
Regression in Complex Surveys

• Learn about relationships between variables

• Give more accurate estimates of population means and totals
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Review Simple Linear Regression Model

Yi = β0 + β1Xi + εi

• Yi is a random variable for the response

• xi is an explanatory variable

• β0 and β1 are unknown parameters

• εi’s are the deviations of the response variable about the line

described by the model

• E[εi] = 0, or E[Yi|xi] = β0 + β1xi

• V [εi] = σ2
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• Cov[εi, εj] = 0 for i 6= j

• Often, conditionally on the xi’s, εi’s are independent and iden-

tically distributed from a normal distribution with mean 0 and

variance σ2
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• The SLR model in Matrix Form


Y1

Y2

...

Yn




=




β0 + β1X1

β0 + β1X2

...

β0 + β1Xn




+




ε1

ε2

...

εn




=




1 X1

1 X2

...

1 Xn





 β0

β1


 +




ε1

ε2

...

εn
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where

• X is called the design matrix

• β is the vector of parameters

• ε is the error vector

• Y is the response vector

X =




1 X1

1 X2

...

1 Xn
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β =


 β0

β1




ε =




ε1

ε2

...

εn
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Y =




Y1

Y2

...

Yn




SLM in Matrix Form

Y = Xβ + ε.
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The ordinary Least Squares (OLS) estimates

• Measure Q =
n∑

i=1
(yi − β0 − β1xi)

2

• Minimize Q to find estimates b0 and b1 for β0 and β1

• Normal equations

β0n + β1

∑
xi =

∑
yi

β0

∑
xi + β1

∑
x2

i =
∑

xiyi

8



•

b1 =

∑
xiyi − (

∑
xi)(

∑
yi)

n
∑

x2
i −

(
∑

xi)
2

n

b0 =

∑
yi − b1

∑
xi

n

• b0 and b1 are the best linear unbiased estimates
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Inferences

b1 ∼N(β1; σ
2(b1))

where σ2(b1) =
σ2

∑
(xi − x̄)2

σ̂2(b1) = s2(b1) =
MSE∑

(xi − x̄)2

b1 − β1

s(b1)
∼ t(n− 2)

Confidence Interval b1 ± t(1− α

2
, n− 2)s(b1)
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b0 ∼ N(β0; σ
2(b0))

where σ2(b0) =
σ2 ∑

x2
i

n
∑

(xi − x̄)2

σ̂2(b0) = s2(b0) =
MSE

∑
x2

i

n
∑

(xi − x̄)2

b0 − β0

s(b0)
∼ t(n− 2)

Confidence Interval b0 ± t(1− α

2
, n− 2)s(b0)
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Regression in Complex Survey

• Estimating quantities from a finite population

• The finite population quantities of interest for regression are the

least squares coefficients for the population, B0 and B1, that

minimize
N∑

i=1

(yi −B0 −B1xi)
2

over the entire population
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• Observations may have different probabilities of selection, πi.

If the probability of selection is related to the response vari-

able yi, then an analysis that does not account for the different

probabilities of selection may lead to biases in the estimated

regression parameters.

• Nonrespondents, who may be thought of as having zero prob-

ability of selection, can distort the relationship

• Stratification may also need to be taken into account
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Normal equations

B0N + B1

N∑
i=1

xi =
N∑

i=1

yi

B0

N∑
i=1

xi + B1

N∑
i=1

x2
i =

N∑
i=1

xiyi
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Estimates of B1 and B0

B̂1 =

N∑
i=1

xiyi − (
N∑

i=1

xi)(
N∑

i=1

yi)/N

N∑
i=1

x2
i − (

N∑
i=1

xi)2/N

=
txy − txty/N

tx2 − (tx)2/N

=

∑
i∈S

wixiyi − (
∑
i∈S

wixi)(
∑
i∈S

wiyi)/
∑
i∈S

wi

∑
i∈S

wix2
i − (

∑
i∈S

wixi)2/
∑
i∈S

wi
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B̂0 =

N∑
i=1

yi − B̂1

N∑
i=1

xi

N

=
ty − B̂1tx

N

=

∑
i∈S

wiyi − B̂1

∑
i∈S

wixi

∑
i∈S

wi
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Standard Errors

• An approximate 100(1− α)% confidence interval for B1 is

B̂1 ± tα/2

√
V̂ (B̂1)

• For linearization, jackknife, Or BRR in a stratified multistage

sample, we would use (number of sampled psu’s) - (number of

strata) as the degrees of freedom

• Random group method of estimating the variance, the appro-

priate degrees of freedom would be (number of groups)-1
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Standard Errors Using Linearization for B̂1

• B1 is a function of four population totals txy, tx, ty, and tx2 .

• Using Taylor expansion,

V (B̂1) ≈ V {∂B1

∂txy
(t̂xy − txy) +

∂B1

∂tx
(t̂x − tx)

+
∂B1

∂ty
(t̂y − ty) +

∂B1

∂tx2

(t̂x2 − tx2)}

∂B1

∂txy
=

1

tx2 − (tx)
2

N
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∂B1

∂tx
=

− ty
N

(tx2 − (tx)
2

N
) + (txy − txty

N
)(

2tx
N

)

(tx2 − (tx)
2

N
)2

=
−ty/N

tx2 − (tx)
2

N

+
(txy − txty

N
)(

2tx
N

)

(tx2 − (tx)
2

N
)(tx2 − (tx)

2

N
)

=
−ty/N

tx2 − (tx)
2

N

+ B1

2
tx
N

tx2 − (tx)
2

N

19



∂B1

∂ty
=

−tx/N

tx2 − (tx)
2

N

∂B1

∂tx2

=
−(txy − txty

N
)

(tx2 − (tx)
2

N
)2

= −B1
1

tx2 − (tx)
2

N
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V (B̂1)

= V

[
[tx2 − (tx)

2

N
]−1{t̂xy − t̂y

tx
N
−B0t̂x + B0tx −B1t̂x2 + B1

t̂xtx
N
}
]

= V

[
[tx2 − (tx)

2

N
]−1

∑
i∈S

wi(yi −B0 −B1xi)(xi − tx
N

)

]

Define

qi = (yi − B̂0 − B̂1xi)(xi − ˆ̄x)

where ˆ̄x = t̂x/N̂.

