
Package ‘survey’
October 14, 2011

Title analysis of complex survey samples

Description Summary statistics, two-sample tests, generalised linear
models, cumulative link models, Cox models, loglinear models,and general maximum pseudo-
likelihood estimation for multistage
stratified, cluster-sampled, unequally weighted survey samples.
Variances by Taylor series linearisation or replicate weights.
Post-stratification, calibration, and raking. Two-phase
subsampling designs. Graphics. Predictive margins by direct
standardization. PPS sampling without replacement. Principal components, factor analysis.

Version 3.26

Author Thomas Lumley

Maintainer Thomas Lumley <tlumley@u.washington.edu>

License GPL-2 | GPL-3

Depends R (>= 2.2.0)

Suggests survival, MASS, splines, KernSmooth, hexbin, mi-
tools,lattice, RSQLite, RODBC, quantreg, Matrix, multicore,CompQuadForm

Enhances odfWeave.survey

URL http://faculty.washington.edu/tlumley/survey/

Repository CRAN

Date/Publication 2011-10-14 06:42:15

R topics documented:
api . 3
as.fpc . 6
as.svrepdesign . 7
as.svydesign2 . 8
barplot.svystat . 9

1

http://faculty.washington.edu/tlumley/survey/

2 R topics documented:

bootweights . 10
brrweights . 12
calibrate . 14
compressWeights . 19
confint.svyglm . 20
crowd . 21
dimnames.DBIsvydesign . 22
election . 23
estweights . 24
fpc . 26
ftable.svystat . 27
hadamard . 29
hospital . 30
HR . 31
make.calfun . 32
marginpred . 33
mu284 . 34
nonresponse . 35
open.DBIsvydesign . 37
paley . 38
pchisqsum . 39
postStratify . 41
rake . 43
regTermTest . 45
scd . 46
SE . 48
stratsample . 48
subset.survey.design . 49
surveyoptions . 50
surveysummary . 51
svrepdesign . 55
svrVar . 58
svy.varcoef . 59
svyby . 59
svycdf . 62
svyciprop . 63
svycontrast . 65
svycoplot . 66
svycoxph . 67
svyCprod . 69
svydesign . 71
svyfactanal . 74
svyglm . 75
svyhist . 78
svykappa . 79
svykm . 80
svyloglin . 82
svylogrank . 84

api 3

svymle . 85
svyolr . 88
svyplot . 89
svyprcomp . 91
svyquantile . 92
svyranktest . 95
svyratio . 96
svyrecvar . 99
svysmooth . 101
svytable . 103
svyttest . 106
trimWeights . 107
twophase . 108
update.survey.design . 111
weights.survey.design . 112
with.svyimputationList . 113
withReplicates . 114

Index 117

api Student performance in California schools

Description

The Academic Performance Index is computed for all California schools based on standardised
testing of students. The data sets contain information for all schools with at least 100 students and
for various probability samples of the data.

Usage

data(api)

Format

The full population data in apipop are a data frame with 6194 observations on the following 37
variables.

cds Unique identifier

stype Elementary/Middle/High School

name School name (15 characters)

sname School name (40 characters)

snum School number

dname District name

dnum District number

cname County name

4 api

cnum County number

flag reason for missing data

pcttest percentage of students tested

api00 API in 2000

api99 API in 1999

target target for change in API

growth Change in API

sch.wide Met school-wide growth target?

comp.imp Met Comparable Improvement target

both Met both targets

awards Eligible for awards program

meals Percentage of students eligible for subsidized meals

ell ‘English Language Learners’ (percent)

yr.rnd Year-round school

mobility percentage of students for whom this is the first year at the school

acs.k3 average class size years K-3

acs.46 average class size years 4-6

acs.core Number of core academic courses

pct.resp percent where parental education level is known

not.hsg percent parents not high-school graduates

hsg percent parents who are high-school graduates

some.col percent parents with some college

col.grad percent parents with college degree

grad.sch percent parents with postgraduate education

avg.ed average parental education level

full percent fully qualified teachers

emer percent teachers with emergency qualifications

enroll number of students enrolled

api.stu number of students tested.

The other data sets contain additional variables pw for sampling weights and fpc to compute finite
population corrections to variance.

Details

apipop is the entire population, apisrs is a simple random sample, apiclus1 is a cluster sample
of school districts, apistrat is a sample stratified by stype, and apiclus2 is a two-stage cluster
sample of schools within districts. The sampling weights in apiclus1 are incorrect (the weight
should be 757/15) but are as obtained from UCLA.

api 5

Source

Data were obtained from the survey sampling help pages of UCLA Academic Technology Services,
at http://www.ats.ucla.edu/stat/stata/Library/svy_survey.htm.

References

The API program and original data files are at http://api.cde.ca.gov/

Examples

library(survey)
data(api)
mean(apipop$api00)
sum(apipop$enroll, na.rm=TRUE)

#stratified sample
dstrat<-svydesign(id=~1,strata=~stype, weights=~pw, data=apistrat, fpc=~fpc)
summary(dstrat)
svymean(~api00, dstrat)
svytotal(~enroll, dstrat, na.rm=TRUE)

one-stage cluster sample
dclus1<-svydesign(id=~dnum, weights=~pw, data=apiclus1, fpc=~fpc)
summary(dclus1)
svymean(~api00, dclus1)
svytotal(~enroll, dclus1, na.rm=TRUE)

two-stage cluster sample
dclus2<-svydesign(id=~dnum+snum, fpc=~fpc1+fpc2, data=apiclus2)
summary(dclus2)
svymean(~api00, dclus2)
svytotal(~enroll, dclus2, na.rm=TRUE)

two-stage ‘with replacement’
dclus2wr<-svydesign(id=~dnum+snum, weights=~pw, data=apiclus2)
summary(dclus2wr)
svymean(~api00, dclus2wr)
svytotal(~enroll, dclus2wr, na.rm=TRUE)

convert to replicate weights
rclus1<-as.svrepdesign(dclus1)
summary(rclus1)
svymean(~api00, rclus1)
svytotal(~enroll, rclus1, na.rm=TRUE)

post-stratify on school type
pop.types<-xtabs(~stype, data=apipop)

rclus1p<-postStratify(rclus1, ~stype, pop.types)
dclus1p<-postStratify(dclus1, ~stype, pop.types)
summary(dclus1p)

http://www.ats.ucla.edu/stat/stata/Library/svy_survey.htm
http://api.cde.ca.gov/

6 as.fpc

summary(rclus1p)

svymean(~api00, dclus1p)
svytotal(~enroll, dclus1p, na.rm=TRUE)

svymean(~api00, rclus1p)
svytotal(~enroll, rclus1p, na.rm=TRUE)

as.fpc Package sample and population size data

Description

This function creates an object to store the number of clusters sampled within each stratum (at each
stage of multistage sampling) and the number of clusters available in the population. It is called by
svydesign, not directly by the user.

Usage

as.fpc(df, strata, ids,pps=FALSE)

Arguments

df A data frame or matrix with population size information

strata A data frame giving strata at each stage

ids A data frame giving cluster ids at each stage

pps if TRUE, fpc information may vary within a stratum and must be specified as a
proportion rather than a population sizes

Details

The population size information may be specified as the number of clusters in the population or as
the proportion of clusters sampled.

Value

An object of class survey_fpc

See Also

svydesign,svyrecvar

as.svrepdesign 7

as.svrepdesign Convert a survey design to use replicate weights

Description

Creates a replicate-weights survey design object from a traditional strata/cluster survey design ob-
ject. JK1 and JKn are jackknife methods, BRR is Balanced Repeated Replicates and Fay is Fay’s
modification of this, bootstrap is Canty and Davison’s bootstrap, subbootstrap is Rao and Wu’s
(n− 1) bootstrap, and mrbbootstrap is Preston’s multistage rescaled bootstrap.

Usage

as.svrepdesign(design, type=c("auto", "JK1", "JKn", "BRR", "bootstrap","subbootstrap","mrbbootstrap","Fay"),
fay.rho = 0, ..., compress=TRUE, mse=getOption("survey.replicates.mse"))

Arguments

design Object of class survey.design

type Type of replicate weights. "auto" uses JKn for stratified, JK1 for unstratified
designs

fay.rho Tuning parameter for Fay’s variance method

... Other arguments to jk1weights, jknweights, brrweights, or bootweights .

compress Use a compressed representation of the replicate weights matrix.

mse if TRUE, compute variances from sums of squares around the point estimate,
rather than the mean of the replicates

Value

Object of class svyrep.design.

References

Canty AJ, Davison AC. (1999) Resampling-based variance estimation for labour force surveys. The
Statistician 48:379-391

Judkins, D. (1990), "Fay’s Method for Variance Estimation," Journal of Official Statistics, 6, 223-
239.

Preston J. (2009) Rescaled bootstrap for stratified multistage sampling. Survey Methodology 35(2)
227-234

Rao JNK, Wu CFJ. Bootstrap inference for sample surveys. Proc Section on Survey Research
Methodology. 1993 (866–871)

See Also

brrweights, svydesign, svrepdesign, bootweights, subbootweights, mrbweights

8 as.svydesign2

Examples

data(scd)
scddes<-svydesign(data=scd, prob=~1, id=~ambulance, strata=~ESA,
nest=TRUE, fpc=rep(5,6))
scdnofpc<-svydesign(data=scd, prob=~1, id=~ambulance, strata=~ESA,
nest=TRUE)

convert to BRR replicate weights
scd2brr <- as.svrepdesign(scdnofpc, type="BRR")
scd2fay <- as.svrepdesign(scdnofpc, type="Fay",fay.rho=0.3)
convert to JKn weights
scd2jkn <- as.svrepdesign(scdnofpc, type="JKn")

convert to JKn weights with finite population correction
scd2jknf <- as.svrepdesign(scddes, type="JKn")

with user-supplied hadamard matrix
scd2brr1 <- as.svrepdesign(scdnofpc, type="BRR", hadamard.matrix=paley(11))

svyratio(~alive, ~arrests, design=scd2brr)
svyratio(~alive, ~arrests, design=scd2brr1)
svyratio(~alive, ~arrests, design=scd2fay)
svyratio(~alive, ~arrests, design=scd2jkn)
svyratio(~alive, ~arrests, design=scd2jknf)

data(api)
one-stage cluster sample
dclus1<-svydesign(id=~dnum, weights=~pw, data=apiclus1, fpc=~fpc)
convert to JK1 jackknife
rclus1<-as.svrepdesign(dclus1)
convert to bootstrap
bclus1<-as.svrepdesign(dclus1,type="bootstrap", replicates=100)

svymean(~api00, dclus1)
svytotal(~enroll, dclus1)

svymean(~api00, rclus1)
svytotal(~enroll, rclus1)

svymean(~api00, bclus1)
svytotal(~enroll, bclus1)

dclus2<-svydesign(id = ~dnum + snum, fpc = ~fpc1 + fpc2, data = apiclus2)
mrbclus2<-as.svrepdesign(dclus2, type="mrb",replicates=100)
svytotal(~api00+stype, dclus2)
svytotal(~api00+stype, mrbclus2)

as.svydesign2 Update to the new survey design format

barplot.svystat 9

Description

The structure of survey design objects changed in version 2.9, to allow standard errors based on
multistage sampling. as.svydesign converts an object to the new structure and .svycheck warns
if an object does not have the new structure.

You can set options(survey.want.obsolete=TRUE) to suppress the warnings produced by .svycheck
and options(survey.ultimate.cluster=TRUE) to always compute variances based on just the
first stage of sampling.

Usage

as.svydesign2(object)
.svycheck(object)

Arguments

object produced by svydesign

Value

Object of class survey.design2

See Also

svydesign, svyrecvar

barplot.svystat Barplots and Dotplots

Description

Draws a barplot or dotplot based on results from a survey analysis. The default barplot method
already works for results from svytable.

Usage

S3 method for class ’svystat’
barplot(height, ...)
S3 method for class ’svrepstat’
barplot(height, ...)
S3 method for class ’svyby’
barplot(height,beside=TRUE, ...)

S3 method for class ’svystat’
dotchart(x,...,pch=19)
S3 method for class ’svrepstat’
dotchart(x,...,pch=19)
S3 method for class ’svyby’
dotchart(x,...,pch=19)

10 bootweights

Arguments

height,x Analysis result

beside Grouped, rather than stacked, bars

... Arguments to barplot or dotchart

pch Overrides the default in dotchart.default

Examples

data(api)
dclus1<-svydesign(id=~dnum, weights=~pw, data=apiclus1, fpc=~fpc)

a<-svymean(~stype, dclus1)
barplot(a)
barplot(a, names.arg=c("Elementary","High","Middle"), col="purple", main="Proportions of school level")

b<-svyby(~enroll+api.stu, ~stype, dclus1, svymean)
barplot(b,beside=TRUE,legend=TRUE)
dotchart(b)

bootweights Compute survey bootstrap weights

Description

Bootstrap weights for infinite populations (’with replacement’ sampling) are created by sampling
with replacement from the PSUs in each stratum. subbootweights() samples n-1 PSUs from the
n available (Rao and Wu), bootweights samples n (Canty and Davison).

For multistage designs or those with large sampling fractions, mrbweights implements Preston’s
multistage rescaled bootstrap. The multistage rescaled bootstrap is still useful for single-stage de-
signs with small sampling fractions, where it reduces to a half-sample replicate method.

Usage

bootweights(strata, psu, replicates = 50, fpc = NULL,
fpctype = c("population", "fraction", "correction"),
compress = TRUE)

subbootweights(strata, psu, replicates = 50, compress = TRUE)
mrbweights(clusters, stratas, fpcs, replicates=50,

multicore=getOption("survey.multicore"))

bootweights 11

Arguments

strata Identifier for sampling strata (top level only)

stratas data frame of strata for all stages of sampling

psu Identifier for primary sampling units

clusters data frame of identifiers for sampling units at each stage

replicates Number of bootstrap replicates

fpc Finite population correction (top level only)

fpctype Is fpc the population size, sampling fraction, or 1-sampling fraction?

fpcs survey_fpc object with population and sample size at each stage

compress Should the replicate weights be compressed?

multicore Use the multicore package to generate the replicates in parallel

Value

A set of replicate weights

warning

With multicore=TRUE the resampling procedure does not use the current random seed, so the
results cannot be exactly reproduced even by using set.seed()

Note

These bootstraps are strictly appropriate only when the first stage of sampling is a simple or stratified
random sample of PSUs with or without replacement, and not (eg) for PPS sampling. The functions
will not enforce simple random sampling, so they can be used (approximately) for data that have had
non-response corrections and other weight adjustments. It is preferable to apply these adjustments
after creating the bootstrap replicate weights, but that may not be possible with public-use data.

References

Canty AJ, Davison AC. (1999) Resampling-based variance estimation for labour force surveys. The
Statistician 48:379-391

Judkins, D. (1990), "Fay’s Method for Variance Estimation" Journal of Official Statistics, 6, 223-
239.

Preston J. (2009) Rescaled bootstrap for stratified multistage sampling. Survey Methodology 35(2)
227-234

Rao JNK, Wu CFJ. Bootstrap inference for sample surveys. Proc Section on Survey Research
Methodology. 1993 (866–871)

See Also

as.svrepdesign

12 brrweights

brrweights Compute replicate weights

Description

Compute replicate weights from a survey design. These functions are usually called from as.svrepdesign
rather than directly by the user.

Usage

brrweights(strata, psu, match = NULL,
small = c("fail","split","merge"),
large = c("split", "merge", "fail"),
fay.rho=0, only.weights=FALSE,
compress=TRUE, hadamard.matrix=NULL)

jk1weights(psu,fpc=NULL,
fpctype=c("population","fraction","correction"),
compress=TRUE)

jknweights(strata,psu, fpc=NULL,
fpctype=c("population","fraction","correction"),
compress=TRUE,
lonely.psu=getOption("survey.lonely.psu"))

Arguments

strata Stratum identifiers

psu PSU (cluster) identifier

match Optional variable to use in matching.

small How to handle strata with only one PSU

large How to handle strata with more than two PSUs

fpc Optional population (stratum) size or finite population correction

fpctype How fpc is coded.

fay.rho Parameter for Fay’s extended BRR method

only.weights If TRUE return only the matrix of replicate weights

compress If TRUE, store the replicate weights in compressed form

hadamard.matrix

Optional user-supplied Hadamard matrix for brrweights

lonely.psu Handling of non-certainty single-PSU strata

brrweights 13

Details

JK1 and JKn are jackknife schemes for unstratified and stratified designs respectively. The finite
population correction may be specified as a single number, a vector with one entry per stratum, or a
vector with one entry per observation (constant within strata). When fpc is a vector with one entry
per stratum it may not have names that differ from the stratum identifiers (it may have no names,
in which case it must be in the same order as unique(strata)). To specify population stratum
sizes use fpctype="population", to specify sampling fractions use fpctype="fraction" and to
specify the correction directly use fpctype="correction"

The only reason not to use compress=TRUE is that it is new and there is a greater possibility of bugs.
It reduces the number of rows of the replicate weights matrix from the number of observations to
the number of PSUs.

In BRR variance estimation each stratum is split in two to give half-samples. Balanced replicated
weights are needed, where observations in two different strata end up in the same half stratum
as often as in different half-strata.BRR, strictly speaking, is defined only when each stratum has
exactly two PSUs. A stratum with one PSU can be merged with another such stratum, or can be
split to appear in both half samples with half weight. The latter approach is appropriate for a PSU
that was deterministically sampled.

A stratum with more than two PSUs can be split into multiple smaller strata each with two PSUs or
the PSUs can be merged to give two superclusters within the stratum.

When merging small strata or grouping PSUs in large strata the match variable is used to sort PSUs
before merging, to give approximate matching on this variable.

If you want more control than this you should probably construct your own weights using the
Hadamard matrices produced by hadamard

Value

For brrweights with only.weights=FALSE a list with elements

weights two-column matrix indicating the weight for each half-stratum in one particular
set of split samples

wstrata New stratum variable incorporating merged or split strata

strata Original strata for distinct PSUs

psu Distinct PSUs

npairs Dimension of Hadamard matrix used in BRR construction

sampler function returning replicate weights

compress Indicates whether the sampler returns per PSU or per observation weights

For jk1weights and jknweights a data frame of replicate weights and the scale and rscale
arguments to svrVar.

References

Levy and Lemeshow "Sampling of Populations". Wiley.

Shao and Tu "The Jackknife and Bootstrap". Springer.

14 calibrate

See Also

hadamard, as.svrepdesign, svrVar, surveyoptions

Examples

data(scd)
scdnofpc<-svydesign(data=scd, prob=~1, id=~ambulance, strata=~ESA,
nest=TRUE)

convert to BRR replicate weights
scd2brr <- as.svrepdesign(scdnofpc, type="BRR")
svymean(~alive, scd2brr)
svyratio(~alive, ~arrests, scd2brr)

with user-supplied hadamard matrix
scd2brr1 <- as.svrepdesign(scdnofpc, type="BRR", hadamard.matrix=paley(11))
svymean(~alive, scd2brr1)
svyratio(~alive, ~arrests, scd2brr1)

calibrate Calibration (GREG) estimators

Description

Calibration, generalized raking, or GREG estimators generalise post-stratification and raking by
calibrating a sample to the marginal totals of variables in a linear regression model. This function
reweights the survey design and adds additional information that is used by svyrecvar to reduce
the estimated standard errors.

Usage

calibrate(design,...)
S3 method for class ’survey.design2’
calibrate(design, formula, population,

aggregate.stage=NULL, stage=0, variance=NULL,
bounds=c(-Inf,Inf), calfun=c("linear","raking","logit"),
maxit=50,epsilon=1e-7,verbose=FALSE,force=FALSE,trim=NULL,...)

S3 method for class ’svyrep.design’
calibrate(design, formula, population,compress=NA,

aggregate.index=NULL, variance=NULL, bounds=c(-Inf,Inf),
calfun=c("linear","raking","logit"),
maxit=50, epsilon=1e-7, verbose=FALSE,force=FALSE,trim=NULL, ...)

S3 method for class ’twophase’
calibrate(design, phase=2,formula, population,

calfun=c("linear","raking","logit","rrz"),...)
grake(mm,ww,calfun,eta=rep(0,NCOL(mm)),bounds,population,epsilon, verbose,maxit)

calibrate 15

Arguments

design survey design object

formula model formula for calibration model

population Vectors of population column totals for the model matrix in the calibration
model, or list of such vectors for each cluster. Required except for two-phase
designs

compress compress the resulting replicate weights if TRUE or if NA and weights were pre-
viously compressed

stage See Details below

variance Coefficients for variance in calibration model (see Details below)
aggregate.stage

An integer. If not NULL, make calibration weights constant within sampling units
at this stage.

aggregate.index

A vector or one-sided formula. If not NULL, make calibration weights constant
within levels of this variable

bounds Bounds for the calibration weights, optional except for calfun="logit"

trim Weights outside this range will be trimmed to these bounds.

... options for other methods

calfun Calibration function: see below

maxit Number of iterations

epsilon tolerance in matching population total. Either a single number or a vector of the
same length as population

verbose print lots of uninteresting information

force Return an answer even if the specified accuracy was not achieved

phase Phase of a two-phase design to calibrate (only phase=2 currently implemented.)

mm model matrix

ww vector of weights

eta starting values for iteration

Details

If the population argument has a names attribute it will be checked against the names produced
by model.matrix(formula) and reordered if necessary. This protects against situations where the
(locale-dependent) ordering of factor levels is not what you expected.

The calibrate function implements linear, bounded linear, raking, bounded raking, and logit cal-
ibration functions. All except unbounded linear calibration use the Newton-Raphson algorithm
described by Deville et al (1993). This algorithm is exposed for other uses in the grake function.
Unbounded linear calibration uses an algorithm that is less sensitive to collinearity. The calibration
function may be specified as a string naming one of the three built-in functions or as an object of
class calfun, allowing user-defined functions. See make.calfun for details.

16 calibrate

Calibration with bounds, or on highly collinear data, may fail. If force=TRUE the approximately
calibrated design object will still be returned (useful for examining why it failed). A failure in
calibrating a set of replicate weights when the sampling weights were successfully calibrated will
give only a warning, not an error.

When calibration to the desired set of bounds is not possible, another option is to trim weights.
To do this set bounds to a looser set of bounds for which calibration is achievable and set trim
to the tighter bounds. Weights outside the bounds will be trimmed to the bounds, and the excess
weight distributed over other observations in proportion to their sampling weight (and so this may
put some other observations slightly over the trimming bounds). The projection matrix used in
computing standard errors is based on the feasible bounds specified by the bounds argument. See
also trimWeights, which trims the final weights in a design object rather than the calibration ad-
justments.

For two-phase designs calfun="rrz" estimates the sampling probabilities using logistic regression
as described by Robins et al (1994). estWeights will do the same thing.

Calibration may result in observations within the last-stage sampling units having unequal weight
even though they necessarily are sampled together. Specifying aggegrate.stage ensures that the
calibration weight adjustments are constant within sampling units at the specified stage; if the orig-
inal sampling weights were equal the final weights will also be equal. The algorithm is as described
by Vanderhoeft (2001, section III.D). Specifying aggregate.index does the same thing for repli-
cate weight designs; a warning will be given if the original weights are not constant within levels of
aggregate.index.

In a model with two-stage sampling, population totals may be available for the PSUs actually sam-
pled, but not for the whole population. In this situation, calibrating within each PSU reduces with
second-stage contribution to variance. This generalizes to multistage sampling. The stage argu-
ment specifies which stage of sampling the totals refer to. Stage 0 is full population totals, stage
1 is totals for PSUs, and so on. The default, stage=NULL is interpreted as stage 0 when a single
population vector is supplied and stage 1 when a list is supplied. Calibrating to PSU totals will fail
(with a message about an exactly singular matrix) for PSUs that have fewer observations than the
number of calibration variables.

For unbounded linear calibration only, the variance in the calibration model may depend on covari-
ates. If variance=NULL the calibration model has constant variance. If variance is not NULL it
specifies a linear combination of the columns of the model matrix and the calibration variance is
proportional to that linear combination.

The design matrix specified by formula (after any aggregation) must be of full rank, with one
exception. If the population total for a column is zero and all the observations are zero the column
will be ignored. This allows the use of factors where the population happens to have no observations
at some level.

In a two-phase design, population may be omitted when phase=2, to specify calibration to the
phase-one sample. If the two-phase design object was constructed using the more memory-efficient
method="approx" argument to twophase, calibration of the first phase of sampling to the popula-
tion is not supported.

Value

A survey design object.

calibrate 17

References

Deville J-C, Sarndal C-E, Sautory O (1993) Generalized Raking Procedures in Survey Sampling.
JASA 88:1013-1020

Kalton G, Flores-Cervantes I (2003) "Weighting methods" J Official Stat 19(2) 81-97

Sarndal C-E, Swensson B, Wretman J. "Model Assisted Survey Sampling". Springer. 1991.

Rao JNK, Yung W, Hidiroglou MA (2002) Estimating equations for the analysis of survey data
using poststratification information. Sankhya 64 Series A Part 2, 364-378.

