Stat 579: Generalized Linear Models and
Extensions

Linear Mixed Models for Longitudinal Data

Yan Lu
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Data structure

tl 12 tn;
1st subject yu Y12 Yim
Experimental  2nd subject Y21 Y22 Y2n,
my th subject Ym1 Ymy2 Ym1nm
1st subject Ym+1,1  Ym+1,2 Ymi+1,nm; 11
Control 2nd subject  ym, 421 Ym+422 Ymi42,nm, 12
m th subject Ym1 Ym2 Ymnm
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Linear mixed model

Y, =X;8+Zb; +€; (1)
where
Beo
te= oo o= 5 = B | o]
BB1
b; ~ N(0,g) indep € ~ N(0, R;)
Therefore,

Y~ N(X;3,Z;gZ; + R))
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Y. X,-,@g +Z;b; +¢; childiis a girl
" | XiBg+Zib;+¢€; childiisa boy

where
1 ts 5,‘ (5,'t,'1 (1 — (5,) (1 — 5,‘)1‘,‘1
e |} e | 4 4 0o (i
1 tin, o; (5,’1‘,‘,,[. (]. — (5,) (1 — (5,‘)!‘,‘,7'.
with
5 — 1 girls
"1 0 boys
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Yi=XiB+Zb,+e€

» The parameters of the model are 8 and those in g and R;.

» The b; are unknown random variables, while Z; is fixed and
known.

» The likelihood function is based on the marginal distribution

Y~ N(X;8,Z,8Z; + R))

where responses Y1,Y5, - -, Y, for different individuals are
assumed independent.
same form as the longitudinal models

Y~ N(X;B,X;)
—where here ; = Z;gZ! + R;
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» Thus standard ML and REML can be used for inference on 3,
whereas AIC/BIC may be used for selections of appropriate
covariance structures.
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We can also state model (1) as

Y=XB+2Zb+e€ (2)
[z, 0 0 --- 0 |
Y1 X1 0 Z, 0 --- 0 b: €1
Y2 X2 . i . b2 €2
: _ : B+ 0 0 .. - : : + :
Ym xm 0 0 bm €m
0 o 0 Zpy |

where E(e) =0, E(b) =0 and
R 0 0 O

0 R, 0 O
var(€) = ) o ) =R
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and

g 0 0 0
0g 0 0

var(by=| . . | =G
00 0 g

> Note that G and g are different.

» R and G are block diagonal which reflects assumptions that
by,by, - , b, are mutually independent, so are
€1,€2, - ,€m.

» As before, we also assume the b;s and ¢;s are independent

8/38



Concisely, the linear mixed model for longitudinal data can be

written as
Y=XB+2Zb+e€
with
b ~ N(0,G) indep of € ~ N(0,R).
>

Y ~ N(XB,V),

—where var(Y) =V =2ZGZ + R
V is block-diagonal with ith diagonal block
var(Y,-) = Z,-ng- + R;
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Model (1) includes many settings for special case

Y, =XiB+Zb; +¢;

> the standard linear regression model, which excludes Z;b; and
assumes that R; = azl,,,. independent errors with constant
variance (same is true for standard ANOVA)

> longitudinal model from week 13 which also excludes Z;b;
» the random coefficient model where X;3 was Z;(3

> the split plot, randomized block and one-way random effects
model

when we assume E(b;) = 0, we typically are thinking of b; as
subject specific deviations, which makes sense when the effects in
Z; are contained in X;.
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One-way random effects model

\/ij:fjl+ai+€ij7i:1327"'amaj:]-a""ni (3)
Yi €i1 ai 1
Yi €2 oo 1
YI = , €f = X = 7Xi - .
\/in,- €in; Qm 1 nix1

» o~ N(0,021,)
e ~ N(0,021,)
« and € independent
> Y =Xip+ Zja; + €;, where Z; = X;
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B=mX=

