
Linear Mixed Models

• Many modeling techniques assume the data are independent and identi-

cally distributed (i.i.d.), this assumption does not hold in many cases

• Linear mixed models (LMM) are used to model dependent data where the

error structure is defined in the model

• LMM is primarily used with data that are grouped according to one or more

naturally occurring classification factors

• LMMs combine both fixed and random effects to handle the dependent

structure in the data

• In econometrics, often referred to as a random-coefficient regression model;

in the social sciences, it is often called a multilevel or hierarchical linear

model
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A general linear mixed model may be expressed as

Y = Xβ + Zα + ε (1)

• Y is an N -dimensional response vector

• X and Z are known N × p and N × q matrices of covariates, respectively

• βp×1 is a vector of unknown regression coefficients, which are often called

the fixed effects, αq×1 is a vector of random effects and εN×1 is a vector

of errors

• Basic assumptions:

—-The random effects and errors have mean zero and finite variances. Typ-

ically, the covariance matrices G = V ar(α) and R = V ar(ε) involve

some unknown dispersion parameters, or variance components

—-The vectors α and ε are assumed to be uncorrelated
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• A fixed effect is not subject to variation and is considered to be an unknown

constant, such as an effect of a treatment

• A random effect is a factor level randomly selected from the collection of all

possible factor levels, such as randomly selected subjects in an experiment.

Random effects are usually not of interest

• Mixed effects data contain at least one random effect and some fixed effects

• Assume that observations that share the same combination of classification

factors also share the same corresponding random effect, while all obser-

vations share the fixed effects

• Some examples that deal with mixed effects are repeated measures data,

longitudinal data, nested data, block designs and small area estimation
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Example 1: Nested Designs.

• Goal: to investigate the variation of emergency room treatment

of patients in a given city

• Data: First, m number of hospitals are randomly selected from

the given city; Then, ni doctors (i = 1, 2, · · · ,m) are ran-

domly selected from each selected hospital; During a

pre-specified period of time, the emergency care of patients

treated by selected doctors is evaluated; An overall performance

measure can be used that summarizes the treatment of ER pa-

tients from each selected doctor
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• Data is nested: Impossible to force each doctor to work in each

selected hospital, so data is not crossed but nested.

• Random effect: Each hospital represents a random effect since

we are not uniquely interested in the hospitals selected but in

the set of all hospitals in the city

• Dependency of the data: doctors within the same hospital tend

to be more similar than doctors in different hospitals, so obser-

vations are not independent
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Nested Error Regression Model

Yij = u + vi + εij (2)

• yij denote the measure of emergency room care from the jth

doctor (j = 1, 2, · · · , ni) from the ith hospital

(i = 1, 2, · · · ,m)

• u is the overall true mean; vi ∼ N(0, σ2
v) is the random ef-

fect corresponding to the hospital; εij are independent and as-

sumed to be distributed N(0, σ2)

• Testing whether the emergency room care differs significantly

between hospitals is reduce to testing whether σ2
v = 0.
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Example 2: Linear Mixed Model

• Data: The National Assessment of Educational Progress (NAEP).

A wealth of information is collected for each student, teacher

and participating school. School-level information includes fis-

cal resources, instructional methods, student-body character-

istics, and expectations of academic achievement.

• Goal: Model relationship between mathematics proficiency score

of student and gender of the student

• Yij be the mathematics proficiency score of student j at school

i in the sample; xij = 1 if student j at school i is female and

0 if student j at school i is male
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Consider model 1,

Yij = β0 + xijβ1 + εij, εij ∼ N(0, σ2) (3)

• Characteristics of the schools, teachers, and neighborhoods

that are not included in the model may induce a positive cor-

relation in the test scores within a school. For instance, the

seventh and eighth mathematics teacher in one school might

be superb at inspiring students to learn mathematics. The stu-

dents from that school might then all perform better than aver-

age on the proficiency test, so their scores are more similar.

