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ESTIMATION IN DUAL FRAME SURVEYS
WITH COMPLEX DESIGNS

J.N.K. Rao and C.J. Skinner!

ABSTRACT
Dual frame surveys with at least one of the samples selected by a complex design are studied. A pseudo maximum
likelihood estimator of a population total is proposed and its asymptotic properties are studied. A practical advantage
of the proposed estimator is that it uses the same weights for all the variables, unlike some other estimators proposed
in the literature. Alternative “single frame” estimators are also studied.
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RESUME
Les auteurs étudient les enquétes a double base de sondage pour lesquelles on préléve au moins un échantillon au
moyen d’un plan d’échantillonnage complexe. Ils proposent un pseudo-estimateur du maximum de vraisemblance pour
une population et en étudient les propriétés asymptotiques. Un avantage pratique de I’estimateur est qu’il applique
les mémes poids a toutes les variables, 2 I'inverse de quelques autres estimateurs qu’on retrouve dans la

documentation. On examine aussi d'autres estimateurs a “base de sondage unique”.

MOTS CLES:
a base de sondage unique.

1. INTRODUCTION

In a dual frame survey, samples are drawn
independently from two frames A and B. These frames
may overlap and are assumed together to cover the
population U of interest so that U = A U B. The data
obtained from the two samples are combined to
produce estimates of population totals or means.

Such surveys arise in a variety of settings. In a
common example, one frame is complete, say A = U,
but is expensive to sample, whereas the other frame B
is incomplete but cheap to sample. Hartley (1962,
1974) discusses the advantages of sampling both
frames in these circumstances to arrive at more effi-
cient estimators compared to sampling from the
complete frame only. Lepkowski and Groves (1986)
describe an application where A is an address frame for
which a sample of addresses is visited, and B is a
telephone frame for which a sample of numbers is
telephoned at lesser expense. Another example arises
- with rare populations. Here a screening sample from a
general population address frame is combined with a
sample from a much smaller list of individuals which
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may be incomplete but is thought likely to contain a
high proportion of individuals in the rare population
and is thus cheaper to sample (Kalton and Anderson
1986). Further examples are presented by Hartley
(1974), Bankier (1986) and others.

For the case of simple random sampling from both
frames, dual frame estimators of population totals and
means have been proposed by Hartley (1962), Lund
(1968), and Fuller and Burmeister (1972). Bankier
(1986), and Skinner (1991) have also considered
stratified random sampling. Only Fuller and Burmeister
(1972) and Hartley (1974) seem to have considered the
general case when at least one of the samples is
selected by a complex design involving, for example,
multi-stage sampling. Their estimators both consist of
weighted combinations of domain estimates, but have
the property that the weights depend on the variable of
interest, y. This implies a need to recompute weights
for every variable which will usually be operationally
inconvenient in practice for statistical agencies
conducting surveys with large numbers of variables.
More importantly, such weights do not ensure
consistency of figures when aggregated over variables,
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unlike a single set of weights computed and used for all
variables. Our primary aim in this article is to consider
alternative estimators under complex designs where the
same weights are used for all variables. Specifically,
we propose a class of “pseudo” maximum likelihood
(ML) estimators which have certain optimality
properties under simple random sampling from both
frames and which are likely to have reasonable
efficiency under more complex designs used in
practice. Properties of the pseudo ML estimator are
studied. A consistent estimator of variance of the
pseudo ML estimator is also given. Some alternative
single frame estimators, based on the design induced
by the two separate designs, are considered. Finally,
results of a limited simulation study on the efficiency
of the pseudo ML estimator are reported.

2. ESTIMATION PROBLEM

Following the classical notation of Hartley (1962),
let a=A N B¢, b=A° N B and ab=A N B, where ¢
denotes complement of a set. Thus, if NN N 5N,
N, and N, denote the sizes of the sets U,A,B,a,b
and ab respectively, then N=N +N,+N_ N ,=N_+N _,
and Ng=N +N ,
with the population unit i and define the totals
Y=X,y,.Y,=¥,y.Y,=%,y, and Yo = L,
that

. Further, let y, be a value associated

» ¥;- Note

Y:Ya+Yb+Yah' (1)

Similarly, define the means u =Y/N,u =Y /I N_,
My =Y, /N, and p, =Y, /
will be taken here as the parameter of primary interest.

