
Review

• Time series (T.S): A stochastic process or a sequence of ran-

dom variables Xt, t ∈ S; where S is some set of indices.

• Difference with traditional Statistical Inference: The data is as-

sumed to be an i.i.d process (random sample). In T.S. we are

relaxing this assumption and wish to model the dependency

among observations.

• Second order stationarity: The mean is constant in time and

the covariance is a function of the difference in time between
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observations.

E(Xt) = µ; Cov(Xt; Xs) = f(|t− s|)
• Autocovariance function: For a second order stationary pro-

cess, this is defined as

γ(h) = Cov(Xt; Xt+h) = E[(Xt − µ)(Xt+h − µ)]

Cov(Xt; Xt+h) = Cov(Xt; Xt−h) = γ(h)

• Autocorrelation function of Xt is defined in terms of the auto-

covariance as: ρ(h) = γ(h)/γ0,−1 ≤ ρ ≤ 1.

• A correlogram is a plot of h (x-axis) versus its corresponding

value of rh (y-axis). The correlogram may exhibit patterns and
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different degrees of dependency in a time series.

Example: ACF for white noise process.
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Figure 1: ACF for white noise process, data were generated from N(0, 1)
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Example: ACF for 400 EEG data. Observations from an elec-

troencephalogram corresponding to a patient undergoing ECT

therapy. Data we use here are 400 observations from the cen-

tral part of the series.
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Figure 2: Plot of 400 EEG data

Time

E
E

G

0 100 200 300 400

−2
00

−1
00

0
10

0
20

0

6



Figure 3: ACF for 400 EEG data
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Example: ACF for MA(2) data. Data were generated from

Xt = wt + .5wt−1 − .5wt−2
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Figure 4: Plot of MA(2)
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Figure 5: ACF for MA(2)
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• Seasonal variation: Variation in the data that is annual in period

or variation that is quarterly, monthly, weekly, etc. in period.

For example, unemployment is typically ’high’ in the winter but

lower in the summer. If seasonality or cyclic variation are not

of interest, they could be removed from the process.

• Detrend method: lowess, filtering, differencing, kernel smooth-

ing and smoothing splines etc,. General setup xt = ft + yt

where ft is some smooth function of time, and yt is a station-

ary process.

• AR, MA and ARMA models
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Definition, Characteristic polynomial, roots, Theorem to deter-

mine the stationarity, invertible

• PACF, use cramer’s rule to find the PACF

Behavior of the ACF and PACF for stationary and invertible

ARMA models
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AR(p) MA(q) ARMA (p,q)

ACF Tails off Cuts off Tails off

after lag q

PACF Cuts off Tails off Tails off

after lag p
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