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Data structure

t1 t2 · · · tni
1st subject y11 y12 y1n1

Experimental 2nd subject y21 y22 y2n2
...

m1 th subject ym11 ym12 ym1nm1

1st subject ym1+1,1 ym1+1,2 ym1+1,nm1+1

Control 2nd subject ym1+2,1 ym1+2,2 ym1+2,nm1+2

...
m th subject ym1 ym2 ymnm
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Linear mixed model

Yi = Xiβ + Zibi + εi (1)

where

βg =

[
βg0
βg1

]
,βB =

[
βB0

βB1

]
,β =

[
βg

βB

]
=


βg0
βg1
βB0

βB1

 ,bi =

[
bi0
bi1

]

bi ∼ N(0, g) indep εi ∼ N(0,Ri )

Therefore,
Yi ∼ N(Xiβ,ZigZ′i + Ri )

3 / 38



Yi =

{
Xiβg + Zibi + εi child i is a girl
XiβB + Zibi + εi child i is a boy

where

Zi =


1 ti1
1 ti2
...

...
1 tini

 ,Xi =


δi δi ti1 (1− δi ) (1− δi )ti1
δi δi ti2 (1− δi ) (1− δi )ti2
...

...
...

...
δi δi tini (1− δi ) (1− δi )tini


with

δi =

{
1 girls
0 boys

4 / 38



Yi = Xiβ + Zibi + εi

I The parameters of the model are β and those in g and Ri .

I The bi are unknown random variables, while Zi is fixed and
known.

I The likelihood function is based on the marginal distribution

Yi ∼ N(Xiβ,ZigZ′i + Ri )

where responses Y1,Y2, · · · ,Ym for different individuals are
assumed independent.
——same form as the longitudinal models

Yi ∼ N(Xiβ,Σi )

—–where here Σi = ZigZ′i + Ri
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I Thus standard ML and REML can be used for inference on β,
whereas AIC/BIC may be used for selections of appropriate
covariance structures.
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We can also state model (1) as

Y = Xβ + Zb + ε (2)


Y1

Y2
...

Ym

 =


X1

X2
...

Xm

β+


Z1 0 0 · · · 0
0 Z2 0 · · · 0

0 0
. . .

. . .
...

0
. . .

. . .
. . . 0

0 · · · · · · 0 Zm




b1

b2
...

bm

+


ε1
ε2
...
εm


where E (ε) = 0, E (b) = 0 and

var(ε) =


R1 0 0 0
0 R2 0 0
...

...
. . .

...
0 0 0 Rm

 = R
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and

var(b) =


g 0 0 0
0 g 0 0
...

...
. . .

...
0 0 0 g

 = G

I Note that G and g are different.

I R and G are block diagonal which reflects assumptions that
b1,b2, · · · ,bm are mutually independent, so are
ε1, ε2, · · · , εm.

I As before, we also assume the bi s and εi s are independent
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Concisely, the linear mixed model for longitudinal data can be
written as

Y = Xβ + Zb + ε

with
b ∼ N(0,G) indep of ε ∼ N(0,R).

I

Y ∼ N(Xβ,V),

——where var(Y) = V = ZGZ′ + R
——-V is block-diagonal with ith diagonal block
var(Yi ) = ZigZ′i + Ri
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Model (1) includes many settings for special case

Yi = Xiβ + Zibi + εi

I the standard linear regression model, which excludes Zibi and
assumes that Ri = σ2Ini independent errors with constant
variance (same is true for standard ANOVA)

I longitudinal model from week 13 which also excludes Zibi

I the random coefficient model where Xiβ was Ziβ

I the split plot, randomized block and one-way random effects
model

when we assume E (bi ) = 0, we typically are thinking of bi as
subject specific deviations, which makes sense when the effects in
Zi are contained in Xi .
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One-way random effects model

Yij = µ+ αi + εij , i = 1, 2, · · · ,m, j = 1, · · · , ni (3)

Yi =


Yi1

Yi2

...
Yini

 , εi =


εi1
εi2
...
εini

 ,α =


α1

α2

...
αm

 ,Xi =


1
1
...
1


ni×1

I α ∼ N(0, σ2αIm)
ε ∼ N(0, σ2In)
α and ε independent

I Yi = Xiµ+ Ziαi + εi , where Zi = Xi
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β = µ,X =


X1

X2
...

Xm


mk×1

,Y =


Y1

Y2
...