• Some schools may encourage students of one gender more

than students of the other gender
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• The model doesn’t allow for different relations between gender

and test score in different schools

• The p-value for parameter estimates will be far too small

• This model is likely to be inappropriate
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Consider a model that incorporates cluster effects and allows

schools to have different slopes for gender

Yij = β0i + (xij − x̄i)β1i + εij, εij ∼ N(0, σ2)

• β0i can be interpreted as the average test score in school i

• School i has its own straight-line regression model with inter-

cept β0i and slope β1i
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Consider a model where slopes and intercepts from different

schools are also related through a model

Yij = β0 + (xij − x̄i)β1 + δ0i + (xij − x̄i)δ1i + εij (4)

• β0i = β0 + δ0i; β1i = β1 + δ1i where δ0i and δ1i follow

a bivariate normal distribution with EM [δ0i] = EM [δ1i] =

0, VM [δ0i] = τ00, VM [δ1i] = τ11, and CovM(δ0i, δ1i) = τ01

• β0 represents the mean test score for schools

• β1 represents the mean slope for gender for schools

• Random effects δ0i and δ1i represent the difference in the in-

tercept and slope between school i and the average values for

11



intercept and slope for all schools; they measure the school

effects

• εij refers to additional deviation from the mean due to the indi-

vidual student, after the effect of gender and school have been

accounted for

• If τ00 = τ11 = 0, there is no school effect on test score,

and the model then reduces to a regular straight-line regres-

sion model
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Example 3: Small Area Estimation of Income
Small Area Estimation

• Large scale sample surveys are usually designed to produce reliable esti-

mates of various characteristics of interest for large geographic areas

• There are smaller geographic areas and subpopulations for which adequate

samples are not available

• It is necessary to “borrow strength” from related small areas to find indirect

estimators that increase the effective sample size and thus precision. Such

indirect estimators are typically base on linear mixed models or generalized

linear mixed models that provide a link to related small area through the use

of supplementary data such as recent census data and current administra-

tive records
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Example Fay and Herriot (1997)

• Use a linear mixed model for estimating per-cpita income (PCI)

for small places from the 1970 Census of Population and Hous-

ing

• Income was collected on the basis of a 20 percent sample.

However, of the estimates required, more than one-third, or

approximately 15,000, were for places with population of fewer

than 500 persons.

• With such small populations, the sampling error of the direct

estimates is quite significant
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• Need to borrow strength from related places and other sources

yi = x′iβ + vi + ei

where yi is the natural logarithm of the sample estimate of

PCI for the ith place (the logarithm transformation stabilized

the variance); xi is a vector of known covariates related to the

place; β is a vector of unknown regression coefficients; vi is a

random effect associated with the place; and ei represents the

sampling error. Assume that vi and ei are distributed indepen-

dently such that vi ∼ N(0,A), ei ∼ N(0,Di), where A is

unknown but Di’s are known
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Types of linear mixed models

• Gaussian linear mixed models (normality assumption)

• Non-Gaussian linear mixed models (without normality assump-

tion)
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Example 1: One-way random effects model

yij = u + αi + εij (5)

where

• i = 1, · · · ,m, j = 1, · · · , ki,
∑

(ki) = n

• u is the overall true mean

• αi ∼ N(0, σ2), εij ∼ N(0, τ 2)

• the random effects are independent with the errors
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Note:

• A model is called a random effects model if the only fixed effect

is an unknown mean

• Typically, the variance σ2 and τ 2 are unknown

• Model can be expressed in form (1)
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Kronecker Product: A is an m × n matrix, B is an p × q

matrix, then A
⊗

B is an mp× nq matrix

A
⊗

B =




a11B · · · a1nB
...

...
...

am1B · · · amnB



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Let yi = (yij)1≤j≤ki
be the column vector of observations

from the ith group or cluster, and similarly εi = (εij)1≤j≤ki
.

