
2.3 Exploratory Data Analysis

• In T.S, the dependence between the values of the series is important to measure

• If the dependence structure is not regular or is changing at every time point, it is

difficult to measure the dependence

• It is crucial for the T.S to meet the weakly stationary conditions

• Need to play down the effects of nonstationary so that the stationary properties of the

series may be studied

• Methods: lowess, filtering, differencing, kernel smoothing and smoothing splines etc,.

• General setup

xt = ft + yt

where ft is some smooth function of time, and yt is a stationary process.

Exmaple 2.3 Detrending Global Temperature

Suppose the model is of the form of

xt = ut + yt,

where ut denotes the trend, and yt is a stationary process.

A straight line might be a reasonable model for the trend as we studied in Example

2.1, i.e,

ut = β1 + β2t,

ût = −12.186 + .006t.

To obtain the detrended series, we simply subtract ût from the observations xt to obtain

the detrended series

ŷt = xt + 12.186− .006t
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gtemp=scan“http://www.stat.pitt.edu/stoffer/tsa2/data/globtemp.dat”)

par(mfrow=c(2,1))

x=gtemp[45:142]

t=1900:1997

fit=lm(x ∼ t) #regress x on t

summary(fit) #regression output

plot(t,x, type=“l”, xlab=“year”, ylab=“temp deviation”)

abline(fit$coef[1], fit$coef[2])

plot(t, fit$residuals, type=“l”, xlab=“year”, ylab=“detrended xt”, main=(“Detrended se-

ries Plot”))

2.4 Smoothing in the Time Series Context

Example 2.12 Kernel Smoothing

Kernel smoothing is a moving average smoother that uses a weight function, or kernel,

to average the observations.

f(t) is estimated by

f̂(t) =
n∑

i=1

wt(i)xt

where

wt(i) = K(
t− i

b
)/

n∑
j=1

K(
t− j

b
)

The estimator is called the Naradaya-Watson estimator. K(.) is a kernel function; typically,

the normal kernel, K(z) = 1√
2π

exp(−z2/2), is used. b = 10 is roughly weighted monthly

averages; b = 104 is roughly weighted yearly averages for the trend component.
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plot(t,x, main=“bandwidth=10”)

lines(ksmooth(t, x,“normal”, bandwidth=10))

plot(t,x, main=“bandwidth=104”)

lines(ksmooth(t, x,“normal”, bandwidth=104))

Example 2.14 Smoothing Splines

• an extension of polynomial regression

• divide time t = 1, · · · , n into k intervals, [t0 = 1, t1], [t1 + 1, t2] · · · , [tk−1 + 1, tk = n].

• t0, t1 · · · , tk are called knots.

• in each interval, fits a polynomial regression

ft = β0 + β1t + · · ·+ βpt
p

• a related method is smoothing splines, which minimize a compromise between the fit

and the degree of smoothness given by

n∑
i=1

[xt − ft]
2 + λ

∫
(f ′′t )2dt,

where f(t) is a cubic spline with a know at each t. The degree of smoothness is

controlled by λ > 0.

• when p = 3, this is called cubic splines.
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plot(t,x, main=“ss spar=.1”)

lines(smooth.spline(t, x, spar=.1))

plot(t,x, main=“ss spar=.8”)

lines(smooth.spline(t, x, spar=.8))

spar: smoothing parameter, typically (but not necessarily) in (0,1].
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