bias
may propagate across strata.

▶ Poststratification is a special case of the separate ratio
estimator.

▶ The combined estimator has less bias when sample sizes in
some strata are small.

▶ However, when ratios vary greatly between strata, the
combined estimator does not leverage the efficiency gain from
stratification that the separate ratio estimator does.
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Disclaimer

Slides are intended for a course based on the book: Sampling:
Design and Analysis, Third Edition by Sharon L. Lohr
All examples, datasets, and pages directly scanned and included in
this chapter are from the textbook.
References to papers or books cited in these slides can be found in
the Bibliography section of the textbook.
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