So y = (y′1, · · · ,y′m)′, α = (αi)1≤i≤m,

ε = (ε′1, · · · , ε′m)′ and n =
∑

ki. Consider ki = k,

(5) can be written as

y = Xβ + Zα + ε

where X = 1m

⊗
1k = 1mk, β = u, Z = Im

⊗
1k,

α ∼ N(0, σ2Im) and ε ∼ N(0, τ 2In)
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A general Gaussian linear mixed model may be expressed as

Y = Xβ + Zα + ε (6)

• Y is an N -dimensional response vector

• X and Z are known N × p and N × q matrices of covariates, respectively

• βp×1 is a vector of unknown regression coefficients, which are often called

the fixed effects, αq×1 is a vector of random effects and εN×1 is a vector

of errors

• α ∼ N(0,G) and ε ∼ N(0,R)

• The vectors α and ε are assumed to be independent

• V ar(Y) = R+ZGZ′ = V, Under normality, we have y ∼ N(Xβ,V)
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A compromise between Bayesian and frequentist approaches

Bayesian approach

• The model is specified in hierachical fashion as

y|θ ∼ L(y|θ), (7)

θ ∼ G(θ) (8)

• Equation (7) defines the conditional distribution of y given θ

through density L. Equation (8) defines a member of a family

of distribution of θ through the distribution G

• The parameter specifies G is called the hyperparameter
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• Unlike the frequentist approach, the bayesian approach as-

sumes that parameter θ is random and densities L and G

must be specified completely

• Posterior density

p(θ|y) =
L(y|θ)G(θ)∫
L(y|θ)G(θ)
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Mixed model approach

• The model is specified as a hierachical model (7) and (8), but

it is allowed to have nonrandom parameters β

y|θ ∼ L(y|θ, β), (9)

θ ∼ G(θ, β) (10)

• β is known and is the hyperparameter

L(β) =

∫
L(y|θ, β)G(θ, β)dθ (11)

• Random effects are unobservable and are integrated out in

(11), β is estimated
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• We call θ random and β fixed effects parameters

• The posterior mean is called the estimate of the random effect

Summary

• Mixed model = Bayesian + fequentist

• As in Bayesian approach, mixed model assumes a hierarchical

model where the parameter is treated as random

• On the other hand, the hyperparameter, β is not arbitrarily

specified as in the Bayesian approach, but is estimated from

the data

• A mixed model is more flexible than the Bayesian approach
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Estimation in Gaussian Models

• Maximum likelihood

• Restricted maximum likelihood

Maximum likelihood (Fisher 1922)

• used in mixed model analysis until Hartley and Rao (1967)

• The estimation of the variance components in a linear mixed

model was not easy to handle computationally in the old days
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Point estimation

• The distribution of y has a joint pdf

f(y) =
1

(2π)n/2|V|1/2exp{−1

2
(y−Xβ)′V−1(y−Xβ)}

• Log-likelihood function is given by

l(β, θ) = c− 1

2
log(|V|)− 1

2
(y −Xβ)′V−1(y −Xβ)

where θ represents the vector of all the variance components

(involved in V), and c is a constant

•
∂l

∂β
= X′V−1y −X′V−1Xβ (12)
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∂l

∂θr

=
1

2
[(y −Xβ)′V−1 ∂V

∂θr

V−1(y −Xβ)− tr(V−1 ∂V

∂θr

)] (13)

where r = 1, 2, · · · , q, θr is the rth component of θ, which

has dimension q

• For simplicity, assume that X is of full column rank, rank(X) =

p, let (β̂, θ̂) be the MLE, from (12)

β̂ = (X′V̂−1X)−1X′V̂−1y

where V̂ = V (θ̂), once the MLE of θ is found, the MLE of β

can be calculated by the “closed-form” expression
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By (12) and (13),

y′P
∂V

∂θr
Py = tr(V−1 ∂V

∂θr
), r = 1, 2, · · · , q

where

P = V−1 −V−1X(X′V−1X)−1X′V−1
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For one-way random effects model, the log-likelihood function

is equivalent to

l(u, σ2, τ 2) = c− 1

2
(n−m)log(τ 2)

− 1

2

m∑
i=1

log(τ 2 + kiσ
2)

− 1

2τ 2

m∑
i=1

ki∑
j=1

(yij − u)2

+
σ2

2τ 2

m∑
i=1

k2
i

τ 2 + kiσ2 (ȳi. − u)2
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where ȳi. = k−1
i

ki∑
j=1

yij . We can find
∂l

∂u
,

∂l

∂τ 2 and
∂l

∂σ2 and

set them equal to zero to find estimators û, σ̂2 and τ̂ 2.