Robins JM, Rotnitzky A, Zhao LP. (1994) Estimation of regression coefficients when some regres-
sors are not always observed. Journal of the American Statistical Association, 89, 846-866.

Vanderhoeft C (2001) Generalized Calibration at Statistics Belgium. Statistics Belgium Working
Paper No 3. http://www.statbel.fgov.be/studies/paper03_en.asp

See Also

postStratify, rake for other ways to use auxiliary information

twophase and vignette("epi") for an example of calibration in two-phase designs

survey/tests/kalton.R for examples replicating those in Kalton & Flores-Cervantes (2003)

make.calfun for user-defined calibration distances.

trimWeights to trim final weights rather than calibration adjustments.

Examples

data(api)
dclus1<-svydesign(id=~dnum, weights=~pw, data=apiclus1, fpc=~fpc)

pop.totals<-c(‘(Intercept)‘=6194, stypeH=755, stypeM=1018)

For a single factor variable this is equivalent to
postStratify

(dclus1g<-calibrate(dclus1, ~stype, pop.totals))

svymean(~api00, dclus1g)
svytotal(~enroll, dclus1g)
svytotal(~stype, dclus1g)

Make weights constant within school district
(dclus1agg<-calibrate(dclus1, ~stype, pop.totals, aggregate=1))
svymean(~api00, dclus1agg)
svytotal(~enroll, dclus1agg)
svytotal(~stype, dclus1agg)

Now add sch.wide
(dclus1g2 <- calibrate(dclus1, ~stype+sch.wide, c(pop.totals, sch.wideYes=5122)))

svymean(~api00, dclus1g2)
svytotal(~enroll, dclus1g2)

http://www.statbel.fgov.be/studies/paper03_en.asp

18 calibrate

svytotal(~stype, dclus1g2)

Finally, calibrate on 1999 API and school type

(dclus1g3 <- calibrate(dclus1, ~stype+api99, c(pop.totals, api99=3914069)))

svymean(~api00, dclus1g3)
svytotal(~enroll, dclus1g3)
svytotal(~stype, dclus1g3)

Same syntax with replicate weights
rclus1<-as.svrepdesign(dclus1)

(rclus1g3 <- calibrate(rclus1, ~stype+api99, c(pop.totals, api99=3914069)))

svymean(~api00, rclus1g3)
svytotal(~enroll, rclus1g3)
svytotal(~stype, rclus1g3)

(rclus1agg3 <- calibrate(rclus1, ~stype+api99, c(pop.totals,api99=3914069), aggregate.index=~dnum))

svymean(~api00, rclus1agg3)
svytotal(~enroll, rclus1agg3)
svytotal(~stype, rclus1agg3)

###
Bounded weights
range(weights(dclus1g3)/weights(dclus1))
dclus1g3b <- calibrate(dclus1, ~stype+api99, c(pop.totals, api99=3914069),bounds=c(0.6,1.6))
range(weights(dclus1g3b)/weights(dclus1))

svymean(~api00, dclus1g3b)
svytotal(~enroll, dclus1g3b)
svytotal(~stype, dclus1g3b)

trimming
dclus1tr <- calibrate(dclus1, ~stype+api99, c(pop.totals, api99=3914069),bounds=c(0.5,2), trim=c(2/3,3/2))
svymean(~api00+api99+enroll, dclus1tr)
svytotal(~stype,dclus1tr)
range(weights(dclus1tr)/weights(dclus1))

rclus1tr <- calibrate(rclus1, ~stype+api99, c(pop.totals, api99=3914069),bounds=c(0.5,2), trim=c(2/3,3/2))
svymean(~api00+api99+enroll, rclus1tr)
svytotal(~stype,rclus1tr)

generalised raking
dclus1g3c <- calibrate(dclus1, ~stype+api99, c(pop.totals,

api99=3914069), calfun="raking")

compressWeights 19

range(weights(dclus1g3c)/weights(dclus1))

(dclus1g3d <- calibrate(dclus1, ~stype+api99, c(pop.totals,
api99=3914069), calfun=cal.logit, bounds=c(0.5,2.5)))

range(weights(dclus1g3d)/weights(dclus1))

Ratio estimators are calibration estimators
dstrat<-svydesign(id=~1,strata=~stype, weights=~pw, data=apistrat, fpc=~fpc)
svytotal(~api.stu,dstrat)

common<-svyratio(~api.stu, ~enroll, dstrat, separate=FALSE)
predict(common, total=3811472)

pop<-3811472
equivalent to (common) ratio estimator
dstratg1<-calibrate(dstrat,~enroll-1, pop, variance=1)
svytotal(~api.stu, dstratg1)

compressWeights Compress replicate weight matrix

Description

Many replicate weight matrices have redundant rows, such as when weights are the same for all
observations in a PSU. This function produces a compressed form. Methods for as.matrix and
as.vector extract and expand the weights.

Usage

compressWeights(rw, ...)
S3 method for class ’svyrep.design’
compressWeights(rw,...)
S3 method for class ’repweights_compressed’
as.matrix(x,...)
S3 method for class ’repweights_compressed’
as.vector(x,...)

Arguments

rw A set of replicate weights or a svyrep.design object

x A compressed set of replicate weights

... For future expansion

20 confint.svyglm

Value

An object of class repweights_compressed or a svyrep.design object with repweights element
of class repweights_compressed

See Also

jknweights,as.svrepdesign

Examples

data(api)
dclus1<-svydesign(id=~dnum, weights=~pw, data=apiclus1, fpc=~fpc)
rclus1c<-as.svrepdesign(dclus1,compress=TRUE)
rclus1<-as.svrepdesign(dclus1,compress=FALSE)

confint.svyglm Confidence intervals for regression parameters

Description

Computes confidence intervals for regression parameters in svyglm objects. The default is a Wald-
type confidence interval, adding and subtracting a multiple of the standard error. The method="likelihood"
is an interval based on inverting the Rao-Scott likelihood ratio test. That is, it is an interval where
the working model deviance is lower than the threshold for the Rao-Scott test at the specified level.

Usage

S3 method for class ’svyglm’
confint(object, parm, level = 0.95, method = c("Wald", "likelihood"), ddf = Inf, ...)

Arguments

object svyglm object

parm numeric or character vector indicating which parameters to construct intervals
for.

level desired coverage

method See description above

ddf Denominator degrees of freedom for "likelihood" method, to use a t distribu-
tion rather than norma. If NULL, use object$df.residual

... for future expansion

Value

A matrix of confidence intervals

crowd 21

References

J. N. K. Rao and Alistair J. Scott (1984) On Chi-squared Tests For Multiway Contigency Tables
with Proportions Estimated From Survey Data. Annals of Statistics 12:46-60

See Also

confint

Examples

data(api)
dclus2<-svydesign(id=~dnum+snum, fpc=~fpc1+fpc2, data=apiclus2)

m<-svyglm(I(comp.imp=="Yes")~stype*emer+ell, design=dclus2, family=quasibinomial)
confint(m)
confint(m, method="like",ddf=NULL, parm=c("ell","emer"))

crowd Household crowding

Description

A tiny dataset from the VPLX manual.

Usage

data(crowd)

Format

A data frame with 6 observations on the following 5 variables.

rooms Number of rooms in the house

person Number of people in the household

weight Sampling weight

cluster Cluster number

stratum Stratum number

Source

Manual for VPLX, Census Bureau.

22 dimnames.DBIsvydesign

Examples

data(crowd)

Example 1-1
i1.1<-as.svrepdesign(svydesign(id=~cluster, weight=~weight,data=crowd))
i1.1<-update(i1.1, room.ratio=rooms/person,
overcrowded=factor(person>rooms))
svymean(~rooms+person+room.ratio,i1.1)
svytotal(~rooms+person+room.ratio,i1.1)
svymean(~rooms+person+room.ratio,subset(i1.1,overcrowded==TRUE))
svytotal(~rooms+person+room.ratio,subset(i1.1,overcrowded==TRUE))

Example 1-2
i1.2<-as.svrepdesign(svydesign(id=~cluster,weight=~weight,strata=~stratum, data=crowd))
svymean(~rooms+person,i1.2)
svytotal(~rooms+person,i1.2)

dimnames.DBIsvydesign Dimensions of survey designs

Description

dimnames returns variable names and row names for the data variables in a design object and dim
returns dimensions. For multiple imputation designs there is a third dimension giving the number
of imputations. For database-backed designs the second dimension includes variables defined by
update. The first dimension excludes observations with zero weight.

Usage

S3 method for class ’survey.design’
dim(x)
S3 method for class ’svyimputationList’
dim(x)
S3 method for class ’survey.design’
dimnames(x)
S3 method for class ’DBIsvydesign’
dimnames(x)
S3 method for class ’ODBCsvydesign’
dimnames(x)
S3 method for class ’svyimputationList’
dimnames(x)

Arguments

x Design object

election 23

Value

A vector of numbers for dim, a list of vectors of strings for dimnames.

See Also

update.DBIsvydesign, with.svyimputationList

election US 2004 presidential election data at state or county level

Description

A sample of voting data from US states or counties (depending on data availability), sampled with
probability proportional to number of votes. The sample was drawn using Tille’s splitting method,
implemented in the "sampling" package.

Usage

data(election)

Format

election is a data frame with 4600 observations on the following 8 variables.

County A factor specifying the state or country

TotPrecincts Number of precincts in the state or county

PrecinctsReporting Number of precincts supplying data

Bush Votes for George W. Bush

Kerry Votes for John Kerry

Nader Votes for Ralph Nader

votes Total votes for those three candidates

p Sampling probability, proportional to votes

election_pps is a sample of 40 counties or states taken with probability proportional to the number
of votes. It includes the additional column wt with the sampling weights.

election_insample indicates which rows of election were sampled.

election_jointprob are the pairwise sampling probabilities and election_jointHR are approx-
imate pairwise sampling probabilities using the Hartley-Rao approximation.

Source

.

24 estweights

Examples

data(election)
high positive correlation between totals
plot(Bush~Kerry,data=election,log="xy")
high negative correlation between proportions
plot(I(Bush/votes)~I(Kerry/votes), data=election)

Variances without replacement
Horvitz-Thompson type
dpps_br<- svydesign(id=~1, fpc=~p, data=election_pps, pps="brewer")
dpps_ov<- svydesign(id=~1, fpc=~p, data=election_pps, pps="overton")
dpps_hr<- svydesign(id=~1, fpc=~p, data=election_pps, pps=HR(sum(election$p^2)/40))
dpps_hr1<- svydesign(id=~1, fpc=~p, data=election_pps, pps=HR())
dpps_ht<- svydesign(id=~1, fpc=~p, data=election_pps, pps=ppsmat(election_jointprob))
Yates-Grundy type
dpps_yg<- svydesign(id=~1, fpc=~p, data=election_pps, pps=ppsmat(election_jointprob),variance="YG")
dpps_hryg<- svydesign(id=~1, fpc=~p, data=election_pps, pps=HR(sum(election$p^2)/40),variance="YG")

The with-replacement approximation
dppswr <-svydesign(id=~1, probs=~p, data=election_pps)

svytotal(~Bush+Kerry+Nader, dpps_ht)
svytotal(~Bush+Kerry+Nader, dpps_yg)
svytotal(~Bush+Kerry+Nader, dpps_hr)
svytotal(~Bush+Kerry+Nader, dpps_hryg)
svytotal(~Bush+Kerry+Nader, dpps_hr1)
svytotal(~Bush+Kerry+Nader, dpps_br)
svytotal(~Bush+Kerry+Nader, dpps_ov)
svytotal(~Bush+Kerry+Nader, dppswr)

estweights Estimated weights for missing data

Description

Creates or adjusts a two-phase survey design object using a logistic regression model for second-
phase sampling probability. This function should be particularly useful in reweighting to account
for missing data.

Usage

estWeights(data,formula,...)
S3 method for class ’twophase’
estWeights(data,formula=NULL, working.model=NULL,...)
S3 method for class ’data.frame’
estWeights(data,formula=NULL, working.model=NULL,

subset=NULL, strata=NULL,...)

estweights 25

Arguments

data twophase design object or data frame

formula Predictors for estimating weights

working.model Model fitted to complete (ie phase 1) data

subset Subset of data frame with complete data (ie phase 1). If NULL use all complete
cases

strata Stratification (if any) of phase 2 sampling

... for future expansion

Details

If data is a data frame, estWeights first creates a two-phase design object. The strata argument is
used only to compute finite population corrections, the same variables must be included in formula
to compute stratified sampling probabilities.

With a two-phase design object, estWeights estimates the sampling probabilities using logistic
regression as described by Robins et al (1994) and adds information to the object to enable correct
sandwich standard errors to be computed.

An alternative to specifying formula is to specify working.model. The estimating functions from
this model will be used as predictors of the sampling probabilities, which will increase efficiency to
the extent that the working model and the model of interest estimate the same parameters (Kulich
\& Lin 2004).

The effect on a two-phase design object is very similar to calibrate, and is identical when formula
specifies a saturated model.

Value

A two-phase survey design object.

References

Robins JM, Rotnitzky A, Zhao LP. (1994) Estimation of regression coefficients when some regres-
sors are not always observed. Journal of the American Statistical Association, 89, 846-866.

Kulich M, Lin DY (2004). Improving the Efficiency of Relative-Risk Estimation in Case-Cohort
Studies. Journal of the American Statistical Association, Vol. 99, pp.832-844

See Also

postStratify, calibrate, twophase

Examples

data(airquality)

ignoring missingness, using model-based standard error
summary(lm(log(Ozone)~Temp+Wind, data=airquality))

Without covariates to predict missingness we get

26 fpc

same point estimates, but different (sandwich) standard errors
daq<-estWeights(airquality, formula=~1,subset=~I(!is.na(Ozone)))
summary(svyglm(log(Ozone)~Temp+Wind,design=daq))

Reweighting based on weather, month
d2aq<-estWeights(airquality, formula=~Temp+Wind+Month,

subset=~I(!is.na(Ozone)))
summary(svyglm(log(Ozone)~Temp+Wind,design=d2aq))

fpc Small survey example

Description

The fpc data frame has 8 rows and 6 columns. It is artificial data to illustrate survey sampling
estimators.

Usage

data(fpc)

Format

This data frame contains the following columns:

stratid Stratum ids

psuid Sampling unit ids

weight Sampling weights

nh number sampled per stratum

Nh population size per stratum

x data

Source

http://www.stata-press.com/data/r7/fpc.dta

Examples

data(fpc)
fpc

withoutfpc<-svydesign(weights=~weight, ids=~psuid, strata=~stratid, variables=~x, data=fpc, nest=TRUE)

withoutfpc
svymean(~x, withoutfpc)

http://www.stata-press.com/data/r7/fpc.dta

ftable.svystat 27

withfpc<-svydesign(weights=~weight, ids=~psuid, strata=~stratid,
fpc=~Nh, variables=~x, data=fpc, nest=TRUE)

withfpc
svymean(~x, withfpc)

Other equivalent forms
withfpc<-svydesign(prob=~I(1/weight), ids=~psuid, strata=~stratid,
fpc=~Nh, variables=~x, data=fpc, nest=TRUE)

svymean(~x, withfpc)

withfpc<-svydesign(weights=~weight, ids=~psuid, strata=~stratid,
fpc=~I(nh/Nh), variables=~x, data=fpc, nest=TRUE)

svymean(~x, withfpc)

withfpc<-svydesign(weights=~weight, ids=~interaction(stratid,psuid),
strata=~stratid, fpc=~I(nh/Nh), variables=~x, data=fpc)

svymean(~x, withfpc)

withfpc<-svydesign(ids=~psuid, strata=~stratid, fpc=~Nh,
variables=~x,data=fpc,nest=TRUE)

svymean(~x, withfpc)

withfpc<-svydesign(ids=~psuid, strata=~stratid,
fpc=~I(nh/Nh), variables=~x, data=fpc, nest=TRUE)

svymean(~x, withfpc)

ftable.svystat Lay out tables of survey statistics

Description

Reformat the output of survey computations to a table.

Usage

S3 method for class ’svystat’
ftable(x, rownames,...)
S3 method for class ’svrepstat’
ftable(x, rownames,...)
S3 method for class ’svyby’
ftable(x,...)

28 ftable.svystat

Arguments

x Output of functions such as svymean,svrepmean, svyby

rownames List of vectors of strings giving dimension names for the resulting table (see
examples)

... Arguments for future expansion

Value

An object of class "ftable"

See Also

ftable

Examples

data(api)
dclus1<-svydesign(id=~dnum, weights=~pw, data=apiclus1, fpc=~fpc)

a<-svymean(~interaction(stype,comp.imp), design=dclus1)
b<-ftable(a, rownames=list(stype=c("E","H","M"),comp.imp=c("No","Yes")))
b

a<-svymean(~interaction(stype,comp.imp), design=dclus1, deff=TRUE)
b<-ftable(a, rownames=list(stype=c("E","H","M"),comp.imp=c("No","Yes")))
round(100*b,1)

rclus1<-as.svrepdesign(dclus1)
a<-svytotal(~interaction(stype,comp.imp), design=rclus1)
b<-ftable(a, rownames=list(stype=c("E","H","M"),comp.imp=c("No","Yes")))
b
round(b)

a<-svyby(~api99 + api00, ~stype + sch.wide, rclus1, svymean, keep.var=TRUE)
ftable(a)
print(ftable(a),digits=2)

b<-svyby(~api99 + api00, ~stype + sch.wide, rclus1, svymean, keep.var=TRUE, deff=TRUE)
print(ftable(b),digits=2)

d<-svyby(~api99 + api00, ~stype + sch.wide, rclus1, svymean, keep.var=TRUE, vartype=c("se","cvpct"))
round(ftable(d),1)

hadamard 29

hadamard Hadamard matrices

Description

Returns a Hadamard matrix of dimension larger than the argument.

Usage

hadamard(n)

Arguments

n lower bound for size

Details

For most n the matrix comes from paley. The 36× 36 matrix is from Plackett and Burman (1946)
and the 28× 28 is from Sloane’s library of Hadamard matrices.

Matrices of dimension every multiple of 4 are thought to exist, but this function doesn’t know about
all of them, so it will sometimes return matrices that are larger than necessary. The excess is at most
4 for n < 180 and at most 5% for n > 100.

Value

A Hadamard matrix

Note

Strictly speaking, a Hadamard matrix has entries +1 and -1 rather than 1 and 0, so 2*hadamard(n)-
1 is a Hadamard matrix

References

Sloane NJA. A Library of Hadamard Matrices http://www.research.att.com/~njas/hadamard/

Plackett RL, Burman JP. (1946) The Design of Optimum Multifactorial Experiments Biometrika,
Vol. 33, No. 4 pp. 305-325

Cameron PJ (2005) Hadamard Matrices http://designtheory.org/library/encyc/topics/
had.pdf. In: The Encyclopedia of Design Theory http://designtheory.org/library/encyc/

See Also

brrweights, paley

http://www.research.att.com/~njas/hadamard/
http://designtheory.org/library/encyc/topics/had.pdf
http://designtheory.org/library/encyc/topics/had.pdf
http://designtheory.org/library/encyc/

30 hospital

Examples

par(mfrow=c(2,2))
Sylvester-type
image(hadamard(63),main=quote("Sylvester: "*64==2^6))
Paley-type
image(hadamard(59),main=quote("Paley: "*60==59+1))
from NJ Sloane’s library
image(hadamard(27),main=quote("Stored: "*28))
For n=90 we get 96 rather than the minimum possible size, 92.
image(hadamard(90),main=quote("Constructed: "*96==2^3%*%(11+1)))

par(mfrow=c(1,1))
plot(2:150,sapply(2:150,function(i) ncol(hadamard(i))),type="S",

ylab="Matrix size",xlab="n",xlim=c(1,150),ylim=c(1,150))
abline(0,1,lty=3)
lines(2:150, 2:150-(2:150 %% 4)+4,col="purple",type="S",lty=2)
legend(c(x=10,y=140),legend=c("Actual size","Minimum possible size"),

col=c("black","purple"),bty="n",lty=c(1,2))

hospital Sample of obstetric hospitals

Description

The hospital data frame has 15 rows and 5 columns.

Usage

data(hospital)

Format

This data frame contains the following columns:

hospno Hospital id

oblevel level of obstetric care

weighta Weights, as given by the original reference

tothosp total hospitalisations

births births

weightats Weights, as given in the source

Source

http://www.ats.ucla.edu/stat/books/sop/hospsamp.dta

http://www.ats.ucla.edu/stat/books/sop/hospsamp.dta

HR 31

References

Levy and Lemeshow. "Sampling of Populations" (3rd edition). Wiley.

Examples

data(hospital)
hospdes<-svydesign(strata=~oblevel, id=~hospno, weights=~weighta,
fpc=~tothosp, data=hospital)
hosprep<-as.svrepdesign(hospdes)

svytotal(~births, design=hospdes)
svytotal(~births, design=hosprep)

HR Wrappers for specifying PPS designs

Description

The Horvitz-Thompson estimator and the Hartley-Rao approximation require information in addi-
tion to the sampling probabilities for sampled individuals. These functions allow this information
to be supplied.

Usage

HR(psum=NULL, strata = NULL)
ppsmat(jointprob, tolerance = 1e-04)

Arguments

psum The sum of squared sampling probabilities for the population, divided by the
sample size, as a single number or as a vector for stratified sampling

strata Stratum labels, of the same length as psum, if psum is a vector

jointprob Matrix of pairwise sampling probabilities for the sampled individuals

tolerance Tolerance for deciding that the covariance of sampling indicators is zero

Value

An object of class HR or ppsmat, suitable for supplying as the pps argument to svydesign.

See Also

election for examples of PPS designs

Examples

HR(0.1)

32 make.calfun

make.calfun Calibration metrics

Description

Create calibration metric for use in calibrate. The function F is the link function described in
section 2 of Deville et al. To create a new calibration metric, specify F − 1 and its derivative. The
package provides cal.linear, cal.raking, and cal.logit.

Usage

make.calfun(Fm1, dF, name)

Arguments

Fm1 Function F − 1 taking a vector u and a vector of length 2, bounds.

dF Derivative of Fm1 wrt u: arguments u and bounds

name Character string to use as name

Value

An object of class "calfun"

References

Deville J-C, Sarndal C-E, Sautory O (1993) Generalized Raking Procedures in Survey Sampling.
JASA 88:1013-1020

Deville J-C, Sarndal C-E (1992) Calibration Estimators in Survey Sampling. JASA 87: 376-382

See Also

calibrate

Examples

str(cal.linear)
cal.linear$Fm1
cal.linear$dF

hellinger <- make.calfun(Fm1=function(u, bounds) ((1-u/2)^-2)-1,
dF= function(u, bounds) (1-u/2)^-3 ,
name="hellinger distance")

hellinger

data(api)
dclus1<-svydesign(id=~dnum, weights=~pw, data=apiclus1, fpc=~fpc)

marginpred 33

svymean(~api00,calibrate(dclus1, ~api99, pop=c(6194, 3914069),
calfun=hellinger))

svymean(~api00,calibrate(dclus1, ~api99, pop=c(6194, 3914069),
calfun=cal.linear))

svymean(~api00,calibrate(dclus1, ~api99, pop=c(6194,3914069),
calfun=cal.raking))

marginpred Standardised predictions (predictive margins) for regression models.

Description

Reweights the design (using calibrate) so that the adjustment variables are uncorrelated with the
variables in the model, and then performs predictions by calling predict. When the adjustment
model is saturated this is equivalent to direct standardization on the adjustment variables.

The svycoxph and svykmlist methods return survival curves.

Usage

marginpred(model, adjustfor, predictat, ...)
S3 method for class ’svycoxph’
marginpred(model, adjustfor, predictat, se=FALSE, ...)
S3 method for class ’svykmlist’
marginpred(model, adjustfor, predictat, se=FALSE, ...)
S3 method for class ’svyglm’
marginpred(model, adjustfor, predictat, ...)

Arguments

model A regression model object of a class that has a marginpred method

adjustfor Model formula specifying adjustment variables, which must be in the design
object of the model

predictat A data frame giving values of the variables in model to predict at

se Estimate standard errors for the survival curve (uses a lot of memory if the sam-
ple size is large)

... Extra arguments, passed to the predict method for model

See Also

calibrate

predict.svycoxph

34 mu284

Examples

generate data with apparent group effect from confounding
set.seed(42)
df<-data.frame(x=rnorm(100))
df$time<-rexp(100)*exp(df$x-1)
df$status<-1
df$group<-(df$x+rnorm(100))>0
des<-svydesign(id=~1,data=df)
newdf<-data.frame(group=c(FALSE,TRUE), x=c(0,0))

Cox model
m0<-svycoxph(Surv(time,status)~group,design=des)
m1<-svycoxph(Surv(time,status)~group+x,design=des)
conditional predictions, unadjusted and adjusted
cpred0<-predict(m0, type="curve", newdata=newdf, se=TRUE)
cpred1<-predict(m1, type="curve", newdata=newdf, se=TRUE)
adjusted marginal prediction
mpred<-marginpred(m0, adjustfor=~x, predictat=newdf, se=TRUE)

plot(cpred0)
lines(cpred1[[1]],col="red")
lines(cpred1[[2]],col="red")
lines(mpred[[1]],col="blue")
lines(mpred[[2]],col="blue")

Kaplan--Meier
s2<-svykm(Surv(time,status>0)~group, design=des)
p2<-marginpred(s2, adjustfor=~x, predictat=newdf,se=TRUE)
plot(s2)
lines(p2[[1]],col="green")
lines(p2[[2]],col="green")

logistic regression
logisticm <- svyglm(group~time, family=quasibinomial, design=des)
newdf$time<-c(0.1,0.8)
logisticpred <- marginpred(logisticm, adjustfor=~x, predictat=newdf)

mu284 Two-stage sample from MU284

Description

The MU284 population comes from Sarndal et al, and the complete data are available from Statlib.
These data are a two-stage sample from the population, analyzed on page 143 of the book.

