Dual Frame Surveys

- $a \cup a b \cup b=U$
- Independent samples are taken from the two sampling frames

- Used when one frame does not cover whole population of interest, dual frame surveys can provide better coverage and cost less
- May want several survey modes (internet, telephone, personal)

Examples:

- Telephone Surveys

Tucker et al,. 2005

- Frame A: Landlines
- Frame B: Cell Phones

- No Telephones

- One Frame is a Proper Subset of Another Rare Events (Asthma Patients)
Frame A: General population health survey
Frame B: Survey of patients of allergists
- Frame A and Frame B are the same

Frame A: Current Population Survey (CPS)
Frame B: Survey of Income and Program Participation (SIPP)

Point Estimators in Dual Frame Surveys

- $\hat{Y}_{a b}(\beta)=\beta \hat{Y}_{a b}^{A}+(1-\beta) \hat{Y}_{a b}^{B}$
- $\hat{Y}=\hat{Y}_{a}+\hat{Y}_{a b}+\hat{Y}_{b}$

$$
=\hat{Y}_{a}+\beta \hat{Y}_{a b}^{A}+(1-\beta) \hat{Y}_{a b}^{B}+\hat{Y}_{b}
$$

- Cross-sectional
- Hartley (1962) (Choose β to minimize variance)
- Fuller \& Burmeister (1972) (Optimal)
- Bankier (1986)
- Kalton \& Anderson (1986) (Single frame)
- Skinner (1991) (Maximum likelihood)

Problems from Hartley and Fuller \& Burmeister Estimators

- Choose β to minimize the variance
- β depend on y's
- Different set of weights for each variable
- Inconsistencies among estimates
$Y_{1}=$ the number of men who are unemployed
$Y_{2}=$ the number of women who are unemployed
$Y_{3}=$ the number of people who are unemployed
In a complex survey, it will often be the case that $\hat{Y}_{1}+\hat{Y}_{2} \neq \hat{Y}_{3}$

Single Frame Estimators

Bankier, 1986, Kalton and Anderson 1986

$$
\begin{gathered}
\hat{Y}_{S}=\sum_{i \in S_{A}} w_{i}^{*} y_{i}+\sum_{i \in S_{B}} w_{i}^{*} y_{i} \\
w_{i}^{*}=\left\{\begin{array}{cc}
1 / \pi_{i}^{A} & i \in a \\
1 / \pi_{i}^{B} & i \in b \\
1 /\left(\pi_{i}^{A}+\pi_{i}^{B}\right) & i \in a b
\end{array}\right.
\end{gathered}
$$

- Consider that all observations had been sampled from a single frame with modified weights for the overlap domain observations
- Easy to calculate
- Need to know the inclusion probabilities for both frames. We may not know the frame A inclusion probabilities for sample units selected from frame B that fall in domain $a b$.
- Single frame estimates depend only on inclusion probabilities and not on variances within the two frames. The resulting estimates can be far from optimal.

Pseudo-Maximum Likelihood (PML) (Skinner \& Rao 1996)

- Skinner \& Rao (1996)
- Modify MLEs for SRS
- Adjust for complex sampling design
- Single set of weights for all the variables
- Perform similarly to Fuller \& Burmeister estimator in many surveys

Common case, N_{A} and N_{B} known, but $N_{a b}$ unknown

$$
\begin{equation*}
\hat{N}_{a b, H}=\frac{p n_{a b}^{A} N_{A}}{n_{A}}+\frac{q n_{a b}^{B} N_{B}}{n_{B}} \tag{1}
\end{equation*}
$$

where $p+q=1$

$$
\begin{aligned}
\operatorname{Var}\left(\hat{N}_{a b, H}\right) & =p^{2}\left(\frac{N_{A}}{n_{A}}\right)^{2} \operatorname{Var}\left(n_{a b}^{A}\right) \\
& +q^{2}\left(\frac{N_{B}}{n_{B}}\right)^{2} \operatorname{Var}\left(n_{a b}^{B}\right)
\end{aligned}
$$

- $n_{a b}^{A}$ and $n_{a b}^{B}$ are hypergeometric random variabels

$$
n_{a b}^{A} \sim \frac{\binom{N_{a b}}{x}\binom{N_{a}}{n_{A}-x}}{\binom{N_{A}}{n_{A}}}
$$

$$
\begin{aligned}
n_{a b}^{B} & \sim \frac{\binom{N_{a b}}{x}\binom{N_{b}}{n_{B}-x}}{\binom{N_{B}}{n_{B}}} \\
\operatorname{Var}\left(n_{a b}^{A}\right) & =n_{A} \frac{N_{a b}}{N_{A}}\left(1-\frac{N_{a b}}{N_{A}}\right) \frac{N_{A}-n_{A}}{N_{A}-1} \\
\operatorname{Var}\left(n_{a b}^{B}\right) & =n_{B} \frac{N_{a b}}{N_{B}}\left(1-\frac{N_{a b}}{N_{B}}\right) \frac{N_{B}-n_{B}}{N_{B}-1}
\end{aligned}
$$

