
AR, MA and ARMA models

• The autoregressive process of order p or AR(p) is defined

by the equation

Xt =
p

∑

j=1

φjXt−j + ωt

where ωt ∼ N(0, σ2)

• φ = (φ1, φ2, . . . , φp) is the vector of model coefficients and

p is a non-negative integer.

• The AR model establishes that a realization at time t is a

linear combination of the p previous realization plus some

noise term.

• For p = 0, Xt = ωt and there is no autoregression term.
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• The lag operator is denoted by B and used to express

lagged values of the process so BXt = Xt−1,

B2Xt = Xt−2, B3Xt = Xt−3,. . ., BdXt−d.

• If we define

Φ(B) = 1 −
p

∑

j=1

φjB
j = 1 − φ1B − φ2B

2 − . . . − φpB
p

the AR(p) process is given by the equation

Φ(B)Xt = ωt; t = 1, . . . , n.

• Φ(B) is known as the characteristic polynomial of the

process and its roots determine when the process is

stationary or not.

• The moving average process of order q or MA(q) is
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defined as

Xt = ωt +
q

∑

j=1

θjωt−j

• Under this model, the observed process depends on

previous ω′

ts

• MA(q) can define correlated noise structure in our data

and goes beyond the traditional assumption where errors

are iid.

• In lag operator notation, the MA(q) process is given by

the equation Xt = Θ(B)ωt where Θ(B) = 1 +
∑q

j=1
θjB

j .

• The general autoregressive moving average process of

orders p and q or ARMA(p, q) combines both AR and

MA models into a unique representation.
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• The ARMA process of orders p and q is defined as

Xt =
p

∑

j=1

φjXt−j +
q

∑

j=1

θjωt−j + ωt

• In lag operator notation, the ARMA(p, q) process is

given by Φ(B)Xt = Θ(B)ωt, t = 1, . . . , n

• Lets focus on the AR process and its characteristic

polynomial.

• The characteristic polynomial can be expressed as:

Φ(B) =
p

∏

i=1

(1 − αiB)

where the α′s are the reciprocal roots.

• If β1, β2, . . . , βp are such that Φ(βi) = 0 (roots of the
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polynomial) then β1 = 1/α1, β2 = 1/α2, . . . , βp = 1/αp

• Theorem: If Xt ∼ AR(p), Xt is a stationary process if and

only if the modulus of all the roots of the characteristic

polynomial are greater than one, i.e. if ||βi|| > 1 for all

i = 1, 2, . . . , p or equivalently if ||αi|| < 1, i = 1, 2, . . . p.

• The α′

is are also known as the poles of the AR process.

• This theorem follows from the general linear process

theory.

• Some of the poles or reciprocal roots can be real number

and some can be complex numbers and we need to

distinguish between the 2 cases.
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• For the complex case, we will use the representation

αi = riexp(±ωii), i = 1, . . . , C

so C is the total number of conjugate pairs and 2C is the

total number of complex poles.

• ri is the modulus of αi and ωi its frequency.

• The real reciprocal roots are denoted as

αi = ri, i = 1, 2, . . . R

• Example. Consider the AR(1) process Xt = φXt−1 + ωt.

• In lag-operator notation this process is (1 − φB)Xt = ωt

and the characteristic polynomial is Φ(B) = (1 − φB).

• If Φ(B) = (1 − φB) = 0, the only characteristic root is
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β = 1/φ (assuming φ 6= 0).

• The AR(1) process is stationary if only if |φ| < 1 or

−1 < φ < 1.

• The case where φ = 1 corresponds to a Random Walk

process with a zero drift, Xt = Xt−1 + ωt

• This is a non-stationary explosive process.

• If we recursive apply the AR(1) equation, the Random

Walk process can be expressed as

Xt = ωt + ωt−1 + ωt−2 + . . .. Then,

V ar(Xt) =
∑

∞

t=0 σ2 = ∞.

