Regression in Complex Surveys

- Learn about relationships between variables
- Give more accurate estimates of population means and totals

Review Simple Linear Regression Model

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\varepsilon_{i}
$$

- Y_{i} is a random variable for the response
- x_{i} is an explanatory variable
- β_{0} and β_{1} are unknown parameters
- ϵ_{i} 's are the deviations of the response variable about the line described by the model
- $E\left[\epsilon_{i}\right]=0$, or $E\left[Y_{i} \mid x_{i}\right]=\beta_{0}+\beta_{1} x_{i}$
- $V\left[\epsilon_{i}\right]=\sigma^{2}$
- $\operatorname{Cov}\left[\epsilon_{i}, \epsilon_{j}\right]=0$ for $i \neq j$
- Often, conditionally on the x_{i} 's, ϵ_{i} 's are independent and identically distributed from a normal distribution with mean 0 and variance σ^{2}
- The SLR model in Matrix Form

$$
\begin{aligned}
& {\left[\begin{array}{c}
Y_{1} \\
Y_{2} \\
\vdots \\
Y_{n}
\end{array}\right]=\left[\begin{array}{c}
\beta_{0}+\beta_{1} X_{1} \\
\beta_{0}+\beta_{1} X_{2} \\
\vdots \\
\beta_{0}+\beta_{1} X_{n}
\end{array}\right]+\left[\begin{array}{c}
\varepsilon_{1} \\
\varepsilon_{2} \\
\vdots \\
\varepsilon_{n}
\end{array}\right] } \\
&= {\left[\begin{array}{cc}
1 & X_{1} \\
1 & X_{2} \\
\vdots & \\
1 & X_{n}
\end{array}\right]\left[\begin{array}{c}
\beta_{0} \\
\beta_{1}
\end{array}\right]+\left[\begin{array}{c}
\varepsilon_{1} \\
\varepsilon_{2} \\
\vdots \\
\varepsilon_{n}
\end{array}\right] }
\end{aligned}
$$

where

- \mathbf{X} is called the design matrix
- $\boldsymbol{\beta}$ is the vector of parameters
- $\boldsymbol{\epsilon}$ is the error vector
- \mathbf{Y} is the response vector

$$
\mathbf{X}=\left[\begin{array}{cc}
1 & X_{1} \\
1 & X_{2} \\
\vdots & \\
1 & X_{n}
\end{array}\right]
$$

$$
\begin{gathered}
\boldsymbol{\beta}=\left[\begin{array}{c}
\beta_{0} \\
\beta_{1}
\end{array}\right] \\
\boldsymbol{\epsilon}=\left[\begin{array}{c}
\varepsilon_{1} \\
\varepsilon_{2} \\
\vdots \\
\varepsilon_{n}
\end{array}\right]
\end{gathered}
$$

$$
\mathbf{Y}=\left[\begin{array}{c}
Y_{1} \\
Y_{2} \\
\vdots \\
Y_{n}
\end{array}\right]
$$

SLM in Matrix Form

$$
\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}
$$

The ordinary Least Squares (OLS) estimates

- Measure $Q=\sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)^{2}$
- Minimize Q to find estimates b_{0} and b_{1} for β_{0} and β_{1}
- Normal equations

$$
\begin{aligned}
\beta_{0} n+\beta_{1} \sum x_{i} & =\sum y_{i} \\
\beta_{0} \sum x_{i}+\beta_{1} \sum x_{i}^{2} & =\sum x_{i} y_{i}
\end{aligned}
$$

$$
\begin{gathered}
b_{1}=\frac{\sum x_{i} y_{i}-\frac{\left(\sum x_{i}\right)\left(\sum y_{i}\right)}{n}}{\sum x_{i}^{2}-\frac{\left(\sum x_{i}\right)^{2}}{n}} \\
b_{0}=\frac{\sum y_{i}-b_{1} \sum x_{i}}{n}
\end{gathered}
$$

