
3.8 Building ARIMA Models

• Plot data

• possibly transform the data

• identifying the dependence orders of the model

• parameter estimation

• diagnostics

• model selection
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Growth Rate

Suppose a process evolves as a fairly small and stable percent

change, such as an investment. We might have

xt = (1 + pt)xt−1

where xt is the value of the investment at time t and pt is

the percentage change from period t − 1 to t, which may be

negative.

5[ln(xt)] = ln(1 + pt)

If the percent change pt stays relatively small in magnitude,

then ln(1 + pt) ≈ pt, so5[ln(xt)] ≈ pt.
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Selecting order of d

• A time plot of the data will typically suggest whether any differ-

encing is needed

• If time plot is not stationary, differencing is called for, difference

the data once, d = 1, and inspect the time plot of∇xt.

• Not to overdifference because this may introduce dependence

where none exists. For example, xt = wt is serially uncorre-

lated, but∇xt = wt − wt−1 is MA(1).

• ACF will not decay to zero fast as h increases. Thus, a slow

decay in ACF is an indication that differencing may be needed.
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Selecting order of p and q

• if p = 0 and q > 0, the ACF cuts off after lag q, and PACF

tails off

• if p > 0 and q = 0, the PACF cuts off after lag p, and ACF

tails off

• if p > 0 and q > 0, both the ACF and PACF will tail off

Model selection

most popular techniques, AIC, AICc and SIC

Comments

• Because we are dealing with the estimates, it will not always be
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clear whether the sample ACF or PACF is tailing off or cutting

off

• Two models that are seemingly different can actually be very

similar

• A few preliminary values of p, d and q should be at hand

• prevent overfitting, it is not always the case that more is better.

Overfitting leads to less-precise estimators, and adding more

parameters may fit the data better but may also lead to bad

forecasts.
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Example 3.35, 3.36 and 3.39 Analysis of GNP Data

We consider the analysis of quarterly U.S. GNP from 1747(1)

to 2002(3), n = 223 observations. The data are real U.S.

Gross National Product in billions of chained 1996 dollars and

they have been seasonally adjusted. Data were obtained from

the Federal Reserve Bank of St, Louis. Growth rate can be

interpreted as the percentage quarterly growth of U.S. GNP.

• Plots

6



Figure 1: Plot, acf, first difference and growth rate of GNP
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Figure 2: acf, pacf of gnpgr and second difference plot of gnp
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• From Figure 2, we might feel that the ACF is cutting off at lag

2 and the PACF is tailing off. This suggests that GNP growth

rate follows and MA(2) process, or log(GNP ) follows an

ARIMA(0, 1, 2) process.

• From Figure 2, it also looks like that the ACF is tailing off and

the PACF is cutting off after lag 1. This suggests and AR(1)

model for the growth rate, or ARIMA(1, 1, 0) for log(GNP ).
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• Fit both models

Using MLE to fit the MA(2) model for the growth rate, xt, the

estimated model is

xt = .008(.001) + .303(.065)ŵt−1 + .202(.064)ŵt−2 + ŵt,

and σ̂w = .0094 (based on 219 degrees of freedom)

The estimated AR(1) model is

xt = .008(.001) + .347(.063)xt−1 + ŵt,

and σ̂w = .0095 (based on 220 degrees of freedom)

xt = .35xt−1 + wt,
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write in its causal form, xt =
∑∞

j=0 ψjwt−j , ψ0 = 1, ψ1 =

.35, ψ2 = .123, · · · , ψ10 = 0, so

xt ≈ .35wt−1 + .12wt−2 + wt

Diagnostics

• Time plot of the residuals, xt − x̂t−1
t , or of the standardized

residuals

et = (xt − x̂t−1
t )/

√
(P̂ t−1

t ),

where x̂t−1
t is the one-step-ahead prediction of xt based on

the fitted model and P̂ t−1
t is the estimated one-step-ahead er-

ror variance. If the model fits well, the standardized residuals
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should behave as an iid sequence with mean zero and variance

one.

• Histogram of the residuals, check for the normality

• Q-Q plot, can help in identifying departures from normality

• Plot of the sample autocorrelations of the residuals, ρ̂e(h) v.s

lag h. Check for obvious departures from the independence

assumption. For a white noise sequence, the sample auto-

correlations are approximately independently and normally dis-

tributed with zero means and variance 1/n.