V̂L(B̂1) =

V̂ (
∑
i∈S

wiqi)

[∑
i∈S

wix2
i − (

∑
i∈S

wixi)2/
∑
i∈S

wi

]2
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Consider simple random sampling

V̂ (
∑
i∈S

wiqi) = V̂ (t̂q) =
N2s2

q

n

s2
q =

∑
i∈S

(xi − x̄S)2(yi − B̂0 − B̂1xi)
2

n− 1

V̂L(B̂1) =

n
∑
i∈S

(xi − x̄S)2(yi − B̂0 − B̂1xi)
2

(n− 1)[
∑
i∈S

(xi − x̄S)2]2

V̂M(β̂1) =

∑
i∈S

(yi − β̂0 − β̂1xi)
2

(n− 2)
∑
i∈S

(xi − x̄)2
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Design-based v.s Model-based variance estimator

• Design based estimator of the variance V̂L comes from the

selection probabilities of the design

• V̂M comes from the average squared deviation over all possi-

ble realizations of the model

• For B̂1±tα/2

√
V̂L(B̂1), the confidence level is

∑
u(S)P (S),

where the sum is over all possible samples S that can be se-

lected using the sampling design, P (S) is the probability that

sample S is selected, u(S) = 1, if the confidence interval

constructed from sample S contains the population character-
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istic B1 and u(S) = 0 otherwise.

• In an SRS, The design-based confidence level is the propor-

tion of possible samples that result in a confidence interval that

includes B1, from the set of all SRS’s of size n from the finite

population of fixed values {(x1, y1), (x2, y2), · · · , (xN , yN)}.

• For the model-based confidence interval β1± tα/2

√
V̂M(β̂1),

the confidence level is the expected proportion of confidence

intervals that will include β1, from the set of all samples that

could be generated from the model
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Standard errors using jackknife

• Stratified multistage cluster sample, the jackknife can be ap-

plied separately in each stratum at the first stage of sampling,

with one psu deleted at a time

Suppose there are H strata, from each stratum h, nh psu’s

are sampled. wi’s are the original weight. Define a new weight

variable:
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wi(hj) =





wi, unit i is not in stratum h,

0, unit i is in psu j of stratum h,
nh

nh − 1
wi, unit i is in stratum h but not in psu j.

Then use the weights wi(hj) to calculate B̂1(hj), the jackknife

estimator is defined as follows:

V̂JK(B̂1) =
H∑

h=1

nh − 1

nh

nh∑
j=1

(B̂1(hj) − B̂1)
2.
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Example: Consider the two samples of size 200 from the 3,000

criminal. For SRS, wi = 3000/200, so wi(j) = 200wi/199 =

3000/199 for i 6= j. For the unequal probability sample,

wi = 1/πi, so wi(j) = 200wi/199 for i 6= j.

estimates variance variance

SRS 3.0453 VL = .048 VJK = .050

Unequal sample 3.055 VL = .346 VJK = .461

• The jackknife estimated variance is larger than the linearization

variance, as often occurs in practice.
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Multiple Linear Regression

Yi = Xi,1B0 + B1Xi,2 + B2Xi,3 + · · ·+ Bp−1Xi,p + εi,

where

• Multiple–More than one predictor variable

• Yi is the response variable

• Xi,1, Xi,2, · · ·Xi,p are the p explanatory variables for cases

i = 1 to N .
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Let

xT
i = [xi1, xi2, · · · , xip]

B =




B0

B1

...

Bp−1
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XU =




X1,1 X1,2 · · · X1,p−1 X1,p

X2,1 X2,2 · · · X2,p−1 X2,p

...
...

XN,1 XN,2 · · · XN,p−1 XN,p




=




xT
1

xT
2
...

xT
N




YN×1 = XU(N×p)Bp×1 + εN×1.

• Normal equation

XT
UXUB = XT

UYU

B = (XT
UXU)−1XT

UYU
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• XT
UXU (j,k) =

N∑
i=1

xijxik;

XT
UyU (k) =

N∑
i=1

xikyi.

• Estimate the matrices XT
UXU and XT

UyU using weights

• Let XS be the matrix of explanatory values for the sample, yS

be the response vector of sample observations, and let WS

be a diagonal matrix of the sample weights wi
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• XT
SWSXS(j,k) =

∑
i∈S wixijxik, which estimates

N∑
i=1

xijxik;

XT
SWSyS(k) =

∑
i∈S

wixikyi, which estimates the population

total
N∑

i=1
xikyi

• B̂ = (XT
SWSXS)−1XT

SWSyS

• Let qi = xi(yi − xT
i B̂), using linearization,

V̂ (B̂) = (XT
SWSXS)−1V̂ (

∑

i∈S

wiqi)(X
T
SWSXS)−1

• CI: B̂k ± t

√
V̂ (B̂k)
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Notes:

• Sampling weighted least squares are different from weighted

least squares

• The weighted least squares estimate minimizes∑
(yi− xT

i β)2/σ2
i , and gives observations with smaller vari-

ance more weight in determining the regression equation

• Sampling weighted least square: weights come from the sam-

pling design, not from an assumed covariance structure

• Sampling weighted least squares is not maximum likelihood

33


