1. Cauchy (1789-1857) - Riemann (1829-1866) Equations

Theorem: Suppose \(f(z) = u(x,y) + iv(x,y) \) is differentiable at \(z = z_0 \). Then \(u, v \) must satisfy the Cauchy-Riemann equations:

\[
\begin{align*}
u_x &= v_y , & u_y &= -v_x
\end{align*}
\]

Furthermore, \(f'(z) = u_x + iv_x = v_y - iu_y \).

Proof: in class

Example 1: \(f(z) = z^2 \) is differentiable and indeed, C-R are satisfied. Note \(f'(z) \) computed earlier using definition satisfies formula.

Example 2: \(f(z) = \bar{z} \) does not satisfy C-R. Thus it is not differentiable.

From the above theorem it does not follow that if C-R are satisfied, the function is differentiable. For that we need a stronger theorem.

Theorem: Suppose \(u_x, u_y, v_x, v_y \) exist in a neighbourhood of \(z_0 \), and are continuous at \(z_0 \), then \(f(z) \) is differentiable at \(z_0 \) \(\iff \) Cauchy-Riemann are satisfied

Proof: in class, using Taylor series. We reviewed Taylor series for functions of 1 and 2 variables.

From this second theorem it follows that if \(u, v \) are sufficiently nice, it is enough to check whether the Cauchy-Riemann equations are satisfied to determine whether \(f \) is differentiable.

2. Cauchy-Riemann Equations in polar coordinates

Theorem: Let \(f(z) = u(r,\theta) + iv(r,\theta) \) where \(z = x + iy \) and \(x = r \cos \theta, y = r \sin \theta \). If \(u_x, u_y, v_x, v_y \) exist in a neighbourhood of a nonzero point \(z_0 \neq 0 \), and are continuous at \(z_0 \), then \(f(z) \) is differentiable at \(z_0 \) \(\iff \) \(u_r = \frac{1}{r} v_\theta, \quad \frac{1}{r} u_\theta = -v_r \).

In that case, \(f'(z) = e^{-i\theta}(u_r + iv_r) \).

Proof: We outlined the equivalence of Cauchy-Riemann in Cartesian and polar coordinates in class. Full details are in HW.

Example 3: Show \(f(z) = |z|^2 = r^2 \) is not differentiable.

3. Analytic functions

Definition: \(f(z) \) is analytic at \(z_0 \) if it is differentiable in a nbhd of \(z_0 \)

Definition: \(f(z) \) is analytic (or holomorphic) in \(R \) if it is differentiable at all \(z \in R \)

Definition: \(f(z) \) is entire if it is differentiable in \(\mathbb{C} \)

Definition: \(z_0 \) is a singular point of \(f(z) \) if \(f \) is analytic at some point in every nbhd of \(z_0 \)

Theorem: Sums, products, quotients of analytic functions are analytic, as long as denominator not zero.