- b_{0} and b_{1} are the best linear unbiased estimates

Inferences

$b_{1} \sim N\left(\beta_{1} ; \sigma^{2}\left(b_{1}\right)\right)$
where $\sigma^{2}\left(b_{1}\right)=\frac{\sigma^{2}}{\sum\left(x_{i}-\bar{x}\right)^{2}}$
$\hat{\sigma}^{2}\left(b_{1}\right)=s^{2}\left(b_{1}\right)=\frac{\text { MSE }}{\sum\left(x_{i}-\bar{x}\right)^{2}}$
$\frac{b_{1}-\beta_{1}}{s\left(b_{1}\right)} \sim t(n-2)$
Confidence Interval $b_{1} \pm t\left(1-\frac{\alpha}{2}, n-2\right) s\left(b_{1}\right)$
$b_{0} \sim N\left(\beta_{0} ; \sigma^{2}\left(b_{0}\right)\right)$
where $\sigma^{2}\left(b_{0}\right)=\frac{\sigma^{2} \sum x_{i}^{2}}{n \sum\left(x_{i}-\bar{x}\right)^{2}}$
$\hat{\sigma}^{2}\left(b_{0}\right)=s^{2}\left(b_{0}\right)=\frac{\operatorname{MSE} \sum x_{i}^{2}}{n \sum\left(x_{i}-\bar{x}\right)^{2}}$
$\frac{b_{0}-\beta_{0}}{s\left(b_{0}\right)} \sim t(n-2)$
Confidence Interval $b_{0} \pm t\left(1-\frac{\alpha}{2}, n-2\right) s\left(b_{0}\right)$

Regression in Complex Survey

- Estimating quantities from a finite population
- The finite population quantities of interest for regression are the least squares coefficients for the population, B_{0} and B_{1}, that minimize

$$
\sum_{i=1}^{N}\left(y_{i}-B_{0}-B_{1} x_{i}\right)^{2}
$$

over the entire population

- Observations may have different probabilities of selection, π_{i}. If the probability of selection is related to the response variable y_{i}, then an analysis that does not account for the different probabilities of selection may lead to biases in the estimated regression parameters.
- Nonrespondents, who may be thought of as having zero probability of selection, can distort the relationship
- Stratification may also need to be taken into account

Normal equations

$$
\begin{array}{r}
B_{0} N+B_{1} \sum_{i=1}^{N} x_{i}=\sum_{i=1}^{N} y_{i} \\
B_{0} \sum_{i=1}^{N} x_{i}+B_{1} \sum_{i=1}^{N} x_{i}^{2}=\sum_{i=1}^{N} x_{i} y_{i}
\end{array}
$$

Estimates of B_{1} and B_{0}

$$
\begin{aligned}
\hat{B}_{1} & =\frac{\sum_{i=1}^{N} x_{i} y_{i}-\left(\sum_{i=1}^{N} x_{i}\right)\left(\sum_{i=1}^{N} y_{i}\right) / N}{\sum_{i=1}^{N} x_{i}^{2}-\left(\sum_{i=1}^{N} x_{i}\right)^{2} / N} \\
& =\frac{t_{x y}-t_{x} t_{y} / N}{t_{x^{2}}-\left(t_{x}\right)^{2} / N} \\
& =\frac{\sum_{i \in S} w_{i} x_{i} y_{i}-\left(\sum_{i \in S} w_{i} x_{i}\right)\left(\sum_{i \in S} w_{i} y_{i}\right) / \sum_{i \in S} w_{i}}{\sum_{i \in S} w_{i} x_{i}^{2}-\left(\sum_{i \in S} w_{i} x_{i}\right)^{2} / \sum_{i \in S} w_{i}}
\end{aligned}
$$

$$
\begin{aligned}
\hat{B}_{0} & =\frac{\sum_{i=1}^{N} y_{i}-\hat{B}_{1} \sum_{i=1}^{N} x_{i}}{N} \\
& =\frac{t_{y}-\hat{B}_{1} t_{x}}{N} \\
& =\frac{\sum_{i \in S} w_{i} y_{i}-\hat{B}_{1} \sum_{i \in S} w_{i} x_{i}}{\sum_{i \in S} w_{i}}
\end{aligned}
$$

Standard Errors

- An approximate $100(1-\alpha) \%$ confidence interval for B_{1} is

$$
\hat{B}_{1} \pm t_{\alpha / 2} \sqrt{\hat{V}\left(\hat{B}_{1}\right)}
$$

- For linearization, jackknife, Or BRR in a stratified multistage sample, we would use (number of sampled psu's) - (number of strata) as the degrees of freedom
- Random group method of estimating the variance, the appropriate degrees of freedom would be (number of groups)-1

