AR, MA and ARMA models

e The autoregressive process of order p or AR(p) is defined

by the equation

p
X = Z QX+ wy
=1

where w; ~ N (0, 0?)

o »=(p1,P2,...,0,) is the vector of model coefficients and

p 1s a non-negative integer.

e The AR model establishes that a realization at time ¢ is a
linear combination of the p previous realization plus some

noise term.

e For p =0, X; = wy and there is no autoregression term.




The lag operator is denoted by B and used to express
lagged values of the process so BX; = X;_1,
B?X, = X;_ 9, B3X, = X;_5,...., B*X,_,.

If we define

<I>(B)zl—zp:gbij:1—¢1B—¢2B2—...—q§po
j=1

the AR(p) process is given by the equation
(I)(B)Xt — wt;t — 1,. .., 1.

®(B) is known as the characteristic polynomial of the
process and its roots determine when the process is

stationary or not.

The moving average process of order q or M A(q) is




defined as

q
Xt = Wt + Z ijt_j
7=1

Under this model, the observed process depends on

previous w;s

M A(q) can define correlated noise structure in our data
and goes beyond the traditional assumption where errors
are iid.

In lag operator notation, the M A(q) process is given by
the equation X; = ©(B)w; where ©(B) =1+ >7_ 0;B.

The general autoregressive moving average process of
orders p and g or ARM A(p, q) combines both AR and

M A models into a unique representation.




The ARMA process of orders p and ¢ is defined as

p q
X = Z QX+ Z Ojwi—j + wi
s =1

In lag operator notation, the ARM A(p, q) process is
given by ®(B)X; = O(B)w,t=1,...,n

Lets focus on the AR process and its characteristic

polynomial.

The characteristic polynomial can be expressed as:

p

H(l — OéZB)

i=1
where the o’s are the reciprocal roots.

If 61, B2,...,Bp are such that ®(3;) = 0 (roots of the




polynomial) then 51 = 1/ay,082 = 1/ag, ..., 3, =1/,

Theorem: If Xy ~ AR(p), X; is a stationary process if and
only if the modulus of all the roots of the characteristic
polynomial are greater than one, i.e. if ||3;|| > 1 for all

i=1,2,...,p or equivalently if ||a;|| < 1,i =1,2,...p.
The «)s are also known as the poles of the AR process.

This theorem follows from the general linear process

theory.

Some of the poles or reciprocal roots can be real number
and some can be complex numbers and we need to

distinguish between the 2 cases.




For the complex case, we will use the representation
a; = riexp(Fwit),

so (' is the total number of conjugate pairs and 2C is the

total number of complex poles.
r; 1s the modulus of o; and w; its frequency.

The real reciprocal roots are denoted as
(87) :Ti,i — 1,2,...R

Example. Consider the AR(1) process X; = ¢ X1 + wy.

In lag-operator notation this process is (1 — ¢pB) Xy = wy
and the characteristic polynomial is ®(B) = (1 — ¢B).

If ®(B) = (1 — ¢B) = 0, the only characteristic root is




B =1/¢ (assuming ¢ £ 0).

The AR(1) process is stationary if only if |¢| < 1 or
-1 <o <.

The case where ¢ = 1 corresponds to a Random Walk

process with a zero drift, X; = X;_1 4+ wy

This is a non-stationary explosive process.

If we recursive apply the AR(1) equation, the Random

Walk process can be expressed as
X =wt +wi—1 +wi—9+.... Then,
Var(X;) = >2,0% = <.

Example. AR(2) process Xy = ¢1X¢—1 + p2 X2 + wy

The characteristic polynomial is now




©(B) = (1 - ¢1B — $2B?)
The solutions to ®(B) = 0 are

B —¢1+\/¢%+4¢2. B —¢1—\/¢%+4¢2
B 202 e 209

B

The reciprocal roots are

B ¢1+\/¢%+4¢2.

¢1—\/Q5%—|—4¢2
; X —
2 2

The AR(2) is stationary if and only if ||a1|| < 1 and
azl] <1

a1

These two conditions imply that ||ajas|| = [¢2| < 1 and
llar + as|| = |¢1] < 2 which means —1 < ¢ < 1 and
—2 < P < 2.




For a1 and a9 real numbers, gb% + 4¢po > 0 which implies
—1 < ag < ay < 1 and after some algebra ¢1 + ¢ < 1;

P2 — 1 < 1

2
In the complex case ¢% +4¢p2 <0 or = > @2

If we combine all the inequalities we obtain a region
bounded by the lines ¢po =14+ @1; po =1 — P1; Ppg = —1.

This is the region where the AR(2) process is stationary.

For an AR(p) where p > 3, the region where the process

is stationary is quite abstract.

For the stationarity condition of the MA(q) process, we

need to rely on the general linear process.

