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for testing variance component in a balanced one-way random
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In mixed linear models, it is frequently of interest to test hypotheses on the variance components. F-test and
likelihood ratio test (LRT) are commonly used for such purposes. Current LRTs available in literature are
based on limiting distribution theory. With the development of finite sample distribution theory, it becomes
possible to derive the exact test for likelihood ratio statistic. In this paper, we consider the problem of
testing null hypotheses on the variance component in a one-way balanced random effects model. We use
the exact test for the likelihood ratio statistic and compare the performance of F-test and LRT. Simulations
provide strong support of the equivalence between these two tests. Furthermore, we prove the equivalence
between these two tests mathematically.

Keywords: finite sample distribution; hypothesis; mixed model; simulations; variance component

1. Introduction

This paper assumes a one-way random effects model

yij = μ + αi + εij , (1)

where i = 1, . . . , m; j = 1, . . . , k. μ is the fixed unknown intercept, α = (α1, α2, . . . , αm)′ is
the random effect and ε = (ε11, ε12, . . . , εmk)

′ is the error term. Assume α and ε are normally
and independently distributed with mean 0 and variances σ 2

α Im and σ 2Imk . A standard test of the
variance component σ 2

α is as the following:

H0 : σ 2
α = 0 vs. Ha : σ 2

α > 0. (2)

F-test is commonly used for this situation because, in this case, F-test is a uniformly most
powerful unbiased test. On the other hand, likelihood ratio test (LRT) is a well-known and widely
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2 Y. Lu and G. Zhang

used statistical test. One problem of test (2) is that zero is at the boundary of the parameter space, so
the limiting distribution of the likelihood ratio statistic is not χ2. Hartly and Rao [1] stated without
giving a proof that the asymptotic distribution of −2 log L is a central χ2. Other papers related
to asymptotic distribution of likelihood ratio statistic include Stram and Lee [2], Shephard and
Harvey [3] and Stern and Welsh [4]. χ2 mixture [2] is another way to approximate the distribution
of likelihood ratio statistic and it works well when the number of independent groups is large.
There was another test called locally optimal test proposed by Westfall [5,6], which followed
papers by Harville and Fenech [7] and Seely and El-Bassinouni [8]. Westfall [5] compared the
locally optimal test to the F-test for unbalanced designs. However, “the literature on LRT in
the context of linear mixed models is much less extensive” [9, p. 55]. Recently, Crainiceanu and
Ruppert [10] derived finite sample distribution of likelihood ratio statistics in linear mixed models,
which makes it possible to derive the exact test for likelihood ratio statistics. In this article, we
consider the standard test (2) in a one-way balanced random effects model. We discover that F-test
and LRT are equivalent by simulation studies. Furthermore, we prove the equivalence between
the two tests in theory.

This paper is organized as follows. In Section 2, we review F-test and LRT. In Section 3, we
report our simulation results. Finally, a proof of the equivalence between the two tests is given in
Section 4.

2. Background

We first introduce some notation. Define ȳ.. = ∑m
i=1

∑k
j=1 yij /mk, ȳi. = ∑k

j=1 yij /k for each i,

SSE = ∑m
i=1

∑k
j=1(yij − ȳi.)

2/(k − 1)m, SSB = k
∑m

i=1(ȳi. − ȳ..)
2, MSB = SSB/(m − 1) and

MSE = SSE/(m(k − 1)).
For model (1), the ratio of MSB/(σ 2 + kσ 2

α ) to MSE/σ 2 has an F-distribution with degrees
of freedom (m − 1, m(k − 1)). Under H0 in Equation (2), MSB/MSE has an F-distribution with
degrees of freedom (m − 1, m(k − 1)).

Before we discuss the LRT, we first write model (1) in matrix form,

Y = Xμ + Zα + ε, (3)

where X is simply an mk × 1 vector of 1s, Z is an mk × m matrix with every column containing
only 0s with exception of a k-dimensional vector of 1s corresponding to the level parameter, Y is
the response vector and ε is the random error vector.

Twice the log-likelihood function of Equation (3), we have

2 log{L(μ, σ 2
α , σ 2)} = − log(σ 2) − log |V| − (Y − Xμ)T V−1(Y − Xμ)

σ 2
,

where V = Imk + λZZT , λ = σ 2
α /σ 2 and the likelihood ratio statistic is defined as

LRT = 2 sup
Ha

{L(μ, σ 2
α , σ 2)} − 2 sup

H0

{L(μ, σ 2
α , σ 2)}. (4)

The standard maximum likelihood estimators are as follows

μ̂ = (XT V−1X)−1XT V−1Y,
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and

σ̂ 2 = (Y − Xμ̂)T V−1(Y − Xμ̂)

mk
.