N, . The population total Y

Let s, and s, be samples drawn independently
from A and B according to specified probability
sampling designs p’(s,) and p’(s;) respectively.
Suppose that y, is observed for each unit in s,and s,.
The estimation problem then is to use these data to
construct a suitable estimator ¥ of Y and an estimator
of its variance. This problem depends importantly on
what is known about N, , Ny and N _,: Case 1 with
N,, Ngand N, known; Case 2 with N, , Ny known
but N, unknown; Case 3 with N, , N; and N,
unknown. Case 1 may arise if frames A and B are

available as lists of known length and if the overlap
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size N,, can either be determined from these lists or is
known; for example if frame A is complete then
N, =Ng. Case2 may arise if again A and B are lists of
known length but reliable determination of overlap size
is not possible because of practical difficulties in
matching. Case 3 may arise if, for example, both A and
B consist of clusters and lists are only available of
clusters with measures of size. We focus on Case 2 in
this article, but refer the reader to Skinner and Rao
(1996) for cases 1 and 3.

3. ESTIMATORS OF HARTLEY AND
FULLER AND BURMEISTER

SmceN Nab’Y Y

teristics of subpopulation A and since s, is drawn from

oM, and u - are all charac-

A by a conventional sampling design, standard

estimatorsN Nab,Y v/

data from s, may be employed.

b,ya and ,uab based on the

For example the
N Z w,

i

b= wY Ewa E/wy,yal;/N

/ ubA/

and yuh—Y /Nab, where 5,5, Na .55 =5,Nab and
w/=N, T,/ ZSA m,,; are the design weights based on

following estimators may be used:

the inclusion probabilities 7, =Pr(i € s,). Analogous
estimators based on s; drawn from subpopulation B

are denoted by 1\7 " =X w,”, Na/,/, = Es// w”,
511 1" A// %

Y?/ = Exb//wi ', Z // W y /J //: /N and
Hap = Y, ab,whetesb= Nb,s, = s, Nab,

=N nBIZ 11:13,l and my, = Pr(i € sB) A conse-

quence of these deﬁnitions is that N +N =N,,

Nb Nab Ng,0< Nab < N,and O < Nab < NB.

Using identity (1), Hartley (1974) proposed
V=Y ¥, B, +(1-pY,,

as an estimator of Y, where fis chosen to minimize
var(Yp).
unknown and will need to be estimated from the

Typically the optimal value of £ will be

sample data. As a consequence, the resulting
estimator, YH, will not be a simple linear combination

of y values with weights the same for all y variables.



Fuller and Burmeister (1972) proposed

Y

FB

‘.Y *Y *151 ab+(1 151 b :52(

as an estimator of Y, where f, and £, are chosen to

minimize var( YFB) .

estimated values of B, and f3,, the resulting estimator,
Yep
values.

Again, on substitution of

, will not be a simple weighted combination of y

4. PSEUDO MAXIMUM LIKELIHOOD
ESTIMATION

To motivate an alternative estimator that uses a
single set of weights for all y variables, we first

consider the special case when both s, and s, are

B

selected by simple random sampling. Let n, and ng

A
and s, respectively and again
assume NA and NB are known. In this case, Fuller and

Burmeister (1972) proposed

be the sizes of s A

~

A A1 - ~11
Ysrs = (NA _Nab,srs) Hy s (NB ﬁNab,srx) Hp srs

~

+N

ab,srs

(2)

IJah,srs ?

where ,uam = Z y/nu,,ubm =X vy /n,,

I

yah,_\rs (nab Hab srs ¥ Mgy l‘lab srs ) / (nah + nab)

- A1
with pab srs

and pah srs

/
and n_,n ,n ab, n,, are the sizes of s_,s,,s ah and s ,,

E y/nab, E// y/nab,
respectively. Further, ignoring finite population cor-

rections, Nab o5 18 the smallest root of the quadratic

equation
(n,*ng)x?~(n,Ny+nyN,+ nlyN, +n), N )x 5
(g +nu/i/1)NA Ny =0.
Fuller and Burmeister (1972) show that N ab.srs