Ym

 , ε =


ε1
ε2
...
εm

 ,

Z =



1 0 · · · 0
1 0 · · · 0
...
1 0 · · · 0
...
0 0 · · · 1
0 0 · · · 1
...
0 0 · · · 1


mk×m
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One way random effects model (3) can be written as

Y = Xβ + Zα + ε

where

I µ = β,α = b, Jni is an ni × 1 vector of 1s, g = σ2α and
Ri = σ2e Ini , Ini is an ni × 1 identity matrix

I which implies ZigZ′i + Ri = σ2αJni + σ2e Ini
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Best linear unbiased prediction (BLUPS)

The expected response for subject i conditional on bi is

E (Yi |bi ) = Xiβ + Zibi

Unconditional expectation, averaging over all subjects is

E (Yi ) = E {E (Yi |bi )}
= Xiβ + ZiE (bi ) = Xiβ

Given the ML or REML estiator of β, say β̂, we estimate the
unconditional (or pop averaged) mean with Xi β̂
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How do we estimate (actually predict) the subject specific
E (Yi |bi) = Xiβ + Zibi

I It is reasonable to think Xi β̂ + Zi b̂i for a suitable chosen b̂i .

I Statistical theory suggests that the best prediction for the
random variable bi based on Yi is E (bi |Yi ).
—– Under normality, this can be shown to equal

E (bi |Yi ) = gZ′iV
−1
i (Yi − Xiβ)

—–This follows because Yi |bi ∼ N(Xiβ + Zibi ,Ri ) and
bi ∼ N(0, g) implies (Yi ,bi ) has a multivariate normal
distribution. It is well known that bi |Yi is normal with

E (bi |Yi ) = E (bi ) + cov(bi ,Yi )var(Yi )
−1(Yi − E (Yi ))

= 0 + gZ′iV
−1
i (Yi − Xiβ)
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Here Vi = var(Yi ) and

cov(bi ,Yi ) = cov(bi ,Xiβ + Zibi + εi )

= cov(bi ,Zibi + εi )

= cov(bi ,Zibi ) + cov(bi , εi )

= cov(bi ,bi )Z′i
= gZ′i

So result follows.
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Best Prediction

E (bi |Yi ) = gZ′iV
−1
i (Yi − Xβ)

Replace unknown parameters g,Vi and β by MLES or REMLs
gives

b̂i = ĝZ′i V̂
−1
i (Yi − Xβ̂)

which is often called the empirical estimated BLUP (best unbiased
predictor).
Thus the subject specific trajectory Xiβ + Zibi is predicted via

Xi β̂ + Zi b̂i = Xi β̂ + Zi ĝZ′i V̂
−1
i (Yi − Xi β̂)

= (I− Zi ĝZ′i V̂
−1
i )Xi β̂ + Zi ĝZ′i V̂

−1
i Yi

= (I−Wi )Xi β̂ + WiYi
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If you consider Wi a “weight”, then our base prediction is a
weighted average of an individual’s response Yi and the estimated
mean response Xi β̂, averaged over all individuals with same design
matrix Xi as subject i .
Note that prediction in the one-way random effects ANOVA we
give before are special cases of the above results.
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Tests on variance component

Yij = β0 + β1tij + b0i + b1i tij + εij(
b0i
b1i

)
∼ N

(
0,

[
σ20 σ01
σ10 σ21

])
Suppose we wish to test

H0 : σ21 = 0 i.e.,b1i = 0 for all i .

In this case β1 is the slope of each individual’s regression line. This
test can be done informally using AIC/BIC (i.e., compare null
model to alternative model with arbitrary σ21), or using LR test

LR = −2log(L̂red/L̂full)

where L̂red and L̂full are the maximized log-likelihood for the
reduced and full models.
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Boundry correction

H0 specifies that σ21 lies on the boundary of possible value for σ21
(i.e., σ21 ≥ 0).

I The standard theory for LR tests doesn’t hold.

I One can show under H0,

LR ∼ 0.5χ2
1 + 0.5χ2

2

i.e., LR statistic has a null distribution that is a 50:50 mixture
of χ2

1 and χ2
2 distribution (rather than usual) χ2

1.
—— Result mixture holds since we are comparing 2 nested
models, one with 1 random effect b0i , the other with two b0i
and b1i .

I More generally if we are comparing nested models with q and
q + 1 correlated random-effects (which still differ by 1 random
effect), then LR ∼ 0.5χ2

q + 0.5χ2
q+1
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Time dependent covariance

I Mixed models allow for a variety of complications with
longitudinal data, for example
——dropout/missing
——covariates in fixed effects can either be static (constant
over time) such as baseline measurements or time dependent
such as time.

