
Survey Sampling: Introduction 2

Cluster Sampling:

One stage cluster sampling:

—Example: Sampling students in high school.

• Take a random sample of classes (The classes are the primary

sampling units (psus) or clusters)

• Then measure all students in the selected classes (The stu-

dents within the classes are the secondary sampling units (ssus))

• Often the ssus are the elements of the population.

• In design of experiments, we would call this a nested design
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Comparison with stratification and SRS

• We partition the population into subgroups (strata or clusters)

• With stratification, we sample from each of the subgroups

• With cluster sampling, we sample all of the units in a subset of

subgroups

• In general, for a given total sample size n, Cluster sampling

will produce estimates with the largest variance. SRS will be

intermediate. Stratification will give the smallest variance.
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Notation

—–PSU level

• N = number of psus in the population

• Mi = number of ssus in the ith psu

• K =
N∑

i=1
Mi= total number of ssus in the population

• yij = Measurement for jth element in the ith psu

• ti =
Mi∑
j=1

yij= total in the ith psu.
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• t =
N∑

i=1
ti =

N∑
i=1

Mi∑
j=1

yij= population total.

• S2
t =

N∑
i=1

(ti − t

N
)2

N − 1
= population variance of the psu totals

(between cluster variation).
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—–SSU level

• ȳU =
N∑

i=1

Mi∑
j=1

yij

K
= population mean

• ȳiU =
Mi∑
j=1

yij

Mi
=

ti
Mi

= population mean in the ith psu

• S2 =
N∑

i=1

Mi∑
j=1

(yij − ȳU)2

K − 1
= population variance (per ssu)

• S2
i =

Mi∑
j=1

(yij − ȳiU)2

Mi − 1
= population variance within the ith

psu.

5



—–Sample values

• n= number of psus in the sample

• mi = number of elements in the sample for the ith psu

• ȳi =
∑
j∈Si

yij

mi
= sample mean (per ssu) for ith psu

• t̂i =
∑
j∈Si

Mi

mi
yij = estimated total for the ith psu

• t̂unb =
∑
i∈S

N

n
t̂i = unbiased estimator of t (population total)

(weighted mean of ti’s)
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• s2
t =

1

n− 1

∑

i∈S

(t̂i− t̂unb

N
)2= estimated variance of psu totals

• s2
i =

∑
j∈Si

(yij − ȳi)
2

mi − 1
= sample variance within the ith psu
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Clusters of equal sizes:

t̂ =
N

n

∑

i∈S

ti

V (t̂) = N 2(1− n

N
)
S2

t

n

S2
t is estimated by s2

t with s2
t =

1

n− 1

∑

i∈S

(ti − t̂

N
)2

ˆ̄y =
t̂

NM

V (ˆ̄y) = (1− n

N
)

s2
t

nM 2
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Source df Sum of Squares Mean Squares

Between N − 1 SSB= MSB

psu’s
N∑

i=1

M∑
j=1

(ȳiU − ȳU)2

Within N(M − 1) SSW= MSW

psu’s
N∑

i=1

M∑
j=1

(yij − ȳiU)2

Total NM-1 SSTO= S2

N∑
i=1

M∑
j=1

(yij − ȳU)2
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Example: A student wants to estimate the average grade point

average (GPA) in his dormitory. Instead of obtaining a listing of

all students in the dorm and conducting a simple random sam-

ple, he notices that the dorm consist of 100 suits, each with 4

students; he chooses 5 of those suites at random, and asks

every person in the 5 suits what her or his GPA is. The results

are as follows:
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Person suit1 suit2 suit3 suit4 suit5

1 3.08 2.36 2.00 3.00 2.68

2 2.60 3.04 2.56 2.88 1.92

3 3.44 3.28 2.52 3.44 3.28

4 3.04 2.68 1.88 3.64 3.20

Total 12.16 11.36 8.96 12.96 11.08

The psu’s are the suits, so N = 100, n = 5, and M = 4.

t̂ =
100

5
(12.16+11.36+8.96+12.96+11.08) = 1130.4
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and

s2
t =

1

5− 1
[(12.16− 11.304)2 + · · ·+ (11.08− 11.304)2]

= 2.256

V̂ (t̂) = 65.4706

ˆ̄y = 1130.4/400 = 2.826

SE(ˆ̄y) =

√
(1− 5

100
)

2.256

(5)(4)2 = .164

Note: Only the “total” column of the data table is used, the

individual GPAs are only used for their contribution to the suite

total.

12



ANOVA Table

Source df SS MS

Between Suites 4 2.2557 .56392

Within suites 15 2.7756 .18504

Total 19 5.0313 .2648
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Weight: One-stage cluster sampling with an SRS of psu’s pro-

duces a self-weighting sample. The weight for each observa-

tion unit is

wij =
1

P{ssu j of psu i is in sample} =
N

n

t̂ =
∑

i∈S

∑

j∈Si

wijyij

=
N

n
(3.08 + 2.60 + · · ·+ 3.28 + 3.20)

=
100

5
(56.52)

= 1130.4
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Two-stage cluster sampling

• If the items within a cluster are very similar, no need to measure

all of them. Alternative is to take an SRS of the units in each

selected psu (cluster).

• First: take an SRS of n psus from the population (N psus).

Second: For each of the sampled clusters, draw an SRS of

size mi.

• Need to estimate ti. The sample mean for cluster i is

ȳi =
1

mi

∑

j∈clusteri

yij
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To estimate the total for cluster i we multiply by Mi, t̂i = Miȳi.

t̂unb =
N

n

∑

i∈S

t̂i =
N

n

∑

i∈S

Miȳi
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Estimated variance

• The estimated variance for t̂unb is obtained by deriving a for-

mula for the true variance and substituting sample estimates

for unknown parameters in the formula.

