
Dual Frame Surveys

BA

a ab b

• a ∪ ab ∪ b = U

• Independent samples are
taken from the two sampling
frames

• Used when one frame does not cover whole pop-
ulation of interest, dual frame surveys can provide
better coverage and cost less

• May want several survey modes (internet, telephone,
personal)
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Examples:

46.4% 42.2% 6%

5.4%

• Telephone Surveys

Tucker et al,.2005

• Frame A: Landlines

• Frame B: Cell Phones

• No Telephones
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BA

BA

• One Frame is a Proper Subset of Another
Rare Events (Asthma Patients)
Frame A: General population health survey
Frame B: Survey of patients of allergists

• Frame A and Frame B are the same
Frame A: Current Population Survey (CPS)
Frame B: Survey of Income and Program Participation (SIPP)
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Point Estimators in Dual Frame Surveys

Ya Yab Yb

• Ŷab(β) = βŶ A
ab + (1− β)Ŷ B

ab

• Ŷ = Ŷa + Ŷab + Ŷb

= Ŷa + βŶ A
ab + (1− β)Ŷ B

ab + Ŷb

• Cross-sectional

• Hartley (1962) (Choose β to minimize variance)

• Fuller & Burmeister (1972) (Optimal)

• Bankier (1986)

• Kalton & Anderson (1986) (Single frame)

• Skinner (1991) (Maximum likelihood)
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Problems from Hartley and Fuller & Burmeister Esti-
mators

• Choose β to minimize the variance

• β depend on y’s

• Different set of weights for each variable

• Inconsistencies among estimates

Y1 = the number of men who are unemployed

Y2 = the number of women who are unemployed

Y3 = the number of people who are unemployed

In a complex survey, it will often be the case that Ŷ1+ Ŷ2 6= Ŷ3

5



Single Frame Estimators
Bankier, 1986, Kalton and Anderson 1986

ŶS =
∑

i∈SA

w∗
i yi +

∑

i∈SB

w∗
i yi

w∗
i =





1/πA
i i ∈ a

1/πB
i i ∈ b

1/(πA
i + πB

i ) i ∈ ab
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• Consider that all observations had been sampled from a single

frame with modified weights for the overlap domain observa-

tions

• Easy to calculate

• Need to know the inclusion probabilities for both frames. We

may not know the frame A inclusion probabilities for sample

units selected from frame B that fall in domain ab.

• Single frame estimates depend only on inclusion probabilities

and not on variances within the two frames. The resulting esti-

mates can be far from optimal.
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Pseudo-Maximum Likelihood (PML) (Skinner & Rao 1996)

• Skinner & Rao (1996)

• Modify MLEs for SRS

• Adjust for complex sampling design

• Single set of weights for all the variables

• Perform similarly to Fuller & Burmeister estimator in many sur-

veys
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Common case, NA and NB known, but Nab unknown

N̂ab,H =
pnA

abNA

nA
+

qnB
abNB

nB
(1)

where p + q = 1

V ar(N̂ab,H) = p2(
NA

nA
)2V ar(nA

ab)

+ q2(
NB

nB
)2V ar(nB

ab)
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• nA
ab and nB

ab are hypergeometric random variabels

nA
ab ∼


 Nab

x





 Na

nA − x





 NA

nA



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nB
ab ∼


 Nab

x





 Nb

nB − x





 NB

nB




V ar(nA
ab) = nA

Nab

NA
(1− Nab

NA
)
NA − nA

NA − 1

V ar(nB
ab) = nB

Nab

NB
(1− Nab

NB
)
NB − nB

NB − 1
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Minimize V ar(N̂ab,H), we have

pOH =
nANbgB

nANbgB + nBNagA
(2)

where

gA =
NA − nA

NA − 1

and

gB =
NB − nB

NB − 1
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substituting (2) for p into (1). (1) then reduces to a quadratic in

N̂ab,

[nAgB + nBgA]N̂ 2
ab,s

− [nANBgB + nBNAgA

+ nA
abNAgB + nB

abNBgA]N̂ab,s

+ [nA
abgB + nB

abgA]NANB = 0
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Ŷsrs = (NA − N̂ab,srs)û
A
a,srs + N̂ab,srsûab,srs