Usage

data(mu284)

nonresponse 35

Format

A data frame with 15 observations on the following 5 variables.

id1 identifier for PSU

n1 number of PSUs in population

id2 identifier for second-stage unit

y1 variable to be analysed

n2 number of second-stage units in this PSU

Source

Carl Erik Sarndal, Bengt Swensson, Jan Wretman. (1991) "Model Assisted Survey Sampling"
Springer.

References

Full MU284 population at http://lib.stat.cmu.edu/datasets/mu284

Examples

data(mu284)
(dmu284<-svydesign(id=~id1+id2,fpc=~n1+n2, data=mu284))
(ytotal<-svytotal(~y1, dmu284))
vcov(ytotal)

nonresponse Experimental: Construct non-response weights

Description

Functions to simplify the construction of non-reponse weights by combining strata with small num-
bers or large weights.

Usage

nonresponse(sample.weights, sample.counts, population)
sparseCells(object, count=0,totalweight=Inf, nrweight=1.5)
neighbours(index,object)
joinCells(object,a,...)
S3 method for class ’nonresponse’
weights(object,...)

http://lib.stat.cmu.edu/datasets/mu284

36 nonresponse

Arguments

sample.weights table of sampling weight by stratifying variables

sample.counts table of sample counts by stratifying variables

population table of population size by stratifying variables

object object of class "nonresponse"

count Cells with fewer sampled units than this are "sparse"

nrweight Cells with higher non-response weight than this are "sparse"

totalweight Cells with average sampling weight times non-response weight higher than this
are "sparse"

index Number of a cell whose neighbours are to be found

a,... Cells to join

Details

When a stratified survey is conducted with imperfect response it is desirable to rescale the sampling
weights to reflect the nonresponse. If some strata have small sample size, high non-response, or
already had high sampling weights it may be desirable to get less variable non-response weights by
averaging non-response across strata. Suitable strata to collapse may be similar on the stratifying
variables and/or on the level of non-response.

nonresponse() combines stratified tables of population size, sample size, and sample weight into
an object. sparseCells identifies cells that may need combining. neighbours describes the cells
adjacent to a specified cell, and joinCells collapses the specified cells. When the collapsing is
complete, use weights() to extract the nonresponse weights.

Value

nonresponse and joinCells return objects of class "nonresponse", neighbours and sparseCells
return objects of class "nonresponseSubset"

Examples

data(api)
pretend the sampling was stratified on three variables
poptable<-xtabs(~sch.wide+comp.imp+stype,data=apipop)
sample.count<-xtabs(~sch.wide+comp.imp+stype,data=apiclus1)
sample.weight<-xtabs(pw~sch.wide+comp.imp+stype, data=apiclus1)

create a nonresponse object
nr<-nonresponse(sample.weight,sample.count, poptable)

sparse cells
sparseCells(nr)

Look at neighbours
neighbours(3,nr)
neighbours(11,nr)

open.DBIsvydesign 37

Collapse some contiguous cells
nr1<-joinCells(nr,3,5,7)

sparse cells now
sparseCells(nr1)
nr2<-joinCells(nr1,3,11,8)

nr2

one relatively sparse cell
sparseCells(nr2)
but nothing suitable to join it to
neighbours(3,nr2)

extract the weights
weights(nr2)

open.DBIsvydesign Open and close DBI connections

Description

A database-backed survey design object contains a connection to a database. This connection will
be broken if the object is saved and reloaded, and the connection should ideally be closed with
close before quitting R (although it doesn’t matter for SQLite connections). The connection can
be reopened with open.

Usage

S3 method for class ’DBIsvydesign’
open(con, ...)
S3 method for class ’DBIsvydesign’
close(con, ...)
S3 method for class ’ODBCsvydesign’
open(con, ...)
S3 method for class ’ODBCsvydesign’
close(con, ...)

Arguments

con Object of class DBIsvydesign or ODBCsvydesign

... Other options, to be passed to dbConnect or dbDisconnect, or odbcReConnect
or odbcDisconnect

Value

The same survey design object with the connection opened or closed.

38 paley

See Also

svydesign

DBI package

Examples

Not run:
library(RSQLite)
dbclus1<-svydesign(id=~dnum, weights=~pw, fpc=~fpc,
data="apiclus1",dbtype="SQLite",
dbname=system.file("api.db",package="survey"))

dbclus1
close(dbclus1)
dbclus1
try(svymean(~api00, dbclus1))

dbclus1<-open(dbclus1)
open(dbclus1)
svymean(~api00, dbclus1)

End(Not run)

paley Paley-type Hadamard matrices

Description

Computes a Hadamard matrix of dimension (p+1)× 2k, where p is a prime, and p+1 is a multiple
of 4, using the Paley construction. Used by hadamard.

Usage

paley(n, nmax = 2 * n, prime=NULL, check=!is.null(prime))

is.hadamard(H, style=c("0/1","+-"), full.orthogonal.balance=TRUE)

Arguments

n Minimum size for matrix

nmax Maximum size for matrix. Ignored if prime is specified.

prime Optional. A prime at least as large as n, such that prime+1 is divisible by 4.

check Check that the resulting matrix is of Hadamard type

H Matrix

style "0/1" for a matrix of 0s and 1s, "+-" for a matrix of ±1.
full.orthogonal.balance

Require full orthogonal balance?

pchisqsum 39

Details

The Paley construction gives a Hadamard matrix of order p+1 if p is prime and p+1 is a multiple of
4. This is then expanded to order (p+ 1)× 2k using the Sylvester construction.

paley knows primes up to 7919. The user can specify a prime with the prime argument, in which
case a matrix of order p+ 1 is constructed.

If check=TRUE the code uses is.hadamard to check that the resulting matrix really is of Hadamard
type, in the same way as in the example below. As this test takes n3 time it is preferable to just be
sure that prime really is prime.

A Hadamard matrix including a row of 1s gives BRR designs where the average of the replicates for
a linear statistic is exactly the full sample estimate. This property is called full orthogonal balance.

Value

For paley, a matrix of zeros and ones, or NULL if no matrix smaller than nmax can be found.

For is.hadamard, TRUE if H is a Hadamard matrix.

References

Cameron PJ (2005) Hadamard Matrices. http://designtheory.org/library/encyc/topics/
had.pdf. In: The Encyclopedia of Design Theory http://designtheory.org/library/encyc/

See Also

hadamard

Examples

M<-paley(11)

is.hadamard(M)
internals of is.hadamard(M)
H<-2*M-1
HH^T is diagonal for any Hadamard matrix
H%*%t(H)

pchisqsum Distribution of quadratic forms

Description

The distribution of a quadratic form in p standard Normal variables is a linear combination of p chi-
squared distributions with 1df. When there is uncertainty about the variance, a reasonable model
for the distribution is a linear combination of F distributions with the same denominator.

http://designtheory.org/library/encyc/topics/had.pdf
http://designtheory.org/library/encyc/topics/had.pdf
http://designtheory.org/library/encyc/

40 pchisqsum

Usage

pchisqsum(x, df, a, lower.tail = TRUE, method = c("satterthwaite", "integration","saddlepoint"))
pFsum(x, df, a, ddf=Inf,lower.tail = TRUE, method = c("saddlepoint","integration","satterthwaite"), ...)

Arguments

x Observed values

df Vector of degrees of freedom

a Vector of coefficients

ddf Denominator degrees of freedom

lower.tail lower or upper tail?

method See Details below

... arguments to pchisqsum

Details

The "satterthwaite" method uses Satterthwaite’s approximation, and this is also used as a fall-
back for the other methods. The accuracy is usually good, but is more variable depending on a
than the other methods and is anticonservative in the extreme tail. The Satterthwaite approximation
requires all a>0.

"integration" requires the CompQuadForm package. For pchisqsum it uses Farebrother’s algo-
rithm if all a>0. For pFsum or when some a<0 it inverts the characteristic function using the algo-
rithm of Davies (1980). If the CompQuadForm package is not present, a warning is given and the
saddlepoint approximation is used. These algorithms are not accurate for very large x or when some
a are close to zero: a warning is given if the relative error bound is more than 10% of the result.

"saddlepoint" uses Kuonen’s saddlepoint approximation. This is accurate even very far out in the
upper tail or with some a=0 and does not require any additional packages. It is implemented in pure
R and so is slower than the "integration" method.

The distribution in pFsum is standardised so that a likelihood ratio test can use the same x value as
in pchisqsum. That is, the linear combination of chi-squareds is multiplied by ddf and then divided
by an independent chi-squared with ddf degrees of freedom.

Value

Vector of cumulative probabilities

References

Davies RB (1973). "Numerical inversion of a characteristic function" Biometrika 60:415-7

Davies RB (1980) "Algorithm AS 155: The Distribution of a Linear Combination of chi-squared
Random Variables" Applied Statistics,Vol. 29, No. 3 (1980), pp. 323-333

P. Duchesne, P. Lafaye de Micheaux (2010) "Computing the distribution of quadratic forms: Fur-
ther comparisons between the Liu-Tang-Zhang approximation and exact methods", Computational
Statistics and Data Analysis, Volume 54, (2010), 858-862

postStratify 41

Farebrother R.W. (1984) "Algorithm AS 204: The distribution of a Positive Linear Combination of
chi-squared random variables". Applied Statistics Vol. 33, No. 3 (1984), p. 332-339

Kuonen D (1999) Saddlepoint Approximations for Distributions of Quadratic Forms in Normal
Variables. Biometrika, Vol. 86, No. 4 (Dec., 1999), pp. 929-935

See Also

pchisq

Examples

x <- 2.7*rnorm(1001)^2+rnorm(1001)^2+0.3*rnorm(1001)^2
x.thin<-sort(x)[1+(0:100)*10]
p.invert<-pchisqsum(x.thin,df=c(1,1,1),a=c(2.7,1,.3),method="int" ,lower=FALSE)
p.satt<-pchisqsum(x.thin,df=c(1,1,1),a=c(2.7,1,.3),method="satt",lower=FALSE)
p.sadd<-pchisqsum(x.thin,df=c(1,1,1),a=c(2.7,1,.3),method="sad",lower=FALSE)

plot(p.invert, p.satt,type="l",log="xy")
abline(0,1,lty=2,col="purple")
plot(p.invert, p.sadd,type="l",log="xy")
abline(0,1,lty=2,col="purple")

pchisqsum(20, df=c(1,1,1),a=c(2.7,1,.3), lower.tail=FALSE,method="sad")
pFsum(20, df=c(1,1,1),a=c(2.7,1,.3), ddf=49,lower.tail=FALSE,method="sad")
pFsum(20, df=c(1,1,1),a=c(2.7,1,.3), ddf=1000,lower.tail=FALSE,method="sad")

postStratify Post-stratify a survey

Description

Post-stratification adjusts the sampling and replicate weights so that the joint distribution of a set of
post-stratifying variables matches the known population joint distribution. Use rake when the full
joint distribution is not available.

Usage

postStratify(design, strata, population, partial = FALSE, ...)
S3 method for class ’svyrep.design’
postStratify(design, strata, population, partial = FALSE, compress=NULL,...)
S3 method for class ’survey.design’
postStratify(design, strata, population, partial = FALSE, ...)

42 postStratify

Arguments

design A survey design with replicate weights

strata A formula or data frame of post-stratifying variables, which must not contain
missing values.

population A table, xtabs or data.frame with population frequencies

partial if TRUE, ignore population strata not present in the sample

compress Attempt to compress the replicate weight matrix? When NULL will attempt to
compress if the original weight matrix was compressed

... arguments for future expansion

Details

The population totals can be specified as a table with the strata variables in the margins, or as a
data frame where one column lists frequencies and the other columns list the unique combinations
of strata variables (the format produced by as.data.frame acting on a table object). A table must
have named dimnames to indicate the variable names.

Compressing the replicate weights will take time and may even increase memory use if there is
actually little redundancy in the weight matrix (in particular if the post-stratification variables have
many values and cut across PSUs).

If a svydesign object is to be converted to a replication design the post-stratification should be
performed after conversion.

The variance estimate for replication designs follows the same procedure as Valliant (1993) de-
scribed for estimating totals. Rao et al (2002) describe this procedure for estimating functions (and
also the GREG or g-calibration procedure, see calibrate)

Value

A new survey design object.

Note

If the sampling weights are already post-stratified there will be no change in point estimates after
postStratify but the standard error estimates will decrease to correctly reflect the post-stratification.
See http://www.dcs.napier.ac.uk/peas/exemplar1.htm for an example.

References

Valliant R (1993) Post-stratification and conditional variance estimation. JASA 88: 89-96

Rao JNK, Yung W, Hidiroglou MA (2002) Estimating equations for the analysis of survey data
using poststratification information. Sankhya 64 Series A Part 2, 364-378.

See Also

rake, calibrate for other things to do with auxiliary information

compressWeights for information on compressing weights

http://www.dcs.napier.ac.uk/peas/exemplar1.htm

rake 43

Examples

data(api)
dclus1<-svydesign(id=~dnum, weights=~pw, data=apiclus1, fpc=~fpc)
rclus1<-as.svrepdesign(dclus1)

svymean(~api00, rclus1)
svytotal(~enroll, rclus1)

post-stratify on school type
pop.types <- data.frame(stype=c("E","H","M"), Freq=c(4421,755,1018))
#or: pop.types <- xtabs(~stype, data=apipop)
#or: pop.types <- table(stype=apipop$stype)

rclus1p<-postStratify(rclus1, ~stype, pop.types)
summary(rclus1p)
svymean(~api00, rclus1p)
svytotal(~enroll, rclus1p)

and for svydesign objects
dclus1p<-postStratify(dclus1, ~stype, pop.types)
summary(dclus1p)
svymean(~api00, dclus1p)
svytotal(~enroll, dclus1p)

rake Raking of replicate weight design

Description

Raking uses iterative post-stratification to match marginal distributions of a survey sample to known
population margins.

Usage

rake(design, sample.margins, population.margins, control = list(maxit =
10, epsilon = 1, verbose=FALSE), compress=NULL)

Arguments

design A survey object

sample.margins list of formulas or data frames describing sample margins, which must not con-
tain missing values

population.margins

list of tables or data frames describing corresponding population margins

control maxit controls the number of iterations. Convergence is declared if the maxi-
mum change in a table entry is less than epsilon. If epsilon<1 it is taken to be
a fraction of the total sampling weight.

44 rake

compress If design has replicate weights, attempt to compress the new replicate weight
matrix? When NULL, will attempt to compress if the original weight matrix was
compressed

Details

The sample.margins should be in a format suitable for postStratify.

Raking (aka iterative proportional fitting) is known to converge for any table without zeros, and
for any table with zeros for which there is a joint distribution with the given margins and the same
pattern of zeros. The ‘margins’ need not be one-dimensional.

The algorithm works by repeated calls to postStratify (iterative proportional fitting), which is
efficient for large multiway tables. For small tables calibrate will be faster, and also allows
raking to population totals for continuous variables, and raking with bounded weights.

Value

A raked survey design.

See Also

postStratify, compressWeights

calibrate for other ways to use auxiliary information.

Examples

data(api)
dclus1 <- svydesign(id=~dnum, weights=~pw, data=apiclus1, fpc=~fpc)
rclus1 <- as.svrepdesign(dclus1)

svymean(~api00, rclus1)
svytotal(~enroll, rclus1)

population marginal totals for each stratum
pop.types <- data.frame(stype=c("E","H","M"), Freq=c(4421,755,1018))
pop.schwide <- data.frame(sch.wide=c("No","Yes"), Freq=c(1072,5122))

rclus1r <- rake(rclus1, list(~stype,~sch.wide), list(pop.types, pop.schwide))

svymean(~api00, rclus1r)
svytotal(~enroll, rclus1r)

marginal totals correspond to population
xtabs(~stype, apipop)
svytable(~stype, rclus1r, round=TRUE)
xtabs(~sch.wide, apipop)
svytable(~sch.wide, rclus1r, round=TRUE)

joint totals don’t correspond
xtabs(~stype+sch.wide, apipop)
svytable(~stype+sch.wide, rclus1r, round=TRUE)

regTermTest 45

Do it for a design without replicate weights
dclus1r<-rake(dclus1, list(~stype,~sch.wide), list(pop.types, pop.schwide))

svymean(~api00, dclus1r)
svytotal(~enroll, dclus1r)

compare to raking with calibrate()
dclus1gr<-calibrate(dclus1, ~stype+sch.wide, pop=c(6194, 755,1018,5122),

calfun="raking")
svymean(~stype+api00, dclus1r)
svymean(~stype+api00, dclus1gr)

compare to joint post-stratification
(only possible if joint population table is known)
##
pop.table <- xtabs(~stype+sch.wide,apipop)
rclus1ps <- postStratify(rclus1, ~stype+sch.wide, pop.table)
svytable(~stype+sch.wide, rclus1ps, round=TRUE)

svymean(~api00, rclus1ps)
svytotal(~enroll, rclus1ps)

Example of raking with partial joint distributions
pop.imp<-data.frame(comp.imp=c("No","Yes"),Freq=c(1712,4482))
dclus1r2<-rake(dclus1, list(~stype+sch.wide, ~comp.imp),

list(pop.table, pop.imp))
svymean(~api00, dclus1r2)

regTermTest Wald test for a term in a regression model

Description

Provides Wald test and working likelihood ratio (Rao-Scott) test of the hypothesis that all coeffi-
cients associated with a particular regression term are zero (or have some other specified values).
Particularly useful as a substitute for anova when not fitting by maximum likelihood. The Wald
tests use a chisquared or F distribution, the LRT uses a linear combination of chisquared or F dis-
tributions as in pchisqsum.

Usage

regTermTest(model, test.terms, null=NULL,df=NULL,
method=c("Wald","LRT"), lrt.approximation="saddlepoint")

Arguments

model A model object with coef and vcov methods

test.terms Character string or one-sided formula giving name of term or terms to test

null Null hypothesis values for parameters. Default is zeros

46 scd

df Denominator degrees of freedom for an F test. If NULL these are estimated from
the model. Use Inf for a chi-squared test.

method If "Wald", the Wald-type test; if "LRT" the Rao-Scott test based on the estimated
log likelihood ratio

lrt.approximation

method for approximating the distribution of the LRT statistic; see pchisqsum

Value

An object of class regTermTest or regTermTestLRT.

References

Rao, JNK, Scott, AJ (1984) "On Chi-squared Tests For Multiway Contingency Tables with Propor-
tions Estimated From Survey Data" Annals of Statistics 12:46-60.

See Also

anova, vcov, contrasts,pchisqsum

Examples

data(esoph)
model1 <- glm(cbind(ncases, ncontrols) ~ agegp + tobgp *

alcgp, data = esoph, family = binomial())
anova(model1)

regTermTest(model1,"tobgp")
regTermTest(model1,"tobgp:alcgp")
regTermTest(model1, ~alcgp+tobgp:alcgp)

data(api)
dclus2<-svydesign(id=~dnum+snum, weights=~pw, data=apiclus2)
model2<-svyglm(I(sch.wide=="Yes")~ell+meals+mobility, design=dclus2, family=quasibinomial())
regTermTest(model2, ~ell)
regTermTest(model2, ~ell,df=NULL)
regTermTest(model2, ~ell, method="LRT", df=Inf)
regTermTest(model2, ~ell+meals, method="LRT", df=NULL)

scd Survival in cardiac arrest

Description

These data are from Section 12.2 of Levy and Lemeshow. They describe (a possibly apocryphal)
study of survival in out-of-hospital cardiac arrest. Two out of five ambulance stations were sampled
from each of three emergency service areas.

scd 47

Usage

data(scd)

Format

This data frame contains the following columns:

ESA Emergency Service Area (strata)

ambulance Ambulance station (PSU)

arrests estimated number of cardiac arrests

alive number reaching hospital alive

Source

Levy and Lemeshow. "Sampling of Populations" (3rd edition). Wiley.

Examples

data(scd)

survey design objects
scddes<-svydesign(data=scd, prob=~1, id=~ambulance, strata=~ESA,
nest=TRUE, fpc=rep(5,6))
scdnofpc<-svydesign(data=scd, prob=~1, id=~ambulance, strata=~ESA,
nest=TRUE)

convert to BRR replicate weights
scd2brr <- as.svrepdesign(scdnofpc, type="BRR")
or to Rao-Wu bootstrap
scd2boot <- as.svrepdesign(scdnofpc, type="subboot")

use BRR replicate weights from Levy and Lemeshow
repweights<-2*cbind(c(1,0,1,0,1,0), c(1,0,0,1,0,1), c(0,1,1,0,0,1),
c(0,1,0,1,1,0))
scdrep<-svrepdesign(data=scd, type="BRR", repweights=repweights)

ratio estimates
svyratio(~alive, ~arrests, design=scddes)
svyratio(~alive, ~arrests, design=scdnofpc)
svyratio(~alive, ~arrests, design=scd2brr)
svyratio(~alive, ~arrests, design=scd2boot)
svyratio(~alive, ~arrests, design=scdrep)

or a logistic regression
summary(svyglm(cbind(alive,arrests-alive)~1, family=quasibinomial, design=scdnofpc))
summary(svyglm(cbind(alive,arrests-alive)~1, family=quasibinomial, design=scdrep))

Because no sampling weights are given, can’t compute design effects
without replacement: use deff="replace"

svymean(~alive+arrests, scddes, deff=TRUE)

48 stratsample

svymean(~alive+arrests, scddes, deff="replace")

SE Extract standard errors

Description

Extracts standard errors from an object. The default method is for objects with a vcov method.

Usage

SE(object, ...)
Default S3 method:
SE(object,...)
S3 method for class ’svrepstat’
SE(object,...)

Arguments

object An object

... Arguments for future expansion

Value

Vector of standard errors.

See Also

vcov

stratsample Take a stratified sample

Description

This function takes a stratified sample without replacement from a data set.

Usage

stratsample(strata, counts)

Arguments

strata Vector of stratum identifiers; will be coerced to character

counts named vector of stratum sample sizes, with names corresponding to the values
of as.character(strata)

subset.survey.design 49

Value

vector of indices into strata giving the sample

See Also

sample

The "sampling" package has many more sampling algorithms.

Examples

data(api)
s<-stratsample(apipop$stype, c("E"=5,"H"=4,"M"=2))
table(apipop$stype[s])

subset.survey.design Subset of survey

Description

Restrict a survey design to a subpopulation, keeping the original design information about number
of clusters, strata. If the design has no post-stratification or calibration data the subset will use
proportionately less memory.

Usage

S3 method for class ’survey.design’
subset(x, subset, ...)
S3 method for class ’svyrep.design’
subset(x, subset, ...)

Arguments

x A survey design object

subset An expression specifying the subpopulation

... Arguments not used by this method

Value

A new survey design object

See Also

svydesign

50 surveyoptions

Examples

data(fpc)
dfpc<-svydesign(id=~psuid,strat=~stratid,weight=~weight,data=fpc,nest=TRUE)
dsub<-subset(dfpc,x>4)
summary(dsub)
svymean(~x,design=dsub)

These should give the same domain estimates and standard errors
svyby(~x,~I(x>4),design=dfpc, svymean)
summary(svyglm(x~I(x>4)+0,design=dfpc))

data(api)
dclus1<-svydesign(id=~dnum, weights=~pw, data=apiclus1, fpc=~fpc)
rclus1<-as.svrepdesign(dclus1)
svymean(~enroll, subset(dclus1, sch.wide=="Yes" & comp.imp=="Yes"))
svymean(~enroll, subset(rclus1, sch.wide=="Yes" & comp.imp=="Yes"))

surveyoptions Options for the survey package

Description

This help page documents the options that control the behaviour of the survey package.

Details

All the options for the survey package have names beginning with "survey". Four of them control
standard error estimation.

options("survey.replicates.mse") controls the default in svrepdesign and as.svrepdesign
for computing variances. When options("survey.replicates.mse") is TRUE, the default is to
create replicate weight designs that compute variances centered at the point estimate, rather than at
the mean of the replicates. The option can be overridden by specifying the mse argument explicitly
in svrepdesign and as.svrepdesign. The default is FALSE.

When options("survey.ultimate.cluster") is TRUE, standard error estimation is based on in-
dependence of PSUs at the first stage of sampling, without using any information about subsequent
stages. When FALSE, finite population corrections and variances are estimated recursively. See
svyrecvar for more information. This option makes no difference unless first-stage finite popula-
tion corrections are specified, in which case setting the option to TRUE gives the wrong answer for
a multistage study. The only reason to use TRUE is for compatibility with other software that gives
the wrong answer.

