1.

Time Series Homework #1 Solutions

a. (4 pts)
Below is the representation of the Carinae Star Data. There does not appear top
be a trend, but it does appear stationary as the mean does not seem to be
dependent on time.
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b. (2 pts)
Below is the representation of the Carinae Star Data in sections of 400 (except the
last section, which only has 349). By breaking the data into smaller pieces, it is
easier to see the stationarity of the process.
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2. Model: x, =s, +w, where w, is Gaussian noise with o =1.
a. (2 pts)
Belowisaplotof x, =s, +w, fort=1,....,200, where
0, t=1,..,100

S = 110expl U100 (278 101 00,
20 4

s[t]=10exp(-(t-100)/20)cos(2Pit/4) for t=101:200
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b. (2 pts)
Belowisaplotof x, =s, +w, fort=1,....,200, where
0, t=1,...,100

200

%= 10exp{—w}co{%’”} £ =101,...,200.



s[t]=10exp(-(t-100)/200)cos(2Pit/4) for t=101:200
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c. (2 pts)
Below is a plot showing the series generated in a with the Earthquake series from
Figure 1.7 and the signal modulator exp{- 1/ 20} fort=1,...,100. The series
from (a) is most similar to the Earthquake series in the fact that there is fairly little
noise from time 1 to 100 and then there is a jolt to the system after which the
noise quickly dies down after that. The signal modulator shows the fact that the
noise will die down quickly. It decreases fairly rapidly.

s[t]=10exp(-(t-100)/20)cos(2Pit/4) for t=101:200
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Below is a plot showing the series generated in a with the Explosion series from

Figure 1.7 and the signal modulator exp{— t/ 200} fort=1, ..., 100. The series

from (a) is most similar to the Explosion series in the fact that there is fairly little
noise from time 1 to 100 and then there is a jolt to the system after which the

noise slowly decreases. The signal modulator shows the fact that the noise will
die down slowly as its decrease is slow.



s[t]=10exp(-(t-100)/20)cos(2Pit/4) for t=101:200
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3. a. (3 pts)
Model: x

Moving average filter: v, = (xr +x,_,tx,_,+x_, )/ 4

. =-0.9x,_, +w, where w, is Gaussian noise with o, =1.

Below is a plot of the series, generated by the model above, with the filter
superimposed on the series. In general, it looks as though the variability in the
data increases over time, implying that the series may not be stationary.
However, when the filter is added, it decreases the noise (which should happen
with averages), but it also looks like the moving average is stationary. The mean
did not change after applying the MA filter (which should also happen with
averages).
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b. (2 pts)
Model: x, = cos(szj.

Moving average filter: v, = (xr +x,_, tx,_,+x_, )/ 4

Below is a plot of the series, generated by the model above, with the filter
superimposed on the series. Since this series has no random component, and it is
based on cosine, the plot looks perfectly cyclical. When the filter is added, it does
not change the mean or but changes the variability to O in the data.
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c. (2 pts)
27
Model: x, = COS(TJ +w, .where w, ~ N(0,1).

Moving average filter: v, = (xr +x,_, tx,_,+x,_, )/ 4

Below is a plot of the series, generated by the model above, with the filter
superimposed on the series. This series has a random component, and therefore,
is not deterministic like the series in (b). The series may be stationary as the
mean is constant over time and the variability does not seem to increase or
decrease over time. When the filter is added, it does not change the mean, but
does decrease the variability in the data slightly.
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d. (2 pts)
In series (a), we see an increase in the variability of the data toward the end of the
series (ranging from —6 to 6), and the MA filter reduces that variability quite a bit
in the second half of the series. In contrast, (c) has smaller variability to start with
(ranging from -2 to 2), so the filter does not smooth very much. The MA filter
smoothes the data slightly, but not as significantly as when the MA is applied to a
series with much larger variability. In (b), the MA filter basically removes the
variability as the series is completely deterministic.

Model 1: x, = s, +w, where w, is Gaussian noise with o> =1 and
09 t= 1,...,100

S = 110expl U100 (278 101 00,
20 4

Model 2: x, = s, +w, where w, is Gaussian noise with o> =1 and

09 t= 1,...,100
5 = 110expl U1 (27 101 00,
200 4
a. (4 pts)

Mean for Model 1:
E('xl‘ ) = E(St + Wt)

0, t=1,.,100
“10expl - 1O (27 101 200,
20 4

Sketch of mean function for Model 1:



E(st + wt)
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Mean for Model 2:
E(x,)=E(s, +w,)
09 t= 1,...,100
“10exp _(e=100)] (27 o200,
200 4
Sketch of mean function for Model 2:
E(st + wt)
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b. (2 pts)
Autocovariance function for Model 1:

7. (s.0)= El(x, — 1, Nox, — 1,)]
= E[(x, =5, )x, =, )]
= E[(w, Jw, )]

_ {0, s# 1L
1, s=t
This is the same for Model 2.