Y1 €1
Y> €2

: €= ’
Ym €m

mkxm
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One way random effects model (3) can be written as
Y=X8+Za+e

where

» u=p,aa=Db, J, isan n; x 1 vector of 1s, g = 02 and
R; = agl,,,., I, is an n; x 1 identity matrix
» which implies Z;gZ’ + R; = 21, + o2l,,
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Best linear unbiased prediction (BLUPS)

The expected response for subject i conditional on b; is
E(Yilbi) = X;B+Zb;
Unconditional expectation, averaging over all subjects is

E(Y)) E{E(Yilbj)}

= XiB+ZE(b)

XiB

Given the ML or REML estiator of 3, say ,@ we estimate the
unconditional (or pop averaged) mean with X;3
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How do we estimate (actually predict) the subject specific

E(Yib;) = X;B + Z;b,

» |t is reasonable to think X,-,@ + Z,'B,- for a suitable chosen B,-.

» Statistical theory suggests that the best prediction for the
random variable b; based on Y; is E(b;|Y;).
—— Under normality, this can be shown to equal

E(biY;) =gZV; (Y — X;3)
—This follows because Y;|b; ~ N(X;3 + Z;b;,R;) and
b; ~ N(0,g) implies (Y;, b;) has a multivariate normal
distribution. It is well known that b;|Y; is normal with
E(b;|Y;) = E(b;) + cov(b;, Y;)var(Y;)"1(Y; — E(Y)))
=0-+gZV; ' (Y; — X; )
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Here V; = var(Y;) and

cov(b;,Y;)

So result follows.

cov(bi, X;B + Z;b; +€))
cov(bj, Z;b; + €;)

cov(bj, Z;b;) + cov(bj, €;)
cov(b;, b;)Z;

gZ;

16 /38



Best Prediction

E(bi|Y;) = gZV; (Yi — XB)

Replace unknown parameters g, V; and 3 by MLES or REMLs

gives
b, = 8Z/V; (Y, - Xp)
which is often called the empirical estimated BLUP (best unbiased
predictor).
Thus the subject specific trajectory X;3 + Z;b; is predicted via
XiB+Zib; = XiB+ZgZN (Y —X;B)
= (1-ZgZNV; X8+ ZgZNV; Y,
= (1-W)X;B3+ WY,
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If you consider W; a “weight", then our base prediction is a
weighted average of an individual's response Y; and the estimated
mean response X;B, averaged over all individuals with same design
matrix X; as subject /.

Note that prediction in the one-way random effects ANOVA we
give before are special cases of the above results.
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Tests on variance component

Yij = Bo + Batij + boi + biitij + €

bo; o2 oo ])
") ~N{O, 0
< by > < [ o10 03
Suppose we wish to test

Ho : af =0i.e.,b;; =0 for all /.

In this case [3; is the slope of each individual's regression line. This
test can be done informally using AIC/BIC (i.e., compare null
model to alternative model with arbitrary 02), or using LR test

LR = —2log(L e/ Laun)

where Z,ed and qu” are the maximized log-likelihood for the
reduced and full models.
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Boundry correction

Ho specifies that o lies on the boundary of possible value for o2
(i.e., 02 > 0).
» The standard theory for LR tests doesn't hold.

» One can show under Hp,
LR ~ 0.5x% +0.5x3

i.e., LR statistic has a null distribution that is a 50:50 mixture
of x2 and x3 distribution (rather than usual) x3.

—— Result mixture holds since we are comparing 2 nested
models, one with 1 random effect by;, the other with two bg;
and b1,'.

» More generally if we are comparing nested models with g and
q + 1 correlated random-effects (which still differ by 1 random
effect), then LR ~ 0.5x2 + 0.5x7,
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Time dependent covariance

» Mixed models allow for a variety of complications with
longitudinal data, for example

dropout/missing

———covariates in fixed effects can either be static (constant

over time) such as baseline measurements or time dependent

such as time.