Asymptotic covariance matrix

• Under suitable conditions, the MLE is consistent and asymp-

totically normal with the asymptotic covariance matrix equal to

the inverse of the Fisher information matrix

• Let ψ = (β′, θ′)′, then, under regularity conditions, the Fisher

information matrix has the following expressions

V ar(
∂l

∂ψ
) = −E(

∂2l

∂ψ∂ψ′
)
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Restricted Maximum likelihood (REML) (Thompson 1962, Pat-

terson and Thompson 1971)

• Consider a transformation of the data that is orthogonal to the

design matrix of the fixed effects

• uses a likelihood function calculated from the transformed set

of data, so that nuisance parameters have no effect

—Example: In a random effects model, the fixed effects are

considered as nuisance parameters, while the main interest is

the variance component
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Example 1: (Neyman-Scott problem). Nayman and Scott (1948)

gave the following example which shows that, when the num-

ber of parameters increases with the sample size, the MLE may

not be consistent. Suppose that two observations are collected

from m individuals. Each individual has its own (unknown)

mean, say, ui for the ith individual. Suppose that the obser-

vations are independent and normally distributed with variance

σ2. The problem of interest is to estimate σ2.

yij = ui + εij

where εij ’s are independent and distributed as N(0, σ2), i =

1, 2, · · · ,m.
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• The number of parameters m + 1 is proportional to 2m, the

number of observations of the data.

• MLE of σ2 is inconsistent
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Let y =




y11

y12

y21

y22

...

ym1

ym2




, β =




u1

u2

...

um




, ε =




ε11

ε12

ε21

ε22

...

εm1

εm2



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X = Im

⊗
12 =




1 0 · · · 0

1 0 · · · 0

0 1 · · · 0

0 1 · · · 0
...

...
...

...

0 0 · · · 1

0 0 · · · 1



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σ̂2
ML =

(y −Xβ̂)′(y −Xβ̂)

2m

=
m∑

i=1

2∑
j=1

(yij − ȳi.)
2/2m

=
m∑

i=1

1

2
(yi1 − yi2)

2/2m

=
1

2

m∑
i=1

(yi1 − yi2)
2/2m
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Let zi = yi1 − yi2, zi ∼ N(0, 2σ2), zi’s iid,

S2 =

∑
z2
i

m− 1
→p 2σ2, Hence

σ̂2
ML =

1

2
·
∑

z2
i

2m

=
1

2
·

∑
z2
i

m− 1
· m− 1

2m

→p
1

2
· 2σ2 · 1

2

=
σ2

2
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• Consider transformation: zi = yi1 − yi2.

It follows that z1, · · · , zm are independent and distributed as

N(0, 2σ2). ui’s are gone.

Let z = A′y

A′ =




1 −1 0 0 · · · 0 0

0 0 1 −1 · · · 0 0
...

...
...

...
...

...
...

0 0 0 0 · · · 1 −1




Notice X = Im

⊗
12,A

′X = 0.