5. (5 pts)
Model: x, =w, , +2w, +w,,
7,{ (S’t) = E[('xx - ﬂx )('xt - ll’lt )]

= E[(x, ), )]

=Elw,_w,  +2w_w, +w_w

where w, are ind. with zero means and variance o .

w F2wow HAwow +2wow Fw v

+2w,w +wo W, ]
60'5, s =t or equivalently h=0

402,

s — t| =1 or equivalently |h| =1
ol,
0,

s — t| =2 or equivalently |h| =2

s — t| >3 or equivalently |h| >3
1, s =t or equivalently h =0

%, s — t| =1 or equivalently |h| =1

9

s — t| =2 or equivalently |h| =2

0,

s — t| >3 or equivalently |h| >3

6. Model: x, =8+x,_,+w,,t=1,2,..., x, =0, w, is white noise with variance o .
a. (2 pts)
NTS: x, =5t+z;:lwk
X, =0+x,+w, =0+w,
X, =04+x,+w, =0+0+w, +w, =20+w, +w,
Xy =04+ X, +w, =0+20+w, +w, +w, =38+w, +w, +w,

x, =1+ Z;zl w,



b. (2 pts)

E(x,)=El+3"_w,)
=18+ E(w,)

=10
v (s.0)= E[(x, —n, )(x, —p,)]
- E[(Zk 1kazk 1wk)]
o, s>
sG., s<t
= min {s,t}va
c. (2 pts)
o (s.r) = Y1)
' v.(0)y, (0)
:min{s,t}cfv
\SG. 167,
:min{s,t}
st
r—1
—1,¢)=
p.le=11) =y
=
_ [
Vs
P Ll
t—oo t

This implies that as t becomes very large, the t" value can be perfectly predicted
from the (t-1)".

d. (2 pts)
From part (b) we have already seen that the mean is dependent on time. This
implies that the process is not stationary.

e. (2 pts)
A possible transformation to make the process is
Yo =X — X

=t8+Z;:lwk —(t—1)5+Z:1wk
=0+w,

E(y,)=E@8+w,)
=9



7. (4 pts)
' Model: x, = U, sin (27tw0t) +U, cos (27tw0t) where U, and U, are independent with
zero means and variance = G°.
E(x, ) = E(U1 sin(ZTEWOt) +U, c0s(2nw0t))
= E(U1 sin(2nw0t))+ E(U2 cos(ZRWOt))
= sin(2nw0t)E U | )+ cos(anot)E U 5 )
=0
v, (5.0) = E[(x, -, )x, —n,)]
= E[(x, ), )]
= E((U1 sin(anos) +U, cos(2nw0s))(U1 sin(2nw0t) +U, c0s(2nw0t)))
=E(U;} sin(2nwos)sin(2nw0t)+ Uuu, sin(2nwos)cos(2nwot)
+U,U, sin(2nw,t)cos(2nw,s)+U; cos(2nw,s)cos(2nw,t))
=E(U;} sin(2nwos)sin(2nwot)+ Us; sin(2nwos)sin(2nwot))
= o2 (sin(2mw, ) sin(2nw,t) + sin(2mw,s) sin(2mw,t) )
=0 cos(27tw0 (s—1))
B o’ cos(27tw0 (s—1)), s#t
- { 0, s=t

o> cos(2mw,h), h#0
0, h=0

8. Model: x, = sin (2 T Ut ) wherer=1,2,... and U ~ Uniform (0,1)
a. (2 pts)
E(x,)= E(sin(2nUt))

f(u)sin(2mut )du

1sin(2mut )du

C— - S —

_ cos(Znut) :

Bl 21t

u=0

=0
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szn(27tUs ))(sin (275 Ut )))

E(cos(2nU (s — 1)) - cos(2nU (s +1)))

N | = t\JIH oy I

j-f )cos(2mu(s — 1)) — cos(2mu(s +t))duj

|~

1
jlcos 2mu(s —t))du — Ilcos 2mu(s +t))du J
0

(@] N |~

sin(uu(s—1)) sin@mu(s +1))| J

27:(5 - t) 2m(s + t)

|u:0 |u:0

b. (2 pts)
Strict Stationarity: P(x
Lett=1,5s=2,h=1.
NTS: P(x, <c,,x,<c,)= P(x2 <c,x; < cz) for strict stationarity
P(x, <¢,,x, <c,)=P(sin(2nU) < ¢,,sin(4nU) < ¢, )

x, <c,)=Plx., <c.x,, <c,) Yhe N, Vi

P(U < arcsin(cl),U < arcsin(cz)
2n 4

P()c2 <c¢,x;=c, )= P(sin(4nU) < cl,sin(6nU) < cz)

_ P(U < arcsin(cl),U < arcsin(cz)
4 61
P()cl <c,x, < cz)¢ P()c2 <cp,x; < cz)

= The series is not strictly stationary.