» IN some cases, the treatment (or group) one is assigned
changes with time. For example, you may be switched to
placebo group if you are having all adverse reactions to a
drug, or switched to a higher dose of a drug if given dose is
not effective. Some care is needed to ensure proper inferences
with these complications.
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Generalized estimating equations (GEEs) Liang and Zeger

(1986)

> Apply to non-normal data, shortage of joint distribution such
as multivariate probability distribution

» GEE approach bypasses the distribution problem by focusing
on modeling the mean function and correlation function only.

» An estimating equation is proposed for estimating the
regression effects and then appropriate statistical theory is
applied to generate standard errors and procedures for
inference.
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Standard longitudinal model for normal responses.

The standard model for longitudinal data can be written as

Y=X3+¢€

with € ~ N(0, X).
| 4

Y ~ N(XB, %),

——where X is block-diagonal with ith diagonal block X;
usually write X = 0°R, var(y;) = 02, cov(y;) = X,
Y =0°R;

» Equivalently, y; ~ N(X;3,0°R;)
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>
oL 1
%:;XIR — ) QZ ):0 (4)
B _ (XIR—lx)—lle—ly
k
= Y _(X{R'X)TIXIR y; (5)
j=1

» MLEs of 2 and R can be computed independently of 3,
plugging these into (5) gives the overall MLE of 3.
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Generalized linear models

indep .
yi ~" Bin(nj, pi;)
A glm has the following form with some link function g(-)
g(pi) =ni =x;8

log < Hi > , logit link: logistic regression
g(pi) = L
! &1 (y), Probit link: probit regression
log {—log(1 — p;)}  Complementary log-log link
exp(n;)/(1 + exp(ni)), logit link
pi=g ()= ®(n;), Probit link

1 —exp{—exp(ni)}  Complementary log-log
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General longitudinal model

In a general case, y ~ N(X3,X)
B = (X'E1X)"1X'E 1y is the MLE of 3 and ¥ is the MLE of
T

> Key to generalizing glms to longitudinal responses is to
modify equation (4) to accommodate g(u;) = X};3 instead of
pij = XJ;3 for some link function g(-).

> If the responses within an individual were independent and
satisfied an EF model, this would be a glm and the score
function for B based solely on y; would be

ol
a3 = Xjw;Ai(y; — p;)
wij

oV (pij)g’ (wi)?
wjj, weight for jth obsn iny;, i.e., yj;

w;; = diag
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> Assuming responses between individuals are independent, the score
function based on the sample is

] B TP
=D e = Xwil(y - )
o3 = o3 = 'j j

Recall the score function under normality,

k
1 _
0=—> > XIRH(y; — )
=1

R; =1, corresponds to the case where responses within an
individual are independent.

Idea behind GEEs for glms is to take the score function when
responses within an individual are independent.

0= Zj.;l Xiw;Aj(y; — p;) and replace w;A; by a matrix that
captures the within individual correlation structure, but reduces to
w;A; if responses within an individual are independent.
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w;A;

di L )dia< Wiy >
B\ () B\ oV ()
1
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Recall for a glm that
PV (i)

Wij

var(y;) =

¢ is the dispersion parameter, so if responses within an individual were
independent, then var(y;) = V; and the score function for 3 for a glm
when responses within an individual are independent reduces to

oL o,
B > Xiw,A(y; — ;)
j=1
k
= ) XAV Ny - )
j=1

k
= D DV (y—m) =0
=1

D; depends on X; and link function, but not the variance function.
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oL . Iyy—1
% = Z Djvj (YJ - Nj) =0 (6)
j=1

GEE extension replaces V; as defined above by a covariance matrix
for y; that reflects the correlation structure for a longitudinal
response vector.

