
Example 1.12, Signal in noise 2.7, using regression to dis-

cover a signal in noise 2.8 using the periodogram to discover

a signal in noise

Many realistic models for generating time series assume an un-

derlying signal with some consistent periodic variation, contami-

nated by adding a random noise.

Consider the model

xt = 2cos(2πt/50 + .6π) + wt (1)

for t = 1, 2, · · · , 500, where the first term is regarded as the

signal. shown in the upper panel of Figure 1. An additive noise

term was taken to be white noise with σw = 1 (middle panel) and
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σw = 5 (bottom panel), drawn from a normal distribution.
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Figure 1: Plots of (1) with different noise terms
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• The ratio of the amplitude of the signal to σw is sometimes

called the signal-to-noise ratio (SNR)

• The larger the SNR, the easier it is to detect the signal

• The signal is easily discernible in the middle panel of Figure 1,

whereas the signal is obscured in the bottom panel

• Typically, we will not observe the signal, but the signal obscured

by noise
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Assume that w = 1/50 is known, but A and φ are unknown

parameters. Write (1) in another way

xt = β1cos(2πt/50) + β2sin(2πt/50) + wt

where β1 = Acos(φ) and β2 = −Asin(φ).

Using linear regression on the generated data,

• the fitted model is

x̂t = −.84(.32)cos(2πt/50)− 1.99(.32)sin(2πt/50)

with σ̂w = 5.08, where the values in parentheses are the

standard errors.
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• The actual values of the coefficients for this example are β1 =

2cos(.6π) = −.62 and β2 = −2sin(.6π) = −1.90

• The parameter estimates are significant and close to the actual

values. We are able to detect the signal in the noise using

regression.
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Using the periodogram to discover a signal in noise

Consider w a parameter,

• Fit model (1) using nonlinear regression with w as a parameter.

• Try various values of w in a systematic way

β̂1 =

∑n
1 xtcos(2πt/50)∑n
1 cos2(2πt/50)

=
2

n

n∑
t=1

xtcos(2πt/50)

β̂2 =

∑n
1 xtsin(2πt/50)∑n
1 sin2(2πt/50)

=
2

n

n∑
t=1

xtsin(2πt/50)
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• Suggests looking at all possible regression parameter estimates

β̂1(j/n) =
2

n

n∑
t=1

xtcos(2πtj/n);

β̂2(j/n) =
2

n

n∑
t=1

xtsin(2πtj/n),

where, n = 500 and j = 1, · · · , n/2− 1 and inspecting the

results for large values.

• When j = 0 or n/2, β̂1(0) = 2n−1 ∑n
t=1 xt, β̂1(

n

2
/n) =

2n−1
n∑

t=1

(−1)txt and β̂2(0) = 0, β̂1(
n

2
/n) = 0
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• We have regressed a series, xt of length n using n regression

parameters, so that we have a perfect fit.

• β̂1(j/n) and β̂2(j/n) for each j are essentially measure the

correlation of the data with a sinusoid oscillating at j cycles in

n time points.

• An appropriate measure of the presence of a frequency of os-

cillation of j cycles in n time points in the data would be

P (j/n) = β̂2
1(j/n) + β̂2

2(j/n),

which is basically a measure of squared correlation. P (j/n)

is called periodogram or scaled periodogram.
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Figure 2: The scaled periodogram of the 500 observations generated by (1).
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