Standard Errors Using Linearization for \hat{B}_{1}

- B_{1} is a function of four population totals $t_{x y}, t_{x}, t_{y}$, and $t_{x^{2}}$.
- Using Taylor expansion,

$$
\begin{aligned}
& V\left(\hat{B}_{1}\right) \approx V\left\{\frac{\partial B_{1}}{\partial t_{x y}}\left(\hat{t}_{x y}-t_{x y}\right)+\frac{\partial B_{1}}{\partial t_{x}}\left(\hat{t}_{x}-t_{x}\right)\right. \\
&\left.+\frac{\partial B_{1}}{\partial t_{y}}\left(\hat{t}_{y}-t_{y}\right)+\frac{\partial B_{1}}{\partial t_{x^{2}}}\left(\hat{t}_{x^{2}}-t_{x^{2}}\right)\right\} \\
& \frac{\partial B_{1}}{\partial t_{x y}}=\frac{1}{t_{x^{2}}-\frac{\left(t_{x}\right)^{2}}{N}}
\end{aligned}
$$

$$
\begin{aligned}
\frac{\partial B_{1}}{\partial t_{x}} & =\frac{-\frac{t_{y}}{N}\left(t_{x^{2}}-\frac{\left(t_{x}\right)^{2}}{N}\right)+\left(t_{x y}-\frac{t_{x} t_{y}}{N}\right)\left(\frac{2 t_{x}}{N}\right)}{\left(t_{x^{2}}-\frac{\left(t_{x}\right)^{2}}{N}\right)^{2}} \\
& =\frac{-t_{y} / N}{t_{x^{2}}-\frac{\left(t_{x}\right)^{2}}{N}}+\frac{\left(t_{x y}-\frac{t_{x} t_{y}}{N}\right)\left(\frac{2 t_{x}}{N}\right)}{\left(t_{x^{2}}-\frac{\left(t_{x}\right)^{2}}{N}\right)\left(t_{x^{2}}-\frac{\left(t_{x}\right)^{2}}{N}\right)} \\
& =\frac{-t_{y} / N}{t_{x^{2}}-\frac{\left(t_{x}\right)^{2}}{N}}+B_{1} \frac{2 \frac{t_{x}}{N}}{t_{x^{2}}-\frac{\left(t_{x}\right)^{2}}{N}}
\end{aligned}
$$

$$
\frac{\partial B_{1}}{\partial t_{y}}=\frac{-t_{x} / N}{t_{x^{2}}-\frac{\left(t_{x}\right)^{2}}{N}}
$$

$$
\begin{aligned}
\frac{\partial B_{1}}{\partial t_{x^{2}}} & =\frac{-\left(t_{x y}-\frac{t_{x} t_{y}}{N}\right)}{\left(t_{x^{2}}-\frac{\left(t_{x}\right)^{2}}{N}\right)^{2}} \\
& =-B_{1} \frac{1}{t_{x^{2}}-\frac{\left(t_{x}\right)^{2}}{N}}
\end{aligned}
$$

$V\left(\hat{B}_{1}\right)$

$$
\begin{aligned}
& =V\left[\left[t_{x^{2}}-\frac{\left(t_{x}\right)^{2}}{N}\right]^{-1}\left\{\hat{t}_{x y}-\hat{t}_{y} \frac{t_{x}}{N}-B_{0} \hat{t}_{x}+B_{0} t_{x}-B_{1} \hat{t}_{x^{2}}+B_{1} \frac{\hat{t}_{x} t_{x}}{N}\right\}\right] \\
& =V\left[\left[t_{x^{2}}-\frac{\left(t_{x}\right)^{2}}{N}\right]^{-1} \sum_{i \in S} w_{i}\left(y_{i}-B_{0}-B_{1} x_{i}\right)\left(x_{i}-\frac{t_{x}}{N}\right)\right]
\end{aligned}
$$

Define

$$
q_{i}=\left(y_{i}-\hat{B}_{0}-\hat{B}_{1} x_{i}\right)\left(x_{i}-\hat{\bar{x}}\right)
$$

where $\hat{\bar{x}}=\hat{t}_{x} / \hat{N}$.

$$
\hat{V}_{L}\left(\hat{B}_{1}\right)=\frac{\hat{V}\left(\sum_{i \in S} w_{i} q_{i}\right)}{\left[\sum_{i \in S} w_{i} x_{i}^{2}-\left(\sum_{i \in S} w_{i} x_{i}\right)^{2} / \sum_{i \in S} w_{i}\right]^{2}}
$$