I IN some cases, the treatment (or group) one is assigned
changes with time. For example, you may be switched to
placebo group if you are having all adverse reactions to a
drug, or switched to a higher dose of a drug if given dose is
not effective. Some care is needed to ensure proper inferences
with these complications.
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Generalized estimating equations (GEEs) Liang and Zeger
(1986)

I Apply to non-normal data, shortage of joint distribution such
as multivariate probability distribution

I GEE approach bypasses the distribution problem by focusing
on modeling the mean function and correlation function only.

I An estimating equation is proposed for estimating the
regression effects and then appropriate statistical theory is
applied to generate standard errors and procedures for
inference.
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Standard longitudinal model for normal responses.

The standard model for longitudinal data can be written as

Y = Xβ + ε

with ε ∼ N(0,Σ).

I

Y ∼ N(Xβ,Σ),

——where Σ is block-diagonal with ith diagonal block Σi

——usually write Σ = σ2R, var(yij) = σ2, cov(yi ) = Σi ,
Σi = σ2Ri

I Equivalently, yi ∼ N(Xiβ, σ
2Ri )
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I

∂L

∂β
=

1

σ2
X′R′(y − µ) =

1

σ2

k∑
j=1

X′jR
−1
j (yj − µj) = 0 (4)

β̂ = (X′R−1X)−1X′R−1y

=
k∑

j=1

(X′jR
−1
j Xj)

−1X′jR
−1
j yj (5)

I MLEs of σ2 and R can be computed independently of β,
plugging these into (5) gives the overall MLE of β.
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Generalized linear models

yi
indep∼ Bin(ni , µi )

A glm has the following form with some link function g(·)
g(µi ) = ηi = x′iβ

g(µi ) =


log

(
µi

1− µi

)
, logit link: logistic regression

Φ−1(µi ), Probit link: probit regression
log {−log(1− µi )} Complementary log-log link

µi = g−1(ηi ) =


exp(ηi )/(1 + exp(ηi )), logit link

Φ(ηi ), Probit link
1− exp {−exp(ηi )} Complementary log-log
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General longitudinal model

In a general case, y ∼ N(Xβ,Σ)
β̂ = (X′Σ̂−1X)−1X′Σ̂−1y is the MLE of β and Σ̂ is the MLE of
Σ.

I Key to generalizing glms to longitudinal responses is to
modify equation (4) to accommodate g(µij) = X′ijβ instead of
µij = X′ijβ for some link function g(·).

I If the responses within an individual were independent and
satisfied an EF model, this would be a glm and the score
function for β based solely on yi would be

∂li
∂β

= X′iwi∆i (yi − µi )

∆i = diag(g ′(µij))

wii = diag
wij

φV (µij)g ′(µi )2

wij , weight for jth obsn in yi , i.e., yij
26 / 38



I Assuming responses between individuals are independent, the score
function based on the sample is

∂L

∂β
=

k∑
j=1

∂Lj
∂β

=
k∑

j=1

X′jwj∆j(yj − µj)

I Recall the score function under normality,

0 =
1

σ2

k∑
j=1

X′jR
−1
j (yj − µj)

Rj = Inj , corresponds to the case where responses within an
individual are independent.

I Idea behind GEEs for glms is to take the score function when
responses within an individual are independent.
0 =

∑k
j=1 X′jwj∆j(yj − µj) and replace wj∆j by a matrix that

captures the within individual correlation structure, but reduces to
wj∆j if responses within an individual are independent.
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SAS

wi∆i = diag

(
1

φ
·

wij

V (µij)g ′(µi )2
· g ′(µij)

)
= diag

(
wij

φV (µij)
· 1

g ′(µij)

)
= diag

(
1

g ′(µij)

)
diag

(
wij

φV (µij)

)
= ∆i

−1V−1i
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Recall for a glm that

var(yij) =
φV (µij)

wij

φ is the dispersion parameter, so if responses within an individual were
independent, then var(yi ) = Vi and the score function for β for a glm
when responses within an individual are independent reduces to

∂L

∂β
=

k∑
j=1

X′jwj∆j(yj − µj)

=
k∑

j=1

X′j∆
−1
j V−1j (yj − µj)

=
k∑

j=1

D′jV
−1
j (yj − µj) = 0

Dj depends on Xj and link function, but not the variance function.
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GEE extension

∂L

∂β
=

k∑
j=1

D′jV
−1
j (yj − µj) = 0 (6)

GEE extension replaces Vi as defined above by a covariance matrix
for yi that reflects the correlation structure for a longitudinal
response vector.

