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Gross flow estimation in dual frame surveys 
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Abstract 

Gross flows are often used to study transitions in employment status or other categorical variables among individuals in a 

population. Dual frame longitudinal surveys, in which independent samples are selected from two frames to decrease survey 

costs or improve coverage, can present challenges for efficient and consistent estimation of gross flows because of complex 

designs and missing data in either or both samples. We propose estimators of gross flows in dual frame surveys and examine 

their asymptotic properties. We then estimate transitions in employment status using data from the Current Population 

Survey and the Survey of Income and Program Participation. 
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1. Introduction 
 

Many current surveys follow the same individuals at 

regular time intervals so that longitudinal quantities such as 

transitions in employment status and poverty status can be 

studied. The U.S. Current Population Survey (CPS; United 

States Census Bureau 2006), for example, uses a rotating 

panel design in which persons in a housing unit selected for 

the survey are interviewed for four consecutive months, 

rested for eight months, and then interviewed again for four 

consecutive months. This design allows estimation of 

quantities related to individuals’ changes over time. Since 

many survey responses are categorical, gross flows, which 

are transitions among states of a categorical variable over 

time, are particularly important.  

Table 1 displays the counts of a categorical variable 

measured at two times in a population of N  units. At time 

1, the variable can be in one of r  states and at time 2, the 

variable can be in one of c  states. To illustrate Table 1, we 

give the following example. In studying changes in 

employment status, we might have 2r =  and 2,c =  with 

state 0 representing unemployment and state 1 representing 

employment. Then 00X  gives the count of persons in the 

population who are unemployed at both times, 10X  is the 

number of persons who are employed at time 1 but un-

employed at time 2, 0X +  is the total number of persons who 

are unemployed at time 1, and so on. It is of interest to 

obtain estimates and standard errors of the gross flows ,klX  

0 1,k … r= , , − 0 1,l … c= , , −  using survey data. This 

can be complicated in practice because of missing data and 

other problems.  

While successive cross-sectional estimates can assess a 

change in unemployment rates over time, only a longi-

tudinal survey addresses issues such as persistence of 

unemployment in individuals. Gross flow estimation using 

survey data has been studied by many authors, including 

Chambers, Woyzbun and Pillig (1988), Hocking and 

Oxspring (1971), Blumenthal (1968), Chen and Fienberg 

(1974), Stasny (1984, 1987), and Stasny and Fienberg 

(1986). Most of this work considered methods for obtaining 

maximum likelihood (ML) estimators for expected cell 

values in contingency tables with partially cross-classified 

data. Pfeffermann, Skinner and Humphreys (1998) proposed 

estimators that account for misclassification in survey data. 

All of this work has assumed that a probability sample, 

usually a simple random sample, has been taken from a 

single sampling frame.  

 
Table 1 
Gross flow table for population 
 

   Time 2   

  0  1  2  ⋯⋯⋯⋯  1c −−−−   

 0  00X  01X   02X   ⋯   0 1cX , −  0X +   

Time 1  1  10X  11X   12X   ⋯   1 1cX , −  1X +   

 2  20X  21X   22X   ⋯   2 1cX , −  2X +   

 ⋮⋮⋮⋮   ⋮   ⋮   ⋮   ⋱   ⋮   ⋮   

 1r −−−−  1 0rX − ,  1 1rX − ,  1 2rX − ,   ⋯   1 1r cX − , −  1rX − , +  

  0X+  1X+  2X+  ⋯  
1cX+, −  N   

 
A number of longitudinal surveys, such as the Canadian 

National Longitudinal Survey of Children and Youth and 

the Canadian Household Panel Survey, have now started or 

are considering implementation of a dual frame or multiple 

frame design. In a multiple frame survey, probability 

samples are selected independently from two or more 

frames. Using more than one frame often gives better 

coverage of the population, and can achieve considerable 

cost savings in some populations. For example, the Assets 

and Health Dynamics Survey (Heeringa 1995), with the 

goal of estimating characteristics of the population aged 

over 65, used a dual frame survey in which frame A  was 
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the frame for a national general population survey and frame 

B  was a list of Medicare enrollees. The structure of this 

survey is illustrated in Figure 1. Frame A  covered the entire 

population but required extensive screening to identify 

individuals in the target population and was thus expensive 

to sample from; frame B  was less expensive to sample, but 

did not include the entire population. Kalton and Anderson 

(1986) described uses of dual frame surveys to sample rare 

populations; Blair and Blair (2006) argued that dual frame 

surveys can take advantage of less expensive sampling 

modes such as internet sampling when sampling rare 

populations.  

 

 

 

 

 

 

 

 

 

 

 
Figure 1 Frame B  is a subset of frame A  

 

 

 

 

 

 

 

 

 
Figure 2 Frames A  and B  are both incomplete but overlapping 

 
In other situations, both frames may be incomplete, as 

depicted in Figure 2. Hartley (1962, 1974) first proposed 

estimators for the dual frame survey design in Figure 2, 

when independent samples are taken from each frame. 

Subsequent developments are given in Bankier (1986), 

Fuller and Burmeister (1972), Skinner and Rao (1996), and 

Lohr and Rao (2000). Lohr and Rao (2006) summarized 

methods for estimating population quantities in cross-

sectional multiple frame surveys.  

In this paper, we propose estimators for gross flows that 

can be applied to dual frame surveys in which longitudinal 

information is collected in one or both samples. Units 

sampled in one or both surveys are followed over time; in 

some cases, additional units are sampled at later times to 

incorporate new population units or compensate for attri-

tion. A longitudinal dual frame survey presents additional 

challenges to those found in longitudinal single frame 

surveys or in cross-sectional dual frame surveys. Missing 

data can occur in the sample from either frame, and units 

may change frame membership between interviews in the 

survey. In addition, either sampling design may be complex, 

with stratification and clustering. In an overlapping dual 

frame survey such as that depicted in Figure 2, one wishes 

to use the information in the overlap as efficiently as 

possible. The problem studied in this article is to use all the 

information sampled from frame A  and frame B  to 

estimate the transition probabilities of the population.  