may be viewed as a maximum likelihood (ML)
estimator of N, , where the score equation is given by
(3). Moreover, Skinner (1991) provides an
interpretation of Y . as an ML estimator of Y, provided
the data on y are reduced to the totals of y over the sets
$,95,8 b and sab Subject to this data reduction, Y
is therefore an asymptotically efficient estimator of Y
under simple random sampling.
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In the case of complex designs, Ym cannot, of
course, be directly applied since it will in general be
design-inconsistent for Y. Our idea is to modify Ym to
achieve design-consistency under complex designs,
while retaining the property of Y ~that it is a linear
weighted combination of the y. ThlS idea 1s analogous
to the notion of pseudo ML estimation in which a ML
estimator under simple random sampling is modified to
achieve consistent estimation under complex designs.
The main advantages of a pseudo ML estimator are that
it is design-consistent and typically has a simple form.
Its main potential disadvantage is that it may not be
asymptotically efficient although it may be hoped that
any loss of efficiency will tend to be small in practice.

In order to obtam the pseudo ML estlmator first

define N ,, and Nab ors DY nab (n,/N, N ub.srs ANd
a/h (nB /N )N ;m respectively, where n, and n,

are now arbltrary constants to be specified. Next
1 ~/
rePlace each of the estlmators Nah srs9 NV srsoHab srs>
Hap m,,ua s and ,ub ors 1N (2) by the corresponding
estimators for complex designs given in Section 3.

This gives our pseudo ML estimator of Y as

Your =(N, NbPML)I‘a 4)
+(Ny NbPML)'ub Nab,PML'uab’
where
- Ny wt ar Bpgoay sy - Rg ~u
My =Nty + — N,y 1, / N Nb
a AN, a N, NA NB a

Further, Nab' pye. 18 the smallest root of the quadratic
equation

px-gx+r=0, &)

where p n +n3,q n, N, +ng N +n, N p TN Nb and

r=n, N o Np +n N N Note that g2 -4pr=(n,N
~ngN,-n,N! +n Nb)2+4nAnB(NA—Na/b)(NB~Nu/;),

so the roots of (5) are always real, noting that

Na/h < N, and Na N Hence, Nh ML is well-
defined.

5. ASYMPTOTIC PROPERTIES OF
ESTIMATORS

We now present some asymptotlc properties of the

estimators Y Y and YPML We refer the reader to

Skinner and Rao (1996) for proofs and further details.



5.1 Asymptotic Variances

The estimators Y, YF and YPML are all design-
consistent for Y. Further, if we choose optimal values
B and B, that minimize the asymptotic variance of
Y,p. then we get

avar(YPML) > avar(Y B, om)

where avar denotes asymptotic variance. Similarly, we
have

avar(Y, )>avar( 8. m)
if one chooses optimal values £, and S, for Y and
optimal value § for Y,.. However, neither YH(UF,)
Y pyy. 18 necessarily more efficient than the other, in

general.

5.2 Choice of n, and n,

The PML eslimator Y sy » depends on n, and ng
only via the ratio n,/n,. If n Alng is chosen to
minimize avar(¥ PML) then the weights will depend on
¥, as in the case of YFB opt” To avoid this problem, we
choose n, /ng to minimize avar(Nh pur)- Skinner
and Rao ( 1996) have shown that this choice of n Alng
corresponds to taking (n,,n,) as (ﬁA/d/,ﬁB/d”),
where (71, ,7;) denote the actual sizes of (s, sB) and
d’,d" are the desxgn effects of N/ ab, and N pr 1€,
d’=avar(N b)/avarm(N b) and d”=avar(N b)/avarm(N h)
where avar_ denotes asymptotic variance under
simple random sampling. In practice we replace d’
and 4" by consrstent estimators d' and d” or by
values d' and d” available from past surveys. If
d’=d", then the simple choice (ny,ng)=(i,,fg)
gives the ‘optimal ratio’ n, / n,

We denote the estimators of Y and N based on
the above ‘optimal ratio’ n, / ng as YPML o and
Nab pML.op TESPECtively. It can be shown that the
optimal Fuller-Burmeister estimator of N, has the
same asymptotic variance as N b PML.apt-

If d’ and d” are available, then we can also obtain

an alternative simpler estimator of N, as
N -GN +(1-N"
ab,PML,opl"¢ ab +( ¢) ab?

where qs n N///(n +n N ) with n, =i, /d’ and

ng=ng/ 4" This estimator is asymptotically equivalent
to Nab pmL.op- W denote the resulting estimator of Y
as YPML,opt
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5.3 Efficiency of YI,MI opt