• In this example, RMLE is to apply a transformation to the data
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to eliminate the fixed effects, then use the transformed data to

estimate the variance component

• σ̂2
REML =

1

m

m∑
i=1

(zi − z̄)2 →p σ2
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Point Estimation

• Without loss of generality, assume that rank(X) =p

• Let A be an n × (n − p) matrix such that rank(A) = n −
p,A′X = 0

• Define z = A′y, then z ∼ N(0,A′VA)

• The joint pdf of z is given by

fR(z) =
1

(2π)(n−p)/2|A′VA|1/2exp

{
−1

2
z′(A′VA)−1z

}

where the subscript R corresponds to “restricted”
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Restricted log-likelihood is given by

lR(θ) = c− 1

2
log(|A′VA|)− 1

2
z′(A′VA)−1z (14)

Differentiating the restricted log-likelihood, we obtain

∂lR
∂θi

=
1

2

{
y′P

∂V

∂θi
Py − tr

(
P

∂V

∂θi

)}
, i = 1, · · · , q

(15)

where

P = A(A′VA)−1A′ (16)

• The REML estimator of θ is defined as the maximizer of (14)
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Note:

• Although the REML estimator of θ is defined through trans-

forming matrix A, the REML estimator doesn’t depend on A

• The choice of A is not unique, but the results will be the same

• The REML method is a method of estimating θ, (not β, β is

eliminated before the estimation)

• Once the REML estimator of θ is obtained, β is usually esti-

mated the same way as the ML. Such estimator is sometimes

referred as the “REML estimator” of β
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Example: one-way balanced random effect model

yij = u + αi + εij

where

• i = 1, · · · ,m, j = 1, · · · , k, mk = n

• u is the overall true mean

• αi ∼ N(0, σ2), εij ∼ N(0, τ 2)

• the random effects are independent with the errors

44



Let SStotal =
m∑

i=1

k∑
j=1

(yij − ȳ..)
2, SSA = k

m∑
i=1

(ȳi. − ȳ..)
2

and SSE =
m∑

i=1

k∑
j=1

(yij − ȳi.)
2

The loglikelihood function (14) is equivalent to

lR = −1

2
(mk − 1)log2π − 1

2
log(mk)− 1

2
m(k − 1)logτ 2

− 1

2
(m− 1)log(τ 2 + kσ2)− SSE

2τ 2 − SSA

2(τ 2 + kσ2)
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Set
∂l

∂σ2 and
∂l

∂τ 2 equal to zero respectively, we have

τ 2 + kσ2 = SSA/(m− 1) = MSA

and

τ 2 =
SSE

n−m
= MSE

The REML equations thus have an explicit solution τ̂ 2 = MSE

and σ̂2 = k−1(MSA−MSE)
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Asymptotic covariance matrix

• under suitable conditions, the REML estimator is consistent

and asymptotically normal. The asymptotic covariance matrix

is equal to the inverse of the restricted Fisher information ma-

trix. Under the regularity conditions,

V ar

(
∂lR
∂θ

)
= −E

(
∂2lR

∂θ∂θ′

)

Assuming that V is twice condinuously differentiable (with re-

spect to the components of q), then we have

E

(
∂2lR

∂θi∂θj

)
= −1

2
tr

(
P

∂V

∂θi
P

∂V

∂θj

)
, 1 ≤ i, j ≤ q
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Analysis of variance estimation

• The basic idea of ANOVA estimation came from the method of

moments

• Let Q be q-dimentional vector whose components are quadratic

functions of the data. The ANOVA estimators of the variance

components are obtained by solving the system of equations

E(Q) = Q
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Example: One way balanced random effects model continued

ANOVA table (consider the αi’s are fixed treatment effects):

source SS df MS F

Treatment SSA m-1 MSA=SSA/(m-1) MSA/MSE

Error SSE m(k-1) MSE=SSE/m(k-1)

Total SStotal mk-1

SStotal =
m∑

i=1

k∑
j=1

(yij − ȳ..)
2, SSA = k

m∑
i=1

(ȳi. − ȳ..)
2 and

SSE =
m∑

i=1

k∑
j=1

(yij − ȳi.)
2
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• The components of Q consist of SSA and SSE

E(SSA) = (m− 1)kσ2 + (m− 1)τ 2

and

E(SSE) = m(k − 1)τ 2

• The ANOVA estimating equations are

(m− 1)kσ2 + (m− 1)τ 2 = SSA

m(k − 1)τ 2 = SSE

• The resulting ANOVA estimators are therefore σ̂2 = (MSA−
MSE)/k, τ̂ 2 = MSE.
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Note:

• unlike ML and REML, ANOVA estimators of he variance components may

not belong to the parameter space. If MSA < MSE, σ̂2 will be negative.