A general linear process is a random sequence X; of the




X =

where w; is a white noise sequence with variance o?2.

e In lag operator notation, the general linear is given by the
expression X; = ®(B) 'w; where ®(B) ' = =720 a;BY.

e Note firstly that by the definition of the linear process,
E(X;) =0.

e Then, the covariance between X; and Xj is

O OO @)

EX:X,] = > > ajqB[X; jXs ]
j=01=0




The last expression depends on ¢t and s only through the
difference s — t. Therefore, the process is stationary if

Z;O:o a;ja;yr 18 finite for all non-negative integers k
Setting k£ = 0 we require that » .2 a5 < oo

Given that a correlation is always between —1 and 1,

Ye] < 0

so if 79 < oo then Z;?io a;ajqtr < O0.

Then X; is stationary if and only if > -2 a? < 00

The MA(q) process can be written as a general linear




with (90 = 1.

For the MA(q) process 2, a? — ;1-:0 19]2- < 00 S0 a

moving average process is always stationary.

For the ARMA (p,q) process given by ®(B)X; = O(B)w;
X} is stationary if only if the roots of ®(B) = 0 have all
modulus greater than 1 or all the reciprocal roots have a

modulus less than one.

A related concept to stationary linear process is
invertible process.




e Definition: A process X; is invertible if

00
Xt = Z CLth_j -+ Wt
7=1

with the restriction that .24 a? < 00

e Basically, an invertible process is an infinite

autoregression.

e By definition the AR(p) is invertible. We can set
a1 = @1,a2 = @P2,...a, = ¢p and a; = 0,7 > p. Then
> i a,? =>"7 ¢§ which is finite.

e For an MA(q) process we have X; = ©(B)w;. If we find a
polynomial ©(B)~! such that ©(B)O(B)~! = 1 then we

can invert the process since ©(B) 1 X; = wy




The MA(q) process is invertible if and only if the roots of

©(B) have all modulus greater than one.

To illustrate this last point consider the MA(1) process
Xt = (1 — QB)wt

If |6] < 1 then

1
(1—0B)

O(B) ! =

Since |6] < 1 then 22, 07 < oo and so the process is

invertible and has the representation

Xe=) Xy j+w
j=1

The ARMA((p,q) process is invertible whenever the MA




part of the process is invertible, i.e. when ©(B) has

reciprocal roots with modulus less than one.

Autocorrelation and Partial Autocorrelation

e The partial autocorrelation function (PACF) of a process
Z; 1s defined as

P = COTT(Ztv Zt—|—k|Zt—i—17 S Zt—i—k—l); k= 0,1,2,3,...

e This PACF is equal to the ordinary correlation between
Ly — Zt and Z;1p — Zt;k where Zt and Zt;k are the

“best” linear estimators for Z; and Z;,j respectively.

e This PACF can also be derived through an autoregressive

model of order k

Ltk = Q1 Lt4k—1 + Or2Zirk—2 + ...+ Orp i + Witk




e The coefficients ¢p1, dr2, ..., ¢rr define the PACEF.

e We have a set of linear equations for which the solution

can be obtained via Cramer’s Rule.

e R/S-plus include an option to compute the PACF.

> acf(x,type=’’partial’’)




The partial autocorrelation can be derived as follows.

Suppose that Z; is zero mean stationary process.

Consider a regression model where Z; . is regressed on k

lagged variables Z; 1, Ziik_9,..., 2, 1.€.,
Ltk = Qr1Zivk—1 T Qp2Zivk—2 + - T Okt + Witk

®ri; denotes the i-th regression parameter and w; g 1s a

normal error term uncorrelated with Z;,_; for j > 1.

Multiplying Z;,;_; on both sides of the above regression

equation and taking the expectation, we get

Vi = Pk1Vj—1 T Pr2Vj—2 + - + PrkVj—k




e If we divide by vy we get,

P = Qr1pPj—1 + Prapj—2 + ... + QrrpPj—k

e For y =1,2,...,k, we have the following system of

equations:

p1 Ox1P0 + Pr2p1 + - .. + OkkPr—1
P2 Pk1P1 + Pr2po + ... + OkkPr—2

Pk Pk1Pk—1 + Pr2pPk—2 + - -« + Prkpo
e Using Cramer’s rule successively for k = 1,2, ..., we have







Pk—1 Pk—2 Pk-3 --- P1 1

e As a function of k, ¢ is usually referred to as the

partial autocorrelation function (PACF).

e A computer package will produce an estimate of ¢y,

using P




Example. Consider the stationary AR(1) process ,
Xt = aX;—1 +w with —1 < a < 1. (change ¢ to «)

Previously, we establish that the autocorrelation function
for an AR(1) is py = a”.

If we apply Cramer’s rule ¢11 = p1 = «.