• Example. AR(2) process Xt = φ1Xt−1 + φ2Xt−2 + ωt

• The characteristic polynomial is now
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Φ(B) = (1 − φ1B − φ2B
2)

• The solutions to Φ(B) = 0 are

β1 =
−φ1 +

√

φ2
1 + 4φ2

2φ2

;β2 =
−φ1 −

√

φ2
1 + 4φ2

2φ2

• The reciprocal roots are

α1 =
φ1 +

√

φ2
1 + 4φ2

2
;α2 =

φ1 −
√

φ2
1 + 4φ2

2

• The AR(2) is stationary if and only if ||α1|| < 1 and

||α2|| < 1

• These two conditions imply that ||α1α2|| = |φ2| < 1 and

||α1 + α2|| = |φ1| < 2 which means −1 < φ2 < 1 and

−2 < φ1 < 2.
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• For α1 and α2 real numbers, φ2
1 + 4φ2 ≥ 0 which implies

−1 < α2 ≤ α1 < 1 and after some algebra φ1 + φ2 < 1;

φ2 − φ1 < 1

• In the complex case φ2
1 + 4φ2 < 0 or

φ2

1

−4
> φ2

• If we combine all the inequalities we obtain a region

bounded by the lines φ2 = 1 + φ1; φ2 = 1 − φ1; φ2 = −1.

• This is the region where the AR(2) process is stationary.

• For an AR(p) where p ≥ 3, the region where the process

is stationary is quite abstract.

• For the stationarity condition of the MA(q) process, we

need to rely on the general linear process.

• A general linear process is a random sequence Xt of the
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form,

Xt =
∞
∑

j=0

ajωt−j

where ωt is a white noise sequence with variance σ2.

• In lag operator notation, the general linear is given by the

expression Xt = Φ(B)−1ωt where Φ(B)−1 =
∑

∞

j=0 ajB
j .

• Note firstly that by the definition of the linear process,

E(Xt) = 0.

• Then, the covariance between Xt and Xs is

E[XtXs] =
∞
∑

j=0

∞
∑

l=0

ajalE[Xt−jXs−l]
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= σ2

∞
∑

j=0

ajaj+s−t ; (s ≥ t)

• The last expression depends on t and s only through the

difference s − t. Therefore, the process is stationary if
∑

∞

j=0 ajaj+k is finite for all non-negative integers k

• Setting k = 0 we require that
∑

∞

j=0 a2
j < ∞

• Given that a correlation is always between −1 and 1,

|γk| ≤ γ0

so if γ0 < ∞ then
∑

∞

j=0 ajaj+k < ∞.

• Then Xt is stationary if and only if
∑

∞

j=0 a2
j < ∞

• The MA(q) process can be written as a general linear

63



process of the form Xt =
∑

∞

j=0 ajωt−j where

aj =







θj j=0,. . . ,q

0 j=q+1,q+2,. . .

with θ0 = 1.

• For the MA(q) process
∑

∞

j=0 a2
j =

∑q
j=0

θ2
j < ∞ so a

moving average process is always stationary.

• For the ARMA(p,q) process given by Φ(B)Xt = Θ(B)ωt

Xt is stationary if only if the roots of Φ(B) = 0 have all

modulus greater than 1 or all the reciprocal roots have a

modulus less than one.

• A related concept to stationary linear process is

invertible process.

64



• Definition: A process Xt is invertible if

Xt =
∞
∑

j=1

ajXt−j + ωt

with the restriction that
∑

∞

j=1 a2
j < ∞

• Basically, an invertible process is an infinite

autoregression.

• By definition the AR(p) is invertible. We can set

a1 = φ1, a2 = φ2, . . . ap = φp and aj = 0, j > p. Then
∑

∞

j=1 a2
j =

∑p
=1 φ2

j which is finite.

• For an MA(q) process we have Xt = Θ(B)ωt. If we find a

polynomial Θ(B)−1 such that Θ(B)Θ(B)−1 = 1 then we

can invert the process since Θ(B)−1Xt = ωt
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• The MA(q) process is invertible if and only if the roots of

Θ(B) have all modulus greater than one.