Under the null hypothesis, we obtain the likelihood estimators as follows

μ̂ = ȳ..,

and

σ̂ 2
0 = 1

km

m∑
i=1

k∑
j=1

(yij − ȳ..)
2.

Under the alternative hypothesis, we obtain the likelihood estimators as follows

μ̂ = ȳ..,

and

σ̂ 2 = 1

(k − 1)m

m∑
i=1

k∑
j=1

(yij − ȳi.)
2.

σ̂ 2
α =

⎧⎨
⎩

1

k

(
k

∑m
i=1(ȳi. − ȳ..)

2

m
− σ̂ 2

)
if σ̂ 2 ≤ k

∑m
i=1(ȳi. − ȳ..)

2

m
,

0, otherwise.
(5)

3. Simulations

We first introduce the result from Crainiceanu and Ruppert [10], which we use in our simulation
study. Crainiceanu and Ruppert [10] developed a method to get finite sample distributions of
likelihood ratio statistics, which follows that

LRT
D= km log(Xm−1 + X(k−1)m)

− inf
d≥0

{
km log

(
Xm−1

1 + d
+ X(k−1)m

)
+ m log(1 + d)

}
, (6)

where notation
D= denotes equivalence in distribution and Xm−1 and X(k−1)m are independent

random variables with distribution χ2
m−1 and χ2

(k−1)m.
In this section, we perform a simulation study to investigate the two tests. First, we compare

the percentages of samples for which the test statistics exceed the critical value to the nominal
level. Then we calculate power of the two tests. The following are the simulation details:

(1) Calculate critical values for both tests. We use Equation (6) to generate finite sample distri-
bution of likelihood ratio statistic and to find corresponding critical values. For each setting,
we use a different seed and generate 100,000 samples from Equation (6). Critical value is the
100(1 − γ )% percentile, where γ is the significant level of test. Critical value for F-test is
Fγ [m − 1, m(k − 1)]. Results are listed in Table 1.
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4 Y. Lu and G. Zhang

Table 1. Critical values for the two tests.

m

Significance level (γ ) k Tests 2 10 50

0.01 5 F 11.25862 2.887560 1.634977
LRT 3.062403 4.361615 4.91984

10 F 8.28542 2.610879 1.576229
LRT 2.590879 4.137277 4.707984

20 F 7.352545 2.501878 1.551395
LRT 2.444884 4.024391 4.670615

0.05 5 F 5.317655 2.124029 1.418051
LRT 0.9052984 1.877785 2.335454

10 F 4.413873 1.985595 1.382671
LRT 0.6955273 1.764155 2.228158

20 F 4.098172 1.929425 1.367567
LRT 0.6283923 1.705018 2.225503

0.1 5 F 3.457919 1.792902 1.312488
LRT 0.2665952 0.990356 1.362770

10 F 3.006977 1.702053 1.286975
LRT 0.1779033 0.9079695 1.27152

20 F 2.842442 1.664704 1.276034
LRT 0.1358003 0.8746464 1.274283

(2) Compare to the nominal levels. The following model is used to generate samples:

yij = 0.5 + αi + εij , (7)

where i = 1, . . . , m; j = 1, . . . , k. α and ε are normally and independently distributed with
mean 0 and variance σ 2

α Im, σ 2Imk , respectively.
For each setting, we use a different seed and generate 100,000 samples from model (7)

with σ 2
α = 0 and σ 2 = 1. For each sample, we apply F-test and LRT and the percentages

of samples for which the test statistics exceed the critical value are reported in Table 2.