Also

In fact, it can be checked that ¢, = 0 for any £ > 2.




e The result is that for the AR(1)

a k=1
Okl =
0 k£>2

so the partial autocorrelation of an AR(1) cuts down to

zero after lag 1.

e Fxamples. Simulation of an AR(1) process with

coefficient & = 0.9 and a = —0.5. 1000 observations in

cach case. In the second case o2 = 9.




alpha=.9

xt=arima.sim(1000,model=1ist (ar=alpha))
par (mfrow=c(3,1) ,oma=c(2,2,2,2))
ts.plot(ts(xt))

acf (xt,lag=20)

acf (xt,type="partial",lag=20)
mtext ("AR(1) process with alpha =.9,

sigma~2=1",outer=T,cex=1.1)




AR(1) process with alpha =.9, sigma”2=1

Series xt

Series xt

Partial ACF




# Now with a variance different to one
epsilon=rnorm(500,mean=0,sd=sqrt(3))

alpha=-.5
xt=arima.sim(500,model=1ist (ar=alpha) ,innov=epsilon)
par (mfrow=c(3,1) ,oma=c(2,2,2,2))

ts.plot(ts(xt))

acf (xt,lag=50)

acf (xt,type="partial",lag=50)
mtext ("AR(1) process with alpha=-.5,

sigma~2=3",outer=T,cex=1.1)




AR(1) process with alpha=-.5, sigma”2=3

Series xt

Lag

Series xt

Partial ACF




Example. The AR(2) model

Xt = @1 X1+ 2 X9 +wy

First we need to find the autocorrelation function of the
process. That will allow us to find the PACF.

By multiplying the AR(2) equation by X; i (both sides)

and taking the expected value, we get

Ve = GP1Yk—1 + P22,k = 1,2, ...
Dividing by v gives,

Pk = P1Pk—1 + P2pk—2,k = 1,2, ...

which defines a linear difference equation for py.

These difference equations can be difficult to solve.




For this type of equations, it is recommended (Diggle) to
explore a solution of the form p; = \* and try to

determine the value of \.

If we substitute A* in the difference equation, we get

)\k _ le)\k_l + ¢2)\k—2

Which gives the equation
AN — A — o =0
The solution to this equation is

\ ¢1i\/¢%+4¢2
N 2

This expression gives a1 and as, the reciprocal roots of




the characteristic polynomial.

Since o1 and a9 are solutions of the equation, then a

linear combination is also a solution.

Then, the general solution to the difference equation
takes the form,

pk:aalf—l—bag,k:(),l,Q,...

where a and b are constants to be determined.

Given this form, the p; s will have an exponential
behavior.

To find values for a and b, note that for £ = 0,1, the
difference equations are:

PO = 1:a—|—b




= ¢1/(1 — ¢2) = aay + bas

e Assuming the AR/(2) satisfies the stationarity conditions,

we can find the values of pg recursively.

e For the PACF, following Cramer’s rule (HW exercise) it

can be shown that the first two partial correlations are:

®1
1 — ¢
Py = ¢

P

and the remaining P}’s are zero.

e Consider an AR(2) with complex reciprocal roots

aq,2 = rexp(fwi)

e The characteristic polynomial is




(1—re”“B)(1—re“B) = (1—2rcos(w)B+r?B?)

e The AR coefficients are given by ¢1 = 2rcos(w), ¢g = —r?

e Lets look at 500 simulated observations of an AR(2)
process with » = 0.95 (r = 0.75) and w = 27 /15. Here is
the R code to obtain this.




r=0.95

w=2*pi/15

phil=2%r*cos (w)

phi2=-r~2

xt=arima.sim(500,model=1ist (ar=c(phil,phi2)))
par (mfrow=c(3,1) ,oma=c(2,2,2,2))
ts.plot(as.ts(xt))

acf (xt,lag=50)

acf (xt,lag=50,type="partial")




AR(2) process with Phil=1.74 and Ph2=-0.9

as.ts(xt)

Series xt

Lag

Series xt

Partial ACF




AR(2) process with Phil= 1.37 and Ph2= -0.56

as.ts(xt)

Series xt

10

Series xt

Partial ACF




For the case of an AR(2) with two real roots r; and ra,

the characteristic polynomial is
@(B) = (1 — TlB)(l — TQB) = (1 — (7“1 -+ TQ)B -+ 7“17“232)

The AR(2) coefficients are ¢y = r1 + ro and ¢o = —riro

Lets look at a simulated process with 7; = 0.9 and
o = 0.5.

e Then we will consider the case r1 = —0.9 and r9 = —.0.5

r1=0.9

r2=0.5

phil=ri+r2

phi2=-rl*r2

xt=arima.sim(500,model=1ist (ar=c(phil,phi2)))




AR(2) process with Phil= 1.4 and Ph2=-0.45

Series xt

50

Series

Partial ACF




AR(2) process with Phil= -1.4 and Ph2= -0.45

Series xt

Series xt

Partial ACF