• Ljung-Box-Pierce Test
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Q statistic

Q = n(n + 2)
H∑

i=1

ρ̂2
e(h)

n− h

Typically, H = 20. Under the null hypothesis of model ade-

quacy, asymptotically,

Q ∼ χ2
H−p−q, (n →∞).

Reject the null hypothesis at level α if the value of Q exceeds

the (1− α)-quantile of the χ2
H−p−q.

• Shapiro-Wilk test (Royston, 1982)

Test for normality.
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• Diagnostics for MA(2) fitting
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Figure 3: Standardized Residuals Plot, ACF of Residuals and p-values for Ljung-Box Statistics
Standardized Residuals
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Figure 4: Histogram and Q-Q plot
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Shapiro-Wilk test yields a p-value of .003, which indicates that

the residuals are not normal. Hence, the model appears to fit

well except for the fact that a distribution with heavier tails than

the normal distribution should be employed.

• Diagnostics for AR(1) fitting
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Figure 5: Standardized Residuals Plot, ACF of Residuals and p-values for Ljung-Box StatisticsStandardized Residuals
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Figure 6: Histogram and Q-Q plot
Histogram of gnpgr.ar$resid
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Shapiro-Wilk test yields a p-value of 0.0006886, which indi-

cates that the residuals are not normal. Hence, the model ap-

pears to fit well except for the fact that a distribution with heavier

tails than the normal distribution should be employed.

• Choose the final model

AIC AICc BIC

MA(2) -1431.929 -8.297199 -9.276049

AR(1) -1431.221 -8.294156 -9.288084

• Both AIC and AICc prefer the MA(2) fit, while the BIC (or

SIC) prefers the simpler AR(1) model.
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• It is often the case that the BIC will select a model of smaller

order than the AIC or AICc

• Both of the model fit data well in this example

• Choose AR(1) because pure autoregressive models are eas-

ier to work with
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Example 3.37 Diagnostics for the Glacial Varve Series

• First fit ARIMA(0, 1, 1) model to the logarithms of the glacial

varve data.
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Figure 7: Standardized Residuals Plot, ACF of Residuals and p-values for Ljung-Box StatisticsStandardized Residuals
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Notice a significant lag 1 displayed. ACF of the residuals ap-

pear to be tailing off, an AR term is suggested.

• Fit ARIMA(1, 1, 1) to the logged varve data

xt = .23(.05)xt−1 − .89(.03)ŵt−1 + ŵt
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Figure 8: Standardized Residuals Plot, ACF of Residuals and p-values for Ljung-Box StatisticsStandardized Residuals
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• Diagnostics for ARMA(1, 1) appear that this model fit the

data well.

• AIC for MA(1) is 885.435 and AIC for ARMA(1, 1) model

is 868.875. AIC criterion also support ARMA(1, 1) model.
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3.9 Multiplicative Seasonal ARIMA Models

• Seasonal and nonstationary behavior

• Dependence on the past tends to occur most strongly at multi-

ples of some underlying seasonal lag s.

For example, with monthly economic data, there is a strong

yearly component occurring at lags that are multiples of s =

12, because of the strong connections of all activity to the cal-

endar year.

• Natural phenomena such as temperature also have strong com-

ponents corresponding to seasons.
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• It is appropriate to introduce autoregressive and moving aver-

age polynomials that identify with the seasonal lags.

ARMA(P, Q)s takes the form

ΦP (Bs)xt = ΘQ(Bs)wt,

ΦP (Bs) = 1− Φ1B
s − Φ2B

2s − · · · − ΦPBPs

and

ΘQ(Bs) = 1 + Θ1B
s + Θ2B

2s + · · ·+ ΘQBQs.

ΦP (Bs) and ΘQ(Bs) are the seasonal autoregressive opera-

tor and the seasonal moving average operator of orders P and

Q, respectively, with seasonal period s.
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Note: The pure seasonal ARMA(P, Q)s is causal only when

the roots of ΦP (zs) lie outside the unit circle, and it is invertible

only when the roots of ΘQ(zs) lie outside the unit circle.