Handling of strata with a single PSU that are not certainty PSUs is controlled by options("survey.lonely.psu").
The default setting is "fail", which gives an error. Use "remove" to ignore that PSU for variance
computation, "adjust" to center the stratum at the population mean rather than the stratum mean,
and "average" to replace the variance contribution of the stratum by the average variance contri-
bution across strata. As of version 3.4-2 as.svrepdesign also uses this option.

surveysummary 51

The variance formulas for domain estimation give well-defined, positive results when a stratum con-
tains only one PSU with observations in the domain, but are not unbiased. If options("survey.adjust.domain.lonely")
is TRUE and options("survey.lonely.psu") is "average" or "adjust" the same adjustment for
lonely PSUs will be used within a domain. Note that this adjustment is not available for replicate-
weight designs, nor (currently) for raked, post-stratified, or calibrated designs.

The fourth option is options("survey.want.obsolete"). This controls the warnings about using
the deprecated pre-2.9.0 survey design objects.

The behaviour of replicate-weight designs for self-representing strata is controlled by options("survey.drop.replicates").
When TRUE, various optimizations are used that take advantage of the fact that these strata do not
contribute to the variance. The only reason ever to use FALSE is if there is a bug in the code for
these optimizations.

The fifth option controls the use of multiple processors with the multicore package. This option
should not affect the values computed by any of the survey functions. If TRUE, all functions that
are able to use multiple processors will do so by default. Using multiple processors may speed
up calculations, but need not, especially if the computer is short on memory. The best strategy is
probably to experiment with explicitly requesting multicore=TRUE in functions that support it, to
see if there is an increase in speed before setting the global option.

surveysummary Summary statistics for sample surveys

Description

Compute means, variances, ratios and totals for data from complex surveys.

Usage

S3 method for class ’survey.design’
svymean(x, design, na.rm=FALSE,deff=FALSE,...)
S3 method for class ’twophase’
svymean(x, design, na.rm=FALSE,deff=FALSE,...)
S3 method for class ’svyrep.design’
svymean(x, design, na.rm=FALSE, rho=NULL,

return.replicates=FALSE, deff=FALSE,...)
S3 method for class ’survey.design’
svyvar(x, design, na.rm=FALSE,...)
S3 method for class ’svyrep.design’
svyvar(x, design, na.rm=FALSE, rho=NULL,

return.replicates=FALSE,...,estimate.only=FALSE)
S3 method for class ’survey.design’
svytotal(x, design, na.rm=FALSE,deff=FALSE,...)
S3 method for class ’twophase’
svytotal(x, design, na.rm=FALSE,deff=FALSE,...)
S3 method for class ’svyrep.design’
svytotal(x, design, na.rm=FALSE, rho=NULL,

return.replicates=FALSE, deff=FALSE,...)

52 surveysummary

S3 method for class ’svystat’
coef(object,...)
S3 method for class ’svrepstat’
coef(object,...)
S3 method for class ’svystat’
vcov(object,...)
S3 method for class ’svrepstat’
vcov(object,...)
S3 method for class ’svystat’
confint(object, parm, level = 0.95,df =Inf,...)
S3 method for class ’svrepstat’
confint(object, parm, level = 0.95,df =Inf,...)
cv(object,...)
deff(object, quietly=FALSE,...)
make.formula(names)

Arguments

x A formula, vector or matrix
design survey.design or svyrep.design object
na.rm Should cases with missing values be dropped?
rho parameter for Fay’s variance estimator in a BRR design
return.replicates

Return the replicate means?
deff Return the design effect (see below)
object The result of one of the other survey summary functions
quietly Don’t warn when there is no design effect computed
estimate.only Don’t compute standard errors (useful when svyvar is used to estimate the de-

sign effect)
parm a specification of which parameters are to be given confidence intervals, either

a vector of numbers or a vector of names. If missing, all parameters are consid-
ered.

level the confidence level required.
df degrees of freedom for t-distribution in confidence interval, use degf(design)

for number of PSUs minus number of strata
... additional arguments to methods,not currently used
names vector of character strings

Details

These functions perform weighted estimation, with each observation being weighted by the inverse
of its sampling probability. Except for the table functions, these also give precision estimates that
incorporate the effects of stratification and clustering.

Factor variables are converted to sets of indicator variables for each category in computing means
and totals. Combining this with the interaction function, allows crosstabulations. See ftable.svystat
for formatting the output.

surveysummary 53

With na.rm=TRUE, all cases with missing data are removed. With na.rm=FALSE cases with miss-
ing data are not removed and so will produce missing results. When using replicate weights and
na.rm=FALSE it may be useful to set options(na.action="na.pass"), otherwise all replicates
with any missing results will be discarded.

The svytotal and svreptotal functions estimate a population total. Use predict on svyratio
and svyglm, to get ratio or regression estimates of totals.

svyvar estimates the population variance. The object returned includes the full matrix of estimated
population variances and covariances, but by default only the diagonal elements are printed. To
display the whole matrix use as.matrix(v) or print(v, covariance=TRUE).

The design effect compares the variance of a mean or total to the variance from a study of the
same size using simple random sampling without replacement. Note that the design effect will be
incorrect if the weights have been rescaled so that they are not reciprocals of sampling probabilities.
To obtain an estimate of the design effect comparing to simple random sampling with replacement,
which does not have this requirement, use deff="replace". This with-replacement design effect
is the square of Kish’s "deft".

The design effect for a subset of a design conditions on the size of the subset. That is, it compares
the variance of the estimate to the variance of an estimate based on a simple random sample of the
same size as the subset, taken from the subpopulation. So, for example, under stratified random
sampling the design effect in a subset consisting of a single stratum will be 1.0.

The cv function computes the coefficient of variation of a statistic such as ratio, mean or total. The
default method is for any object with methods for SE and coef.

make.formula makes a formula from a vector of names. This is useful because formulas as the best
way to specify variables to the survey functions.

Value

Objects of class "svystat" or "svrepstat", which are vectors with a "var" attribute giving the
variance and a "statistic" attribute giving the name of the statistic.

These objects have methods for vcov, SE, coef, confint, svycontrast.

Author(s)

Thomas Lumley

See Also

svydesign, as.svrepdesign, svrepdesign for constructing design objects.

degf to extract degrees of freedom from a design.

svyquantile for quantiles

ftable.svystat for more attractive tables

svyciprop for more accurate confidence intervals for proportions near 0 or 1.

svyttest for comparing two means.

svycontrast for linear and nonlinear functions of estimates.

54 surveysummary

Examples

data(api)

one-stage cluster sample
dclus1<-svydesign(id=~dnum, weights=~pw, data=apiclus1, fpc=~fpc)

svymean(~api00, dclus1, deff=TRUE)
svymean(~factor(stype),dclus1)
svymean(~interaction(stype, comp.imp), dclus1)
svyquantile(~api00, dclus1, c(.25,.5,.75))
svytotal(~enroll, dclus1, deff=TRUE)
svyratio(~api.stu, ~enroll, dclus1)

v<-svyvar(~api00+api99, dclus1)
v
print(v, cov=TRUE)
as.matrix(v)

replicate weights - jackknife (this is slower)
dstrat<-svydesign(id=~1,strata=~stype, weights=~pw,

data=apistrat, fpc=~fpc)
jkstrat<-as.svrepdesign(dstrat)

svymean(~api00, jkstrat)
svymean(~factor(stype),jkstrat)
svyvar(~api00+api99,jkstrat)

svyquantile(~api00, jkstrat, c(.25,.5,.75))
svytotal(~enroll, jkstrat)
svyratio(~api.stu, ~enroll, jkstrat)

coefficients of variation
cv(svytotal(~enroll,dstrat))
cv(svyratio(~api.stu, ~enroll, jkstrat))

extracting information from the results
coef(svytotal(~enroll,dstrat))
vcov(svymean(~api00+api99,jkstrat))
SE(svymean(~enroll, dstrat))
confint(svymean(~api00+api00, dclus1))
confint(svymean(~api00+api00, dclus1), df=degf(dclus1))

Design effect
svymean(~api00, dstrat, deff=TRUE)
svymean(~api00, dstrat, deff="replace")
svymean(~api00, jkstrat, deff=TRUE)
svymean(~api00, jkstrat, deff="replace")
(a<-svytotal(~enroll, dclus1, deff=TRUE))
deff(a)

svrepdesign 55

svrepdesign Specify survey design with replicate weights

Description

Some recent large-scale surveys specify replication weights rather than the sampling design (partly
for privacy reasons). This function specifies the data structure for such a survey.

Usage

svrepdesign(variables , repweights , weights, data,...)
Default S3 method:
svrepdesign(variables = NULL, repweights = NULL, weights = NULL, data =
NULL, type = c("BRR", "Fay", "JK1","JKn","bootstrap","other"),
combined.weights=TRUE, rho = NULL, bootstrap.average=NULL,
scale=NULL, rscales=NULL,fpc=NULL, fpctype=c("fraction","correction"),mse=getOption("survey.replicates.mse"),...)
S3 method for class ’imputationList’
svrepdesign(variables=NULL, repweights,weights,data,mse=getOption("survey.replicates.mse"),...)
S3 method for class ’character’
svrepdesign(variables=NULL,repweights=NULL, weights=NULL,data=NULL,
type=c("BRR","Fay","JK1", "JKn","bootstrap","other"),combined.weights=TRUE, rho=NULL,
bootstrap.average=NULL, scale=NULL,rscales=NULL,fpc=NULL,
fpctype=c("fraction","correction"),mse=getOption("survey.replicates.mse"),
dbtype="SQLite", dbname,...)

S3 method for class ’svyrep.design’
image(x, ..., col=grey(seq(.5,1,length=30)), type.=c("rep","total"))

Arguments

variables formula or data frame specifying variables to include in the design (default is
all)

repweights formula or data frame specifying replication weights, or character string spec-
ifying a regular expression that matches the names of the replication weight
variables

weights sampling weights

data data frame to look up variables in formulas, or character string giving name of
database table

type Type of replication weights
combined.weights

TRUE if the repweights already include the sampling weights. This is usually
the case.

rho Shrinkage factor for weights in Fay’s method

56 svrepdesign

bootstrap.average

For type="bootstrap", if the bootstrap weights have been averaged, gives the
number of iterations averaged over

scale, rscales Scaling constant for variance, see Details below

fpc,fpctype Finite population correction information

mse If TRUE, compute variances based on sum of squares around the point estimate,
rather than the mean of the replicates

dbname name of database, passed to DBI::dbConnect()

dbtype Database driver: see Details

x survey design with replicate weights

... Other arguments to image

col Colors

type. "rep" for only the replicate weights, "total" for the replicate and sampling
weights combined.

Details

In the BRR method, the dataset is split into halves, and the difference between halves is used to
estimate the variance. In Fay’s method, rather than removing observations from half the sample
they are given weight rho in one half-sample and 2-rho in the other. The ideal BRR analysis is
restricted to a design where each stratum has two PSUs, however, it has been used in a much wider
class of surveys.

The JK1 and JKn types are both jackknife estimators deleting one cluster at a time. JKn is designed
for stratified and JK1 for unstratified designs.

Averaged bootstrap weights ("mean bootstrap") are used for some surveys from Statistics Canada.
Yee et al (1999) describe their construction and use for one such survey.

The variance is computed as the sum of squared deviations of the replicates from their mean. This
may be rescaled: scale is an overall multiplier and rscale is a vector of replicate-specific mul-
tipliers for the squared deviations. If the replication weights incorporate the sampling weights
(combined.weights=TRUE) or for type="other" these must be specified, otherwise they can be
guessed from the weights.

A finite population correction may be specified for type="other", type="JK1" and type="JKn".
fpc must be a vector with one entry for each replicate. To specify sampling fractions use fpctype="fraction"
and to specify the correction directly use fpctype="correction"

repweights may be a character string giving a regular expression for the replicate weight vari-
ables. For example, in the California Health Interview Survey public-use data, the sampling weights
are "rakedw0" and the replicate weights are "rakedw1" to "rakedw80". The regular expression
"rakedw[1-9]" matches the replicate weight variables (and not the sampling weight variable).

data may be a character string giving the name of a table or view in a relational database that can be
accessed through the DBI or ODBC interfaces. For DBI interfaces dbtype should be the name of the
database driver and dbname should be the name by which the driver identifies the specific database
(eg file name for SQLite). For ODBC databases dbtype should be "ODBC" and dbname should be
the registed DSN for the database. On the Windows GUI, dbname="" will produce a dialog box for
interactive selection.

svrepdesign 57

The appropriate database interface package must already be loaded (eg RSQLite for SQLite, RODBC
for ODBC). The survey design object will contain the replicate weights, but actual variables will be
loaded from the database only as needed. Use close to close the database connection and open to
reopen the connection, eg, after loading a saved object.

The database interface does not attempt to modify the underlying database and so can be used with
read-only permissions on the database.

To generate your own replicate weights either use as.svrepdesign on a survey.design object, or
see brrweights, bootweights, jk1weights and jknweights

The model.frame method extracts the observed data.

Value

Object of class svyrep.design, with methods for print, summary, weights, image.

Note

To use replication-weight analyses on a survey specified by sampling design, use as.svrepdesign
to convert it.

References

Levy and Lemeshow. "Sampling of Populations". Wiley.

Shao and Tu. "The Jackknife and Bootstrap." Springer.

Yee et al (1999). Bootstrat Variance Estimation for the National Population Health Survey. Proceed-
ings of the ASA Survey Research Methodology Section. http://www.amstat.org/Sections/
Srms/Proceedings/papers/1999_136.pdf

See Also

as.svrepdesign, svydesign, brrweights, bootweights

Examples

data(scd)
use BRR replicate weights from Levy and Lemeshow
repweights<-2*cbind(c(1,0,1,0,1,0), c(1,0,0,1,0,1), c(0,1,1,0,0,1),
c(0,1,0,1,1,0))
scdrep<-svrepdesign(data=scd, type="BRR", repweights=repweights, combined.weights=FALSE)
svyratio(~alive, ~arrests, scdrep)

Not run:
Needs RSQLite
library(RSQLite)
db_rclus1<-svrepdesign(weights=~pw, repweights="wt[1-9]+", type="JK1", scale=(1-15/757)*14/15,
data="apiclus1rep",dbtype="SQLite", dbname=system.file("api.db",package="survey"), combined=FALSE)
svymean(~api00+api99,db_rclus1)

summary(db_rclus1)

 http://www.amstat.org/Sections/Srms/Proceedings/papers/1999_136.pdf
 http://www.amstat.org/Sections/Srms/Proceedings/papers/1999_136.pdf

58 svrVar

closing and re-opening a connection
close(db_rclus1)
db_rclus1
try(svymean(~api00+api99,db_rclus1))
db_rclus1<-open(db_rclus1)
svymean(~api00+api99,db_rclus1)

End(Not run)

svrVar Compute variance from replicates

Description

Compute an appropriately scaled empirical variance estimate from replicates. The mse argument
specifies whether the sums of squares should be centered at the point estimate (mse=TRUE) or the
mean of the replicates. It is usually taken from the mse component of the design object.

Usage

svrVar(thetas, scale, rscales, na.action=getOption("na.action"), mse=getOption("survey.replicates.mse"),coef)

Arguments

thetas matrix whose rows are replicates (or a vector of replicates)

scale Overall scaling factor

rscales Scaling factor for each squared deviation

na.action How to handle replicates where the statistic could not be estimated

mse if TRUE, center at the point estimated, if FALSE center at the mean of the repli-
cates

coef The point estimate, required only if mse==TRUE

Value

covariance matrix.

See Also

svrepdesign, as.svrepdesign, brrweights, jk1weights, jknweights

svy.varcoef 59

svy.varcoef Sandwich variance estimator for glms

Description

Computes the sandwich variance estimator for a generalised linear model fitted to data from a
complex sample survey. Designed to be used internally by svyglm.

Usage

svy.varcoef(glm.object, design)

Arguments

glm.object A glm object

design A survey.design object

Value

A variance matrix

Author(s)

Thomas Lumley

See Also

svyglm,svydesign, svyCprod

svyby Survey statistics on subsets

Description

Compute survey statistics on subsets of a survey defined by factors.

Usage

svyby(formula, by ,design,...)
Default S3 method:
svyby(formula, by, design, FUN, ..., deff=FALSE,keep.var = TRUE,
keep.names = TRUE,verbose=FALSE, vartype=c("se","ci","ci","cv","cvpct","var"),
drop.empty.groups=TRUE, covmat=FALSE, return.replicates=FALSE, na.rm.by=FALSE,
multicore=getOption("survey.multicore"))

S3 method for class ’svyby’
SE(object,...)

60 svyby

S3 method for class ’svyby’
deff(object,...)
S3 method for class ’svyby’
coef(object,...)
S3 method for class ’svyby’
confint(object, parm, level = 0.95,df =Inf,...)
unwtd.count(x, design, ...)

Arguments

formula,x A formula specifying the variables to pass to FUN (or a matrix, data frame, or
vector)

by A formula specifying factors that define subsets, or a list of factors.

design A svydesign or svrepdesign object

FUN A function taking a formula and survey design object as its first two arguments.

... Other arguments to FUN

deff Request a design effect from FUN

keep.var If FUN returns a svystat object, extract standard errors from it

keep.names Define row names based on the subsets

verbose If TRUE, print a label for each subset as it is processed.

vartype Report variability as one or more of standard error, confidence interval, coeffi-
cient of variation, percent coefficient of variation, or variance

drop.empty.groups

If FALSE, report NA for empty groups, if TRUE drop them from the output

na.rm.by If true, omit groups defined by NA values of the by variables.

covmat If TRUE, compute covariances between estimates for different subsets (currently
only for replicate-weight designs). Allows svycontrast to be used on output.

return.replicates

Only for replicate-weight designs. If TRUE, return all the replicates as the "repli-
cates" attribute of the result

multicore Use multicore package to distribute subsets over multiple processors?

parm a specification of which parameters are to be given confidence intervals, either
a vector of numbers or a vector of names. If missing, all parameters are consid-
ered.

level the confidence level required.

df degrees of freedom for t-distribution in confidence interval, use degf(design)
for number of PSUs minus number of strata

object An object of class "svyby"

svyby 61

Details

The variance type "ci" asks for confidence intervals, which are produced by confint. In some cases
additional options to FUN will be needed to produce confidence intervals, for example, svyquantile
needs ci=TRUE or keep.var=FALSE.

unwtd.count is designed to be passed to svyby to report the number of non-missing observations
in each subset. Observations with exactly zero weight will also be counted as missing, since that’s
how subsets are implemented for some designs.

Parallel processing with multicore=TRUE is useful only for fairly large problems and on computers
with sufficient memory. The multicore package is incompatible with some GUIs, although the
Mac Aqua GUI appears to be safe.

Value

An object of class "svyby": a data frame showing the factors and the results of FUN.

For unwtd.count, the unweighted number of non-missing observations in the data matrix specified
by x for the design.

Note

Asking for a design effect (deff=TRUE) from a function that does not produce one will cause an error
or incorrect formatting of the output. The same will occur with keep.var=TRUE if the function does
not compute a standard error.

See Also

svytable and ftable.svystat for contingency tables, ftable.svyby for pretty-printing of svyby

Examples

data(api)
dclus1<-svydesign(id=~dnum, weights=~pw, data=apiclus1, fpc=~fpc)

svyby(~api99, ~stype, dclus1, svymean)
svyby(~api99, ~stype, dclus1, svyquantile, quantiles=0.5,ci=TRUE,vartype="ci")
without ci=TRUE svyquantile does not compute standard errors
svyby(~api99, ~stype, dclus1, svyquantile, quantiles=0.5, keep.var=FALSE)
svyby(~api99, list(school.type=apiclus1$stype), dclus1, svymean)
svyby(~api99+api00, ~stype, dclus1, svymean, deff=TRUE,vartype="ci")
svyby(~api99+api00, ~stype+sch.wide, dclus1, svymean, keep.var=FALSE)
report raw number of observations
svyby(~api99+api00, ~stype+sch.wide, dclus1, unwtd.count, keep.var=FALSE)

rclus1<-as.svrepdesign(dclus1)

svyby(~api99, ~stype, rclus1, svymean)
svyby(~api99, ~stype, rclus1, svyquantile, quantiles=0.5)
svyby(~api99, list(school.type=apiclus1$stype), rclus1, svymean, vartype="cv")
svyby(~enroll,~stype, rclus1,svytotal, deff=TRUE)
svyby(~api99+api00, ~stype+sch.wide, rclus1, svymean, keep.var=FALSE)
##report raw number of observations

62 svycdf

svyby(~api99+api00, ~stype+sch.wide, rclus1, unwtd.count, keep.var=FALSE)

comparing subgroups using covmat=TRUE
mns<-svyby(~api99, ~stype, rclus1, svymean,covmat=TRUE)
vcov(mns)
svycontrast(mns, c(E = 1, M = -1))

str(svyby(~api99, ~stype, rclus1, svymean,return.replicates=TRUE))

extractor functions
(a<-svyby(~enroll, ~stype, rclus1, svytotal, deff=TRUE, verbose=TRUE, vartype=c("se","cv","cvpct","var")))
deff(a)
SE(a)
cv(a)
coef(a)
confint(a, df=degf(rclus1))

ratio estimates
svyby(~api.stu, by=~stype, denominator=~enroll, design=dclus1, svyratio)

empty groups
svyby(~api00,~comp.imp+sch.wide,design=dclus1,svymean)
svyby(~api00,~comp.imp+sch.wide,design=dclus1,svymean,drop.empty.groups=FALSE)

svycdf Cumulative Distribution Function

Description

Estimates the population cumulative distribution function for specified variables. In contrast to
svyquantile, this does not do any interpolation: the result is a right-continuous step function.

Usage

svycdf(formula, design, na.rm = TRUE,...)
S3 method for class ’svycdf’
print(x,...)
S3 method for class ’svycdf’
plot(x,xlab=NULL,...)

Arguments

formula one-sided formula giving variables from the design object
design survey design object
na.rm remove missing data (case-wise deletion)?
... other arguments to plot.stepfun

x object of class svycdf
xlab a vector of x-axis labels or NULL for the default labels

svyciprop 63

Value

An object of class svycdf, which is a list of step functions (of class stepfun)

See Also

svyquantile, svyhist, plot.stepfun

Examples

data(api)
dstrat <- svydesign(id = ~1, strata = ~stype, weights = ~pw, data = apistrat,

fpc = ~fpc)
cdf.est<-svycdf(~enroll+api00+api99, dstrat)
cdf.est
function
cdf.est[[1]]
evaluate the function
cdf.est[[1]](800)
cdf.est[[2]](800)

compare to population and sample CDFs.
opar<-par(mfrow=c(2,1))
cdf.pop<-ecdf(apipop$enroll)
cdf.samp<-ecdf(apistrat$enroll)
plot(cdf.pop,main="Population vs sample", xlab="Enrollment")
lines(cdf.samp,col.points="red")

plot(cdf.pop, main="Population vs estimate", xlab="Enrollment")
lines(cdf.est[[1]],col.points="red")

par(opar)

svyciprop Confidence intervals for proportions

Description

Computes confidence intervals for proportions using methods that may be more accurate near 0 and
1 than simply using confint(svymean()).

Usage

svyciprop(formula, design, method = c("logit", "likelihood", "asin", "beta",
"mean"), level = 0.95, ...)

64 svyciprop

Arguments

formula Model formula specifying a single binary variable

design survey design object

method See Details below. Partial matching is done on the argument.

level Confidence level for interval

... for future methods

Details

The "logit" method fits a logistic regression model and computes a Wald-type interval on the
log-odds scale, which is then transformed to the probability scale.

The "likelihood" method uses the (Rao-Scott) scaled chi-squared distribution for the loglikeli-
hood from a binomial distribution.

The "asin" method uses the variance-stabilising transformation for the binomial distribution, the
arcsine square root, and then back-transforms the interval to the probability scale

The "beta" method uses the incomplete beta function as in binom.test, with an effective sample
size based on the estimated variance of the proportion. (Korn and Graubard, 1998)

The "mean" method is a Wald-type interval on the probability scale, the same as confint(svymean())

All methods undercover for probabilities close enough to zero or one, but "beta", "likelihood"
and "logit" are noticeably better than the other two. None of the methods will work when the
observed proportion is exactly 0 or 1.

The confint method extracts the confidence interval; the vcov and SE methods just report the
variance or standard error of the mean.

Value

The point estimate of the proportion, with the confidence interval as an attribute

References

Rao, JNK, Scott, AJ (1984) "On Chi-squared Tests For Multiway Contingency Tables with Propor-
tions Estimated From Survey Data" Annals of Statistics 12:46-60.

Korn EL, Graubard BI. (1998) Confidence Intervals For Proportions With Small Expected Number
of Positive Counts Estimated From Survey Data. Survey Methodology 23:193-201.