+ (NB − N̂ab,srs)û
B
b,srs

ûa,srs =
∑
sa

yi

na
, ûA

ab,srs =
∑

sA,sab

yi

nA
ab

ûb,srs =
∑
sb

yi

nb
, ûB

ab,srs =
∑

sB ,sab

yi

nB
ab

ûab,srs = (nA
abû

A
ab,srs + nB

abû
B
ab,srs)/(n

A
ab + nB

ab)
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Adjusted to Complex Surveys

ûa,srs → ûa =
Ŷa

N̂a

, ûA
ab,srs → ûA

ab =
∑

sA,sab

Ŷ A
ab

N̂A
ab

ûb,srs → ûb =
Ŷb

N̂b

, ûB
ab,srs → ûB

ab =
∑

sB ,sab

Ŷ B
ab

N̂B
ab

ûab,srs = (nA
abû

A
ab,srs + nB

abû
B
ab,srs)/(n

A
ab + nB

ab) →
ûab = [

nA

NA
N̂A

abû
A
ab +

nB

NB
N̂B

abû
B
ab]/[

nA

NA
N̂A

ab +
nB

NB
N̂B

ab]
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Pseudo-Maximum Likelohood (PML)(Skinner and Rao (1996))

ŶPML = (NA − N̂ab,PML)ûA
a + N̂ab,PMLûab

+ (NB − N̂ab,PML)ûB
b
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N̂PML
ab is the smaller of the roots of the quadratic equation

px2 − qx + r = 0 (3)

where

p = nA + nB,

q = nANB + nBNA + nAN̂A
ab + nBN̂B

ab,

and

r = nAN̂A
abNB + nBN̂B

abNA.
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Optimal Choice of nA and nB

η̂ = (ûA
a , ûA

ab, N̂
A
ab/N, ûB

b , ûB
ab, N̂

B
ab/N)′ (4)

η = (ua, uab, Nab/N, ub, uab, Nab/N)′. (5)

Under certain condition, η̂ is consistent for η, and

ñ1/2(η̂ − η)
d→ N(0,Σ), (6)

where Σ is a block-diagonal matrix with blocks ΣA and ΣB ,

ΣA is the asymptotic covariance matrix of

ñ1/2η̂A = ñ1/2(ûA
a , ûA

ab, N̂
A
ab/N)′

and ΣB is the asymptotic covariance matrix of

ñ1/2η̂B = ñ1/2(ûB
b , ûB

ab, N̂
B
ab/N)′.
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• ŶPML depends on nA and nB only via the ratio nA/nB

• Choose nA/nB to minimize avar(N̂ab,PML)

• By delta method, ŶPML is asymptotically normal with mean Y

and variance (N 2/n)σ2
PML
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• σ2
PML = ∇′Σ∇
∇ = [Na/N, θNab/N, φ(uab − ua − ub),

Nb/N, (1− θ)Nab/N, (1− φ)(uab − ua − ub)],

φ = nANb/(nANb + nBNa)

and θ = nANB/(nANB + nBNA)

• Setting

ua = ub = 0, uab = 1 in∇
σ2

Ai = σ2
Bi = 0, σAij = σBij = 0(i, j = 1, 2) in Σ

• avar(N̂ab,PML) = (N 2/n)[φ2σ2
A3 + (1− φ)2σ2

B3]

• Minimized when φ = σ2
B3/(σ

2
A3 + σ2

B3)

• Equivalently, nA/nB = Naσ
2
B3/(Nbσ

2
A3)
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Gross Flow Estimation in Single Frame Survey

• Blumenthal (1968) Multinomial Sampling

• Chen-Fienberg (1974), Stasny (1986) Two stage model, re-

duced parametrizations of general interest

• Stasny and Fienberg (1984, 1985), Stasny (1983, 1986, 1987,

1988) Continuous time model

• Holt and Skinner (1989) Use survey weights to estimate transi-

tion probabilities

• Singh and Rao (1995) Classification error

• Most assume SRS, do not account for survey design
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• Lu and Lohr (2010) Gross flow estimation in dual frame surveys

—-Accounts for survey design

—-Consider the overlap domain estimation

—-Model missing data through two-stage procedure
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