Example 3.40 A seasonal ARMA series

(1− ΦB12)xt = (1 + ΘB12)wt

or

xt = Φxt−12 + wt + Θwt−12.

• First order seasonal autoregressive moving average series that

could run over months
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• Causal condition requires |Φ| < 1 and invertible condition re-

quires |Θ| < 1.

Consider first order seasonal (s = 12) MA model,

xt = wt + Θwt−12

• γ(0) = (1 + Θ2)σ2

• γ(±12) = Θσ2

• γ(h) = 0, otherwise

• ρ(±12) = Θ/(1 + Θ2).
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Consider first order seasonal (s = 12) AR model,

xt = wt + Φxt−12

• γ(h) = Φγ(h− 12), h ≥ 1

• γ(0) = σ2/(1− Φ2)

• γ(±12k) = σ2Φk/(1− Φ2), k = 1, 2, · · ·
• γ(h) = 0, otherwise

• ρ(±12k) = Φk, k = 0, 1, 2, · · ·
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Diagnostic Criterion

Behavior of the ACF and PACF for causal and invertible pure

seasonal ARMA models
AR(P )s MA(Q)s ARMA(P,Q)s

ACF ∗ Tails off at lags ks Cuts off after lag Qs Tails off at

k = 1, 2, · · · lag ks

PACF ∗ cuts off after tails off at lags ks Tails off at

lag Ps k = 1, 2, · · · lags ks

The values at nonseasonal lags h 6= ks for k = 1, 2, · · · , are

zero.
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ARMA(p, q)× (P, Q)s

ΦP (Bs)φ(B)xt = ΘQ(Bs)θ(B)wt

• Combination of the seasonal and nonseasonal operators into a

multiplicative seasonal autoregressive moving average model

• Diagnostic criterion are not strictly true for the overall mixed

model. We tend to see a mixture of the facts listed for ARMA

models and seasonal ARMA models

• Focus on the seasonal autoregressive and moving average

component first generally leads to more satisfactory results
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Example 3.41 A mixed seasonal model

ARMA(0, 1)× (1, 0)12 model

Φ1(B
12)xt = θ(B)wt

(1− ΦB12)xt = (1 + θB)wt

xt = Φxt−12 + wt + θwt−1,

where |Φ| < 1 and |θ| < 1.

γ(0) = Φ2γ(0) + σ2
w + θ2σ2

w,

or

γ(0) =
1 + θ2

1− Φ2σ
2
w.

34



Multiplying the model by xt−h, h > 0, and taking expectations,

we have

γ(1) = Φγ(11) + θσ2
w

γ(h) = Φγ(h− 12), h ≥ 2

ACF of this model is

ρ(12h) = Φh, h = 1, 2, · · ·

ρ(12h− 1) = ρ(12h + 1) =
θ

1 + θ2Φh, h = 0, 1, 2, · · ·
ρ(h) = 0, otherwise
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Figure 9: ACF and PACF for the model xt = φxt−12 + wt + θwt−1 with φ = .8 and

θ = −.5
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Difference of Seasonal Data

xt = St + wt,

• xt is a temperature time series data for example

• St is a seasonal component that varies slowly from one year to

the next, according to a random walk St = St−12 + vt

• wt and vt are uncorrelated white noise processes.

• (1−B12)xt = xt− xt−12 = vt + wt−wt−12 is MA(1)12
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Seasonal Difference of order D

∇D
s xt = (1−Bs)Dxt,

where D = 1, 2, · · · . Typically, D = 1 is sufficient to obtain

seasonal stationarity.
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Definition 3.13 The multiplicative seasonal autoregressive integrated mov-

ing average model, or SARIMA model. of Box and Jenkins (1970) is given

by

ΦP (Bs)φ(B)∇D
s ∇dxt = α + ΘQ(Bs)θ(B)wt,

where wt is the usual Gaussian white noise process. The general model

is denoted as ARIMA(p,d,q)× (P,D,Q)s. The ordinary autore-

gressive and moving average components are represented by polynomials

φ(B) and θ(B) of orders p and q, respectively, and the seasonal au-

toregressive and moving average components by ΦP (Bs) and ΘQ(Bs)

of orders P and Q and ordinary and seasonal difference components by

∇d = (1−B)d and∇D
s = (1−Bs)D.
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Example 3.42 SARIMA Model

Model ARIMA(0, 1, 1) × (0, 1, 1)12 often provides a rea-

sonable representation for seasonal, nonstationary, economic

time series.