See Also

svymean

Examples

data(api)
dclus1<-svydesign(id=~dnum, fpc=~fpc, data=apiclus1)

svyciprop(~I(ell==0), dclus1, method="li")
svyciprop(~I(ell==0), dclus1, method="lo")

svycontrast 65

svyciprop(~I(ell==0), dclus1, method="as")
svyciprop(~I(ell==0), dclus1, method="be")
svyciprop(~I(ell==0), dclus1, method="me")

rclus1<-as.svrepdesign(dclus1)
svyciprop(~I(emer==0), rclus1, method="li")
svyciprop(~I(emer==0), rclus1, method="lo")
svyciprop(~I(emer==0), rclus1, method="as")
svyciprop(~I(emer==0), rclus1, method="be")
svyciprop(~I(emer==0), rclus1, method="me")

svycontrast Linear and nonlinearconstrasts of survey statistics

Description

Computes linear or nonlinear contrasts of estimates produced by survey functions (or any object
with coef and vcov methods).

Usage

svycontrast(stat, contrasts, ...)

Arguments

stat object of class svrepstat or svystat

contrasts A vector or list of vectors of coefficients, or a call or list of calls

... For future expansion

Details

If contrasts is a list, the element names are used as names for the returned statistics.

If an element of contrasts is shorter than coef(stat) and has names, the names are used to match
up the vectors and the remaining elements of contrasts are assumed to be zero. If the names are
not legal variable names (eg 0.1) they must be quoted (eg "0.1")

If contrasts is a "call" or list of "call"s, the delta-method is used to compute variances, and
the calls must use only functions that deriv knows how to differentiate. If the names are not legal
variable names they must be quoted with backticks (eg ‘0.1‘).

Value

Object of class svrepstat or svystat

See Also

regTermTest, svyglm

66 svycoplot

Examples

data(api)
dclus1<-svydesign(id=~dnum, weights=~pw, data=apiclus1, fpc=~fpc)

a <- svytotal(~api00+enroll+api99, dclus1)
svycontrast(a, list(avg=c(0.5,0,0.5), diff=c(1,0,-1)))
if contrast vectors have names, zeroes may be omitted
svycontrast(a, list(avg=c(api00=0.5,api99=0.5), diff=c(api00=1,api99=-1)))

nonlinear contrasts
svycontrast(a, quote(api00/api99))
svyratio(~api00, ~api99, dclus1)

svycoplot Conditioning plots of survey data

Description

Draws conditioned scatterplots (’Trellis’ plots) of survey data using hexagonal binning or trans-
parency.

Usage

svycoplot(formula, design, style = c("hexbin", "transparent"), basecol =
"black", alpha = c(0, 0.8),hexscale=c("relative","absolute"), ...)

Arguments

formula A graph formula suitable for xyplot

design A survey design object

style Hexagonal binning or transparent color?

basecol The fully opaque ’base’ color for creating transparent colors. This may also be
a function; see svyplot for details

alpha Minimum and maximum opacity

hexscale Scale hexagons separate for each panel (relative) or across all panels (absolute)

... Other arguments passed to grid.hexagons or xyplot

Value

An object of class trellis

Note

As with all ’Trellis’ graphs, this function creates an object but does not draw the graph. When used
inside a function or non-interactively you need to print() the result to create the graph.

svycoxph 67

See Also

svyplot

Examples

data(api)
dclus2<-svydesign(id=~dnum+snum, weights=~pw,

data=apiclus2, fpc=~fpc1+fpc2)

svycoplot(api00~api99|sch.wide*comp.imp, design=dclus2, style="hexbin")
svycoplot(api00~api99|sch.wide*comp.imp, design=dclus2, style="hexbin", hexscale="absolute")

svycoplot(api00~api99|sch.wide, design=dclus2, style="trans")

svycoplot(api00~meals|stype,design=dclus2,
style="transparent",
basecol=function(d) c("darkred","purple","forestgreen")[as.numeric(d$stype)],
alpha=c(0,1))

svycoxph Survey-weighted Cox models.

Description

Fit a proportional hazards model to data from a complex survey design.

Usage

svycoxph(formula, design,subset=NULL, ...)
S3 method for class ’svycoxph’
predict(object, newdata, se=FALSE,

type=c("lp", "risk", "expected", "terms","curve"),...)

Arguments

formula Model formula. Any cluster() terms will be ignored.

design survey.design object. Must contain all variables in the formula

subset Expression to select a subpopulation

object A svycoxph object

newdata New data for prediction

se Compute standard errors? This takes a lot of memory for type="curve"

type "curve" does predicted survival curves. The other values are passed to predict.coxph()

... Other arguments passed to coxph.

68 svycoxph

Details

The main difference between svycoxph function and the robust=TRUE option to coxph in the sur-
vival package is that this function accounts for the reduction in variance from stratified sampling
and the increase in variance from having only a small number of clusters.

Note that strata terms in the model formula describe subsets that have a separate baseline hazard
function and need not have anything to do with the stratification of the sampling.

The standard errors for predicted survival curves are available only by linearization, not by repli-
cate weights (at the moment). Use withReplicates to get standard errors with replicate weights.
Predicted survival curves are not available for stratified Cox models.

The standard errors use the delta-method approach of Williams (1995) for the Nelson-Aalen estima-
tor, modified to handle the Cox model following Tsiatis (1981). The standard errors agree closely
with survfit.coxph for independent sampling when the model fits well, but are larger when the
model fits poorly. I believe the standard errors are equivalent to those of Lin (2000), but I don’t
know of any implementation that would allow a check.

Value

An object of class svycoxph for svycoxph, an object of class svykm or svykmlist for predict(,type="curve").

Warning

The standard error calculation for survival curves uses memory proportional to the sample size
times the square of the number of events.

Author(s)

Thomas Lumley

References

Binder DA. (1992) Fitting Cox’s proportional hazards models from survey data. Biometrika 79:
139-147

Lin D-Y (2000) On fitting Cox’s proportional hazards model to survey data. Biometrika 87: 37-47

Tsiatis AA (1981) A Large Sample Study of Cox’s Regression Model. Annals of Statistics 9(1)
93-108

Williams RL (1995) "Product-Limit Survival Functions with Correlated Survival Times" Lifetime
Data Analysis 1: 171–186

See Also

coxph, predict.coxph

svykm for estimation of Kaplan-Meier survival curves and for methods that operate on survival
curves.

svyCprod 69

Examples

Somewhat unrealistic example of nonresponse bias.
data(pbc, package="survival")

pbc$randomized<-with(pbc, !is.na(trt) & trt>0)
biasmodel<-glm(randomized~age*edema,data=pbc,family=binomial)
pbc$randprob<-fitted(biasmodel)
if (is.null(pbc$albumin)) pbc$albumin<-pbc$alb ##pre2.9.0

dpbc<-svydesign(id=~1, prob=~randprob, strata=~edema, data=subset(pbc,randomized))
rpbc<-as.svrepdesign(dpbc)

(model<-svycoxph(Surv(time,status>0)~log(bili)+protime+albumin,design=dpbc))

svycoxph(Surv(time,status>0)~log(bili)+protime+albumin,design=rpbc)

s<-predict(model,se=TRUE, type="curve",
newdata=data.frame(bili=c(3,9), protime=c(10,10), albumin=c(3.5,3.5)))

plot(s[[1]],ci=TRUE,col="sienna")
lines(s[[2]], ci=TRUE,col="royalblue")
quantile(s[[1]], ci=TRUE)
confint(s[[2]], parm=365*(1:5))

svyCprod Computations for survey variances

Description

Computes the sum of products needed for the variance of survey sample estimators. svyCprod
is used for survey design objects from before version 2.9, onestage is called by svyrecvar for
post-2.9 design objects.

Usage

svyCprod(x, strata, psu, fpc, nPSU,certainty=NULL, postStrata=NULL,
lonely.psu=getOption("survey.lonely.psu"))

onestage(x, strata, clusters, nPSU, fpc,
lonely.psu=getOption("survey.lonely.psu"),stage=0,cal)

Arguments

x A vector or matrix

strata A vector of stratum indicators (may be NULL for svyCprod)

psu A vector of cluster indicators (may be NULL)

clusters A vector of cluster indicators

fpc A data frame (svyCprod) or vector (onestage) of population stratum sizes, or
NULL

70 svyCprod

nPSU Table (svyprod) or vector (onestage) of original sample stratum sizes (or NULL)

certainty logical vector with stratum names as names. If TRUE and that stratum has a
single PSU it is a certainty PSU

postStrata Post-stratification variables

lonely.psu One of "remove", "adjust", "fail", "certainty", "average". See Details
below

stage Used internally to track the depth of recursion

cal Used to pass calibration information at stages below the population

Details

The observations for each cluster are added, then centered within each stratum and the outer product
is taken of the row vector resulting for each cluster. This is added within strata, multiplied by a
degrees-of-freedom correction and by a finite population correction (if supplied) and added across
strata.

If there are fewer clusters (PSUs) in a stratum than in the original design extra rows of zeroes are
added to x to allow the correct subpopulation variance to be computed.

See postStratify for information about post-stratification adjustments.

The variance formula gives 0/0 if a stratum contains only one sampling unit. If the certainty
argument specifies that this is a PSU sampled with probability 1 (a "certainty" PSU) then it does
not contribute to the variance (this is correct only when there is no subsampling within the PSU –
otherwise it should be defined as a pseudo-stratum). If certainty is FALSE for this stratum or is
not supplied the result depends on lonely.psu.

The options are "fail" to give an error, "remove" or "certainty" to give a variance contribution
of 0 for the stratum, "adjust" to center the stratum at the grand mean rather than the stratum mean,
and "average" to assign strata with one PSU the average variance contribution from strata with
more than one PSU. The choice is controlled by setting options(survey.lonely.psu). If this is
not done the factory default is "fail". Using "adjust" is conservative, and it would often be better
to combine strata in some intelligent way. The properties of "average" have not been investigated
thoroughly, but it may be useful when the lonely PSUs are due to a few strata having PSUs missing
completely at random.

The "remove"and "certainty" options give the same result, but "certainty" is intended for
situations where there is only one PSU in the population stratum, which is sampled with certainty
(also called ‘self-representing’ PSUs or strata). With "certainty" no warning is generated for
strata with only one PSU. Ordinarily, svydesign will detect certainty PSUs, making this option
unnecessary.

For strata with a single PSU in a subset (domain) the variance formula gives a value that is well-
defined and positive, but not typically correct. If options("survey.adjust.domain.lonely") is
TRUE and options("survey.lonely.psu") is "adjust" or "average", and no post-stratification
or G-calibration has been done, strata with a single PSU in a subset will be treated like those with a
single PSU in the sample. I am not aware of any theoretical study of this procedure, but it should at
least be conservative.

Value

A covariance matrix

svydesign 71

Author(s)

Thomas Lumley

References

Binder, David A. (1983). On the variances of asymptotically normal estimators from complex
surveys. International Statistical Review, 51, 279- 292.

See Also

svydesign, svyrecvar, surveyoptions, postStratify

svydesign Survey sample analysis.

Description

Specify a complex survey design.

Usage

svydesign(ids, probs=NULL, strata = NULL, variables = NULL, fpc=NULL,
data = NULL, nest = FALSE, check.strata = !nest, weights=NULL,pps=FALSE,...)
Default S3 method:
svydesign(ids, probs=NULL, strata = NULL, variables = NULL, fpc=NULL,
data = NULL, nest = FALSE, check.strata = !nest, weights=NULL,pps=FALSE,variance=c("HT","YG"),...)
S3 method for class ’imputationList’
svydesign(ids, probs = NULL, strata = NULL, variables = NULL,

fpc = NULL, data, nest = FALSE, check.strata = !nest, weights = NULL, pps=FALSE,
...)

S3 method for class ’character’
svydesign(ids, probs = NULL, strata = NULL, variables = NULL,

fpc = NULL, data, nest = FALSE, check.strata = !nest, weights = NULL, pps=FALSE,
dbtype = "SQLite", dbname, ...)

Arguments

ids Formula or data frame specifying cluster ids from largest level to smallest level,
~0 or ~1 is a formula for no clusters.

probs Formula or data frame specifying cluster sampling probabilities

strata Formula or vector specifying strata, use NULL for no strata

variables Formula or data frame specifying the variables measured in the survey. If NULL,
the data argument is used.

fpc Finite population correction: see Details below

weights Formula or vector specifying sampling weights as an alternative to prob

72 svydesign

data Data frame to look up variables in the formula arguments, or database table
name, or imputationList object, see below

nest If TRUE, relabel cluster ids to enforce nesting within strata

check.strata If TRUE, check that clusters are nested in strata.

pps "brewer" to use Brewer’s approximation for PPS sampling without replace-
ment. "overton" to use Overton’s approximation. An object of class HR to use
the Hartley-Rao approximation. An object of class ppsmat to use the Horvitz-
Thompson estimator.

dbtype name of database driver to pass to dbDriver

dbname name of database (eg file name for SQLite)

variance For pps without replacement, use variance="YG" for the Yates-Grundy estima-
tor instead of the Horvitz-Thompson estimator

... for future expansion

Details

The svydesign object combines a data frame and all the survey design information needed to
analyse it. These objects are used by the survey modelling and summary functions. The id argument
is always required, the strata, fpc, weights and probs arguments are optional. If these variables
are specified they must not have any missing values.

By default, svydesign assumes that all PSUs, even those in different strata, have a unique value of
the id variable. This allows some data errors to be detected. If your PSUs reuse the same identifiers
across strata then set nest=TRUE.

The finite population correction (fpc) is used to reduce the variance when a substantial fraction of
the total population of interest has been sampled. It may not be appropriate if the target of inference
is the process generating the data rather than the statistics of a particular finite population.

The finite population correction can be specified either as the total population size in each stratum
or as the fraction of the total population that has been sampled. In either case the relevant population
size is the sampling units. That is, sampling 100 units from a population stratum of size 500 can be
specified as 500 or as 100/500=0.2. The exception is for PPS sampling without replacement, where
the sampling probability (which will be different for each PSU) must be used.

If population sizes are specified but not sampling probabilities or weights, the sampling probabilities
will be computed from the population sizes assuming simple random sampling within strata.

For multistage sampling the id argument should specify a formula with the cluster identifiers at
each stage. If subsequent stages are stratified strata should also be specified as a formula with
stratum identifiers at each stage. The population size for each level of sampling should also be
specified in fpc. If fpc is not specified then sampling is assumed to be with replacement at the
top level and only the first stage of cluster is used in computing variances. If fpc is specified but
for fewer stages than id, sampling is assumed to be complete for subsequent stages. The variance
calculations for multistage sampling assume simple or stratified random sampling within clusters at
each stage except possibly the last.

For PPS sampling without replacement it is necessary to specify the probabilities for each stage
of sampling using the fpc arguments, and an overall weight argument should not be given. At
the moment, multistage or stratified PPS sampling without replacement is supported only with

svydesign 73

pps="brewer", or by giving the full joint probability matrix using ppsmat. [Cluster sampling is
supported by all methods, but not subsampling within clusters].

The dim, "[", "[<-" and na.action methods for survey.design objects operate on the dataframe
specified by variables and ensure that the design information is properly updated to correspond to
the new data frame. With the "[<-" method the new value can be a survey.design object instead
of a data frame, but only the data frame is used. See also subset.survey.design for a simple way
to select subpopulations.

The model.frame method extracts the observed data.

If the strata with only one PSU are not self-representing (or they are, but svydesign cannot tell
based on fpc) then the handling of these strata for variance computation is determined by options("survey.lonely.psu").
See svyCprod for details.

data may be a character string giving the name of a table or view in a relational database that can be
accessed through the DBI or ODBC interfaces. For DBI interfaces dbtype should be the name of the
database driver and dbname should be the name by which the driver identifies the specific database
(eg file name for SQLite). For ODBC databases dbtype should be "ODBC" and dbname should be
the registed DSN for the database. On the Windows GUI, dbname="" will produce a dialog box for
interactive selection.

The appropriate database interface package must already be loaded (eg RSQLite for SQLite, RODBC
for ODBC). The survey design object will contain only the design meta-data, and actual variables
will be loaded from the database as needed. Use close to close the database connection and open
to reopen the connection, eg, after loading a saved object.

The database interface does not attempt to modify the underlying database and so can be used with
read-only permissions on the database.

If data is an imputationList object (from the "mitools" package), svydesign will return a
svyimputationList object containing a set of designs. Use with.svyimputationList to do anal-
yses on these designs and MIcombine to combine the results.

Value

An object of class survey.design.

Author(s)

Thomas Lumley

See Also

as.svrepdesign for converting to replicate weight designs, subset.survey.design for domain
estimates, update.survey.design to add variables.

mitools package for using multiple imputations

svyrecvar and svyCprod for details of variance estimation

election for examples of PPS sampling without replacement.

http://faculty.washington.edu/tlumley/survey/ for examples of database-backed objects.

http://faculty.washington.edu/tlumley/survey/

74 svyfactanal

Examples

data(api)
stratified sample
dstrat<-svydesign(id=~1,strata=~stype, weights=~pw, data=apistrat, fpc=~fpc)
one-stage cluster sample
dclus1<-svydesign(id=~dnum, weights=~pw, data=apiclus1, fpc=~fpc)
two-stage cluster sample: weights computed from population sizes.
dclus2<-svydesign(id=~dnum+snum, fpc=~fpc1+fpc2, data=apiclus2)

multistage sampling has no effect when fpc is not given, so
these are equivalent.
dclus2wr<-svydesign(id=~dnum+snum, weights=weights(dclus2), data=apiclus2)
dclus2wr2<-svydesign(id=~dnum, weights=weights(dclus2), data=apiclus2)

syntax for stratified cluster sample
##(though the data weren’t really sampled this way)
svydesign(id=~dnum, strata=~stype, weights=~pw, data=apistrat,
nest=TRUE)

PPS sampling without replacement
data(election)
dpps<- svydesign(id=~1, fpc=~p, data=election_pps, pps="brewer")

##database example: requires RSQLite
Not run:
library(RSQLite)
dbclus1<-svydesign(id=~dnum, weights=~pw, fpc=~fpc,
data="apiclus1",dbtype="SQLite", dbname=system.file("api.db",package="survey"))

End(Not run)

svyfactanal Factor analysis in complex surveys (experimental).

Description

This function fits a factor analysis model or SEM, by maximum weighted likelihood.

Usage

svyfactanal(formula, design, factors, n = c("none", "sample", "degf","effective", "min.effective"), ...)

Arguments

formula Model formula specifying the variables to use
design Survey design object
factors Number of factors to estimate
n Sample size to be used for testing: see below
... Other arguments to pass to factanal.

svyglm 75

Details

The population covariance matrix is estimated by svyvar and passed to factanal

Although fitting these models requires only the estimated covariance matrix, inference requires a
sample size. With n="sample", the sample size is taken to be the number of observations; with
n="degf", the survey degrees of freedom as returned by degf. Using "sample" corresponds to
standardizing weights to have mean 1, and is known to result in anti-conservative tests.

The other two methods estimate an effective sample size for each variable as the sample size where
the standard error of a variance of a Normal distribution would match the design-based standard
error estimated by svyvar. With n="min.effective" the minimum sample size across the vari-
ables is used; with n="effective" the harmonic mean is used. For svyfactanal the test of model
adequacy is optional, and the default choice, n="none", does not do the test.

Value

An object of class factanal

References

.

See Also

factanal

Examples

data(api)
dclus1<-svydesign(id=~dnum, weights=~pw, data=apiclus1, fpc=~fpc)

svyfactanal(~api99+api00+hsg+meals+ell+emer, design=dclus1, factors=2)

svyfactanal(~api99+api00+hsg+meals+ell+emer, design=dclus1, factors=2, n="effective")

##Population dat for comparison
factanal(~api99+api00+hsg+meals+ell+emer, data=apipop, factors=2)

svyglm Survey-weighted generalised linear models.

Description

Fit a generalised linear model to data from a complex survey design, with inverse-probability
weighting and design-based standard errors.

76 svyglm

Usage

S3 method for class ’survey.design’
svyglm(formula, design, subset=NULL, ...)
S3 method for class ’svyrep.design’
svyglm(formula, design, subset=NULL, ..., rho=NULL,
return.replicates=FALSE, na.action,multicore=getOption("survey.multicore"))
S3 method for class ’svyglm’
summary(object, correlation = FALSE, df.resid=NULL,
...)
S3 method for class ’svyglm’
predict(object,newdata=NULL,total=NULL,

type=c("link","response","terms"),
se.fit=(type != "terms"),vcov=FALSE,...)

Arguments

formula Model formula

design Survey design from svydesign or svrepdesign. Must contain all variables in
the formula

subset Expression to select a subpopulation

... Other arguments passed to glm or summary.glm

rho For replicate BRR designs, to specify the parameter for Fay’s variance method,
giving weights of rho and 2-rho

return.replicates

Return the replicates as a component of the result?

object A svyglm object

correlation Include the correlation matrix of parameters?

na.action Handling of NAs

multicore Use the multicore package to distribute replicates across processors?

df.resid Optional denominator degrees of freedom for Wald tests

newdata new data frame for prediction

total population size when predicting population total

type linear predictor (link) or response

se.fit if TRUE, return variances of predictions

vcov if TRUE and se=TRUE return full variance-covariance matrix of predictions

Details

There is no anova method for svyglm as the models are not fitted by maximum likelihood. The
function regTermTest may be useful for testing sets of regression terms.

For binomial and Poisson families use family=quasibinomial() and family=quasipoisson()
to avoid a warning about non-integer numbers of successes. The ‘quasi’ versions of the family
objects give the same point estimates and standard errors and do not give the warning.

svyglm 77

If df.resid is not specified the df for the null model is computed by degf and the residual df
computed by subtraction. This is recommended by Korn and Graubard and is correct for PSU-level
covariates but is potentially very conservative for individual-level covariates. To get tests based on
a Normal distribution use df.resid=Inf, and to use number of PSUs-number of strata, specify
df.resid=degf(design).

Parallel processing with multicore=TRUE is helpful only for fairly large data sets and on computers
with sufficient memory. It may be incompatible with GUIs, although the Mac Aqua GUI appears to
be safe.

predict gives fitted values and sampling variability for specific new values of covariates. When
newdata are the population mean it gives the regression estimator of the mean, and when newdata
are the population totals and total is specified it gives the regression estimator of the population
total. Regression estimators of mean and total can also be obtained with calibrate.

Value

svyglm returns an object of class svyglm. The predict method returns an object of class svystat

Author(s)

Thomas Lumley

See Also

glm, which is used to do most of the work.

regTermTest, for multiparameter tests

calibrate, for an alternative way to specify regression estimators of population totals or means

svyttest for one-sample and two-sample t-tests.

Examples

data(api)

dstrat<-svydesign(id=~1,strata=~stype, weights=~pw, data=apistrat, fpc=~fpc)
dclus2<-svydesign(id=~dnum+snum, weights=~pw, data=apiclus2)
rstrat<-as.svrepdesign(dstrat)
rclus2<-as.svrepdesign(dclus2)

summary(svyglm(api00~ell+meals+mobility, design=dstrat))
summary(svyglm(api00~ell+meals+mobility, design=dclus2))
summary(svyglm(api00~ell+meals+mobility, design=rstrat))
summary(svyglm(api00~ell+meals+mobility, design=rclus2))

use quasibinomial, quasipoisson to avoid warning messages
summary(svyglm(sch.wide~ell+meals+mobility, design=dstrat,

family=quasibinomial()))

78 svyhist

Compare regression and ratio estimation of totals
api.ratio <- svyratio(~api.stu,~enroll, design=dstrat)
pop<-data.frame(enroll=sum(apipop$enroll, na.rm=TRUE))
npop <- nrow(apipop)
predict(api.ratio, pop$enroll)

regression estimator is less efficient
api.reg <- svyglm(api.stu~enroll, design=dstrat)
predict(api.reg, newdata=pop, total=npop)
same as calibration estimator
svytotal(~api.stu, calibrate(dstrat, ~enroll, pop=c(npop, pop$enroll)))

svyglm can also reproduce the ratio estimator
api.reg2 <- svyglm(api.stu~enroll-1, design=dstrat,

family=quasi(link="identity",var="mu"))
predict(api.reg2, newdata=pop, total=npop)

higher efficiency by modelling variance better
api.reg3 <- svyglm(api.stu~enroll-1, design=dstrat,

family=quasi(link="identity",var="mu^3"))
predict(api.reg3, newdata=pop, total=npop)
true value
sum(apipop$api.stu)

svyhist Histograms and boxplots

Description

Histograms and boxplots weighted by the sampling weights.

Usage

svyhist(formula, design, breaks = "Sturges",
include.lowest = TRUE, right = TRUE, xlab = NULL,
main = NULL, probability = TRUE, freq = !probability, ...)

svyboxplot(formula, design,...)

Arguments

formula One-sided formula for svyhist, two-sided for svyboxplot

design A survey design object

xlab x-axis label

main Main title
probability,freq

Y-axis is probability density or frequency

svykappa 79

breaks, include.lowest, right

As for hist

... Other arguments to hist or bxp

Details

The histogram breakpoints are computed as if the sample were a simple random sample of the same
size.

The grouping variable in svyboxplot, if present, must be a factor.