Minimize $\operatorname{Var}\left(\hat{N}_{a b, H}\right)$, we have

$$
\begin{equation*}
p_{O H}=\frac{n_{A} N_{b} g_{B}}{n_{A} N_{b} g_{B}+n_{B} N_{a} g_{A}} \tag{2}
\end{equation*}
$$

where

$$
g_{A}=\frac{N_{A}-n_{A}}{N_{A}-1}
$$

and

$$
g_{B}=\frac{N_{B}-n_{B}}{N_{B}-1}
$$

substituting (2) for p into (1). (1) then reduces to a quadratic in $\hat{N}_{a b}$,

$$
\begin{aligned}
& {\left[n_{A} g_{B}+n_{B} g_{A}\right] \hat{N}_{a b, s}^{2} } \\
- & {\left[n_{A} N_{B} g_{B}+n_{B} N_{A} g_{A}\right.} \\
+ & \left.n_{a b}^{A} N_{A} g_{B}+n_{a b}^{B} N_{B} g_{A}\right] \hat{N}_{a b, s} \\
+ & {\left[n_{a b}^{A} g_{B}+n_{a b}^{B} g_{A}\right] N_{A} N_{B}=0 }
\end{aligned}
$$

$$
\begin{gathered}
\hat{Y}_{s r s}=\left(N_{A}-\hat{N}_{a b, s r s}\right) \hat{u}_{a, s r s}^{A}+\hat{N}_{a b, s r s} \hat{u}_{a b, s r s} \\
+\left(N_{B}-\hat{N}_{a b, s r s}\right) \hat{u}_{b, s r s}^{B} \\
\hat{u}_{a, s r s}=\sum_{s_{a}} \frac{y_{i}}{n_{a}}, \hat{u}_{a b, s r s}^{A}=\sum_{s_{A}, s, s b} \frac{y_{i}}{n_{a b}^{A}} \\
\hat{u}_{b, s r s}=\sum_{s_{b}} \frac{y_{i}}{n_{b}}, \hat{u}_{a b, s r s}^{B}=\sum_{s_{B}, s a b} \frac{y_{i}}{n_{a b}^{B}} \\
\hat{u}_{a b, s r s}=\left(n_{a b}^{A} \hat{u}_{a b, s r s}^{A}+n_{a b}^{B} \hat{u}_{a b, s r s}^{B}\right) /\left(n_{a b}^{A}+n_{a b}^{B}\right)
\end{gathered}
$$

Adjusted to Complex Surveys

$$
\begin{aligned}
& \hat{u}_{a, s r s} \rightarrow \hat{u}_{a}=\frac{\hat{Y}_{a}}{\hat{N}_{a}}, \hat{u}_{a b, s r s}^{A} \rightarrow \hat{u}_{a b}^{A}=\sum_{s_{A}, s_{a b}} \frac{\hat{Y}_{a b}^{A}}{\hat{N}_{a b}^{A}} \\
& \hat{u}_{b, s r s} \rightarrow \hat{u}_{b}=\frac{\hat{Y}_{b}}{\hat{N}_{b}}, \hat{u}_{a b, s r s}^{B} \rightarrow \hat{u}_{a b}^{B}=\sum_{s_{B}, s_{a b}} \frac{\hat{Y}_{a b}^{B}}{\hat{N}_{a b}^{B}} \\
& \hat{u}_{a b, s r s}=\left(n_{a b}^{A} \hat{u}_{a b, s r s}^{A}+n_{a b}^{B} \hat{u}_{a b, s r s}^{B}\right) /\left(n_{a b}^{A}+n_{a b}^{B}\right) \rightarrow \\
& \hat{u}_{a b}=\left[\frac{n_{A}}{N_{A}} \hat{N}_{a b}^{A} \hat{u}_{a b}^{A}+\frac{n_{B}}{N_{B}} \hat{N}_{a b}^{B} \hat{u}_{a b}^{B}\right] /\left[\frac{n_{A}}{N_{A}} \hat{N}_{a b}^{A}+\frac{n_{B}}{N_{B}} \hat{N}_{a b}^{B}\right]
\end{aligned}
$$

Pseudo-Maximum Likelohood (PML)(Skinner and Rao (1996))

$$
\begin{aligned}
\hat{Y}_{P M L} & =\left(N_{A}-\hat{N}_{a b, P M L}\right) \hat{u}_{a}^{A}+\hat{N}_{a b, P M L} \hat{u}_{a b} \\
& +\left(N_{B}-\hat{N}_{a b, P M L}\right) \hat{u}_{b}^{B}
\end{aligned}
$$