∇1
12∇1xt = Θ1(B

12)θ(B)wt

(1−B12)(1−B)xt = (1 + ΘB12)(1 + θB)wt.

(1−B−B12 +B13)xt = (1+ θB +ΘB12 +ΘθB13)wt,

or in difference equation form

xt = xt−1+xt−12−xt−13+wt+θwt−1+Θwt−12+Θθwt−13.
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Selecting Appropriate Model

• Plot data

• possibly transform the data

• identifying the dependence orders of the model

• parameter estimation

• diagnostics

• model selection
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Analysis of the Federal Reserve Board Production Index

• identifying a model

• producing forecasts
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Figure 10: Plot, ACF and PACF for Federal Reserve Board Production Index
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• Slow decay in the ACF

• peak at lag h = 1 in the PACF

• both indicate nonstationary behavior
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Figure 11: Plot, ACF and PACF of differenced production, (1−B)xt.
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• Noting the peaks at 12, 24, 36, and 48 with relatively slow de-

cay suggested a seasonal difference

∇12∇xt = (1−B12)(1−B)xt
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Figure 12: ACF and PACF of first differenced and then seasonally differenced production,

(1−B)(1−B12)xt.
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• ACF and PACF tend to show a strong peak at h = 12 in the

autocorrelation function, with smaller peaks appearing at h =

24, 36, combined with peaks at h = 12, 24, 36, 48, in the

partial auttocorrelation function.

• Either a seasonal moving average of order Q = 1, a seasonal

autoregression of possible order P = 2, or due to the fact that

both the ACF and PACF may be tailing off at the seasonal lags,

perhaps both components, P = 2, Q = 1 are needed

• Inspecting ACF and PACF at the within season lags, h =

1, 2, · · · , 11, it appears that both the ACF and PACF are tail-

ing off. We should consider fitting a model with both p >
48



0, q > 0 fir the nonseasonal components. Consider p =

1, q = 1.

• Fitting three models

ARIMA(1, 1, 1)× (0, 1, 1)12

ARIMA(1, 1, 1)× (2, 1, 0)12

ARIMA(1, 1, 1)× (2, 1, 1)12
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Figure 13: Diagnostics for the ARIMA(1, 1, 1)× (0, 1, 1)12 fit on the production data.
Standardized Residuals
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Figure 14: Diagnostics for the ARIMA(1, 1, 1)× (0, 1, 1)12 fit on the production data.
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Figure 15: Diagnostics for the ARIMA(1, 1, 1)× (2, 1, 0)12 fit on the production data.
Standardized Residuals
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Figure 16: Diagnostics for the ARIMA(1, 1, 1)× (2, 1, 0)12 fit on the production data.
Histogram of prod.fit2$resid
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Figure 17: Diagnostics for the ARIMA(1, 1, 1)× (2, 1, 1)12 fit on the production data.
Standardized Residuals
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Figure 18: Diagnostics for the ARIMA(1, 1, 1)× (2, 1, 1)12 fit on the production data.
Histogram of prod.fit3$resid
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• Fitting three models

ARIMA(1, 1, 1)× (0, 1, 1)12, AIC = 1162.30

ARIMA(1, 1, 1)× (2, 1, 0)12, AIC = 1169.04

ARIMA(1, 1, 1)× (2, 1, 1)12, AIC = 1148.43

• On the basis of AICs, we prefer the

ARIMA(1, 1, 1)× (2, 1, 1)12

• ARIMA(1, 1, 1)× (2, 1, 1)12 fit is adequate

• A few outliers present
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The fitted ARIMA(1, 1, 1)× (2, 1, 1)12

(1 + .22(.08)B
12 + .28(.06)B

24)(1− .58(.11)B)∇12∇x̂t

= (1− .50(.07)B
12)(1− .27(.13)B)ŵt

with σ̂2
w = 1.35.
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Figure 19: Forecasts and limits for production index. The vertical dotted line separates the

data from the prediction.
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