• Variance contains two terms: A term equal to the expression

for one-stage clustering (S2
t ). An additional term to account for

the fact that we took an SRS at the second stage (S2
i ’s). The

derivation is given in the text for the general case of unequal

probability sampling in Section 6.6.

17



Between cluster variance

• Viewing the t̂i as an SRS

s2
t =

∑

i∈sample

(t̂i − ˆ̄t)2/(n− 1)

where ˆ̄t = t̂unb/N

• s2
t is an estimate of S2

t the true variance of the ti
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Within cluster variance

• viewing the yij as an SRS.

• For cluster i, s2
i =

1

mi − 1

∑
j∈psui

(yij − ȳi)
2

• fpc for each cluster, fpci = (1−mi/Mi)

• V̂ (t̂unb) = N 2(1− n

N
)
s2
t

n
+

N

n

∑

i∈S

(1− mi

Mi
)M 2

i

s2
i

mi
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Example 6.1

• Survey of nursing home residents in Philadelphia to determine preferences

on life- sustaining treatments

• 294 nursing homes with a total of 37,652 beds (number of residents not

known at the planning stage)

• Use cluster sampling

• Suppose we choose an SRS of the 294 nursing homes and then an SRS of

10 residents of each selected home

• A nursing home with 20 beds has the same probability of being sampled as

a nursing home with 1000 beds

• 10 residents from the 20 bed home represent fewer people than 10 resi-

dents from 1000 bed home
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Possible design?

• The above procedure gives a sample that is not self-weighted

• A one-stage cluster sample

• Sample a fixed percentage of the residents of each selected

nursing home

• Two-stage cluster design (SRS of homes, then equal propor-

tion SRS of residents in each selected home)

• SRS at first stage, we would expect ti to be proportional to the

number of beds in nursing home i, so estimators will have large

variance
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The study

• They drew a sample of 57 nursing homes with probabilities

proportional to the number of beds

• Then took an SRS of 30 beds (and their occupants) from a list

of all beds within each selected nursing home.

• Each bed is equally likely to be in the sample (note beds vs

occupants)

• The cost is known before selecting the sample

• The same number of interviews is taken at each nursing home

• The estimators will have smaller variance
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Unequal probabilities

• πi is the probability that unit i is selected as part of the sample

• Most designs we have studied so far have the πi equal

• In general designs, πi can vary with i

• Unequal probability sampling may give much better results

• We compensate unequal probabilities by using weights in the

estimation
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One stage sampling with replacement (suppose n > 1)

• ψi = p(select unit i on first draw)

• Probability that item i is selected on the first draw is the same

as the probability that item i is selected on any other draw

• πi = p(unit i in sample)

• This implies πi = 1− (1− ψi)
n

• Qi = number of times unit(psu) i occurs in the sample

•
N∑

i=1
Qi = n, E(Qi) = nψi
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• Estimator of total t̂ψ =
1

n

N∑

i=1

Qi
ti
ψi

• Sampling with replacement gives us n independent estimates

of the population total, one for each unit in sample.

• We average these n estimates
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• Unbiased

E(t̂ψ) =
1

n

N∑
i=1

E(Qi)
ti
ψi

=
1

n

N∑
i=1

nψi
ti
ψi

=
∑

ti

= t
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Variance:

V (t̂ψ) =
1

n

N∑
i=1

ψi(
ti
ψi
− t)2

V̂ (t̂ψ) =
1

n

N∑
i=1

Qi

(
ti
ψi
− t̂ψ)2

n− 1

E[V̂ (t̂ψ)] = V (t̂ψ)
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Two-stage sampling with replacement

• The only difference between two-stage sampling with replace-

ment and one-stage sampling with replacement is that in two-

stage sampling, we must estimate ti.

• If psu i is in the sample more than once, there are Qi estimates

of the total for psu i: t̂i1, t̂i2, · · · , t̂iQi
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• t̂ψ =
1

n

N∑

i=1

Qi∑

j=1

t̂ij
ψi

• V̂ (t̂ψ) =
1

n

N∑
i=1

Qi∑
j=1

(
t̂ij
ψi
− t̂ψ)2

n− 1
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Unequal probability sampling without replacement

• πi = p(unit i in sample)

• πi/n is the average probability that a unit will be selected on

one of the draws: It is the probability we would assign to the

ith unit’s being selected on draw k(k = 1, · · · , n) if we did

not know the true probabilities

• the estimator t̂i/ψi is then estimated by t̂i/(πi/n)
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Horvitz-Thompson (HT) Estimator (Horvitz and Thompson

1952)

t̂HT =
1

n

∑

i∈S

t̂i
πi/n

=
∑

i∈S

t̂i
πi

=
N∑

i=1

Zi
t̂i
πi

Unbiased: E[t̂HT ] =
N∑

i=1
πi

ti
πi

= t
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Variance:

V̂1[t̂HT ] =
∑
i∈S

(1−πi)
t̂2i
π2

i

+
∑

i∈S

∑

k∈S,k 6=i

πik − πiπk

πik

t̂i
πi

t̂k
πk

+

∑

i∈S

V̂ (t̂i)

πi

Sen-Yates-Grundy form

V̂2[t̂HT ] =
∑

i∈S

∑

k∈S,k>i

πiπk − πik

πik
(
t̂i
πi
− t̂k

πk
)2 +

∑

i∈S

V̂ (t̂i)

πi

Durbin(1953): Use with-replacement variance estimators to avoid

some of the potential instability and computational complexity.
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In conclusion:

Population total is estimated by

t̂ =
∑

i∈S

∑

j∈Si

wijyij

Population mean is estimated by

ˆ̄y =

∑
i∈S

∑
j∈Si

wijyij

∑
i∈S

∑
j∈Si

wij
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