The article is organized as follows. In Section 2, we set 

up the research problem. In Section 3, we derive gross flow 

estimators in dual frame surveys for complex samples with 

possibly missing data. In Section 4, we derive asymptotic 

properties and discuss variance estimation. An application 

of our research to the Current Population Survey and Survey 

of Income and Program Participation is given in Section 5. 

Finally, we give our conclusions in Section 6.  

 
2. Notation and sample quantities  

Suppose there are two sampling frames, frame A  and 

frame ,B  which together cover the population of interest 

A B∪  as shown in Figure 2. In Hartley’s (1962) notation, 

there are three nonoverlapping domains: ,ca A B= ∩  

,cb A B= ∩  and ,ab A B= ∩  where c  denotes com-

plement of a set. The population sizes for frames A  and B  

are AN  and ,BN  with domain population sizes ,aN ,bN  

and .abN  We assume that AN  and BN  are known, but the 

population size A B abN N N N= + −  may be unknown. In 

this article, we assume that both the population and the 

frames are fixed over time. These are strong assumptions 

but in many longitudinal surveys the population of interest 

and the frames may be defined for time 1.  

Assume for this section that domain membership is 

constant over time. For simplicity of notation in this paper 

we assume that 2r =  and 2c =  so that there are two 

possible categories at each time; the general case is similar. 

Since the three domains are nonoverlapping, each popu-

lation count ,klX k = 0, 1, l = 0, 1, can be written as klX =  

kla klab klbX X X+ + ,  where kldX  is the number of popu-

lation units in domain d  that are in state k  at time 1 and 

state l  at time 2. The corresponding population and domain 

probabilities are kl klp X N= /  and kld kld dp X N= /  for 

{ }.d a ab b∈ , ,  

Independent probability samples, AS  and ,BS  with 

sample sizes An  and ,Bn  are taken from frames A  and .B  

Let A

iw  be the weight of sampled unit i  for the sample 

from frame A  and let B
jw  be the weight of sampled unit j  

for the sample from frame .B  We may take A

iw  to be the 

sampling weight 1[ ( )]AP i S −∈  or a Hájek-type weight 
1[ ( )]A AP i S N−∈ / (sum of sampling weights in ).AS  Other 

  A                     B 

        a                   ab 

    A                                                       B 
               a                ab             b 
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weighting schemes for longitudinal data, discussed in 

Verma, Betti and Ghellini (2007) and Lavallée (2007), 

might also be used. Let 1 2( )i i iy y= ,y  be the response for 

unit i  in ,AS  with 1,iy 2 {0 1 }iy M∈ , ,  where M  denotes 

that the value is missing. Then 1
ˆ ( )

A

A A
i Skla i iX w I y k∈∑= =  

2( ) ( )iI y l I i a= ∈  and 1
ˆ ( )

A

A A
i Sklab i iX w I y k∈∑= =  

2( ) ( )iI y l I i ab= ∈  estimate the population counts for the 

( )k l,  cell in domains a  and ab  from ,AS  for k,  

{0 1 }.l M∈ , ,   Let  1 2( )j j jy y= ,y   be the response for 

unit j  in ,BS  and let 1
ˆ ( )

B

B B
j Sklb j jX w I y k∈∑= =  

2( ) ( )jI y l I j b= ∈  and 1 2
ˆ ( ) ( )

B

B B
j Sklab j j jX w I y k I y l∈∑= = =  

( )I j ab∈  be the corresponding estimators from .BS  

In this paper, we assume that domain membership can be 

determined for every sample unit and that the responses iy  

have no classification error. Thus, we assume that we know 

whether each unit in the frame A  or frame B  sample 

belongs to the other frame or not. We also assume that there 

is no measurement error for iy  and j −y   in the employ-

ment example, this means that every respondent gives the 

correct response for his or her employment status. Thus, the 

methods we proposed in our article are sensitive to mis-

classification of observations into domains and into cells. If 

the domain means differ or if observations are classified 

incorrectly, the estimators of gross flows could be biased; 

Pfeffermann et al. (1998) discussed methods of accounting 

for misclassification in single frame surveys.  

The estimators from AS  are displayed in Table 2. A 

similar table may be constructed for the estimators from .BS  

We assume that each unit is sampled during one or both 

time periods. If there is no missing data, then all the 

estimated counts for cells ( )k M,  and ( )M l,  are zero. 

Using the exact or approximate unbiasedness of the esti-

mators, depending on whether the sampling or Hájek 

weights are used, when there is no missing data, ˆ[ ]A

klaE X ≈  

,klaX ˆ ˆ[ ] [ ]A B

klab klab klabE X E X X≈ ≈  and ˆ[ ] .B

klb klbE X X≈  

 
Table 2 

Estimators from the frame A  sample 
 

   Time 2   

   0 1 Missing  

 0 00
ˆ A

aX  01
ˆ A

aX  0
ˆ A

MaX  0
ˆ A

aX +  

domain a  1 10
ˆ A

aX  11
ˆ A

aX  1
ˆ A

MaX  1
ˆ A

aX +  

Time 1  Missing 0
ˆ A
M aX  1

ˆ A
M aX   ˆ A

M aX +  

 0 00
ˆ A

abX  01
ˆ A

abX  0
ˆ A

MabX  0
ˆ A

abX +  

domain ab  1 10
ˆ A

abX  11
ˆ A

abX  1
ˆ A

MabX  1
ˆ A

abX +  

  Missing 0
ˆ A
M abX  1

ˆ A
M abX   ˆ A

M abX +  

   0
ˆ AX +  1

ˆ AX +  ˆ A
MX +  ˆ

AN  

 

3. Gross flow estimators in dual frame surveys 
 

In this section, we derive gross flow estimators for com-

plex samples in dual frame surveys. A dual frame pseudo-

likelihood approach is used to account for the sampling 

designs and missing data mechanism. A dual frame ap-

proach can improve precision of the estimators and provide 

more flexibility to model the missing data mechanism. 