The boxplot whiskers go to the maximum and minimum observations or to 1.5 interquartile ranges
beyond the end of the box, whichever is closer. The maximum and minimum are plotted as outliers if
they are beyond the ends of the whiskers, but other outlying points are not plotted. This may change
in the future. svyboxplot requires a two-sided formula; use variable~1 for a single boxplot.

See Also

svyplot

Examples

data(api)
dstrat <- svydesign(id = ~1, strata = ~stype, weights = ~pw, data = apistrat,

fpc = ~fpc)
opar<-par(mfrow=c(1,3))
svyhist(~enroll, dstrat, main="Survey weighted",col="purple",ylim=c(0,1.3e-3))
hist(apistrat$enroll, main="Sample unweighted",col="purple",prob=TRUE,ylim=c(0,1.3e-3))
hist(apipop$enroll, main="Population",col="purple",prob=TRUE,ylim=c(0,1.3e-3))

par(mfrow=c(1,1))
svyboxplot(enroll~stype,dstrat)
svyboxplot(enroll~1,dstrat)
par(opar)

svykappa Cohen’s kappa for agreement

Description

Computes the unweighted kappa measure of agreement between two raters and the standard error.
The measurements must both be factor variables in the survey design object.

Usage

svykappa(formula, design, ...)

80 svykm

Arguments

formula one-sided formula giving two measurements

design survey design object

... for future expansion

Value

Object of class svystat

See Also

svycontrast

Examples

data(api)
dclus1<-svydesign(id=~dnum, weights=~pw, data=apiclus1, fpc=~fpc)
svykappa(~comp.imp+sch.wide, dclus1)

svykm Estimate survival function.

Description

Estimates the survival function using a weighted Kaplan-Meier estimator.

Usage

svykm(formula, design,se=FALSE, ...)
S3 method for class ’svykm’
plot(x,xlab="time",ylab="Proportion surviving",

ylim=c(0,1),ci=NULL,lty=1,...)
S3 method for class ’svykm’
lines(x,xlab="time",type="s",ci=FALSE,lty=1,...)
S3 method for class ’svykmlist’
plot(x, pars=NULL, ci=FALSE,...)
S3 method for class ’svykm’
quantile(x, probs=c(0.75,0.5,0.25),ci=FALSE,level=0.95,...)
S3 method for class ’svykm’
confint(object,parm,level=0.95,...)

svykm 81

Arguments

formula Two-sided formula. The response variable should be a right-censored Surv ob-
ject

design survey design object

se Compute standard errors? This is slow for moderate to large data sets

... in plot and lines methods, graphical parameters

x a svykm or svykmlist object

xlab,ylab,ylim,type

as for plot

lty Line type, see par

ci Plot (or return, forquantile) the confidence interval

pars A list of vectors of graphical parameters for the separate curves in a svykmlist
object

object A svykm object

parm vector of times to report confidence intervals

level confidence level

probs survival probabilities for computing survival quantiles (note that these are the
complement of the usual quantile input, so 0.9 means 90% surviving, not 90%
dead)

Details

When standard errors are computed, the survival curve is actually the Aalen (hazard-based) estima-
tor rather than the Kaplan-Meier estimator.

The standard error computations use memory proportional to the sample size times the square of
the number of events. This can be a lot.

In the case of equal-probability cluster sampling without replacement the computations are essen-
tially the same as those of Williams (1995), and the same linearization strategy is used for other
designs.

Confidence intervals are computed on the log(survival) scale, following the default in survival
package, which was based on simulations by Link(1984).

Confidence intervals for quantiles use Woodruff’s method: the interval is the intersection of the
horizontal line at the specified quantile with the pointwise confidence band around the survival
curve.

Value

For svykm, an object of class svykm for a single curve or svykmlist for multiple curves.

82 svyloglin

References

Link, C. L. (1984). Confidence intervals for the survival function using Cox’s proportional hazards
model with covariates. Biometrics 40, 601-610.

Williams RL (1995) "Product-Limit Survival Functions with Correlated Survival Times" Lifetime
Data Analysis 1: 171–186

Woodruff RS (1952) Confidence intervals for medians and other position measures. JASA 57, 622-
627.

See Also

predict.svycoxph for survival curves from a Cox model

Examples

data(pbc, package="survival")
pbc$randomized <- with(pbc, !is.na(trt) & trt>0)
biasmodel<-glm(randomized~age*edema,data=pbc)
pbc$randprob<-fitted(biasmodel)

dpbc<-svydesign(id=~1, prob=~randprob, strata=~edema, data=subset(pbc,randomized))

s1<-svykm(Surv(time,status>0)~1, design=dpbc)
s2<-svykm(Surv(time,status>0)~I(bili>6), design=dpbc)

plot(s1)
plot(s2)
plot(s2, lwd=2, pars=list(lty=c(1,2),col=c("purple","forestgreen")))

quantile(s1, probs=c(0.9,0.75,0.5,0.25,0.1))

s3<-svykm(Surv(time,status>0)~I(bili>6), design=dpbc,se=TRUE)
plot(s3[[2]],col="purple")

confint(s3[[2]], parm=365*(1:5))
quantile(s3[[1]], ci=TRUE)

svyloglin Loglinear models

Description

Fit and compare hierarchical loglinear models for complex survey data.

svyloglin 83

Usage

svyloglin(formula, design, ...)
S3 method for class ’svyloglin’
update(object,formula,...)
S3 method for class ’svyloglin’
anova(object,object1,...,integrate=FALSE)
S3 method for class ’anova.svyloglin’
print(x,pval=c("F","saddlepoint","lincom","chisq"),...)
S3 method for class ’svyloglin’
coef(object,...,intercept=FALSE)

Arguments

formula Model formula

design survey design object

object,object1 loglinear model from svyloglin

pval p-value approximation: see Details

integrate Compute the exact asymptotic p-value (slow)?

... not used

intercept Report the intercept?

x anova object

Details

The loglinear model is fitted to a multiway table with probabilities estimated by svymean and with
the sample size equal to the observed sample size, treating the resulting table as if it came from
iid multinomial sampling, as described by Rao and Scott. The variance-covariance matrix does not
include the intercept term, and so by default neither does the coef method. A Newton-Raphson
algorithm is used, rather than iterative proportional fitting, so starting values are not needed.

The anova method computes the quantities that would be the score (Pearson) and likelihood ratio
chi-squared statistics if the data were an iid sample. It computes four p-values for each of these,
based on the exact asymptotic distribution (see pchisqsum), a saddlepoint approximateion to this
distribution, a scaled chi-squared distribution, and a scaled F-distribution. When testing the two-
way interaction model against the main-effects model in a two-way table the score statistic and
p-values match the Rao-Scott tests computed by svychisq.

The anova method can only compare two models if they are for exactly the same multiway table
(same variables and same order). The update method will help with this. It is also much faster to
use update than svyloglin for a large data set: its time complexity depends only on the size of the
model, not on the size of the data set.

It is not possible to fit a model using a variable created inline, eg I(x<10), since the multiway table
is based on all variables used in the formula.

Value

Object of class "svyloglin"

84 svylogrank

References

Rao, JNK, Scott, AJ (1984) "On Chi-squared Tests For Multiway Contingency Tables with Propor-
tions Estimated From Survey Data" Annals of Statistics 12:46-60.

See Also

svychisq, svyglm,pchisqsum

Examples

data(api)
dclus1<-svydesign(id=~dnum, weights=~pw, data=apiclus1, fpc=~fpc)
a<-svyloglin(~stype+comp.imp,dclus1)
b<-update(a,~.^2)
an<-anova(a,b)
an
print(an, pval="saddlepoint")

Wald test
regTermTest(b, ~stype:comp.imp)

linear-by-linear association
d<-update(a,~.+as.numeric(stype):as.numeric(comp.imp))
an1<-anova(a,d)
an1

svylogrank Compare survival distributions

Description

Computes a weighted version of the logrank and stratified logrank tests for comparing two or more
survival distributions. The generalization to complex samples is based on the characterization of
the logrank test as the score test in a Cox model. Under simple random sampling with replacement,
this function is almost identical to the robust score test in the survival package.

Usage

svylogrank(formula, design, ...)

Arguments

formula Model formula with a single predictor and optionally a strata term. The pre-
dictor must be a factor if it has more than two levels.

design A survey design object

... for future expansion.

svymle 85

Value

A vector containing the z-statistic for comparing each level of the variable to the lowest, the
chisquared statistic for the logrank test, and the p-value.

See Also

svykm, svycoxph.

Examples

library("survival")
data(nwtco)
stratified on case status
dcchs<-twophase(id=list(~seqno,~seqno), strata=list(NULL,~rel),

subset=~I(in.subcohort | rel), data=nwtco, method="simple")
svylogrank(Surv(edrel,rel)~factor(stage),design=dcchs)

data(pbc, package="survival")
pbc$randomized <- with(pbc, !is.na(trt) & trt>0)
biasmodel<-glm(randomized~age*edema,data=pbc)
pbc$randprob<-fitted(biasmodel)
dpbc<-svydesign(id=~1, prob=~randprob, strata=~edema, data=subset(pbc,randomized))

svylogrank(Surv(time,status==2)~trt,design=dpbc)

rpbc<-as.svrepdesign(dpbc)
svylogrank(Surv(time,status==2)~trt,design=rpbc)

svymle Maximum pseudolikelihood estimation in complex surveys

Description

Fits a user-specified likelihood parametrised by multiple linear predictors to data from a complex
sample survey and computes the sandwich variance estimator of the coefficients. Note that this
function maximises an estimated population likelihood, it is not the sample MLE.

Usage

svymle(loglike, gradient = NULL, design, formulas, start = NULL, control
= list(maxit=1000), na.action="na.fail", method=NULL, ...)
S3 method for class ’svymle’
summary(object, stderr=c("robust", "model"),...)

86 svymle

Arguments

loglike vectorised loglikelihood function

gradient Derivative of loglike. Required for variance computation and helpful for fitting

design a survey.design object

formulas A list of formulas specifying the variable and linear predictors: see Details be-
low

start Starting values for parameters

control control options for optim

na.action Handling of NAs

method "nlm" to use nlm, otherwise passed to optim

... Arguments to loglike and gradient that are not to be optimised over.

object svymle object

stderr Choice of standard error estimator. The default is a standard sandwich estimator.
See Details below.

Details

Optimization is done by nlm by default or if method=="nlm". Otherwise optim is used and method
specifies the method and control specifies control parameters.

The design object contains all the data and design information from the survey, so all the formulas
refer to variables in this object. The formulas argument needs to specify the response variable and
a linear predictor for each freely varying argument of loglike.

Consider for example the dnorm function, with arguments x, mean, sd and log, and suppose we want
to estimate the mean of y as a linear function of a variable z, and to estimate a constant standard
deviation. The log argument must be fixed at FALSE to get the loglikelihood. A formulas argument
would be list(~y, mean=~z, sd=~1). Note that the data variable y must be the first argument to
dnorm and the first formula and that all the other formulas are labelled. It is also permitted to have
the data variable as the left-hand side of one of the formulas: eg list(mean=y~z, sd=~1).

The usual variance estimator for MLEs in a survey sample is a ‘sandwich’ variance that requires the
score vector and the information matrix. It requires only sampling assumptions to be valid (though
some model assumptions are required for it to be useful). This is the stderr="robust" option,
which is available only when the gradient argument was specified.

If the model is correctly specified and the sampling is at random conditional on variables in the
model then standard errors based on just the information matrix will be approximately valid. In
particular, for independent sampling where weights and strata depend on variables in the model the
stderr="model" should work fairly well.

Value

An object of class svymle

Author(s)

Thomas Lumley

svymle 87

See Also

svydesign, svyglm

Examples

data(api)

dstrat<-svydesign(id=~1, strata=~stype, weight=~pw, fpc=~fpc, data=apistrat)

fit with glm
m0 <- svyglm(api00~api99+ell,family="gaussian",design=dstrat)
fit as mle (without gradient)
m1 <- svymle(loglike=dnorm,gradient=NULL, design=dstrat, formulas=list(mean=api00~api99+ell, sd=~1),start=list(c(80,1,0),c(20)), log=TRUE)
with gradient
gr<- function(x,mean,sd,log){
dm<-2*(x - mean)/(2*sd^2)
ds<-(x-mean)^2*(2*(2 * sd))/(2*sd^2)^2 - sqrt(2*pi)/(sd*sqrt(2*pi))

cbind(dm,ds)
}

m2 <- svymle(loglike=dnorm,gradient=gr, design=dstrat, formulas=list(mean=api00~api99+ell, sd=~1),
start=list(c(80,1,0),c(20)), log=TRUE, method="BFGS")

summary(m0)
summary(m1,stderr="model")
summary(m2)

More complicated censored data example
showing that the response variable can be multivariate

data(pbc, package="survival")
pbc$randomized <- with(pbc, !is.na(trt) & trt>0)
biasmodel<-glm(randomized~age*edema,data=pbc)
pbc$randprob<-fitted(biasmodel)
dpbc<-svydesign(id=~1, prob=~randprob, strata=~edema,

data=subset(pbc,randomized))

lcens<-function(x,mean,sd){
ifelse(x[,2]==1,

dnorm(log(x[,1]),mean,sd,log=TRUE),
pnorm(log(x[,1]),mean,sd,log=TRUE,lower.tail=FALSE)
)

}

gcens<- function(x,mean,sd){

dz<- -dnorm(log(x[,1]),mean,sd)/pnorm(log(x[,1]),mean,sd,lower.tail=FALSE)

dm<-ifelse(x[,2]==1,
2*(log(x[,1]) - mean)/(2*sd^2),
dz*-1/sd)

ds<-ifelse(x[,2]==1,

88 svyolr

(log(x[,1])-mean)^2*(2*(2 * sd))/(2*sd^2)^2 - sqrt(2*pi)/(sd*sqrt(2*pi)),
ds<- dz*-(log(x[,1])-mean)/(sd*sd))

cbind(dm,ds)
}

if(!is.null(pbc$albumin)){
svymle(loglike=lcens, gradient=gcens, design=dpbc,

formulas=list(mean=I(cbind(time,status>0))~bili+protime+albumin,
sd=~1),

start=list(c(10,0,0,0),c(1)))
} else {

svymle(loglike=lcens, gradient=gcens, design=dpbc,
formulas=list(mean=I(cbind(time,status>0))~bili+protime+alb,

sd=~1),
start=list(c(10,0,0,0),c(1)))

}

svyolr Proportional odds and related models

Description

Fits cumulative link models: proportional odds, probit, complementary log-log, and cauchit.

Usage

svyolr(formula, design, ...)
S3 method for class ’survey.design2’
svyolr(formula, design, start, ..., na.action = na.omit, method = c("logistic",

"probit", "cloglog", "cauchit"))
S3 method for class ’svyrep.design’
svyolr(formula,design,...,return.replicates=FALSE,

multicore=getOption("survey.multicore"))

Arguments

formula Formula: the response must be a factor with at least three levels
design survey design object
... dots
start Optional starting values for optimization
na.action handling of missing values
multicore Use multicore package to distribute computation of replicates across multiple

processors?
method Link function
return.replicates

return the individual replicate-weight estimates

svyplot 89

Value

An object of class svyolr

Author(s)

The code is based closely on polr() from the MASS package of Venables and Ripley.

See Also

svyglm

Examples

data(api)
dclus1<-svydesign(id=~dnum, weights=~pw, data=apiclus1, fpc=~fpc)
dclus1<-update(dclus1, mealcat=cut(meals,c(0,25,50,75,100)))

svyolr(mealcat~avg.ed+mobility+stype, design=dclus1)

svyplot Plots for survey data

Description

Because observations in survey samples may represent very different numbers of units in the pop-
ulation ordinary plots can be misleading. The svyplot function produces scatterplots adjusted in
various ways for sampling weights.

Usage

svyplot(formula, design,...)
Default S3 method:
svyplot(formula, design, style = c("bubble", "hex", "grayhex","subsample","transparent"),
sample.size = 500, subset = NULL, legend = 1, inches = 0.05,
amount=NULL, basecol="black",
alpha=c(0, 0.8),xbins=30,...)

Arguments

formula A model formula

design A survey object (svydesign or svrepdesign)

style See Details below

sample.size For style="subsample"

subset expression using variables in the design object

legend For style="hex" or "grayhex"

inches Scale for bubble plots

90 svyplot

amount list with x and y components for amount of jittering to use in subsample plots,
or NULL for the default amount

basecol base color for transparent plots, or a function to compute the color (see below)

alpha minimum and maximum opacity for transparent plots

xbins Number of (x-axis) bins for hexagonal binning

... Passed to plot methods

Details

Bubble plots are scatterplots with circles whose area is proportional to the sampling weight. The
two "hex" styles produce hexagonal binning scatterplots, and require the hexbin package from
Bioconductor. The "transparent" style plots points with opacity proportional to sampling weight.

The subsample method uses the sampling weights to create a sample from approximately the pop-
ulation distribution and passes this to plot

Bubble plots are suited to small surveys, hexagonal binning and transparency to large surveys where
plotting all the points would result in too much overlap.

basecol can be a function taking one data frame argument, which will be passed the data frame of
variables from the survey object. This could be memory-intensive for large data sets.

Value

None

See Also

symbols for other options (such as colour) for bubble plots.

svytable for plots of discrete data.

Examples

data(api)
dstrat<-svydesign(id=~1,strata=~stype, weights=~pw, data=apistrat, fpc=~fpc)

svyplot(api00~api99, design=dstrat, style="bubble")
svyplot(api00~api99, design=dstrat, style="transparent",pch=19)
Not run:
these two require the hexbin package
svyplot(api00~api99, design=dstrat, style="hex", xlab="1999 API",ylab="2000 API")
svyplot(api00~api99, design=dstrat, style="grayhex",legend=0)

End(Not run)

dclus2<-svydesign(id=~dnum+snum, weights=~pw,
data=apiclus2, fpc=~fpc1+fpc2)

svyplot(api00~api99, design=dclus2, style="subsample")
svyplot(api00~api99, design=dclus2, style="subsample",

amount=list(x=25,y=25))

svyprcomp 91

svyplot(api00~api99, design=dstrat,
basecol=function(df){c("goldenrod","tomato","sienna")[as.numeric(df$stype)]},
style="transparent",pch=19,alpha=c(0,1))

legend("topleft",col=c("goldenrod","tomato","sienna"), pch=19, legend=c("E","H","M"))

For discrete data, estimate a population table and plot the table.
plot(svytable(~sch.wide+comp.imp+stype,design=dstrat))
fourfoldplot(svytable(~sch.wide+comp.imp+stype,design=dstrat,round=TRUE))

svyprcomp Sampling-weighted principal component analysis

Description

Computes principal components using the sampling weights.

Usage

svyprcomp(formula, design, center = TRUE, scale. = FALSE, tol = NULL, scores = FALSE, ...)
S3 method for class ’svyprcomp’
biplot(x, cols=c("black","darkred"),xlabs=NULL,weight=c("transparent","scaled","none"),

max.alpha=0.5,max.cex=0.5,xlim=NULL,ylim=NULL,pc.biplot=FALSE,expand=1,xlab=NULL,ylab=NULL,
arrow.len=0.1,
...)

Arguments

formula model formula describing variables to be used

design survey design object.

center Center data before analysis?

scale. Scale to unit variance before analysis?

tol Tolerance for omitting components from the results; a proportion of the standard
deviation of the first component. The default is to keep all components.

scores Return scores on each component? These are needed for biplot.

x A svyprcomp object

cols Base colors for observations and variables respectively

xlabs Formula, or character vector, giving labels for each observation

weight How to display the sampling weights: "scaled" changes the size of the point
label, "transparent" uses opacity proportional to sampling weight, "none"
changes neither.

max.alpha Opacity for the largest sampling weight, or for all points if weight!="transparent"

max.cex Character size (as a multiple of par("cex")) for the largest sampling weight, or
for all points if weight!="scaled"

92 svyquantile

xlim,ylim,xlab,ylab

Graphical parameters
expand,arrow.len

See biplot

pc.biplot See link{biplot.prcomp}

... Other arguments to prcomp, or graphical parameters for biplot

Value

svyprcomp returns an object of class svyprcomp, similar to class prcomp but including design
information

See Also

prcomp, biplot.prcomp

Examples

data(api)
dclus2<-svydesign(id=~dnum+snum, fpc=~fpc1+fpc2, data=apiclus2)

pc <- svyprcomp(~api99+api00+ell+hsg+meals+emer, design=dclus2,scale=TRUE,scores=TRUE)
pc
biplot(pc, xlabs=~dnum, weight="none")

biplot(pc, xlabs=~dnum,max.alpha=1)

biplot(pc, weight="scaled",max.cex=1.5, xlabs=~dnum)

svyquantile Quantiles for sample surveys

Description

Compute quantiles for data from complex surveys.

Usage

S3 method for class ’survey.design’
svyquantile(x, design, quantiles, alpha=0.05,

ci=FALSE, method = "linear", f = 1,
interval.type=c("Wald","score","betaWald"), na.rm=FALSE,se=ci,
ties=c("discrete","rounded"), df=Inf,...)

S3 method for class ’svyrep.design’
svyquantile(x, design, quantiles,

method ="linear", interval.type=c("probability","quantile"), f = 1,
return.replicates=FALSE, ties=c("discrete","rounded"),...)

S3 method for class ’svyquantile’
SE(object,...)

svyquantile 93

Arguments

x A formula, vector or matrix

design survey.design or svyrep.design object

quantiles Quantiles to estimate

method see approxfun

f see approxfun

ci Compute a confidence interval? (relatively slow; needed for svyby)

se Compute standard errors from the confidence interval length?

alpha Level for confidence interval

interval.type See Details below

ties See Details below

df Degrees of freedom for a t-distribution. Inf requests a Normal distribution,
NULL uses degf. Not relevant for type="betaWald"

return.replicates

Return the replicate means?

na.rm Remove NAs?

... arguments for future expansion

object Object returned by svyquantile.survey.design

Details

The definition of the CDF and thus of the quantiles is ambiguous in the presence of ties. With
ties="discrete" the data are treated as genuinely discrete, so the CDF has vertical steps at tied
observations. With ties="rounded" all the weights for tied observations are summed and the CDF
interpolates linearly between distinct observed values, and so is a continuous function. Combin-
ing interval.type="betaWald" and ties="discrete" is (close to) the proposal of Shah and
Vaish(2006) used in some versions of SUDAAN.

Interval estimation for quantiles is complicated, because the influence function is not continuous.
Linearisation cannot be used directly, and computing the variance of replicates is valid only for
some designs (eg BRR, but not jackknife). The interval.type option controls how the intervals
are computed.

For survey.design objects the default is interval.type="Wald". A 95% Wald confidence in-
terval is constructed for the proportion below the estimated quantile. The inverse of the estimated
CDF is used to map this to a confidence interval for the quantile. This is the method of Woodruff
(1952). For "betaWald" the same procedure is used, but the confidence interval for the propor-
tion is computed using the exact binomial cdf with an effective sample size proposed by Korn &
Graubard (1998).

If interval.type="score" we use a method described by Binder (1991) and due originally to
Francisco and Fuller (1986), which corresponds to inverting a robust score test. At the upper and
lower limits of the confidence interval, a test of the null hypothesis that the cumulative distribution
function is equal to the target quantile just rejects. This was the default before version 2.9. It is
much slower than "Wald", and Dorfman & Valliant (1993) suggest it is not any more accurate.

94 svyquantile

Standard errors are computed from these confidence intervals by dividing the confidence interval
length by 2*qnorm(alpha/2).

For replicate-weight designs, ordinary replication-based standard errors are valid for BRR and Fay’s
method, and for some bootstrap-based designs, but not for jackknife-based designs. interval.type="quantile"
gives these replication-based standard errors. The default, interval.type="probability" com-
putes confidence on the probability scale and then transforms back to quantiles, the equivalent of
interval.type="Wald" for survey.design objects (with alpha=0.05).

There is a confint method for svyquantile objects; it simply extracts the pre-computed confi-
dence interval.

Value

returns a list whose first component is the quantiles and second component is the confidence inter-
vals. For replicate weight designs, returns an object of class svyrepstat.

Author(s)

Thomas Lumley

References

Binder DA (1991) Use of estimating functions for interval estimation from complex surveys. Pro-
ceedings of the ASA Survey Research Methods Section 1991: 34-42

Dorfman A, Valliant R (1993) Quantile variance estimators in complex surveys. Proceedings of the
ASA Survey Research Methods Section. 1993: 866-871

Korn EL, Graubard BI. (1998) Confidence Intervals For Proportions With Small Expected Number
of Positive Counts Estimated From Survey Data. Survey Methodology 23:193-201.

Francisco CA, Fuller WA (1986) Estimation of the distribution function with a complex survey.
Technical Report, Iowa State University.

Shao J, Tu D (1995) The Jackknife and Bootstrap. Springer.

Shah BV, Vaish AK (2006) Confidence Intervals for Quantile Estimation from Complex Survey
Data. Proceedings of the Section on Survey Research Methods.

Woodruff RS (1952) Confidence intervals for medians and other position measures. JASA 57, 622-
627.