$\hat{N}_{a b}^{P M L}$ is the smaller of the roots of the quadratic equation

$$
\begin{equation*}
p x^{2}-q x+r=0 \tag{3}
\end{equation*}
$$

where

$$
\begin{gathered}
p=n_{A}+n_{B} \\
q=n_{A} N_{B}+n_{B} N_{A}+n_{A} \hat{N}_{a b}^{A}+n_{B} \hat{N}_{a b}^{B}
\end{gathered}
$$

and

$$
r=n_{A} \hat{N}_{a b}^{A} N_{B}+n_{B} \hat{N}_{a b}^{B} N_{A} .
$$

Optimal Choice of n_{A} and n_{B}

$$
\begin{align*}
& \hat{\boldsymbol{\eta}}=\left(\hat{u}_{a}^{A}, \hat{u}_{a b}^{A}, \hat{N}_{a b}^{A} / N, \hat{u}_{b}^{B}, \hat{u}_{a b}^{B}, \hat{N}_{a b}^{B} / N\right)^{\prime} \tag{4}\\
& \boldsymbol{\eta}=\left(u_{a}, u_{a b}, N_{a b} / N, u_{b}, u_{a b}, N_{a b} / N\right)^{\prime} \tag{5}
\end{align*}
$$

Under certain condition, $\hat{\boldsymbol{\eta}}$ is consistent for $\boldsymbol{\eta}$, and

$$
\begin{equation*}
\tilde{n}^{1 / 2}(\hat{\boldsymbol{\eta}}-\boldsymbol{\eta}) \xrightarrow{d} N(0, \boldsymbol{\Sigma}), \tag{6}
\end{equation*}
$$

where Σ is a block-diagonal matrix with blocks Σ_{A} and Σ_{B},
Σ_{A} is the asymptotic covariance matrix of
$\tilde{n}^{1 / 2} \hat{\boldsymbol{\eta}}_{A}=\tilde{n}^{1 / 2}\left(\hat{u}_{a}^{A}, \hat{u}_{a b}^{A}, \hat{N}_{a b}^{A} / N\right)^{\prime}$
and Σ_{B} is the asymptotic covariance matrix of
$\tilde{n}^{1 / 2} \hat{\boldsymbol{\eta}}_{B}=\tilde{n}^{1 / 2}\left(\hat{u}_{b}^{B}, \hat{u}_{a b}^{B}, \hat{N}_{a b}^{B} / N\right)^{\prime}$.

- $\hat{Y}_{P M L}$ depends on n_{A} and n_{B} only via the ratio n_{A} / n_{B}
- Choose n_{A} / n_{B} to minimize $\operatorname{avar}\left(\hat{N}_{a b, P M L}\right)$
- By delta method, $\hat{Y}_{P M L}$ is asymptotically normal with mean Y and variance $\left(N^{2} / n\right) \sigma_{P M L}^{2}$
- $\sigma_{P M L}^{2}=\nabla^{\prime} \boldsymbol{\Sigma} \nabla$
$\nabla=\left[N_{a} / N, \theta N_{a b} / N, \phi\left(u_{a b}-u_{a}-u_{b}\right)\right.$,
$\left.N_{b} / N,(1-\theta) N_{a b} / N,(1-\phi)\left(u_{a b}-u_{a}-u_{b}\right)\right]$, $\phi=n_{A} N_{b} /\left(n_{A} N_{b}+n_{B} N_{a}\right)$ and $\theta=n_{A} N_{B} /\left(n_{A} N_{B}+n_{B} N_{A}\right)$
- Setting
$u_{a}=u_{b}=0, u_{a b}=1$ in ∇ $\sigma_{A i}^{2}=\sigma_{B i}^{2}=0, \sigma_{A i j}=\sigma_{B i j}=0(i, j=1,2)$ in Σ
- $\operatorname{avar}\left(\hat{N}_{a b, P M L}\right)=\left(N^{2} / n\right)\left[\phi^{2} \sigma_{A 3}^{2}+(1-\phi)^{2} \sigma_{B 3}^{2}\right]$
- Minimized when $\phi=\sigma_{B 3}^{2} /\left(\sigma_{A 3}^{2}+\sigma_{B 3}^{2}\right)$
- Equivalently, $n_{A} / n_{B}=N_{a} \sigma_{B 3}^{2} /\left(N_{b} \sigma_{A 3}^{2}\right)$

Gross Flow Estimation in Single Frame Survey

- Blumenthal (1968) Multinomial Sampling
- Chen-Fienberg (1974), Stasny (1986) Two stage model, reduced parametrizations of general interest
- Stasny and Fienberg (1984, 1985), Stasny (1983, 1986, 1987, 1988) Continuous time model
- Holt and Skinner (1989) Use survey weights to estimate transition probabilities
- Singh and Rao (1995) Classification error
- Most assume SRS, do not account for survey design
- Lu and Lohr (2010) Gross flow estimation in dual frame surveys —-Accounts for survey design
——Consider the overlap domain estimation
--Model missing data through two-stage procedure