In Section 5.1 we noted that avar( ML)>
avar( 8. (p,) for any choice of (n,,n,) in ) g
Hence, YPML never has smal}er asymptotic variance
than the optimal version of Y., We also know that
under simple random sampling YPML opr hAs an
interpretation as a maximum likelihood estimator and
hence may be expected to be asymptotically efficient.
We now provide sufficient conditions for general
designs under which ¥ PuL.op NAS the same asymptotic
variance as ¥ FBopt”. These condmons depend on the
design effects of /1 o and ,u b which are defined in
analogy with d’ and d” as d = avar( #ab)/avafs,s(ﬂab)
and d =avar(gy,) /avarsrs(,uab)

We also deﬁne 1ol

ls Ay =Wty N, IN)T and
flg= (p prHap N /N)T with asymptotic covariance
matrices X, and 2,. The following theorem gives
sufficient condmons for avar(Y,,,, opr) avar( B, opt)

Theorem If Al: £, and Z, , are both diagonal and
A2 d, /d =d’Id” then avar( pute.opr)=avAr(Ypg ).

Conditions A1l and A2 clearly hold under simple
random sampling since d'=d "= d d -1 and z,
and X, are both diagonal. For general sampling
designs either stratification or cluster sampling can lead
to departures from conditions Al and A2. If X, and
%, do not differ greatly from diagonality and the
design effects of different statistics are roughly
proportional between frames, then the loss of efficiency
of Y L.ope Telative to Y » Will not be great.
Conditions Al and A2 suggest diagnostic checks based
on the estimated covariance matrices 2 and 2 and
the estimated design effects for judging the efﬁaency
of ¥

PML opt *

6. VARIANCE ESTIMATION

We now provide a consistent estimator of variance
of YPML for specified choice of (n A-ng). Denote the
usual estimators of variance of frame A estimator

y Y, =X, wA/y and frame B estimator Y”—E w//y as
A(y) and ve(y) respectively Also lel 6 Ly N,/
(nN *n N,g) & = nN/(n +nPN)and
A=p b ,ua ~H,y,- Further, denote £ = y -y, if i€s,
and Z,,= ﬁ(y ~u )t A@if i es). Similarly, denote
25y, p,, if i €s, and Z,=(1-6)(y,-u,,) +A(1 - ¢)
ifie sab Acons1stent estimator of variance of Y
is given by
estvar( YPML )=V (&) V()

(6)



Note that (6) can be computed from the single
frame variance estimators, v,(y;) and vg(y;), by
changing y, to Z,,in v,(y;) and y, to Z; in vg(y,).

7. SINGLE FRAME ESTIMATION

All the estimators we have discussed so far might
be termed two-stage estimators since f:lrst sgyarate sets
of estimators (N.,N, &', .i.,),and (N, N (5.1l
are constructed from the two samples s, and s, and
secondly these estimators are combined together to es-
timate Y. Such two-stage separation of the estimation
process is not necessary, however, since the two
sampling designs p/(sA) and p”(sB) induce a well-
defined design p(s) on the set of samples s=s, Us, in
U. Thus, conventional estimators, which may be
termed single-frame estimators may be constructed
from p(s). In particular, the Horvitz-Thompson
estimator of Y may be used provided it is possible to
determine the common units in samples s, and s,
(Bankier, 1986). Kalton and Anderson (1986)
proposed a simple estimator which does not require the

identification of duplicate sample units. It is given by

ffE"’.%* E W Yi»
Sa Sg

N

where w,=(m,, +7,)"' and we define m,,=0if i€ b
and 1,=0if i € a. The estimator (7) is approximately
equal to the Horvitz-Thompson estimator when the 7,
and T, are small. It is unbiased with respect to the
two-frame design.

An unbiased estimator of variance of ¥ ¢ with
respect to the two-frame design is given by

estvar( )75 )=V () +vg(Zy)-

(8)
with 2,20, y,+(1-8,)y,p; and Z,=3,,y,+(1-6,)

y:q;» where p=n,/(n,+n,),q,=1-p,0,=1 if
i€ sf:,am:o if i€sy,,d,=1if ies, andd, =0 if
[ €s,,.