Var(yi ) = φA
1
2
i W∗

i
− 1

2 Ri (α)W∗
i
− 1

2 A
1
2
i

where Ai = diag(V (µij)), w∗i = diag(wij), so that

A0.5
i = diag

(√
V (µij)

)
(w∗i )−0.5 = diag

(
1
√

wij

)
A0.5
i (w∗i )−0.5 = diag

(√
V (µij)

wij

)
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Ri (α) = ni ∗ ni correlation matrix for yi which depends on a set α
of correlation parameters. If responses within an individual are
independent, Ri (α) = Ini and thus

Vi = φA0.5
i w∗i

−0.5w∗i
−0.5A0.5

i

= diag

(
φV (µij)

wij

)
as before.

31 / 38



Several comments

Consider equation (6),

∂L

∂β
=

k∑
j=1

D′jV
−1
j (yj − µj) = 0

Dj = Dj(β),Vj = Vj(α,β, φ),µj = µj(β)

I for normal response and Vi = σ2Ri (α), the GEE of β is MLE
when σ2 and α are estimated by ML (and REML if σ2 and α
are estimated by REML)

I GEE estimators are MLEs when Ri (α) = Ini and responses are
from an EF distribution

I Scale parameter φ is optional (not required for some models)
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Choice of Ri(α)

I Independent Ri (α) = Ini
I Exchangeable

Ri (α) =


1 α α α
α 1 α α

α α
. . . α

· · · · · · · · · 1


I Unstructured, corr(yij , yik) = αjk

I AR(1), corr(yij , yik) = α|k−j |
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Estimators

Need to estimate α to compute the GEE, using exchangeable
Ri (α) as an example.
yi = (yi1, yi2, · · · , yini )′, corr(yi ) = Ri (α), Ri (α) is exchangeable.

I scaled Pearson residuals

Γij =
yij − µij√
var(yij)

=
yij − µij√
φV (µij)/wij

I α = ρjk = corr(yij , yik) = E (Γij , Γik), j 6= k
——if the parameters in Γij were known, then each pair
Γij , Γik would be an unbiased estimator of α.
—– There are ni (ni − 1)/2 such pairs for individual i . Adding
up all pairs over all subjects and divided by the total number
of pairs N∗ = 0.5

∑m
i=1 ni (ni − 1) gives an estimate of α

I α̂ =
1

N∗

m∑
i=1

ni∑
j ,k=1

ΓijΓik
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I SAS unscaled residuals

eij =
yij − µij√
V (µij)/wij

I Γij = eij/
√
φ, so

α̂ =
1

N∗φ

m∑
i=1

∑
j<k

eijeik (7)

Note that
α̂ depends on φ and β (through µij), α̂(φ,β)
E (e2ij) = var(eij) = φ, var(Γij) = 1 so var(eij) = φ

φ̂ =
1

N

m∑
i=1

ni∑
j=1

e2ij ,N =
m∑
i=1

ni (8)

eij depends on β, φ̂ is a function of β, say φ̂(β).
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Fitting algorithm

1. Get an initial estimate of β, say β̂0 by solving equation (6),
assuming independence structure (i.e., Ri (α) = Ini ) doesn’t
require estimates of φ or α.

2. Compute µ̂ij = µij(β̂0) and êij =
yij − µ̂ij√
V (µ̂ij)/wij

and plug into

(8) to get φ̂0 = φ̂(β̂i ) and into (7) with φ̂0 to get
α̂0 = α̂(φ̂0, β̂0)

3. Compute Vi = Vi (α̂0, β̂0, φ̂0) and Di = Di (β̂0) and plug into

(6). Solve GEE score function (6) for β̂, say β̂
(1)

4. Repeat 2 and 3 with β̂
(1)

, iterate until (hopefully) convergence

5. Final estimates β̂, α̂ and φ̂

Same idea applied to other correlation structures.
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The working correlation structure

It is difficult to propose a suitable correlation structure Ri (α) for
non-normal longitudinal data. GEE approach has some good
properties to deal with the problem

I β is consistently estimated even if Ri (α) is uncorrectly
specified

I Standard errors and inference procedure are available to
account for Ri (α) possibly being misspecified

I In standard ML based inference for normally distributed
repeated measures, the ML estimate of β is also consistent
even Ri (α) is misspecified, but the ML-based standard errors
and tests are not robust to misspecification of Ri (α). This
makes GEE-based inference attractive even for normal
response.

I Ri (α) is not necessarily taken seriously, it is called “working
correlation structure”. But estimators with less variability will
be produced using Ri (α) that mimic the “true” correlation.
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Distribution of GEE estimators β̂

Under suitable regularity conditions, β̂ is approximately normally
distributed

β̂ ∼ N(β,Σ)

given and estimator Σ̂ of Σ, we can construct CI, tests and
inferences.
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