1 1
Var(y:) = $AZW! 2R ()W} 2 A?

where A; = diag(V/(p;;)), w; = diag(wj;), so that
A%% = diag ( V(u,-j))

1
w —-0.5 _ i
(w7) dag(\/vTU)
A%S(wr)~0% = diag ( VWU))

wij
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R;(a) = nj % n; correlation matrix for y; which depends on a set a
of correlation parameters. If responses within an individual are
independent, Rj(a) = I, and thus

0.5 —0.5 x—0.5 40.5
\/,' = ¢AI Wi* w; Ai

g (2100

wij

as before.
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Several comments

Consider equation (6),
k
oL
= D'V (y: — u.) =
6,6 JZI 7 (y_l l‘l’j) 0

D; = D;(8),V; = Vj(e, B, 6), u; = p;(8)

» for normal response and V; = 0°R;(a), the GEE of 3 is MLE
when 02 and « are estimated by ML (and REML if 02 and o
are estimated by REML)

» GEE estimators are MLEs when R;(a) = |, and responses are
from an EF distribution

» Scale parameter ¢ is optional (not required for some models)

32/38



Choice of R;(«)

v

Independent R;j(a) = 1,

» Exchangeable
1 o a «
a 1 o «
Ri(a) =
a o« a
1

v

Unstructured, corr(yij, Yik) = ok
AR(1), corr(yy, yi) = alk=Jl

v
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Need to estimate o to compute the GEE, using exchangeable
Ri(a) as an example.
yi = (Yi1, Yios -+, ¥in;)', corr(yi) = Ri(a), Rj(a) is exchangeable.
> scaled Pearson residuals
Yi — M Y Ky

M= =
Vvar(yy) v/ oV(uy)/wy

> a = pj = corr(yij, yi) = E(Fij, Tix), j # k
——if the parameters in I'j; were known, then each pair
I'ij, [k would be an unbiased estimator of a.
—— There are n;(nj — 1)/2 such pairs for individual /. Adding
up all pairs over all subjects and divided by the total number
of pairs N* = 05>, n;j(n; — 1) gives an estimate of «

1 m
> OALZWZ Z F,-J-F,-k

i=1 j,k=1

34/38



» SAS unscaled residuals
Y K
6 = —F————
V(ij)/ wij

> T =ej/V¢, so

&= N:}k(ﬁ Z Z e,-je,-k (7)

i=1 j<k

Note that
m & depends on ¢ and 3 (through p;;), &(¢, 3)
m E(eg-) = var(e;) = ¢, var(T;) = 1 so var(e;) = ¢

n; m

b= dN=Yn @
i=1

j=1 i=1

e;j depends on B, ¢ is a function of 3, say $(03).
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Fitting algorithm

1. Get an initial estimate of 3, say Bo by solving equation (6),
assuming independence structure (i.e., Rj(a) = l,;) doesn’t
require estimates of ¢ or a.

Yij — B
b= NI,

(8) to get ¢g = ¢(Bi) and into (7) with ¢ to get

&g = &(do, Bo)

3. Compute V; = \/;(dg,ﬁo,qgo) and D; = D,-(,@O) and plug into
(6). Solve GEE score function (6) for 3, say B(l)

2. Compute fij; = ,u,y(,@o) and §; = and plug into

4. Repeat 2 and 3 with B(l), iterate until (hopefully) convergence

5. Final estimates B,d and ngS

Same idea applied to other correlation structures.
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The working correlation structure

It is difficult to propose a suitable correlation structure R;(a) for
non-normal longitudinal data. GEE approach has some good
properties to deal with the problem
» (3 is consistently estimated even if R;(c) is uncorrectly
specified
» Standard errors and inference procedure are available to
account for Rj(a) possibly being misspecified
» In standard ML based inference for normally distributed
repeated measures, the ML estimate of 3 is also consistent
even R;(a) is misspecified, but the ML-based standard errors
and tests are not robust to misspecification of R;(«). This
makes GEE-based inference attractive even for normal
response.
» R;(a) is not necessarily taken seriously, it is called “working
correlation structure”. But estimators with less variability will
be produced using R;(a) that mimic the "true” correlation.
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Distribution of GEE estimators 3

Under suitable regularity conditions, 3 is approximately normally

distributed

B~ N(B,X)
given and estimator ¥ of X, we can construct Cl, tests and
inferences.
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