See Also

svykm for quantiles of survival curves

svyciprop for confidence intervals on proportions.

Examples

data(api)
population
quantile(apipop$api00,c(.25,.5,.75))

svyranktest 95

one-stage cluster sample
dclus1<-svydesign(id=~dnum, weights=~pw, data=apiclus1, fpc=~fpc)
svyquantile(~api00, dclus1, c(.25,.5,.75),ci=TRUE)
svyquantile(~api00, dclus1, c(.25,.5,.75),ci=TRUE,interval.type="betaWald")
svyquantile(~api00, dclus1, c(.25,.5,.75),ci=TRUE,df=NULL)

dclus1<-svydesign(id=~dnum, weights=~pw, data=apiclus1, fpc=~fpc)
(qapi<-svyquantile(~api00, dclus1, c(.25,.5,.75),ci=TRUE, interval.type="score"))
SE(qapi)

#stratified sample
dstrat<-svydesign(id=~1, strata=~stype, weights=~pw, data=apistrat, fpc=~fpc)
svyquantile(~api00, dstrat, c(.25,.5,.75),ci=TRUE)

#stratified sample, replicate weights
interval="probability" is necessary for jackknife weights
rstrat<-as.svrepdesign(dstrat)
svyquantile(~api00, rstrat, c(.25,.5,.75), interval.type="probability")

BRR method
data(scd)
repweights<-2*cbind(c(1,0,1,0,1,0), c(1,0,0,1,0,1), c(0,1,1,0,0,1),

c(0,1,0,1,1,0))
scdrep<-svrepdesign(data=scd, type="BRR", repweights=repweights)
svyquantile(~arrests+alive, design=scdrep, quantile=0.5, interval.type="quantile")

svyranktest Design-based rank tests

Description

Design-based versions of two-sample rank tests. The built-in tests are all for location hypotheses,
but the user can specify others.

Usage

svyranktest(formula, design, test = c("wilcoxon", "vanderWaerden", "median"), ...)

Arguments

formula Model formula y~g for outcome variable y and group g

design A survey design object

test Which rank test to use: Wilcoxon, van der Waerden’s normal-scores test, Mood’s
test for the median, or a function f(r,N) where r is the rank and N the estimated
population size.

... for future expansion

96 svyratio

Value

Object of class htest

References

as

See Also

svyttest, svylogrank

Examples

data(api)
dclus1<-svydesign(id=~dnum, weights=~pw, fpc=~fpc, data=apiclus1)

svyranktest(ell~comp.imp, dclus1)
svyranktest(ell~comp.imp, dclus1, test="median")

upper quartile
svyranktest(ell~comp.imp, dclus1, test=function(r,N) as.numeric(r>0.75*N))

quantiletest<-function(p){
rval<-function(r,N) as.numeric(r>(N*p))
attr(rval,"name")<-paste(p,"quantile")
rval

}
svyranktest(ell~comp.imp, dclus1, test=quantiletest(0.5))
svyranktest(ell~comp.imp, dclus1, test=quantiletest(0.75))

svyratio Ratio estimation

Description

Ratio estimation and estimates of totals based on ratios for complex survey samples. Estimating
domain (subpopulation) means can be done more easily with svymean.

Usage

S3 method for class ’survey.design2’
svyratio(numerator=formula, denominator,

design,separate=FALSE, na.rm=FALSE,formula, covmat=FALSE,deff=FALSE,...)
S3 method for class ’svyrep.design’
svyratio(numerator=formula, denominator, design,

svyratio 97

na.rm=FALSE,formula, covmat=FALSE,return.replicates=FALSE,deff=FALSE, ...)
S3 method for class ’twophase’
svyratio(numerator=formula, denominator, design,

separate=FALSE, na.rm=FALSE,formula,...)
S3 method for class ’svyratio’
predict(object, total, se=TRUE,...)
S3 method for class ’svyratio_separate’
predict(object, total, se=TRUE,...)
S3 method for class ’svyratio’
SE(object,...,drop=TRUE)
S3 method for class ’svyratio’
coef(object,...,drop=TRUE)
S3 method for class ’svyratio’
confint(object, parm, level = 0.95,df =Inf,...)

Arguments

numerator,formula

formula, expression, or data frame giving numerator variable(s)

denominator formula, expression, or data frame giving denominator variable(s)

design survey design object

object result of svyratio

total vector of population totals for the denominator variables in object, or list of
vectors of population stratum totals if separate=TRUE

se Return standard errors?

separate Estimate ratio separately for strata

na.rm Remove missing values?

covmat Compute the full variance-covariance matrix of the ratios

deff Compute design effects
return.replicates

Return replicate estimates of ratios

drop Return a vector rather than a matrix

parm a specification of which parameters are to be given confidence intervals, either
a vector of numbers or a vector of names. If missing, all parameters are consid-
ered.

level the confidence level required.

df degrees of freedom for t-distribution in confidence interval, use degf(design)
for number of PSUs minus number of strata

... Other unused arguments for other methods

Details

The separate ratio estimate of a total is the sum of ratio estimates in each stratum. If the stratum
totals supplied in the total argument and the strata in the design object both have names these

98 svyratio

names will be matched. If they do not have names it is important that the sample totals are supplied
in the correct order, the same order as shown in the output of summary(design).

When design is a two-phase design, stratification will be on the second phase.

Value

svyratio returns an object of class svyratio. The predict method returns a matrix of population
totals and optionally a matrix of standard errors.

Author(s)

Thomas Lumley

References

Levy and Lemeshow. "Sampling of Populations" (3rd edition). Wiley

See Also

svydesign

svymean for estimating proportions and domain means

calibrate for estimators related to the separate ratio estimator.

Examples

data(scd)

survey design objects
scddes<-svydesign(data=scd, prob=~1, id=~ambulance, strata=~ESA,
nest=TRUE, fpc=rep(5,6))
scdnofpc<-svydesign(data=scd, prob=~1, id=~ambulance, strata=~ESA,
nest=TRUE)

convert to BRR replicate weights
scd2brr <- as.svrepdesign(scdnofpc, type="BRR")

use BRR replicate weights from Levy and Lemeshow
repweights<-2*cbind(c(1,0,1,0,1,0), c(1,0,0,1,0,1), c(0,1,1,0,0,1),
c(0,1,0,1,1,0))
scdrep<-svrepdesign(data=scd, type="BRR", repweights=repweights)

ratio estimates
svyratio(~alive, ~arrests, design=scddes)
svyratio(~alive, ~arrests, design=scdnofpc)
svyratio(~alive, ~arrests, design=scd2brr)
svyratio(~alive, ~arrests, design=scdrep)

data(api)
dstrat<-svydesign(id=~1,strata=~stype, weights=~pw, data=apistrat, fpc=~fpc)

svyrecvar 99

domain means are ratio estimates, but available directly
svyratio(~I(api.stu*(comp.imp=="Yes")), ~as.numeric(comp.imp=="Yes"), dstrat)
svymean(~api.stu, subset(dstrat, comp.imp=="Yes"))

separate and combined ratio estimates of total
(sep<-svyratio(~api.stu,~enroll, dstrat,separate=TRUE))
(com<-svyratio(~api.stu, ~enroll, dstrat))

stratum.totals<-list(E=1877350, H=1013824, M=920298)

predict(sep, total=stratum.totals)
predict(com, total=sum(unlist(stratum.totals)))

SE(com)
coef(com)
coef(com, drop=FALSE)
confint(com)

svyrecvar Variance estimation for multistage surveys

Description

Compute the variance of a total under multistage sampling, using a recursive descent algorithm.

Usage

svyrecvar(x, clusters, stratas,fpcs, postStrata = NULL,
lonely.psu = getOption("survey.lonely.psu"),
one.stage=getOption("survey.ultimate.cluster"))

Arguments

x Matrix of data or estimating functions

clusters Data frame or matrix with cluster ids for each stage

stratas Strata for each stage

fpcs Information on population and sample size for each stage, created by as.fpc

postStrata post-stratification information as created by postStratify or calibrate

lonely.psu How to handle strata with a single PSU

one.stage If TRUE, compute a one-stage (ultimate-cluster) estimator

100 svyrecvar

Details

The main use of this function is to compute the variance of the sum of a set of estimating functions
under multistage sampling. The sampling is assumed to be simple or stratified random sampling
within clusters at each stage except perhaps the last stage. The variance of a statistic is computed
from the variance of estimating functions as described by Binder (1983).

Use one.stage=FALSE for compatibility with other software that does not perform multi-stage
calculations, and set options(survey.ultimate.cluster=TRUE) to make this the default.

The idea of a recursive algorithm is due to Bellhouse (1985). Texts such as Cochran (1977) and
Sarndal et al (1991) describe the decomposition of the variance into a single-stage between-cluster
estimator and a within-cluster estimator, and this is applied recursively.

If one.stage is a positive integer it specifies the number of stages of sampling to use in the recursive
estimator.

If pps="brewer", standard errors are estimated using Brewer’s approximation for PPS without re-
placement, option 2 of those described by Berger (2004). The fpc argument must then be specified
in terms of sampling fractions, not population sizes (or omitted, but then the pps argument would
have no effect and the with-replacement standard errors would be correct).

Value

A covariance matrix

Note

A simple set of finite population corrections will only be exactly correct when each successive stage
uses simple or stratified random sampling without replacement. A correction under general unequal
probability sampling (eg PPS) would require joint inclusion probabilities (or, at least, sampling
probabilities for units not included in the sample), information not generally available.

The quality of Brewer’s approximation is excellent in Berger’s simulations, but the accuracy may
vary depending on the sampling algorithm used.

References

Bellhouse DR (1985) Computing Methods for Variance Estimation in Complex Surveys. Journal of
Official Statistics. Vol.1, No.3, 1985

Berger, Y.G. (2004), A Simple Variance Estimator for Unequal Probability Sampling Without Re-
placement. Journal of Applied Statistics, 31, 305-315.

Binder, David A. (1983). On the variances of asymptotically normal estimators from complex
surveys. International Statistical Review, 51, 279-292.

Brewer KRW (2002) Combined Survey Sampling Inference (Weighing Basu’s Elephants) [Chapter
9]

Cochran, W. (1977) Sampling Techniques. 3rd edition. Wiley.

Sarndal C-E, Swensson B, Wretman J (1991) Model Assisted Survey Sampling. Springer.

svysmooth 101

See Also

svrVar for replicate weight designs

svyCprod for a description of how variances are estimated at each stage

Examples

data(mu284)
dmu284<-svydesign(id=~id1+id2,fpc=~n1+n2, data=mu284)
svytotal(~y1, dmu284)

data(api)
two-stage cluster sample
dclus2<-svydesign(id=~dnum+snum, fpc=~fpc1+fpc2, data=apiclus2)
summary(dclus2)
svymean(~api00, dclus2)
svytotal(~enroll, dclus2,na.rm=TRUE)

bootstrap for multistage sample
mrbclus2<-as.svrepdesign(dclus2, type="mrb", replicates=100)
svytotal(~enroll, mrbclus2, na.rm=TRUE)

two-stage ‘with replacement’
dclus2wr<-svydesign(id=~dnum+snum, weights=~pw, data=apiclus2)
summary(dclus2wr)
svymean(~api00, dclus2wr)
svytotal(~enroll, dclus2wr,na.rm=TRUE)

svysmooth Scatterplot smoothing and density estimation

Description

Scatterplot smoothing and density estimation for probability-weighted data.

Usage

svysmooth(formula, design, method = c("locpoly","quantreg"), bandwidth=NULL,quantile,df, ...)
S3 method for class ’svysmooth’
plot(x, which=NULL, type="l", xlabs=NULL, ylab=NULL,...)
S3 method for class ’svysmooth’
lines(x,which=NULL,...)
make.panel.svysmooth(design,bandwidth=NULL)

102 svysmooth

Arguments

formula One-sided formula for density estimation, two-sided for smoothing

design Survey design object

method local polynomial smoothing for the mean or regression splines for quantiles

bandwidth Smoothing bandwidth for "locpoly" or NULL for automatic choice

quantile quantile to be estimated for "quantreg"

df Degrees of freedom for "quantreg"

which Which plots to show (default is all)

type as for plot

xlabs Optional vector of x-axis labels

ylab Optional y-axis label

... More arguments

x Object of class svysmooth

Details

svysmooth does one-dimensional smoothing. If formula has multiple predictor variables a separate
one-dimensional smooth is performed for each one.

For method="locpoly" the extra arguments are passed to locpoly from the KernSmooth package,
for method="quantreg" they are passed to rq from the quantreg package. The automatic choice of
bandwidth for method="locpoly" uses the default settings for dpik and dpill in the KernSmooth
package.

make.panel.svysmooth() makes a function that plots points and draws a weighted smooth curve
through them, a weighted replacement for panel.smooth that can be passed to functions such as
termplot or plot.lm. The resulting function has a span argument that will set the bandwidth; if
this is not specified the automatic choice will be used.

Value

An object of class svysmooth, a list of lists, each with x and y components.

See Also

svyhist for histograms

Examples

data(api)
dstrat<-svydesign(id=~1,strata=~stype, weights=~pw, data=apistrat, fpc=~fpc)

smth<-svysmooth(api00~api99+ell,dstrat)
dens<-svysmooth(~api99, dstrat,bandwidth=30)
dens1<-svysmooth(~api99, dstrat)
qsmth<-svysmooth(api00~ell,dstrat, quantile=0.75, df=3,method="quantreg")

svytable 103

plot(smth)
plot(smth, which="ell",lty=2,ylim=c(500,900))
lines(qsmth, col="red")

svyhist(~api99,design=dstrat)
lines(dens,col="purple",lwd=3)
lines(dens1, col="forestgreen",lwd=2)

m<-svyglm(api00~sin(api99/100)+stype, design=dstrat)
termplot(m, data=model.frame(dstrat), partial.resid=TRUE, se=TRUE,
smooth=make.panel.svysmooth(dstrat))

svytable Contingency tables for survey data

Description

Contingency tables and chisquared tests of association for survey data.

Usage

S3 method for class ’survey.design’
svytable(formula, design, Ntotal = NULL, round = FALSE,...)
S3 method for class ’svyrep.design’
svytable(formula, design, Ntotal = sum(weights(design, "sampling")), round = FALSE,...)
S3 method for class ’survey.design’
svychisq(formula, design, statistic = c("F", "Chisq","Wald","adjWald","lincom","saddlepoint"),na.rm=TRUE,...)
S3 method for class ’svyrep.design’
svychisq(formula, design, statistic = c("F", "Chisq","Wald","adjWald","lincom","saddlepoint"),na.rm=TRUE,...)
S3 method for class ’svytable’
summary(object, statistic = c("F",
"Chisq","Wald","adjWald","lincom","saddlepoint"),...)
degf(design, ...)
S3 method for class ’survey.design2’
degf(design, ...)
S3 method for class ’svyrep.design’
degf(design, tol=1e-5,...)

Arguments

formula Model formula specifying margins for the table (using + only)

design survey object

statistic See Details below

Ntotal A population total or set of population stratum totals to normalise to.

round Should the table entries be rounded to the nearest integer?

na.rm Remove missing values

104 svytable

object Output from svytable

... For svytable these are passed to xtabs. Use exclude=NULL, na.action=na.pass
to include NAs in the table

tol Tolerance for qr in computing the matrix rank

Details

The svytable function computes a weighted crosstabulation. This is especially useful for produc-
ing graphics. It is sometimes easier to use svytotal or svymean, which also produce standard
errors, design effects, etc.

The frequencies in the table can be normalised to some convenient total such as 100 or 1.0 by
specifying the Ntotal argument. If the formula has a left-hand side the mean or sum of this variable
rather than the frequency is tabulated.

The Ntotal argument can be either a single number or a data frame whose first column gives the
(first-stage) sampling strata and second column the population size in each stratum. In this second
case the svytable command performs ‘post-stratification’: tabulating and scaling to the population
within strata and then adding up the strata.

As with other xtabs objects, the output of svytable can be processed by ftable for more attractive
display. The summary method for svytable objects calls svychisq for a test of independence.

svychisq computes first and second-order Rao-Scott corrections to the Pearson chisquared test,
and two Wald-type tests.

The default (statistic="F") is the Rao-Scott second-order correction. The p-values are computed
with a Satterthwaite approximation to the distribution and with denominator degrees of freedom as
recommended by Thomas and Rao (1990). The alternative statistic="Chisq" adjusts the Pearson
chisquared statistic by a design effect estimate and then compares it to the chisquared distribution
it would have under simple random sampling.

The statistic="Wald" test is that proposed by Koch et al (1975) and used by the SUDAAN
software package. It is a Wald test based on the differences between the observed cells counts and
those expected under independence. The adjustment given by statistic="adjWald" reduces the
statistic when the number of PSUs is small compared to the number of degrees of freedom of the
test. Thomas and Rao (1990) compare these tests and find the adjustment benefical.

statistic="lincom" replaces the numerator of the Rao-Scott F with the exact asymptotic distribu-
tion, which is a linear combination of chi-squared variables (see pchisqsum, and statistic="saddlepoint"
uses a saddlepoint approximation to this distribution. The CompQuadForm package is needed for
statistic="lincom" but not for statistic="saddlepoint". The saddlepoint approximation is
especially useful when the p-value is very small (as in large-scale multiple testing problems).

For designs using replicate weights the code is essentially the same as for designs with sam-
pling structure, since the necessary variance computations are done by the appropriate methods
of svytotal and svymean. The exception is that the degrees of freedom is computed as one less
than the rank of the matrix of replicate weights (by degf).

At the moment, svychisq works only for 2-dimensional tables.

Value

The table commands return an xtabs object, svychisq returns a htest object.

svytable 105

Note

Rao and Scott (1984) leave open one computational issue. In computing ‘generalised design effects’
for these tests, should the variance under simple random sampling be estimated using the observed
proportions or the the predicted proportions under the null hypothesis? svychisq uses the observed
proportions, following simulations by Sribney (1998), and the choices made in Stata

References

Davies RB (1973). "Numerical inversion of a characteristic function" Biometrika 60:415-7

P. Duchesne, P. Lafaye de Micheaux (2010) "Computing the distribution of quadratic forms: Fur-
ther comparisons between the Liu-Tang-Zhang approximation and exact methods", Computational
Statistics and Data Analysis, Volume 54, 858-862

Koch, GG, Freeman, DH, Freeman, JL (1975) "Strategies in the multivariate analysis of data from
complex surveys" International Statistical Review 43: 59-78

Rao, JNK, Scott, AJ (1984) "On Chi-squared Tests For Multiway Contigency Tables with Propor-
tions Estimated From Survey Data" Annals of Statistics 12:46-60.

Sribney WM (1998) "Two-way contingency tables for survey or clustered data" Stata Technical
Bulletin 45:33-49.

Thomas, DR, Rao, JNK (1990) "Small-sample comparison of level and power for simple goodness-
of-fit statistics under cluster sampling" JASA 82:630-636

See Also

svytotal and svymean report totals and proportions by category for factor variables.

See svyby and ftable.svystat to construct more complex tables of summary statistics.

See svyloglin for loglinear models.

See regTermTest for Rao-Scott tests in regression models.

Examples

data(api)
xtabs(~sch.wide+stype, data=apipop)

dclus1<-svydesign(id=~dnum, weights=~pw, data=apiclus1, fpc=~fpc)
summary(dclus1)

(tbl <- svytable(~sch.wide+stype, dclus1))
plot(tbl)
fourfoldplot(svytable(~sch.wide+comp.imp+stype,design=dclus1,round=TRUE), conf.level=0)

svychisq(~sch.wide+stype, dclus1)
summary(tbl, statistic="Chisq")
svychisq(~sch.wide+stype, dclus1, statistic="adjWald")

rclus1 <- as.svrepdesign(dclus1)
summary(svytable(~sch.wide+stype, rclus1))
svychisq(~sch.wide+stype, rclus1, statistic="adjWald")

106 svyttest

svyttest Design-based t-test

Description

One-sample or two-sample t-test. This function is a wrapper for svymean in the one-sample case
and for svyglm in the two-sample case. Degrees of freedom are degf(design) for the one-sample
test and degf(design)-1 for the two-sample case.

Usage

svyttest(formula, design, ...)

Arguments

formula Formula, outcome~group for two-sample, outcome~0 or outcome~1 for one-
sample

design survey design object

... for methods

Value

Object of class htest

See Also

t.test

Examples

data(api)
dclus2<-svydesign(id=~dnum+snum, fpc=~fpc1+fpc2, data=apiclus2)
svyttest(enroll~comp.imp, dclus2)

svyttest(I(api00-api99)~0, dclus2)

trimWeights 107

trimWeights Trim sampling weights

Description

Trims very high or very low sampling weights to reduce the influence of outlying observations. In
a replicate-weight design object, the replicate weights are also trimmed. The total amount trimmed
is divided among the observations that were not trimmed, so that the total weight remains the same.

Usage

trimWeights(design, upper = Inf, lower = -Inf, ...)
S3 method for class ’survey.design2’
trimWeights(design, upper = Inf, lower = -Inf, strict=FALSE,...)
S3 method for class ’svyrep.design’
trimWeights(design, upper = Inf, lower = -Inf,compress=FALSE,...)

Arguments

design A survey design object

upper Upper bound for weights

lower Lower bound for weights

strict The reapportionment of the ‘trimmings’ from the weights can push other weights
over the limits. If trim=TRUE the function calls itself recursively to prevent this.

compress Compress the replicate weights after trimming.

... Other arguments for future expansion

Value

A new survey design object with trimmed weights.

See Also

calibrate has a trim option for trimming the calibration adjustments.

Examples

data(api)
dclus1<-svydesign(id=~dnum, weights=~pw, data=apiclus1, fpc=~fpc)

pop.totals<-c(‘(Intercept)‘=6194, stypeH=755, stypeM=1018,
api99=3914069)
dclus1g<-calibrate(dclus1, ~stype+api99, pop.totals)

summary(weights(dclus1g))
dclus1t<-trimWeights(dclus1g,lower=20, upper=45)
summary(weights(dclus1t))

108 twophase

dclus1tt<-trimWeights(dclus1g, lower=20, upper=45,strict=TRUE)
summary(weights(dclus1tt))

svymean(~api99+api00+stype, dclus1g)
svymean(~api99+api00+stype, dclus1t)
svymean(~api99+api00+stype, dclus1tt)

twophase Two-phase designs

Description

In a two-phase design a sample is taken from a population and a subsample taken from the sample,
typically stratified by variables not known for the whole population. The second phase can use any
design supported for single-phase sampling. The first phase must currently be one-stage element or
cluster sampling

Usage

twophase(id, strata = NULL, probs = NULL, weights = NULL, fpc = NULL,
subset, data, method=c("full","approx","simple"))
twophasevar(x,design)
twophase2var(x,design)

Arguments

id list of two formulas for sampling unit identifiers

strata list of two formulas (or NULLs) for stratum identifies

probs list of two formulas (or NULLs) for sampling probabilities

weights Only for method="approx", list of two formulas (or NULLs) for sampling weights

fpc list of two formulas (or NULLs) for finite population corrections

subset formula specifying which observations are selected in phase 2

data Data frame will all data for phase 1 and 2

method "full" requires (much) more memory, but gives unbiased variance estimates
for general multistage designs at both phases. "simple" or "approx" uses the
standard error calculation from version 3.14 and earlier, which uses much less
memory and is correct for designs with simple random sampling at phase one
and stratified random sampling at phase two.

x probability-weighted estimating functions

design two-phase design

twophase 109

Details

The population for the second phase is the first-phase sample. If the second phase sample uses
stratified (multistage cluster) sampling without replacement and all the stratum and sampling unit
identifier variables are available for the whole first-phase sample it is possible to estimate the sam-
pling probabilities/weights and the finite population correction. These would then be specified as
NULL.

Two-phase case-control and case-cohort studies in biostatistics will typically have simple random
sampling with replacement as the first stage. Variances given here may differ slightly from those in
the biostatistics literature where a model-based estimator of the first-stage variance would typically
be used.

Variance computations are based on the conditioning argument in Section 9.3 of Sarndal et al.
Method "full" corresponds exactly to the formulas in that reference. Method "simple" or "approx"
(the two are the same) uses less time and memory but is exact only for some special cases. The
most important special case is the two-phase epidemiologic designs where phase 1 is simple ran-
dom sampling from an infinite population and phase 2 is stratified random sampling. See the tests
directory for a worked example. The only disadvantage of method="simple" in these cases is that
standardization of margins (marginpred) is not available.

For method="full", sampling probabilities must be available for each stage of sampling, within
each phase. For multistage sampling this requires specifying either fpc or probs as a formula with
a term for each stage of sampling. If no fpc or probs are specified at phase 1 it is treated as simple
random sampling from an infinite population, and population totals will not be correctly estimated,
but means, quantiles, and regression models will be correct.

Value

twophase returns an object of class twophase2 (for method="full") or twophase. The structure
of twophase2 objects may change as unnecessary components are removed.

twophase2var and twophasevar return a variance matrix with an attribute containing the separate
phase 1 and phase 2 contributions to the variance.

References

Sarndal CE, Swensson B, Wretman J (1992) "Model Assisted Survey Sampling" Springer.