Methods in current use for handling missing data are based 

on standard statistical methods and fall into four general 

categories (Little and Rubin 2002): complete-case analysis, 

weighting methods, imputation methods and model-based 

methods. We adopt a model-based approach for the missing 

data. In this section, we first consider a simple setup with 

simple random samples from a population with no missing 

data. Then we add a model for the missing data mechanism. 

Finally, we discuss estimators for more complex survey 

designs.  
 
3.1 Simple random samples with complete data  

To motivate the estimator in the general case, we first 

study estimation of gross flows when there is no missing 

data and when the sample from each frame is a simple 

random sample. Then ˆ ,A A

kld A kld Ax n X N= /  for ,d a ab= ,  is 

the observed sample count in cell kl  and domain d  from 

;AS
ˆB B

kld B kld Bx n X N= /  for d b ab= ,  is the corresponding 

observed sample count from .BS  

If the sampling fractions are small, a multinomial ap-

proximation may be used for the likelihood. For the sample 

from frame ,A  there are eight cells with associated proba-

bilities ,A

kld kld d AP p N N= /  for {0 1}k l, ∈ ,  and { }.d a ab∈ ,  

The related probabilities for the sample from frame B  are 
B

kld kld d BP p N N= /  for {0 1}k l, ∈ ,  and { }.d b ab∈ ,  

Using the multinomial distribution and the assumption that 

the samples from the two frames are selected independently, 

the likelihood function is  

( ) ( ) ( )
A B
kld kldx xA B

ab kld kld

k l d k l d

L N P P
, , , ,

, ∝ × .∏ ∏p  

Although the likelihood is written for simplicity in terms of 
A

kldP  and ,B

kldP  the underlying parameters of interest are 

00 01 11( )a a bp p … p= , , ,p  and .abN  

Setting the partial derivatives of the loglikelihood with 

respect to the parameters equal to zero, the maximum 

likelihood estimators are ˆ
A

kla kla ap x n= / , ˆ B

klb klb bp x n= /  and 

( ) ( ),ˆ
A B A B

klab klab klab ab abp x x n n= + / +  where 
A

A
i Sabn ∈∑=  

( ),I i ab∈ ( ),
B

B
j Sabn I j ab∈∑= ∈ A A

a A abn n n= −  and B

bn =  

.B

B abn n−  The MLE for ,abN ˆ ,abN  is the smaller root of the 

quadratic equation  
2ˆ ˆ[ ] [ ]

[ ] 0

A B

A B ab A B B A ab A ab B ab

A B

ab ab A B

n n N n N n N n N n N N

n n N N

+ − + + +

+ + = .  (1)
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Finally, using the above results, we construct the MLEs for 

klX  and :klp  

ˆ ˆ ˆ ˆ( ) ( )ˆ ˆ ˆ

ˆ ˆ ˆ( ) ( )ˆ ˆ ˆ
ˆ

ˆ

kl A ab kla ab klab B ab klb

A ab kla ab klab B ab klb
kl

A B ab

X N N p N p N N p

N N p N p N N p
p

N N N

= − + + − .

− + + −
= .

+ −

 

These estimators are the same as those obtained by 

Skinner (1991). However, Skinner used the approximate 

normal distribution of the response mean y  in each domain 

to obtain the MLEs, while our estimators come from a 

multinomial model. The multinomial model allows us to 

include partially classified information from units observed 

at only one time period, as shown in the next section.  
 
3.2 Simple random samples with missing data  

In practice, individuals may appear in the sample at only 

one of the times. This can occur due to sample attrition 

(when members of the sample drop out during the course of 

a study) or other causes. In a rotating panel survey such as 

the CPS, persons rotating out of the survey at time 1 will not 

be contacted for time 2 and thus their time-2 employment 

status will be unknown. In other situations, one of the sam-

ples may be cross sectional, in which case all observations 

are measured at exactly one time.  
 
3.2.1 Model for missing data  

Blumenthal (1968), Chen and Fienberg (1974), Stasny 

(1984, 1987) and Stasny and Fienberg (1986) used a two-

phase procedure to model the missing data in a single 

sample. A model is proposed for the complete data, and then 

the missing data mechanism is modeled. We extend this 

procedure to our dual frame structures. One advantage of a 

dual frame survey is that it provides more flexibility for the 

missing data models.  

First, we assume that if all units were measured at both 

times, the model in Section 3.1 could be used. For the non-

response mechanism, assume that each observation in cell 

( )k l,  and domain d  from AS  has probability A

kldφ  of 

being missing at time 1 and probability A

kldψ  of being 

missing at time 2. We assume the unit cannot be missing at 

both times.  

This formulation assumes a constant probability that an 

observation will be missing within a given cell, domain, and 

frame. If data could be missing for different reasons, 

additional parameters could be used to distinguish obser-

vations that have partial classification because of, say, the 

rotating panel design, and observations that have partial 

classification because of nonresponse. In Section 5, we 

discuss an alternative approach that might be used with 

multiple mechanisms for missing data.  

For {0 1},k l, ∈ ,  the probability that a unit from AS  is 

observed in cell ( )k l,  and domain d  is  

(1 )A A A A

kld kld kld kldQ P= − φ − ψ .  