Consider simple random sampling

$$
\begin{gathered}
\hat{V}\left(\sum_{i \in S} w_{i} q_{i}\right)=\hat{V}\left(\hat{t}_{q}\right)=\frac{N^{2} s_{q}^{2}}{n} \\
s_{q}^{2}=\frac{\sum_{i \in S}\left(x_{i}-\bar{x}_{S}\right)^{2}\left(y_{i}-\hat{B}_{0}-\hat{B}_{1} x_{i}\right)^{2}}{n-1} \\
\hat{V}_{L}\left(\hat{B}_{1}\right)=\frac{n \sum_{i \in S}\left(x_{i}-\bar{x}_{S}\right)^{2}\left(y_{i}-\hat{B}_{0}-\hat{B}_{1} x_{i}\right)^{2}}{(n-1)\left[\sum_{i \in S}\left(x_{i}-\bar{x}_{S}\right)^{2}\right]^{2}} \\
\hat{V}_{M}\left(\hat{\beta}_{1}\right)=\frac{\sum_{i \in S}\left(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i}\right)^{2}}{(n-2) \sum_{i \in S}\left(x_{i}-\bar{x}\right)^{2}}
\end{gathered}
$$

Design-based v.s Model-based variance estimator

- Design based estimator of the variance \hat{V}_{L} comes from the selection probabilities of the design
- \hat{V}_{M} comes from the average squared deviation over all possible realizations of the model
- For $\hat{B}_{1} \pm t_{\alpha / 2} \sqrt{\hat{V}_{L}\left(\hat{B}_{1}\right)}$, the confidence level is $\sum u(S) P(S)$, where the sum is over all possible samples S that can be selected using the sampling design, $P(S)$ is the probability that sample S is selected, $u(S)=1$, if the confidence interval constructed from sample S contains the population character-
istic B_{1} and $u(S)=0$ otherwise.
- In an SRS, The design-based confidence level is the proportion of possible samples that result in a confidence interval that includes B_{1}, from the set of all SRS's of size n from the finite population of fixed values $\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \cdots,\left(x_{N}, y_{N}\right)\right\}$.
- For the model-based confidence interval $\beta_{1} \pm t_{\alpha / 2} \sqrt{\hat{V}_{M}\left(\hat{\beta}_{1}\right)}$, the confidence level is the expected proportion of confidence intervals that will include β_{1}, from the set of all samples that could be generated from the model

Standard errors using jackknife

- Stratified multistage cluster sample, the jackknife can be applied separately in each stratum at the first stage of sampling, with one psu deleted at a time
Suppose there are H strata, from each stratum h, n_{h} psu's are sampled. w_{i} 's are the original weight. Define a new weight variable:

$$
w_{i(h j)}= \begin{cases}w_{i}, & \text { unit } i \text { is not in stratum } h, \\ 0, & \text { unit } i \text { is in psu } j \text { of stratum } h, \\ \frac{n_{h}}{n_{h}-1} w_{i}, & \text { unit } i \text { is in stratum } h \text { but not in psu } j .\end{cases}
$$

Then use the weights $w_{i(h j)}$ to calculate $\hat{B}_{1(h j)}$, the jackknife estimator is defined as follows:

$$
\hat{V}_{J K}\left(\hat{B}_{1}\right)=\sum_{h=1}^{H} \frac{n_{h}-1}{n_{h}} \sum_{j=1}^{n_{h}}\left(\hat{B}_{1(h j)}-\hat{B}_{1}\right)^{2} .
$$

Example: Consider the two samples of size 200 from the 3,000 criminal. For SRS, $w_{i}=3000 / 200$, so $w_{i(j)}=200 w_{i} / 199=$ $3000 / 199$ for $i \neq j$. For the unequal probability sample, $w_{i}=1 / \pi_{i}$, so $w_{i(j)}=200 w_{i} / 199$ for $i \neq j$.

	estimates	variance	variance
SRS	3.0453	$V_{L}=.048$	$V_{J K}=.050$
Unequal sample	3.055	$V_{L}=.346$	$V_{J K}=.461$

- The jackknife estimated variance is larger than the linearization variance, as often occurs in practice.

Multiple Linear Regression

$$
Y_{i}=X_{i, 1} B_{0}+B_{1} X_{i, 2}+B_{2} X_{i, 3}+\cdots+B_{p-1} X_{i, p}+\epsilon_{i},
$$

where

- Multiple-More than one predictor variable
- Y_{i} is the response variable
- $X_{i, 1}, X_{i, 2}, \cdots X_{i, p}$ are the p explanatory variables for cases $i=1$ to N.

