2.3 Exploratory Data Analysis
e In T.S, the dependence between the values of the series is important to measure

e If the dependence structure is not regular or is changing at every time point, it is

difficult to measure the dependence
e [t is crucial for the T.S to meet the weakly stationary conditions

e Need to play down the effects of nonstationary so that the stationary properties of the

series may be studied
e Methods: lowess, filtering, differencing, kernel smoothing and smoothing splines etc,.
e General setup
= fi+u

where f; is some smooth function of time, and y; is a stationary process.

Exmaple 2.3 Detrending Global Temperature

Suppose the model is of the form of

Ty = Ut + Yy,

where u; denotes the trend, and g, is a stationary process.

A straight line might be a reasonable model for the trend as we studied in Example
2.1, i.e,
uy = 1 + Dat,

Uy = —12.186 + .006¢.
To obtain the detrended series, we simply subtract 4, from the observations z; to obtain

the detrended series
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gtemp=scan “http://www.stat.pitt.edu/stoffer /tsa2 /data/globtemp.dat”)
par(mfrow=c(2,1))
x=gtemp[45:142]
t=1900:1997
fit=Im(x ~ t) #regress x on t
summary(fit) #regression output
plot(t,x, type="“1", xlab=*“year”, ylab="“temp deviation”)
abline(fit$coef[1], fit$coef[2])
plot(t, fit$residuals, type=“1", xlab="“year”, ylab="“detrended xt”, main=(“Detrended se-
ries Plot”))

2.4 Smoothing in the Time Series Context

Example 2.12 Kernel Smoothing

Kernel smoothing is a moving average smoother that uses a weight function, or kernel,
to average the observations.

f(t) is estimated by

n

F£) =Y wili)a

=1

where
n

w(i) = K S k(D)

Jj=1

The estimator is called the Naradaya-Watson estimator. K(.) is a kernel function; typically,
the normal kernel, K(z) = V%exp(—zz /2), is used. b = 10 is roughly weighted monthly

averages; b = 104 is roughly weighted yearly averages for the trend component.
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plot(t,x, main=*“bandwidth=10")
lines(ksmooth(t, x,“normal”, bandwidth=10))
plot(t,x, main="“bandwidth=104")
lines(ksmooth(t, x, “normal”, bandwidth=104))

Example 2.14 Smoothing Splines

e an extension of polynomial regression

e divide time t = 1,--- ,n into k intervals, [to = 1,¢1], [t1 + 1, 2] -+, [te—1 + 1, tx = n].
® to,t1--- ,t, are called knots.

e in each interval, fits a polynomial regression
fe =00+ it + -+ Gpt”

e a related method is smoothing splines, which minimize a compromise between the fit

and the degree of smoothness given by

n

Slo— £ [ (2

i=1
where f(t) is a cubic spline with a know at each ¢. The degree of smoothness is

controlled by A > 0.

e when p = 3, this is called cubic splines.
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plot(t,x, main="*“ss spar=.1")
lines(smooth.spline(t, x, spar=.1))
plot(t,x, main=‘“ss spar=.8")

lines(smooth.spline(t, x, spar=.8))

spar: smoothing parameter, typically (but not necessarily) in (0,1].