To implement the single-frame estimator Y, itis
necessary to determine the unit's inclusion probabilities
both from the frame from which it is sampled and from
the other frame. For surveys involving complex
designs, such as stratified multistage sample from at
least one of the frames, this may not be feasible in
practice. This is a major practical limitation of single
frame estimators.
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When both sampling designs are self-weighting,
ie., Tai= AN, and T,=7 /Ny, then )75 is a special
case of Y, with =0, where 6=a, N, /(A ,Ny+7i N,).
For general designs, it seems difficult to identify
conditions when ?S will be more (or less)A efficient
than the two-stage estimators. Theoretically, ¥ may be
expected to perform relatively well when the overlap
domain ab contains units for which justone of 1t,, or 1y,
is relatively very small, especially when the associated y,
values are extreme. This follows by noting that the
weight min (1, ,7, ) will tend to make a larger
contribution to the variance of the two-stage estimator
than the weight (TtA,.HrBi)‘l to the variance of )73.
This point is illustrated in the following artificial
example.
Example. Suppose both frames are complete with
N, =N,=N,=N=2000 and N =N,=0. The population
is partitioned into two equal size strata withi =1, ...,
1000 in stratum 1 and { = 1001, ... , 2000 in stratum 2.
Suppose stratified sampling is employed in both frames
with strata allocations (100, 1) and (1, 100) in s, and s,
respectively so that m,,=0.1 for i = 1, ... , 1000;
n,; = 0.001 fori=1001, ...,2000 and 7, =0.001 for
i=1,..,1000; ng =0.1 fori=1001, ..., 2000.

If the strata variances are equal, say S?, then

);H.op!’ ?FB.apt’ YPM[Z land );PML,opt all l'educe by
symmetry to =— (X yIn A’.+E:By’_ Im,)  with

var(7)=504,00052. In comparison, Y = (0.101)"!
(X, y;, + L, y,) with var(¥,)=17,841 S? sothat Y
achieves a 96% reduction in variance over the optimal
two-stage estimators.

One disadvantage of the simple estimator Y 5 1s
that its implied estimators of N, and N, are not equal
to the known \ialues N, and N, unlike the imPIied
estimators of Y. One method of adjusting Y to
achieve consistency with known N, and N, is to use
raking ratio estimation (Bankier, 1986). Following the
proof of Theorem 1 of Skinner (1991), it can be shown
that the estimator of Y from the raking ratio procedure
converges to

5 SRR, ~/ SRR, ~// A RR ~
YRR:(NAﬂNab )/'la+(NB‘Nah )yb+Nab 'uabS (9)
where f1,,6 =Y /N 45

~

with ¥ ¢ :E/ Wiyi+2 W, ¥isNgps =Z Wi+§/; w;.
Sab Sab Sab Sab

Further, I\A/;ZR is the smallest root of the quadratic
equation



xz"[Nabs(NA +Np) +1\'7(151\7%]“'“"1\7(1195 N,Ny=0,

where N = Zsuw,. and N, = Esbwi. Note that it is not
necessary to perform actual raking, as in Bankier
(1986), because YRR is expressed in a closed form.
Also, Yy, is a linear combination of the y, so that it
uses the same weights for all the variables, as in the
case of Y and YPML

In the case of simple random sampling and equal
sampling fractions, n, /N, =ng /Ny, Skinner (1991)
showed that ¥ RR 1S consxderably more efficient than
Y and that the maximum possible gain in efficiency of
YFB‘OP, relative to Y zr 18 3.7%. The efficiency of Y
for general complex designs remains to be explored

8. SIMULATION RESULTS

Skinner and Rao (1996) conducted a limited
simulation study on the relative efficiencies of PML
estimators ¥ PML.opt and Y PML .o Hartley’s estimator
Y Fuller-Burmensters estlmator Y and the single
frame estimator Y Optimal values of B.B,.5, and
n, /ngy estimated from the data were used in computing
the estimators. Two-stage sampling with n sample
clusters and m sample elements from each sample
cluster (7,=nm) was used in frame A and simple
random sampling of 7, elements in frame B. Repeated
data sets from frames A and B were generated using
models for specified parameter combinations and
empirical mean squared errors (EMSE) of the
estimators were calculated.

The dual frame estimators ¥ ML Y,,ML, YH and Y B
performed similarly in terms of MSE. On the other
hand, the single frame estimator YS displayed
considerable increase in EMSE compared to the dual
frame estimators when N /N < N, / N or s, is much
larger  than fg. For  example when
N,/N=0.1,N, /IN=0.2 and n, /A, =2, we have

EMSE (Y )= 5 66 compared to EMSE ( ) =232,
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