HOMEWORK DAY 8 – Derivatives of Trigonometric functions §2.4

Find the following derivates. Simplify if appropriate. Always write $f'(x) = \dots$ See worked-out example.

1. §2.4: 2.

2. $\S2.4: 3.$

3. §2.4: 5.

4. §2.4: 6.

5. §2.4: 7. Answer : $\frac{dy}{d\theta} = \sec\theta\tan\theta\tan\theta + \sec\theta\sec^2\theta = \sec\theta(\tan^2\theta + \sec^2\theta)$

6. §2.4: 8.

7. §2.4: 10.

8. §2.4: 40 (A point on a curve has two coordinates (a, b))

9. §2.5: 7.

10. $\S2.5: 9.$

11. $\S2.5: 10.$

12. $\S2.5: 14.$

13. $\S2.5: 15.$

14. $\S2.5: 16.$

15. $\S2.5: 18.$

16. $\S2.5: 24.$

17. Find
$$\frac{d^{37}}{dx^{37}}(x\cos x)$$

18. Let $f(t) = (3t - 1)^4 (2t + 1)^{-3}$.

(a) Find f'(t). Simplify your answer

(b) Find the points (a, b) on the curve y = f(t) at which the tangent line is horizontal.

19. Let $f(x) = \frac{1}{4 + x^2}$

(a) Find f'(x) (simplify, compare with your answer from Day 5, Exercise 8)

(b) Find f''(x) (simplify)

(c) Find the points (a, b) on the curve y = f(x) at which f''(x) = 0.

21. $\S2.5:68$

22. $\S2.5:72$

23. $\S2.5:78$

24. $\S2.5: 81$