Table 2. Tests comparison (the numbers in the table are the percentages of samples for which the test statistics exceed
the critical value).

m

Significance level (γ ) k Tests 2 10 50

0.01 5 F 0.01015 0.01026 0.01009
LRT 0.01034 0.01006 0.00973

10 F 0.00958 0.00977 0.01013
LRT 0.00978 0.0096 0.01061

20 F 0.00989 0.01041 0.00945
LRT 0.00970 0.01041 0.00992

0.05 5 F 0.05028 0.04888 0.05037
LRT 0.05049 0.04959 0.04943

10 F 0.05022 0.05015 0.05001
LRT 0.05025 0.05038 0.05107

20 F 0.04938 0.0496 0.05036
LRT 0.04840 0.05003 0.05039

0.1 5 F 0.09926 0.10016 0.10066
LRT 0.09921 0.10123 0.09809

10 F 0.10153 0.09906 0.10078
LRT 0.0996 0.10006 0.10221

20 F 0.10089 0.10019 0.10003
LRT 0.09994 0.10062 0.0998
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Both tests give almost the same results and work very well as we can see that the percentages
of samples for which the test statistics exceed the critical value are very close to the nominal
level.

(3) Calculate power of the tests. We generate 100,000 samples from model (7) with σ 2
α =

0.09, 1, 9 and σ 2 = 1 for each setting using a different seed. The results are reported in
Tables 3–5. We can see that the two tests almost have the same power. Equation (8) can also
be used to calculate power.

P

(
MSB

MSE
> Fγ |σ 2

α > 0

)
= P

(
MSB/(σ 2 + kσ 2

α )

MSE/σ 2
>

σ 2

σ 2 + kσ 2
α

Fγ

)
, (8)

where γ is the significance level, Fγ [m − 1, m(k − 1)] is the critical value.

Table 3. Power of the tests λ = 0.09.

m

Significance level (γ ) k Tests 2 10 50

0.01 5 F 0.02286 0.06682 0.27836
LRT 0.02332 0.06565 0.27426

10 F 0.05208 0.21231 0.78583
LRT 0.05301 0.21117 0.78968

20 F 0.11299 0.53116 0.99473
LRT 0.11186 0.53112 0.99490

0.05 5 F 0.09213 0.19207 0.52209
LRT 0.09244 0.19354 0.51860

10 F 0.14611 0.41039 0.91525
LRT 0.14613 0.41108 0.91625

20 F 0.23492 0.72211 0.99865
LRT 0.23280 0.72282 0.99865

0.1 5 F 0.16075 0.30051 0.65041
LRT 0.16056 0.30251 0.64618

10 F 0.22725 0.53221 0.95468
LRT 0.22403 0.53373 0.95526

20 F 0.31735 0.79945 0.99968
LRT 0.31589 0.79985 0.99966

Table 4. Power of the tests λ = 1.

m

Significance level (γ ) k Tests 2 10 50

0.01 5 F 0.20632 0.87851 1.00000
LRT 0.20821 0.87713 1.00000

10 F 0.39500 0.98768 1.00000
LRT 0.39680 0.98756 1.00000

20 F 0.55872 0.99917 1.00000
LRT 0.55755 0.99917 1.00000

0.05 5 F 0.37424 0.94984 1.00000
LRT 0.37472 0.95021 1.00000

10 F 0.53460 0.99604 1.00000
LRT 0.53461 0.99605 1.00000

20 F 0.65973 0.99965 1.00000
LRT 0.65829 0.99965 1.00000

0.1 5 F 0.47081 0.97072 1.00000
LRT 0.47068 0.97096 1.00000

10 F 0.60843 0.99737 1.00000
LRT 0.60605 0.99739 1.00000

20 F 0.71258 0.99984 1.00000
LRT 0.71187 0.99984 1.00000
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6 Y. Lu and G. Zhang

Table 5. Power of the tests λ = 9.

m

Significance level (γ ) k Tests 2 10 50

0.01 5 F 0.63433 0.99994 1.00000
LRT 0.63573 0.99994 1.00000

10 F 0.76535 1.00000 1.00000
LRT 0.76617 1.00000 1.00000

20 F 0.84207 1.00000 1.00000
LRT 0.84153 1.00000 1.00000

0.05 5 F 0.74275 0.99998 1.00000
LRT 0.74298 0.99998 1.00000

10 F 0.82701 1.00000 1.00000
LRT 0.82702 1.00000 1.00000

20 F 0.88116 1.00000 1.00000
LRT 0.88054 1.00000 1.00000

0.1 5 F 0.79241 0.99999 1.00000
LRT 0.79236 0.99999 1.00000

10 F 0.85743 1.00000 1.00000
LRT 0.85654 1.00000 1.00000

20 F 0.90209 1.00000 1.00000
LRT 0.90180 1.00000 1.00000

For example, let m = 2, k = 5, γ = 0.01, λ = 0.09, we have σ 2Fγ /(σ 2 + kσ 2
α ) = 7.764566

and power of the test from Equation (8) is 0.02368, which is close to the empirical power reported
in Table 3.