Let

$$
\begin{gathered}
\mathbf{x}_{i}^{T}=\left[x_{i 1}, x_{i 2}, \cdots, x_{i p}\right] \\
\mathbf{B}=\left[\begin{array}{c}
B_{0} \\
B_{1} \\
\vdots \\
B_{p-1}
\end{array}\right]
\end{gathered}
$$

$$
\begin{gathered}
\mathbf{X}_{U}=\left[\begin{array}{ccccc}
X_{1,1} & X_{1,2} & \cdots & X_{1, p-1} & X_{1, p} \\
X_{2,1} & X_{2,2} & \cdots & X_{2, p-1} & X_{2, p} \\
\vdots & \vdots & & & \\
X_{N, 1} & X_{N, 2} & \cdots & X_{N, p-1} & X_{N, p}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{x}_{1}^{T} \\
\mathbf{x}_{2}^{T} \\
\vdots \\
\mathbf{x}_{N \times 1}^{T}
\end{array}\right] \\
\mathbf{X}_{U(N \times p)} \mathbf{B}_{p \times 1}+\boldsymbol{\epsilon}_{N \times 1} .
\end{gathered}
$$

- Normal equation

$$
\begin{gathered}
\mathbf{X}_{U}^{T} \mathbf{X}_{U} \mathbf{B}=\mathbf{X}_{U}^{T} \mathbf{Y}_{U} \\
\mathbf{B}=\left(\mathbf{X}_{U}^{T} \mathbf{X}_{U}\right)^{-1} \mathbf{X}_{U}^{T} \mathbf{Y}_{U}
\end{gathered}
$$

- $\mathbf{X}_{U}^{T} \mathbf{X}_{U(j, k)}=\sum_{i=1}^{N} x_{i j} x_{i k} ;$
$\mathbf{X}_{U}^{T} \mathbf{y}_{U(k)}=\sum_{i=1}^{N} x_{i k} y_{i}$.
- Estimate the matrices $\mathbf{X}_{U}^{T} \mathbf{X}_{U}$ and $\mathbf{X}_{U}^{T} \mathbf{y}_{U}$ using weights
- Let \mathbf{X}_{S} be the matrix of explanatory values for the sample, \mathbf{y}_{S} be the response vector of sample observations, and let \mathbf{W}_{S} be a diagonal matrix of the sample weights w_{i}
- $\mathbf{X}_{S}^{T} \mathbf{W}_{S} \mathbf{X}_{S(j, k)}=\sum_{i \in S} w_{i} x_{i j} x_{i k}$, which estimates $\sum_{i=1}^{N} x_{i j} x_{i k} ;$ $\mathbf{X}_{S}^{T} \mathbf{W}_{S} \mathbf{y}_{S_{(k)}}=\sum_{i \in S} w_{i} x_{i k} y_{i}$, which estimates the population total $\sum_{i=1}^{N} x_{i k} y_{i}$
- $\hat{\mathbf{B}}=\left(\mathbf{X}_{S}^{T} \mathbf{W}_{S} \mathbf{X}_{S}\right)^{-1} \mathbf{X}_{S}^{T} \mathbf{W}_{S} \mathbf{y}_{S}$
- Let $\mathbf{q}_{i}=\mathbf{x}_{i}\left(y_{i}-\mathbf{x}_{i}^{T} \hat{\mathbf{B}}\right)$, using linearization,

$$
\hat{V}(\hat{\mathbf{B}})=\left(\mathbf{X}_{S}^{T} \mathbf{W}_{S} \mathbf{X}_{S}\right)^{-1} \hat{V}\left(\sum_{i \in S} w_{i} \mathbf{q}_{i}\right)\left(\mathbf{X}_{S}^{T} \mathbf{W}_{S} \mathbf{X}_{S}\right)^{-1}
$$

- CI: $\hat{B}_{k} \pm t \sqrt{\hat{V}\left(\hat{B}_{k}\right)}$

Notes:

- Sampling weighted least squares are different from weighted least squares
- The weighted least squares estimate minimizes $\sum\left(y_{i}-\mathbf{x}_{i}^{T} \boldsymbol{\beta}\right)^{2} / \sigma_{i}^{2}$, and gives observations with smaller variance more weight in determining the regression equation
- Sampling weighted least square: weights come from the sampling design, not from an assumed covariance structure
- Sampling weighted least squares is not maximum likelihood