The probability that a unit from AS  is observed in cell 

( )k M,  and domain d  is  

1

0

A A A

kMd kld kld
l

Q P
=

= ψ .∑  

Similarly, the probability that a unit from AS  is observed in 

cell ( )M l,  and domain d  is  

1

0

A A A

Mld kld kld
k

Q P
=

= φ .∑  

The probabilities for frame B  are defined similarly with 

(1 ),B B B B

kld kld kld kldQ P= − φ −ψ 1
0

B B B
lkMd kld kldQ P=∑= ψ  and B

MldQ =  
1

0 .B B
k kld kldP=∑ φ  

Under this two phase model, and using the assumption of 

independence of the samples, the likelihood function for the 

two samples is:  

{0,1} {0,1} { , }

{0,1} {0,1} { , }

{0,1} { , }

{0,1} { , }

{0,1} { , }

{ , }

( , , , ) ( )

( )

( )

( )

( )

( )

p ψ φψ φψ φψ φ
A
kld

B
kld

A
kMd

A
Mld

B
kMd

B
Mld

xA

ab kld

k l d a ab

xB

kld

k l d b ab

xA

kMd

k d a ab

xA

Mld

l d a ab

xB

kMd

k d b ab

xB

Mld

d b ab

L N Q

Q

Q

Q

Q

Q

∈ ∈ ∈

∈ ∈ ∈

∈ ∈

∈ ∈

∈ ∈

∈

∝

×

×

×

×

×

∏ ∏ ∏

∏ ∏ ∏

∏ ∏

∏ ∏

∏ ∏

∏
{0,1}

,
l∈

∏

 

(2)

 

where ψψψψ  is the vector of A

kldψ ’s and B

kldψ ’s and φφφφ  is the 

vector of A

kldφ ’s and B

kldφ ’s. 

The expression in (2) is for the most general model, in 

which both surveys are longitudinal and both have missing 

data at each time period. If frame A  uses a rotating panel 

survey, for example, then all of the probabilities A

kldQ  are 

nonzero: the units in the panels measured at both time 

periods will be included in the estimators A

kldx  for 

{0 1}k l, ∈ , , the units in the panels leaving the survey after 

time 1 will be included in the estimators ,A

kMdx  and the units 

in the incoming panels will be included in the estimators 

.A

Mldx  Depending on the structure of the surveys, some of 

the factors in (2) may be omitted. For example, if the survey 

from frame B  is a repeated cross-sectional survey with 

small sampling fraction, the probabilities B

kldQ  for 

{0 1}k l, ∈ ,  will be close to zero, and we would omit those 

factors from the likelihood.  
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The likelihood in (2) can be written as a product of a 

factor with abN  and a factor containing the remaining 

parameters. As a consequence, the MLE for abN  is again 

the smaller root of the equation in (1). We discuss the 

estimators of the remaining parameters in the next section.  
 
3.2.2 Model identifiability and reduced models  

A problem with maximizing the likelihood in (2) is that 

under the general model there are a total of 42 parameters 

while the two samples have only 32 observed cell counts. 

Thus we cannot estimate all the parameters under the most 

general model. But we can consider models with reduced 

parameterizations, as done in Chen and Fienberg (1974) for 

single frame surveys. The dual frame situation, in fact, gives 

much more flexibility for modeling the missing data 

because of the independent information from the two 

samples about domain .ab  

We first state conditions for a reduced model to be 

locally identifiable. Let θθθθ  denote the s -vector of para-

meters of interest; in our case, θθθθ  would include linearly 

independent components of ,p ,abN N/  and parameters for 

the missing data mechanism. In the likelihood in (2), the 

probabilities from the independent multinomial samples are 
A

kldQ  and .B

kldQ  These probabilities may be written as 

functions of ,θθθθ  with 00( ) ( )Q θθθθA A A

a lMabQ … Q= , ,  a g -vector 

of the nonzero A

kldQ ’s and 00( ) ( )Q θθθθB B B

b lMabQ … Q= , ,  a q -

vector of the nonzero B

kldQ ’s. When all cells in Table 2 and 

the analogous table for frame B  have nonzero probabilities, 

g q= = 16. Let ( )D D DA B
′ ′ ′= ,  be the derivative matrix 

of the transformation, with ( )
A

A αβ α β= ∂ /∂θD Q  and 

( )
B

B δβ δ β= ∂ /∂θD Q  for 1 1,… gα = , , − 1 1,… qδ = , , −  

and 1 .… sβ = , ,  Then, using Theorems 3, 4 and 5 in 

Catchpole and Morgan (1997), the model is locally iden-

tifiable if the matrix D  is of full rank. The proof for the dual 

frame situation is given in Lu (2007). 

In a dual frame survey, we consider two types of models 

for the missing data. In a Type (1) model, the probabilities 

of missing time-1 or time-2 information for cell ( )k l,  is the 

same for each domain within a frame, i.e., A A

kla klabφ = φ =  

,klAφ ,A A

kla klab klAψ = ψ = ψ B B

klb klab klBφ = φ = φ  and B

klbψ =  

.B

klab klBψ = ψ  In this type of model, we estimate the φ ’s 

and ψ ’s separately from each sample. It might be consid-

ered when the samples from the two frames are collected 

using different modes. For example, if the frame A  sample 

is a mail survey and the frame B  sample is a cell phone 

survey, one might expect different probabilities of dropout 

from the two samples.  

In a Type (2) model, the probabilities of having missing 

data are the same in each domain, i.e., .A B

klab klab klabφ = φ = φ  

This type of model might be considered when nonresponse 

is expected to be related to the cell membership, and frame 

membership is thought to have little effect on nonresponse. 

For example, if the two surveys have similar types of 

designs and administrative procedures, a Type (2) model 

might be appropriate.  

For each type of model, we may need to place additional 

restrictions on the parameters in order to solve the likelihood 

equations. Following Stasny and Fienberg (1986) the 

following are possible restrictions:  

1( ) ( )Model1 kl t l kl t k−: φ = λ , ψ = λ  (3) 

1Model 2 kl t kl t−: φ = λ , ψ = λ  

Model 3 kl l kl k: φ = λ , ψ = λ  

1( )Model 4 kl t l kl t−: φ = λ , ψ = λ  

1 ( )Model 5 .kl t kl t k−: φ = λ , ψ = λ  

Under model 1, the probability that an individual is a 

nonrespondent in a given time period depends on the given 

time period and the individual’s classification in the 

observed time period. Under model 2, the probability that an 

individual is a nonrespondent in a given time period 

depends only on the given time period. Under model 3, the 

probability that an individual is a nonrespondent in a given 

time period depends only on the individual’s classification 

in the observed time period. Under model 4, the probability 

that an individual is a nonrespondent at time 1 depends on 

that time period and the individual’s classification in the 

observed month, and the probability that an individual is a 

nonrespondent at time 2 depends only on the time period 2. 