4. Proof of the equivalence

Theorem 4.1 For model (1), the LRT statistic Equation (4) is a one to one function of MSB/MSE.
Hence LRT is equivalent to F-test.

Proof We first prove that the likelihood ratio statistic is a one-to-one function of F statistic by
two cases: σ̂ 2

α > 0 and σ̂ 2
α = 0.

Case 1 σ̂ 2
α > 0

Since σ̂ 2 = MSE, σ̂ 2
α = 1/k(((m − 1)/m)MSB − MSE) and SSE + SSB = ∑m

i=1

∑k
j=1

(yij − ȳ..)
2,

LRT = −(mk − m) log(σ̂ 2) −
m∑

i=1

log(σ̂ 2 + kσ̂ 2
α ) − 1

σ̂ 2

m∑
i=1

k∑
j=1

(yij − μ̂)2

= −(mk − m) log(σ̂ 2) − m log(σ̂ 2 + kσ̂ 2
α ) − mkσ̂ 2

0

σ̂ 2

+ σ̂ 2
α

σ̂ 2

(
k2

σ̂ 2 + kσ̂ 2
α

) m∑
i=1

(ȳi. − ȳ..)
2 + mk log(σ̂ 2

0 ) + mk
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= −(mk − m) log

(
SSE

(k − 1)m

)
− m log

(
SSB

m

)
− (k − 1)m(SSE + SSB)

SSE

+ m2(k − 1)(SSB/m − SSE/(k − 1)m)

SSE
+ mk log

(
1

mk
(SSE + SSB)

)
+ mk

= c + mk log(SSE + SSB) − mk log(SSE) + m log(SSE) − m log(SSB)

= c + m

[
log

(
1 + c∗ MSB

MSE

)k

− log

(
c∗ MSB

MSE

)]

= c − m log(c∗) + m log

(
(1 + c∗MSB/MSE)k

MSB/MSE

)
(9)

where c and c∗ = (m − 1)/((k − 1)m) are constants. Since σ̂ 2
α > 0, we have MSB/MSE >

m/(m − 1). If x > m/(m − 1) and k ≥ 2, derivative of function f (x) = (1 + c∗x)k/x is positive.
So LRT is a strictly increasing function.

Case 2 σ̂ 2
α = 0

In this case,

LRT = −(mk − m) log(σ̂ 2) −
m∑

i=1

log(σ̂ 2) − 1

σ̂ 2

m∑
i=1

k∑
j=1

(yij − μ̂)2

+ mk log(σ̂ 2
0 ) + 1

σ̂ 2
0

m∑
i=1

k∑
j=1

(yij − μ̂)2

= −(mk − m) log

(
SSE

(k − 1)m

)
− m log

(
SSE

m(k − 1)

)
− (k − 1)m(SSE + SSB)

SSE

+ mk log

(
1

mk
(SSE + SSB)

)
+ mk

= c′ − (k − 1)m
SSB

SSE
+ mk log

(
1 + SSB

SSE

)

= c′ − (m − 1)
MSB

MSE
+ mk log

(
1 + c∗ MSB

MSE

)

where c′ and c∗ = (m − 1)/((k − 1)m) are constants. Since σ̂ 2
α = 0, we have MSB/MSE ≤

m/(m − 1). If x ≤ m/(m − 1) and m, k ≥ 2, derivative of function f (x) = −(m − 1)x +
mk log(1 + c∗x) is positive. So LRT in Case 2 is also a strictly increasing function.

From the above proof, we conclude that the likelihood ratio statistic is a one-to-one function
of F statistic MSB/MSE under both cases σ̂ 2

α > 0 and σ̂ 2
α = 0.

The proof of equivalence can be obtained by proving that the two tests have the same results of
rejection or acceptance. Consider Case 1: σ̂ 2

α > 0. Given an arbitrary significance level γ , let Fγ

be the critical value of F-test and Lγ be the critical value of the LRT. Let LRT = g(MSB/MSE),
where g represents the one-to-one continuous increasing function. Clearly Lγ = g(Fγ ) and the
statement MSB/MSE > Fγ is equivalent to the statementg(MSB/MSE) > g(Fγ ) i.e. LRT > Lγ .
Proof of equivalence in Case 2: σ̂ 2

α = 0 can be obtained similarly. �
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