Breslow NE and Chatterjee N, Design and analysis of two-phase studies with binary outcome ap-
plied to Wilms tumour prognosis. "Applied Statistics" 48:457-68, 1999

Breslow N, Lumley T, Ballantyne CM, Chambless LE, Kulick M. (2009) Improved Horvitz-Thompson
estimation of model parameters from two-phase stratified samples: applications in epidemiology.
Statistics in Biosciences. doi 10.1007/s12561-009-9001-6

Lin, DY and Ying, Z (1993). Cox regression with incomplete covariate measurements. "Journal of
the American Statistical Association" 88: 1341-1349.

See Also

svydesign, svyrecvar for multi*stage* sampling

calibrate for calibration (GREG) estimators.

estWeights for two-phase designs for missing data.

110 twophase

The "epi" and "phase1" vignettes for examples and technical details.

Examples

two-phase simple random sampling.
data(pbc, package="survival")
pbc$randomized<-with(pbc, !is.na(trt) & trt>0)
pbc$id<-1:nrow(pbc)
d2pbc<-twophase(id=list(~id,~id), data=pbc, subset=~randomized)
svymean(~bili, d2pbc)

two-stage sampling as two-phase
data(mu284)
ii<-with(mu284, c(1:15, rep(1:5,n2[1:5]-3)))
mu284.1<-mu284[ii,]
mu284.1$id<-1:nrow(mu284.1)
mu284.1$sub<-rep(c(TRUE,FALSE),c(15,34-15))
dmu284<-svydesign(id=~id1+id2,fpc=~n1+n2, data=mu284)
first phase cluster sample, second phase stratified within cluster
d2mu284<-twophase(id=list(~id1,~id),strata=list(NULL,~id1),

fpc=list(~n1,NULL),data=mu284.1,subset=~sub)
svytotal(~y1, dmu284)
svytotal(~y1, d2mu284)
svymean(~y1, dmu284)
svymean(~y1, d2mu284)

case-cohort design: this example requires R 2.2.0 or later
library("survival")
data(nwtco)

stratified on case status
dcchs<-twophase(id=list(~seqno,~seqno), strata=list(NULL,~rel),

subset=~I(in.subcohort | rel), data=nwtco)
svycoxph(Surv(edrel,rel)~factor(stage)+factor(histol)+I(age/12), design=dcchs)

Using survival::cch
subcoh <- nwtco$in.subcohort
selccoh <- with(nwtco, rel==1|subcoh==1)
ccoh.data <- nwtco[selccoh,]
ccoh.data$subcohort <- subcoh[selccoh]
cch(Surv(edrel, rel) ~ factor(stage) + factor(histol) + I(age/12), data =ccoh.data,

subcoh = ~subcohort, id=~seqno, cohort.size=4028, method="LinYing")

two-phase case-control
Similar to Breslow & Chatterjee, Applied Statistics (1999) but with
a slightly different version of the data set

nwtco$incc2<-as.logical(with(nwtco, ifelse(rel | instit==2,1,rbinom(nrow(nwtco),1,.1))))
dccs2<-twophase(id=list(~seqno,~seqno),strata=list(NULL,~interaction(rel,instit)),

data=nwtco, subset=~incc2)
dccs8<-twophase(id=list(~seqno,~seqno),strata=list(NULL,~interaction(rel,stage,instit)),

data=nwtco, subset=~incc2)

update.survey.design 111

summary(glm(rel~factor(stage)*factor(histol),data=nwtco,family=binomial()))
summary(svyglm(rel~factor(stage)*factor(histol),design=dccs2,family=quasibinomial()))
summary(svyglm(rel~factor(stage)*factor(histol),design=dccs8,family=quasibinomial()))

Stratification on stage is really post-stratification, so we should use calibrate()
gccs8<-calibrate(dccs2, phase=2, formula=~interaction(rel,stage,instit))
summary(svyglm(rel~factor(stage)*factor(histol),design=gccs8,family=quasibinomial()))

For this saturated model calibration is equivalent to estimating weights.
pccs8<-calibrate(dccs2, phase=2,formula=~interaction(rel,stage,instit), calfun="rrz")
summary(svyglm(rel~factor(stage)*factor(histol),design=pccs8,family=quasibinomial()))

Since sampling is SRS at phase 1 and stratified RS at phase 2, we
can use method="simple" to save memory.
dccs8_simple<-twophase(id=list(~seqno,~seqno),strata=list(NULL,~interaction(rel,stage,instit)),

data=nwtco, subset=~incc2,method="simple")
summary(svyglm(rel~factor(stage)*factor(histol),design=dccs8_simple,family=quasibinomial()))

update.survey.design Add variables to a survey design

Description

Update the data variables in a survey design, either with a formula for a new set of variables or with
an expression for variables to be added.

Usage

S3 method for class ’survey.design’
update(object, ...)
S3 method for class ’twophase’
update(object, ...)
S3 method for class ’svyrep.design’
update(object, ...)
S3 method for class ’DBIsvydesign’
update(object, ...)
S3 method for class ’ODBCsvydesign’
update(object, ...)

Arguments

object a survey design object

... Arguments tag=expr add a new variable tag computed by evaluating expr in
the survey data.

112 weights.survey.design

Details

Database-backed objects may not have write access to the database and so update does not attempt
to modify the database. The expressions are stored and are evaluated when the data is loaded.

If a set of new variables will be used extensively it may be more efficient to modify the database,
either with SQL queries from the R interface or separately. One useful intermediate approach is to
create a table with the new variables and a view that joins this table to the table of existing variables.

Value

A survey design object

See Also

svydesign, svrepdesign, twophase

Examples

data(api)
dstrat<-svydesign(id=~1,strata=~stype, weights=~pw, data=apistrat,
fpc=~fpc)
dstrat<-update(dstrat, apidiff=api00-api99)
svymean(~api99+api00+apidiff, dstrat)

weights.survey.design Survey design weights

Description

Extract weights from a survey design object.

Usage

S3 method for class ’survey.design’
weights(object, ...)
S3 method for class ’svyrep.design’
weights(object,
type=c("replication","sampling","analysis"), ...)
S3 method for class ’survey_fpc’
weights(object,final=TRUE,...)

Arguments

object Survey design object

type Type of weights: "analysis" combines sampling and replication weights.

final If FALSE return a data frame with sampling weights at each stage of sampling.

... Other arguments ignored

with.svyimputationList 113

Value

vector or matrix of weights

See Also

svydesign, svrepdesign, as.fpc

Examples

data(scd)

scddes<-svydesign(data=scd, prob=~1, id=~ambulance, strata=~ESA,
nest=TRUE, fpc=rep(5,6))

repweights<-2*cbind(c(1,0,1,0,1,0), c(1,0,0,1,0,1), c(0,1,1,0,0,1), c(0,1,0,1,1,0))
scdrep<-svrepdesign(data=scd, type="BRR", repweights=repweights)

weights(scdrep)
weights(scdrep, type="sampling")
weights(scdrep, type="analysis")
weights(scddes)

with.svyimputationList

Analyse multiple imputations

Description

Performs a survey analysis on each of the designs in a svyimputationList objects and returns
a list of results suitable for MIcombine. The analysis may be specified as an expression or as a
function.

Usage

S3 method for class ’svyimputationList’
with(data, expr, fun, ...,multicore=getOption("survey.multicore"))
S3 method for class ’svyimputationList’
subset(x, subset,...,all=FALSE)

Arguments

data,x A svyimputationList object

expr An expression giving a survey analysis

fun A function taking a survey design object as its argument

... for future expansion

114 withReplicates

multicore Use multicore package to distribute imputed data sets over multiple proces-
sors?

subset An logical expression specifying the subset

all If TRUE the subset is those where the expression is TRUE for all imputations,
otherwise it is those where the expression is TRUE for any imputation.

Value

A list of the results from applying the analysis to each design object.

See Also

MIcombine, in the mitools package

Examples

library(mitools)
data.dir<-system.file("dta",package="mitools")
files.men<-list.files(data.dir,pattern="m.\\.dta$",full=TRUE)
men<-imputationList(lapply(files.men, foreign::read.dta))
files.women<-list.files(data.dir,pattern="f.\\.dta$",full=TRUE)
women<-imputationList(lapply(files.women, foreign::read.dta))
men<-update(men, sex=1)
women<-update(women,sex=0)
all<-rbind(men,women)

designs<-svydesign(id=~id, strata=~sex, data=all)
designs

results<-with(designs, svymean(~drkfre))

MIcombine(results)

summary(MIcombine(results))

withReplicates Compute variances by replicate weighting

Description

Given a function or expression computing a statistic based on sampling weights, withReplicates
evaluates the statistic and produces a replicate-based estimate of variance.

Usage

withReplicates(design, theta, rho = NULL, ..., scale.weights=FALSE, return.replicates=FALSE)

withReplicates 115

Arguments

design A survey design with replicate weights (eg from svrepdesign)

theta A function or expression: see Details below

rho If design uses BRR weights, rho optionally specifies the parameter for Fay’s
variance estimator.

... Other arguments to theta

scale.weights Divide the probability weights by their sum (can help with overflow problems)
return.replicates

Return the replicate estimates as well as the variance?

Details

If theta is a function its first argument will be a vector of weights and the second argument will be
a data frame containing the variables from the design object.

If it is an expression, the sampling weights will be available as the variable .weights. Variables in
the design object will also be in scope. It is possible to use global variables in the expression, but
unwise, as they may be masked by local variables inside withReplicates.

Value

If return.replicates=FALSE, the weighted statistic, with the variance matrix as the "var" at-
tribute. If return.replicates=TRUE, a list with elements theta for the usual return value and
replicates for the replicates.

See Also

svrepdesign, as.svrepdesign, svrVar

Examples

data(scd)
repweights<-2*cbind(c(1,0,1,0,1,0), c(1,0,0,1,0,1), c(0,1,1,0,0,1),
c(0,1,0,1,1,0))
scdrep<-svrepdesign(data=scd, type="BRR", repweights=repweights)

a<-svyratio(~alive, ~arrests, design=scdrep)
print(a$ratio)
print(a$var)
withReplicates(scdrep, quote(sum(.weights*alive)/sum(.weights*arrests)))
withReplicates(scdrep, function(w,data)
sum(w*data$alive)/sum(w*data$arrests))

Not run:
library(quantreg)
data(api)
one-stage cluster sample
dclus1<-svydesign(id=~dnum, weights=~pw, data=apiclus1, fpc=~fpc)
convert to bootstrap
bclus1<-as.svrepdesign(dclus1,type="bootstrap", replicates=100)

116 withReplicates

median regression
withReplicates(bclus1, quote(coef(rq(api00~api99, tau=0.5, weights=.weights))))

End(Not run)

Index

∗Topic algebra
paley, 38

∗Topic category
svytable, 103

∗Topic datasets
api, 3
crowd, 21
election, 23
fpc, 26
hospital, 30
mu284, 34
scd, 46

∗Topic distribution
pchisqsum, 39

∗Topic hplot
barplot.svystat, 9
svycdf, 62
svycoplot, 66
svyhist, 78
svyplot, 89
svyprcomp, 91
svysmooth, 101

∗Topic htest
svyranktest, 95
svytable, 103
svyttest, 106

∗Topic manip
as.fpc, 6
as.svydesign2, 8
calibrate, 14
compressWeights, 19
dimnames.DBIsvydesign, 22
estweights, 24
ftable.svystat, 27
nonresponse, 35
postStratify, 41
rake, 43
subset.survey.design, 49
svyby, 59

svydesign, 71
update.survey.design, 111

∗Topic models
SE, 48
svymle, 85

∗Topic multivariate
svyfactanal, 74
svyprcomp, 91

∗Topic optimize
svymle, 85

∗Topic regression
regTermTest, 45
svy.varcoef, 59
svycoxph, 67
svyglm, 75

∗Topic survey
as.fpc, 6
as.svrepdesign, 7
as.svydesign2, 8
barplot.svystat, 9
bootweights, 10
brrweights, 12
calibrate, 14
compressWeights, 19
confint.svyglm, 20
dimnames.DBIsvydesign, 22
election, 23
estweights, 24
ftable.svystat, 27
hadamard, 29
HR, 31
make.calfun, 32
marginpred, 33
nonresponse, 35
open.DBIsvydesign, 37
paley, 38
pchisqsum, 39
postStratify, 41
rake, 43

117

118 INDEX

stratsample, 48
subset.survey.design, 49
surveyoptions, 50
surveysummary, 51
svrepdesign, 55
svrVar, 58
svy.varcoef, 59
svyby, 59
svycdf, 62
svyciprop, 63
svycontrast, 65
svycoplot, 66
svycoxph, 67
svyCprod, 69
svydesign, 71
svyfactanal, 74
svyglm, 75
svyhist, 78
svykappa, 79
svykm, 80
svyloglin, 82
svylogrank, 84
svymle, 85
svyolr, 88
svyplot, 89
svyprcomp, 91
svyquantile, 92
svyranktest, 95
svyratio, 96
svyrecvar, 99
svysmooth, 101
svytable, 103
svyttest, 106
trimWeights, 107
twophase, 108
update.survey.design, 111
weights.survey.design, 112
with.svyimputationList, 113
withReplicates, 114

∗Topic survival
svycoxph, 67
svykm, 80
svylogrank, 84

∗Topic univar
surveysummary, 51
svydesign, 71
svyquantile, 92

∗Topic utilities

svyCprod, 69
.svycheck (as.svydesign2), 8
[.nonresponse (nonresponse), 35
[.repweights_compressed

(compressWeights), 19
[.survey.design (subset.survey.design),

49
[.svyrep.design (svrepdesign), 55
[.twophase (twophase), 108

anova, 45, 46
anova.svyloglin (svyloglin), 82
api, 3
apiclus1 (api), 3
apiclus2 (api), 3
apipop (api), 3
apisrs (api), 3
apistrat (api), 3
approxfun, 93
as.fpc, 6, 99, 113
as.matrix.repweights (compressWeights),

19
as.matrix.repweights_compressed

(compressWeights), 19
as.svrepdesign, 7, 11, 12, 14, 20, 53, 57, 58,

73, 115
as.svydesign2, 8
as.vector.repweights_compressed

(compressWeights), 19

barplot, 10
barplot.svrepstat (barplot.svystat), 9
barplot.svyby (barplot.svystat), 9
barplot.svystat, 9
binom.test, 64
biplot, 92
biplot.prcomp, 92
biplot.svyprcomp (svyprcomp), 91
bootstratum (bootweights), 10
bootweights, 7, 10, 57
brrweights, 7, 12, 29, 57, 58
bxp, 79

cal.linear (make.calfun), 32
cal.logit (make.calfun), 32
cal.raking (make.calfun), 32
calibrate, 14, 25, 32, 33, 42, 44, 77, 98, 99,

107, 109
close, 57, 73

INDEX 119

close.DBIsvydesign (open.DBIsvydesign),
37

close.ODBCsvydesign
(open.DBIsvydesign), 37

coef, 45
coef.svrepstat (surveysummary), 51
coef.svyby (svyby), 59
coef.svyglm (svyglm), 75
coef.svyloglin (svyloglin), 82
coef.svymle (svymle), 85
coef.svyratio (svyratio), 96
coef.svystat (surveysummary), 51
compressWeights, 19, 42, 44
confint, 21
confint.svrepstat (surveysummary), 51
confint.svyby (svyby), 59
confint.svyglm, 20
confint.svykm (svykm), 80
confint.svyratio (svyratio), 96
confint.svystat (surveysummary), 51
contrasts, 46
coxph, 68
crowd, 21
cv (surveysummary), 51

deff (surveysummary), 51
deff.svyby (svyby), 59
degf, 53, 75, 77, 93
degf (svytable), 103
deriv, 65
dim.DBIsvydesign

(dimnames.DBIsvydesign), 22
dim.ODBCsvydesign

(dimnames.DBIsvydesign), 22
dim.repweights_compressed

(compressWeights), 19
dim.survey.design

(dimnames.DBIsvydesign), 22
dim.svyimputationList

(dimnames.DBIsvydesign), 22
dim.svyrep.design

(dimnames.DBIsvydesign), 22
dim.twophase (dimnames.DBIsvydesign), 22
dimnames.DBIsvydesign, 22
dimnames.ODBCsvydesign

(dimnames.DBIsvydesign), 22
dimnames.repweights_compressed

(compressWeights), 19

dimnames.survey.design
(dimnames.DBIsvydesign), 22

dimnames.svyimputationList
(dimnames.DBIsvydesign), 22

dimnames.svyrep.design
(dimnames.DBIsvydesign), 22

dimnames.twophase
(dimnames.DBIsvydesign), 22

dnorm, 86
dotchart (barplot.svystat), 9

election, 23, 31, 73
election_insample (election), 23
election_jointHR (election), 23
election_jointprob (election), 23
election_pps (election), 23
estWeights, 16, 109
estWeights (estweights), 24
estweights, 24

factanal, 74, 75
fpc, 26
ftable, 28
ftable.svrepstat (ftable.svystat), 27
ftable.svyby, 61
ftable.svyby (ftable.svystat), 27
ftable.svystat, 27, 52, 53, 61, 105

glm, 59, 77
grake (calibrate), 14

hadamard, 13, 14, 29, 38, 39
hist, 79
hospital, 30
HR, 31, 72

image, 56
image.svyrep.design (svrepdesign), 55
interaction, 52
is.hadamard (paley), 38

jk1weights, 57, 58
jk1weights (brrweights), 12
jknweights, 20, 57, 58
jknweights (brrweights), 12
joinCells (nonresponse), 35

lines.svykm (svykm), 80
lines.svysmooth (svysmooth), 101

120 INDEX

make.calfun, 15, 17, 32
make.formula (surveysummary), 51
make.panel.svysmooth (svysmooth), 101
marginpred, 33, 109
model.frame.svyrep.design

(svrepdesign), 55
model.frame.twophase (twophase), 108
mrbweights, 7
mrbweights (bootweights), 10
mu284, 34
multistage (svyrecvar), 99
multistage.phase1 (twophase), 108

na.exclude.survey.design (svydesign), 71
na.exclude.twophase (twophase), 108
na.fail.survey.design (svydesign), 71
na.fail.twophase (twophase), 108
na.omit.survey.design (svydesign), 71
na.omit.twophase (twophase), 108
neighbours (nonresponse), 35
nlm, 86
nonresponse, 35

onestage (svyCprod), 69
onestage.phase1 (twophase), 108
onestrat (svyCprod), 69
onestrat.phase1 (twophase), 108
open, 57, 73
open.DBIsvydesign, 37
open.ODBCsvydesign (open.DBIsvydesign),

37
optim, 86

paley, 29, 38
panel.smooth, 102
par, 81
pchisq, 41
pchisqsum, 39, 45, 46, 83, 84, 104
pFsum (pchisqsum), 39
plot, 90
plot.lm, 102
plot.stepfun, 62, 63
plot.svycdf (svycdf), 62
plot.svykm (svykm), 80
plot.svykmlist (svykm), 80
plot.svysmooth (svysmooth), 101
postStratify, 17, 25, 41, 44, 70, 71, 99
ppsmat, 72, 73
ppsmat (HR), 31

prcomp, 92
predict.coxph, 68
predict.svycoxph, 33, 82
predict.svycoxph (svycoxph), 67
predict.svyglm (svyglm), 75
predict.svyratio (svyratio), 96
predict.svyratio_separate (svyratio), 96
print.anova.svyloglin (svyloglin), 82
print.nonresponse (nonresponse), 35
print.nonresponseSubset (nonresponse),

35
print.regTermTest (regTermTest), 45
print.summary.svyrep.design

(svrepdesign), 55
print.summary.svytable (svytable), 103
print.summary.twophase (twophase), 108
print.svycdf (svycdf), 62
print.svymle (svymle), 85
print.svyquantile (svyquantile), 92
print.svyratio (svyratio), 96
print.svyratio_separate (svyratio), 96
print.svyrep.design (svrepdesign), 55
print.svysmooth (svysmooth), 101
print.twophase (twophase), 108

qr, 104
quantile, 81
quantile.svykm (svykm), 80

rake, 17, 41, 42, 43
regTermTest, 45, 65, 76, 77, 105
residuals.svrepglm (svyglm), 75
residuals.svyglm (svyglm), 75

sample, 49
scd, 46
SE, 48, 53
SE.svyby (svyby), 59
SE.svyquantile (svyquantile), 92
SE.svyratio (svyratio), 96
sparseCells (nonresponse), 35
stepfun, 63
strata, 84
stratsample, 48
subbootweights, 7
subbootweights (bootweights), 10
subset.survey.design, 49, 73
subset.svyimputationList

(with.svyimputationList), 113

INDEX 121

subset.svyrep.design
(subset.survey.design), 49

subset.twophase (twophase), 108
summary.svrepglm (svyglm), 75
summary.svreptable (svytable), 103
summary.svyglm (svyglm), 75
summary.svymle (svymle), 85
summary.svyrep.design (svrepdesign), 55
summary.svytable (svytable), 103
summary.twophase (twophase), 108
survey.adjust.domain.lonely

(surveyoptions), 50
survey.drop.replicates (surveyoptions),

50
survey.lonely.psu (surveyoptions), 50
survey.multicore (surveyoptions), 50
survey.replicates.mse (surveyoptions),

50
survey.ultimate.cluster

(surveyoptions), 50
survey.want.obsolete (surveyoptions), 50
surveyoptions, 14, 50, 71
surveysummary, 51
svrepdesign, 7, 53, 55, 58, 76, 112, 113, 115
svreptable (svytable), 103
svrVar, 13, 14, 58, 101, 115
svy.varcoef, 59
svyboxplot (svyhist), 78
svyby, 59, 93, 105
svycdf, 62
svychisq, 83, 84
svychisq (svytable), 103
svyciprop, 53, 63, 94
svycontrast, 53, 60, 65, 80
svycoplot, 66
svycoxph, 67, 85
svyCprod, 59, 69, 73, 101
svydesign, 6, 7, 9, 31, 38, 49, 53, 57, 59, 71,

71, 76, 87, 98, 109, 112, 113
svyfactanal, 74
svyglm, 20, 53, 59, 75, 84, 87, 89, 106
svyhist, 63, 78, 102
svykappa, 79
svykm, 68, 80, 85, 94
svyloglin, 82, 105
svylogrank, 84, 96
svymean, 64, 83, 96, 98, 104–106
svymean (surveysummary), 51

svymle, 85
svyolr, 88
svyplot, 66, 67, 79, 89
svyprcomp, 91
svyquantile, 53, 62, 63, 92
svyranktest, 95
svyratio, 53, 96
svyrecvar, 6, 9, 50, 69, 71, 73, 99, 109
svyrecvar.phase1 (twophase), 108
svysmooth, 101
svytable, 9, 61, 90, 103
svytotal, 104, 105
svytotal (surveysummary), 51
svyttest, 53, 77, 96, 106
svyvar, 75
svyvar (surveysummary), 51
symbols, 90

t.test, 106
table, 42
termplot, 102
trimWeights, 16, 17, 107
twophase, 16, 17, 25, 108, 112
twophase2var (twophase), 108
twophasevar (twophase), 108

unwtd.count (svyby), 59
update.DBIsvydesign, 23
update.DBIsvydesign

(update.survey.design), 111
update.ODBCsvydesign

(update.survey.design), 111
update.survey.design, 73, 111
update.svyloglin (svyloglin), 82
update.svyrep.design

(update.survey.design), 111
update.twophase (update.survey.design),

111

vcov, 45, 46, 48
vcov.svrepstat (surveysummary), 51
vcov.svyglm (svyglm), 75
vcov.svymle (svymle), 85
vcov.svystat (surveysummary), 51

weights.nonresponse (nonresponse), 35
weights.survey.design, 112
weights.survey_fpc

(weights.survey.design), 112

122 INDEX

weights.svyrep.design
(weights.survey.design), 112

with.svyimputationList, 23, 73, 113
withReplicates, 68, 114

xtabs, 42
xyplot, 66

	api
	as.fpc
	as.svrepdesign
	as.svydesign2
	barplot.svystat
	bootweights
	brrweights
	calibrate
	compressWeights
	confint.svyglm
	crowd
	dimnames.DBIsvydesign
	election
	estweights
	fpc
	ftable.svystat
	hadamard
	hospital
	HR
	make.calfun
	marginpred
	mu284
	nonresponse
	open.DBIsvydesign
	paley
	pchisqsum
	postStratify
	rake
	regTermTest
	scd
	SE
	stratsample
	subset.survey.design
	surveyoptions
	surveysummary
	svrepdesign
	svrVar
	svy.varcoef
	svyby
	svycdf
	svyciprop
	svycontrast
	svycoplot
	svycoxph
	svyCprod
	svydesign
	svyfactanal
	svyglm
	svyhist
	svykappa
	svykm
	svyloglin
	svylogrank
	svymle
	svyolr
	svyplot
	svyprcomp
	svyquantile
	svyranktest
	svyratio
	svyrecvar
	svysmooth
	svytable
	svyttest
	trimWeights
	twophase
	update.survey.design
	weights.survey.design
	with.svyimputationList
	withReplicates
	Index