Under model 5, the probability that an individual is a 

nonrespondent at time 1 depends only on the time period, 

and the probability that an individual is a nonrespondent at 

time 2 depends on the time period and the individual’s 

classification in the observed month. Many other models are 

possible in addition to these five models for each type. 

Using the derivative matrices, it is easily shown that 

Models 1-5 are all identifiable.  

In general, we will not have closed form solutions for the 

parameter estimates and the parameters must be estimated 

using an iterative method. We use the function ‘nlm’ in R 

(www.r-project.org) to calculate parameter estimates; the 

code is available from the authors.  

 
3.3 Estimators from complex samples  

When either or both samples are collected with a com-

plex design, using the cell counts directly in the likelihood 

in (2) will give estimators that are not design-consistent. 

Skinner and Rao (1996) used a pseudo-maximum likelihood 

(PML) method to obtain design-consistent estimators in 

cross-sectional dual frame surveys. They showed that, 

unlike the estimators of Hartley (1962) and Fuller and 
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Burmeister (1972), the PML estimators for different re-

sponse variables used the same set of modified weights and 

thus were internally consistent.  

We propose to study estimators inspired by the PML 

method for gross flows in dual frame longitudinal complex 

surveys that allow for missing data at either time period in 

either sample. The basic idea is to use a working assumption 

of a multinomial distribution from a finite population to give 

the form of the estimators and use a design effect to adjust 

the cell counts to reflect the complex survey design.  

In the simple random sampling case, A

kld Ax n/  is a design-

consistent estimator of .A

kldQ  To obtain a pseudo-likelihood 

for general sampling designs, we replace A

kld Ax n/  by 
ˆ ,A

kld AX N/  a design-consistent estimator of A

kldQ  under the 

complex sampling design, in the likelihood (2). Define 
ˆA A

kld A kld Ax n X N= /  and ˆ ,B B

kld A kld Bx n X N= /  where, follow-

ing Skinner and Rao (1996), we allow An  and Bn  to be 

arbitrary constants. Note that if AN  or BN  is unknown, it 

may be estimated by ˆ AN  or ˆ BN  instead.  

The pseudo-likelihood has the same form as (2), with 

,A

kldx ,B

kldx An  and Bn  replaced by ,A

kldx ,B

kldx An  and ,Bn  

respectively. Iterative procedures are then used to find the 

pseudo-MLEs of the quantities of interest ,kldp ,φφφφ ψψψψ  and 

.abN  By the fact that the pseudo-likelihood factors, ˆ abN  is 

found to be the smaller of the roots of  

2ˆ[ ]

ˆ ˆ ˆ[ ]

ˆ ˆ[ ] 0

A B ab PML

A B

A B B A A ab B ab ab PML

A B

A ab B B ab A

n n N

n N n N n N n N N

n N N n N N

,

,

+

− + + +

+ + = .  (4)

 

In a complex survey, particularly when clustering is 

involved, the actual sample sizes An  and Bn  do not 

necessarily reflect the relative amounts of information from 

the samples. We thus suggest taking An  and Bn  to be the 

effective sample size for each sample, with A An n= /  

(design effect of )AS  and B Bn n= / (design effect of ).BS  

The design effect of an estimator µ̂  is the ratio  

[ ( ) from complex survey design]ˆ

[ ( ) from SRS of same size]ˆ

V

V

µ
.

µ
 

The design effect is usually different for different 

variables. For estimating gross flows, however, the only 

estimators used from the component surveys are estimated 

cell counts, and we might expect that in many surveys the 

design effects for the estimators ˆ A

kldX  would all be similar, 

and would also be similar to the design effect of the 

estimator ˆ .AabN  We thus, as in Skinner and Rao (1996), 

suggest using the design effect for the estimator ˆ A

abN  in 

determining ,An  and the design effect for the estimator ˆ B

abN  

in determining .Bn  If the design effects of the other 

variables are indeed identical, then the resulting PMLEs will 

minimize the variances of the estimated quantities; if they 

differ, the PMLEs will not be optimal but they will be 

consistent and in most situations will be close to the optimal 

values (Lohr and Rao 2006). If the design effect for ˆ A

abN  is 

unavailable, as would occur, for example, if the survey were 

poststratified to ,A

abN  then we suggest using a generalized 

design effect, computed by taking an average or weighted 

average of design effects from other variables in the survey.  

 
4. Properties of the estimators  

In this section, we will investigate properties of the 

estimators. We derive asymptotic variances, discuss jack-

knife variance estimators, and perform a small simulation 

study to explore the properties.   
4.1 Properties  

We consider the general case in which stratified multi-

stage samples are taken from each frame. The estimators of 

population totals are the standard Horvitz-Thompson or 

Hájek estimators from complex surveys. From frame ,A  the 

parameter vector [( ) ]Qηηηη A

A ab AN N′ ′= , /  is estimated by 
ˆ ˆ[( ) ] ,ˆ Qηηηη

A A

ab AA
N N′ ′= , /  where ˆ ˆ ;A A

kld kld AQ X N= /  similarly, 

[( ) ]Qηηηη B

B ab BN N′ ′= , /  is estimated by ˆ[( )ˆ Qηηηη
B

B
′= ,  

ˆ ]B

ab BN N ′/  with ˆ ˆ .B B

kld kld BQ X N= /   
Theorem 1: Let ˆ ˆ ˆ( )η η ηη η ηη η ηη η ηA B

′ ′ ′= ,  and ( ) .η η ηη η ηη η ηη η ηA B
′ ′ ′= ,  Assume 

that the regularity conditions on the inclusion probabilities 

in Isaki and Fuller (1982) hold for each sample. Let Anɶ  and 

Bnɶ  be the number of primary sampling units in frames A  

and ,B  respectively, and let .A Bn n n= +ɶ ɶ ɶ  Assume that Anɶ  

and Bnɶ  both increase such that A Bn n/ → γɶ ɶ  for some 

0 1.< γ <  Then η̂ηηη  is consistent for ,ηηηη  and  

1/ 2 ˆ( ) (0 )η η Ση η Ση η Ση η Σd
n N− → , ,ɶ  (5) 