• To illustrate this last point consider the MA(1) process

Xt = (1 − θB)ωt

• If |θ| < 1 then

Θ(B)−1 =
1

(1 − θB)
=

∞
∑

j=0

θjBj

• Since |θ| < 1 then
∑

∞

j=0 θj < ∞ and so the process is

invertible and has the representation

Xt =
∞
∑

j=1

θjXt−j + ωt

• The ARMA(p,q) process is invertible whenever the MA
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part of the process is invertible, i.e. when Θ(B) has

reciprocal roots with modulus less than one.

Autocorrelation and Partial Autocorrelation

• The partial autocorrelation function (PACF) of a process

Zt is defined as

Pk = Corr(Zt, Zt+k|Zt+1, . . . , Zt+k−1); k = 0, 1, 2, 3, . . .

• This PACF is equal to the ordinary correlation between

Zt − Ẑt and Zt+k − ˆZt+k where Ẑt and ˆZt+k are the

“best” linear estimators for Zt and Zt+k respectively.

• This PACF can also be derived through an autoregressive

model of order k

Zt+k = φk1Zt+k−1 + φk2Zt+k−2 + . . . + φkkZt + ωt+k
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• The coefficients φk1, φk2, . . . , φkk define the PACF.

• We have a set of linear equations for which the solution

can be obtained via Cramer’s Rule.

• R/S-plus include an option to compute the PACF.

> acf(x,type=’’partial’’)

68



• The partial autocorrelation can be derived as follows.

Suppose that Zt is zero mean stationary process.

• Consider a regression model where Zt+k is regressed on k

lagged variables Zt+k−1, Zt+k−2, . . . , Zt, i.e.,

Zt+k = φk1Zt+k−1 + φk2Zt+k−2 + . . . + φkkZt + ωt+k

• φki denotes the i-th regression parameter and ωt+k is a

normal error term uncorrelated with Zt+k−j for j ≥ 1.

• Multiplying Zt+k−j on both sides of the above regression

equation and taking the expectation, we get

γj = φk1γj−1 + φk2γj−2 + . . . + φkkγj−k
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• If we divide by γ0 we get,

ρj = φk1ρj−1 + φk2ρj−2 + . . . + φkkρj−k

• For j = 1, 2, . . . , k, we have the following system of

equations:

ρ1 = φk1ρ0 + φk2ρ1 + . . . + φkkρk−1

ρ2 = φk1ρ1 + φk2ρ0 + . . . + φkkρk−2

...

ρk = φk1ρk−1 + φk2ρk−2 + . . . + φkkρ0

• Using Cramer’s rule successively for k = 1, 2, . . ., we have

φ11 = ρ1
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φkk =
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• As a function of k, φkk is usually referred to as the

partial autocorrelation function (PACF).

• A computer package will produce an estimate of φk,k

using ρ̂k
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• Example. Consider the stationary AR(1) process ,

Xt = αXt−1 + ωt with −1 < α < 1. (change φ to α)

• Previously, we establish that the autocorrelation function

for an AR(1) is ρk = αk.

• If we apply Cramer’s rule φ11 = ρ1 = α.

• Also

φ22 =
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• In fact, it can be checked that φkk = 0 for any k ≥ 2.
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• The result is that for the AR(1)

φkk =







α k=1

0 k ≥ 2

so the partial autocorrelation of an AR(1) cuts down to

zero after lag 1.

• Examples. Simulation of an AR(1) process with

coefficient α = 0.9 and α = −0.5. 1000 observations in

each case. In the second case σ2 = 9.
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alpha=.9

xt=arima.sim(1000,model=list(ar=alpha))

par(mfrow=c(3,1),oma=c(2,2,2,2))

ts.plot(ts(xt))

acf(xt,lag=20)

acf(xt,type="partial",lag=20)

mtext("AR(1) process with alpha =.9,

sigma^2=1",outer=T,cex=1.1)
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# Now with a variance different to one

epsilon=rnorm(500,mean=0,sd=sqrt(3))

alpha=-.5

xt=arima.sim(500,model=list(ar=alpha),innov=epsilon)

par(mfrow=c(3,1),oma=c(2,2,2,2))

ts.plot(ts(xt))

acf(xt,lag=50)

acf(xt,type="partial",lag=50)

mtext("AR(1) process with alpha=-.5,

sigma^2=3",outer=T,cex=1.1)

77



Time

ts
(x

t)

0 100 200 300 400 500

−
4

0
2

4
6

0 10 20 30 40 50

−
0.