• Under a balanced mixed ANOVA model, the ANOVA estimator of θ =

(τ 2, σ2
i , 1 ≤ i ≤ s)′ is identical to the solution of the REML equations.

—The solution of the REML equations is not necessrily the REML estima-

tor, because the REML estimator has to be in the parameter space

—When the solution does belong to the parameter space, the REML and

ANOVA estimators are identical

Unbalanced data (Hendenson (1953))
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Tests in Gaussian Mixed Models

Some notations:

• Projection matrix PX = X(X′X)−1X′

• ZªX = PX⊥Z

• PX⊥ = I− PX
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Exact F test

Suppose that one wishes to test the hypothesis H0 : σ2
1 = 0.

Note that the model can be written as

y = Xβ + Z1α1 + Z−1α−1 + ε

where α−1 = (α′
2, · · · , α′

s)
′, Z−1 = (Z2, · · · ,Zs)

Let

q1 = τ−2y′PZ1ª(X,Z−1)y

= y′
{
PZ1ª(X,Z−1)/τ2

}
y
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Let

q2 = τ−2y′P(X,Z)⊥y

= y′
{
P(X,Z)⊥/τ2

}
y

Then q1 ∼ χ2
r1

with r1 = rank {(X,Z)}−rank {(X,Z−1)}
q2 ∼ χ2

r2
with r2 = n− rank {(X,Z)}

• q1 and q2 are independent

• F1 =
q1/r1

q2/r2
∼ Fr1,r2

Optimal Test (Mathew & Sinha (1988)) (Jiang, Chapter 2, page

53)
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Likelihood Ratio Tests

The theory of likelihood-ratio tests is fully developed in the i.i.d.

case. However, the literature on likelihood-ratio tests in the

context of linear mixed models is much less extensive. First

paper address the likelihood-ratio tests in linear mixed models

was from Hartley and Rao (1967)

• Let ψ = (β′, θ′)′, θ be the vector of variance components, β

be the vector of fixed parameters

• A general interest is to test a subvector of θ, say θ(1), is iden-

tical to a known vector θ
(1)
0 or not

• Let θ(2) be the complement of θ(1). L(θ) = L(θ(1), θ(2))
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• Let θ̂ be the global maximizer of L(θ|y) over θ ∈ Θ

• θ̂
(2)

be the global maximizer of L(θ
(1)
0 , θ(2)) over θ(2) ∈ Θ(2)

• R =
L(θ

(1)
0 , θ̂

(2)
)

L(θ̂)
, Hartley and Rao stated without giving a

proof that −2logR is a central χ2 with degrees of freedom r,

where r is the dimension of θ(1) (Jiang 2005 proved this)

• Example discussion (Lu & Zhang 2009)
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Applications

Consequences of assuming random:

• Statistical inferences can be made to the population from which

the group effects were drawn

• Random effects induce a correlation among observations with

the same group effect

• Estimation methods are different for fixed versus random ef-

fects

• using random effects involves making extra assumptions but

often results in more precise estimates
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Interpretation

• Fixed effects are interpreted as usual

• Estimates of the random effects αi, within group, are inter-

preted similarly

• larger estimates of σ2 means importance of the random effect
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REML estimates v.s. ML estimates

• The default parameter estimation criterion for linear mixed mod-

els is restricted (or residual) maximum likelihood (REML)

• Maximum likelihood (ML) estimates (sometimes called “full max-

imum likelihood”) can be requested by specifying REML = FALSE

or method=“ML” in the model

• Generally REML estimates of variance components are pre-

ferred.

• REML estimates are not guaranteed to be unbiased, but they

are usually less biased than ML estimates
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