where ΣΣΣΣ  is a block-diagonal matrix with blocks ΣΣΣΣA  and 

,ΣΣΣΣB ΣΣΣΣA  is the asymptotic covariance matrix of 
1/ 2
η̂ηηηA

nɶ  and 

ΣΣΣΣB  is the asymptotic covariance matrix of 
1/ 2 .η̂ηηηB
nɶ  If, in 

addition, it is assumed that abN N/ → κ  for some 

0 1< κ <  and that the model is identifiable, then θ̂θθθ  is 

consistent for ,θθθθ  where ,θθθθ  the parameter of interest, 

consists of components of ,p ,abN N/ φφφφ  and ,ψψψψ  and θ̂θθθ  is 

the pseudo-maximum likelihood estimator of .θθθθ  Further-

more, 1/ 2 ˆ( )θ θθ θθ θθ θn −ɶ  is asymptotically normal with mean 0  

and asymptotic variance ,H H H HΣ ΣΣ ΣΣ ΣΣ ΣA A A B B B
′ ′+  where 

FH  is the derivative matrix of the function θθθθ  with respect 

to the parameters ηηηηF  for frames { }.F A B∈ ,   
Proof. With gross flows, observed values of all variables are 

0 or 1. Thus the boundedness conditions in Lemmas 1 and 2 

of Isaki and Fuller (1982) are met, and the estimators of 

frame A  are consistent and asymptotically normal with  

1/ 2 ( ) [0 ( (1 )) ]ˆ η Ση Ση Ση Σηηηη
d

A A AA
n N− → , γ/ + γ .ɶ  
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The same argument applies to give consistency and 

asymptotic normality for the vector of estimators from 

frame ,B  with  

1 2 ( ) [0 (1 ( (1 ))) ]ˆ η Ση Ση Ση Σηηηη
d

B B BB
n N/ − → , − γ/ + γ .ɶ  

Combining these two asymptotic results, and using the 

independence of the sampling designs along with Slutsky’s 

theorem, gives (5). The limiting distribution of 1/ 2 ˆ( )θ θθ θθ θθ θn −ɶ  

follows by the delta method, since the parameters in θθθθ  are 

all twice continuously differentiable functions of those in 

.ηηηη  Since the parameter estimators cannot always be defined 

explicitly as a function of other statistics from the sample, 

we may derive the matrices AH  and BH  by linearizing   

the score equations (Binder 1983). The assumption that 

(0 1)abN N/ → κ ∈ ,  guarantees that the linearization is 

well-defined.  

Theorem 1 shows that linearization can be used to 

estimate the variances of parameters of interest. In many 

situations, however, the matrices AH  and BH  are high-

dimensional and the linearized variance estimators have 

complex form. A practical way to estimate the variances of 

the estimators is to use the jackknife estimator proposed by 

Lohr and Rao (2000). Under the regularity conditions in 

their Theorem 4, the jackknife and linearization variance 

estimators are asymptotically equivalent. The form of the 

jackknife variance estimator is ˆ ˆ ˆ( ) ( ) ( ),θ θ θθ θ θθ θ θθ θ θJK A Bv v v= +  

where Av  is a jackknife estimator obtained by deleting one 

primary sampling unit at a time from frame A  while using 

the full data set for frame ,B  and Bv  is a jackknife 

estimator obtained by deleting one primary sampling unit at 

a time from frame B  while using the full data set for 

frame .A  
 
4.2 Simulation study  

Theorem 1 shows that the dual frame estimators are 

consistent for the corresponding population quantities under 

the modeled missing data mechanism. We performed a 

small simulation study to investigate properties for moderate 

sample sizes with overlapping frames. We generated the 

data following the simulation study in Skinner and Rao 

(1996), with a aN Nγ = /  and .b bN Nγ = /  A cluster 

sample from frame A  was generated with Anɶ  psus and m  

observations in each psu, and a simple random sample of 

Bn  observations was generated for frame .B  We generated 

the clustered binary responses for the sample from frame A  

by generating correlated multivariate normal random 

vectors and then using the probit function to convert the 

continuous responses to binary responses.  

After generating the sample, we calculated the estimators 

of the probabilities of the union of frame A  and frame ,B  

average of the absolute value of the bias and empirical mean 

squared error (EMSE) under different settings. The EMSE 

of a given estimator, Ŷ  is calculated as:  

2

1

1 ˆEMSE ( )
R

r
r

Y Y
R =

= − ,∑  (6) 

where ˆrY  is the value of Ŷ  for the thr  simulation run. In 

our simulation study, we used R = 100.  

The simulation study was performed with factors: (1) 

:aγ  0.2 or 0.4, (2) :bγ  0.2 or 0.4, (3) clustering parameter 

ρ:  0.3, (4) missing data mechanism: the probability that an 

individual is a nonrespondent in a given month depends on 

the time period and the individual’s classification in the 

observed period; or missing completely at random, (5) 

amount of missing data: close to 10% or close to 20%, (6) 

sample sizes: :Anɶ  10, 100 or 500; m: 5, :Bn  100, 1,000 or 

5,000. All runs used probability parameters a :p  (0.3, 

0.1, 0.2, 0.4), ab :p (0.3, 0.1, 0.1, 0.5), and b :p  (0.4, 0.1, 

0.1, 0.4). Table 3 shows the results of the simulation study 

with missing data generated under Model 1 and fitted with 

both Model 1 and the model using complete records only.  
 