5
0.

0
0.

5
1.

0

Lag

A
C

F

Series  xt

0 10 20 30 40 50

−
0.

5
−

0.
3

−
0.

1
0.

1

Lag

P
ar

tia
l A

C
F

Series  xt

AR(1) process with alpha=−.5, sigma^2=3

78



• Example. The AR(2) model

Xt = φ1Xt−1 + φ2Xt−2 + ωt

• First we need to find the autocorrelation function of the

process. That will allow us to find the PACF.

• By multiplying the AR(2) equation by Xt−k (both sides)

and taking the expected value, we get

γk = φ1γk−1 + φ2γk−2, k = 1, 2, . . .

• Dividing by γ0 gives,

ρk = φ1ρk−1 + φ2ρk−2, k = 1, 2, . . .

which defines a linear difference equation for ρk.

• These difference equations can be difficult to solve.
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• For this type of equations, it is recommended (Diggle) to

explore a solution of the form ρk = λk and try to

determine the value of λ.

• If we substitute λk in the difference equation, we get

λk = φ1λ
k−1 + φ2λ

k−2

• Which gives the equation

λ2 − φ1λ − φ2 = 0

• The solution to this equation is

λ =
φ1 ±

√

φ2
1 + 4φ2

2

• This expression gives α1 and α2, the reciprocal roots of
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the characteristic polynomial.

• Since α1 and α2 are solutions of the equation, then a

linear combination is also a solution.

• Then, the general solution to the difference equation

takes the form,

ρk = aαk
1 + bαk

2 , k = 0, 1, 2, . . .

where a and b are constants to be determined.

• Given this form, the ρ′ks will have an exponential

behavior.

• To find values for a and b, note that for k = 0, 1, the

difference equations are:

ρ0 = 1 = a + b
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ρ1 = φ1/(1 − φ2) = aα1 + bα2

• Assuming the AR(2) satisfies the stationarity conditions,

we can find the values of ρk recursively.

• For the PACF, following Cramer’s rule (HW exercise) it

can be shown that the first two partial correlations are:

P1 =
φ1

1 − φ2

P2 = φ2

and the remaining Pk’s are zero.

• Consider an AR(2) with complex reciprocal roots

α1,2 = rexp(±ωi)

• The characteristic polynomial is
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Φ(B) = (1−re−iωB)(1−reiωB) = (1−2rcos(ω)B+r2B2)

• The AR coefficients are given by φ1 = 2rcos(ω), φ2 = −r2

• Lets look at 500 simulated observations of an AR(2)

process with r = 0.95 (r = 0.75) and ω = 2π/15. Here is

the R code to obtain this.
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r=0.95

w=2*pi/15

phi1=2*r*cos(w)

phi2=-r^2

xt=arima.sim(500,model=list(ar=c(phi1,phi2)))

par(mfrow=c(3,1),oma=c(2,2,2,2))

ts.plot(as.ts(xt))

acf(xt,lag=50)

acf(xt,lag=50,type="partial")
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• For the case of an AR(2) with two real roots r1 and r2,

the characteristic polynomial is

Φ(B) = (1 − r1B)(1 − r2B) = (1 − (r1 + r2)B + r1r2B
2)

• The AR(2) coefficients are φ1 = r1 + r2 and φ2 = −r1r2

• Lets look at a simulated process with r1 = 0.9 and

r2 = 0.5.

• Then we will consider the case r1 = −0.9 and r2 = −.0.5

r1=0.9

r2=0.5

phi1=r1+r2

phi2=-r1*r2

xt=arima.sim(500,model=list(ar=c(phi1,phi2)))
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