Table 3 

Results from the simulation study for missing data generated 
under Model 1. Case (1) fits the correct model: Model 1; Case 
(2) uses complete records only. Bias is the average absolute 

bias for the population gross flow proportions ;klp  EMSE is 
the average empirical mean squared error for the ;klp  the 
proportions used to generate the missing data are ( 1)0t −−−−λ =λ =λ =λ =  
0.141, ( 1)1t −−−−λ =λ =λ =λ = 0.070, ( )0tλ =λ =λ =λ = 0.137 and ( )1tλ =λ =λ =λ = 0.068. Here, 

Anɶɶɶɶ  is the number of psus in sample A  with psu size 5 and Bn  
is the number of elements in sample B  
 

Anɶɶɶɶ   
Bn    

00p   01p   10p   11p   

10 100 Estimator  0.311  0.120  0.149  0.420  

Case 1  Bias  0.040  0.029  0.029  0.040  

  EMSE 0.002  0.001  0.001  0.002  

   
1(0)t−λ  1(1)t−λ  (0)tλ  ( )tλ   

  Estimator 0.159  0.095  0.146 0.094   

  EMSE 0.001  0.001  0.002  0.001   

10 100 Estimator  0.286 0.120  0.146 0.448  

Case 2  Bias  0.048  0.029  0.029  0.041  

  EMSE 0.004  0.001  0.001  0.002  

100 1,000 Estimator  0.321  0.092  0.138  0.449  

Case 1  Bias  0.015  0.011  0.009  0.015  

  EMSE 3.337e-04  1.798e-04  1.418e-04  3.256e-04  

   
1(0)t−λ  1(1)t−λ  (0)tλ  ( )tλ   

  Estimator 0.145  0.074  0.123  0.068   

  EMSE 2.642e-04  9.389e-05  3.917e-04  8.206e-05  

100 1,000 Estimator  0.293  0.092  0.135  0.480  

Case 2  Bias  0.0280  0.011 0.010  0.040  

  EMSE 0.001  1.839e-04  1.711e-04  0.002  

500 5,000 Estimator  0.321  0.093  0.135  0.452  

Case 1  Bias  0.006 0.008  0.007  0.012  

  EMSE 4.960e-05  7.162e-05  6.381e-05  1.857e-04  

   
1(0)t−λ  1(1)t−λ  (0)tλ  ( )tλ   

  Estimator 0.140  0.071  0.123  0.064   

  EMSE 4.466e-05  1.818e-05  2.288e-04  3.545e-05  

500 5,000 Estimator  0.292  0.092  0.132  0.483  

Case 2  Bias  0.028 0.008 0.008 0.043  

  EMSE 8.265e-04  7.642e-05  9.571e-05  1.906e-03  
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When data are missing at random, all models give 

estimators of the gross flow proportions klp  that are 

approximately unbiased so we do not report the results here. 

From Table 3, both the correct model and the analysis of 

complete records only produce biased estimators of the 

klp ’s. With larger sample sizes, however, the bias persists 

in the analysis that uses complete records only, while it 

diminishes when Model 1 is fit. This example has relatively 

small probabilities of missing data. With larger amounts of 

missing data, the contrast between the estimators is more 

pronounced.  

 
5. Application 

 
In this section, we apply our results to data from the 

Survey of Income and Program Participation (SIPP) and the 

Current Population Survey (CPS) within Arizona. Both CPS 

and SIPP are longitudinal stratified multistage panel 

surveys. We treat SIPP and CPS as a dual frame survey with 

the same target population: the Arizona population 18 years 

old to 64 years old. Using information from both surveys, 

we want to model the transition probabilities of employment 

status changes from January 2001 to January 2002 of people 

between 18 years old and 64 years old. Note that, strictly 

speaking, these two surveys are not designed as a dual frame 

survey. They use different questions for the labor force 

variables. Although we recoded the variables according to 

the labor force definitions in CPS, it is possible that these 

different question wordings and orderings produce bias 

when combining the information. We use this as an example 

because a real longitudinal dual frame data is not available. 

Nevertheless, the example shows the potential gains in 

efficiency by combining the information from two surveys 

in estimating gross flows.  

Both surveys have target population the noninstitu-

tionalized civilian population of the United States. We 

consider a subset of the population: the population in the 

labor force from 18 years old to 64 years old. So AN =  

B abN N=  and the estimation problem is a special case of 

the theory given in Section 3. The longitudinal file for the 

2001 and 2002 SIPP (Westat 2001) uses one panel. We 

merged Wave 1 (where January 2001 records are stored), 

Wave 4 (where January 2002 records are stored) and the 

longitudinal weight file, in which the weights are adjusted to 

sum to the population count. Since the longitudinal panel 

weights have been adjusted for the nonresponse, we 

consider this as a no missing data case. The resulted 

weighted gross flow table from SIPP is given in Table 4.  

For the CPS, the rotation group design introduces 

partially classified data. January 2001 and January 2002 

have 50 percent of the sample in common. We use these 

50% of the data together with the partially classified data to 

perform the analysis. The weight variable we use is a cross-

sectional weight with cross-sectional nonresponse and 

calibration adjustments (United States Census Bureau 

2006). For individuals present in the survey for only one of 

the years, we use the weight from that year. For persons 

present in both Jan 2001 and Jan 2002, we use the average 

of the two weights. The rule that we chose the average of 

the two weights is to minimize the variance of the 

composite estimator. The population group we used is the 

18-64 age group, and we excluded persons who were not in 

that category during both years. The weighted gross flow 

table from CPS is in Table 5.  
 
Table 4 

Gross flow table for SIPP, in Arizona 
 

  Jan 2002   

  Employed Unemployed

January 2001  Employed  2,491,029 73,204

 Unemployed  30,698 30,160

   2,625,091 

 
Table 5 
Gross flow table for CPS, in Arizona 
 

  January 2002  

  Employed Unemployed Missing

January 2001  Employed  1,129,656 38,848 689,497

 Unemployed  41,586 8,211 36,041

 Missing 606,549 57,549 

   2,607,937 

 
Since SIPP is considered as a no missing data case, we 

assumed kl klφ = ψ = 0 and use a Type 1 model in the data 

analysis. We adjusted each weight in the CPS data by the 

factor 2,625,091/2,607,937 to reach a single population total 

between the two time periods and a single population total 

between the two surveys. The number of observations in 

SIPP (frame )A  after combining January 2001 and January 

2002 are 551 and the design effect for unemployment is 

about 1.76, so An = 551/1.76 = 313. The design effect for 

unemployment in CPS (frame )B  is about 1.229, so Bn =  

1,020/1.229 = 830. Because the likelihood factors, the 

estimated parameters of probabilities from the five models 

(3) are all the same. We list the estimated probabilities and 

the standard errors from SIPP, CPS and data combining 

these two surveys in Table 6.  

 
Table 6 
Estimated transition probabilities using SIPP, CPS, and the 

dual frame method with SIPP and CPS. Standard errors are 
given in parentheses 
 

 
00p  01p  10p  11p   

SIPP 0.9489 

(0.0124) 

0.0279 

(0.0093) 

0.0117 

(0.0061) 

0.0115  

(0.0060)  

CPS 0.9088 

(0.0100) 

0.0454 

(0.0072)  

0.0353 

(0.0064) 

0.0106  

(0.0035)  

SIPP and CPS  0.9230 

(0.0080) 

0.0381 

(0.0058) 

0.0262  

(0.0050) 

0.0127  

(0.0030)  
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Due to confidentiality issues, no clustering information is 

available in the CPS public-use data sets. We used a product 

of the published design effect and the variance from 

multinomial sampling to estimate the variances from both 

SIPP and CPS data. The result from Theorem 1 was applied 

to estimate the variances of ˆklp  for k l, = 0, 1. In this 

special situation, the variance estimate from the combina-

tion of the two data sets is reduced to 2( ( ))A A Bn n n/ +  
2( ( )) ,A B A B BV n n n V+ / +  where AV  denotes the variance 

estimate from SIPP data and BV  denotes the variance 

estimate from CPS data. Table 6 shows that the standard 

errors are reduced by using the dual frame method.  

We also performed goodness-of-fit tests, developed in Lu 

(2007), for the five models in (3). The parameter estimates 

from the five models and results from the goodness-of-fit 

tests, are listed in Table 7. All five models fit the data well, 

so we recommend adopting the simplest model, Model 3, 

for the data.   
Table 7 

Estimated parameters and results of goodness of fit tests 
 

 Estimated Parameters df Corrected G 
2 p-value 

Model 1 1(0)t−λ  1(1)t−λ  (0)tλ  (1)tλ  3 3.03 0.39  

 0.246 0.395 0.277  0.302   

Model 2 1t−λ  tλ    5 8.58 0.12  

 0.255 0.278   

Model 3 0λ  1λ    5 6.61 0.25  

 0.262 0.353   

Model 4 1(0)t−λ  1(1)t−λ  tλ   4 4.10 0.39  

 0.246 0.397 0.278  

Model 5 1t−λ  (0)tλ  (1)tλ   4 6.74 0.15  

 0.255 0.277 0.313  

 
With the limited information available on the public-use 

data sets, we used simple weight adjustments to make the 

estimated population counts consistent with known totals. 

The SIPP and CPS weights in the data sets have already 

been calibrated and adjusted for nonresponse, so that the 

models for missing data mostly reflect the rotating panel 

design rather than attrition due to moving and other 

activities that might be related to employment status.  

Future research on these models might include using 

different weighting adjustments for the longitudinal surveys. 

In addition, different parameters could be used to distin-

guish observations that have partial classification because of 

the rotating panel design, and observations that have partial 

classification because of nonresponse. To do so, we could 

introduce a Markov Chain model similar to the one 

proposed by Stasny (1987). In the complete data model, 

individuals are allocated to the table according to a single 

multinomial distribution. At the second step of the process, 

which is also unobserved, each individual may be chosen to 

either rotate out of the sample after the interview for month 

1t −  or rotate into the sample before the month t  interview 

according to the sampling plan. Finally, in the third step of 

the process, each remaining individual may either lose its 

row classification or lose its column classification by other 

reasons. Using this model, we can model the nonresponse  

at both times (i.e., lose both the row and the column 

classifications).  
 

6. Conclusions  
In this article, we developed statistical methods for 

estimating gross flows from dual frame surveys. These 

methods are necessary to estimate changes in poverty status 

or employment status over time. We developed pseudo-

maximum likelihood estimators that use the dual frame 

structure and the properties of the two survey designs. Our 

models also account for effects of missing data when an 

individual drops out of the survey or when a rotation panel 

design is used, so they allow full use of partial information 

that may be provided by some households. We use a 

jackknife method to estimate the variance of estimators and 

examine the properties of the estimators. The results have 

been applied to real datasets.  

In this paper, the categories of the gross flow tables are 

defined independently from the sample outcomes. It is also 

possible to define the categories based on values that depend 

on the sample. For example, in social surveys, the poverty 

line might be defined using a percentile from the sample and 

the categories defined as “Below the poverty line” and 

“Above the poverty line.” Methods from this paper can be 

used to estimate gross flows if the category definitions 

depend on the sample, but the variance estimators need to 

account for the effect of estimating the category boundaries.  

Although the results in this paper are for dual frame 

surveys, the methods are general and could be extended to 

more than two surveys using PML estimators developed in 

Lohr and Rao (2006). As the number of frames increases, 

however, so does the complexity of possible missing data 

mechanisms. Misclassification error may also be more 

prevalent with a larger number of frames.  

Our research is done in the context of survey sampling, 

but it also applies to other settings in which data could be 

combined from two independent sources. As it becomes 

increasingly difficult for a single survey to cover the entire 

population of interest, we believe these methods for 

estimating gross flows can provide better coverage of the 

population with less expense. They also allow for 

supplementing a general population survey with surveys of 

specific subpopulations of interest.   
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